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PREFACE

ECONOMETRIC ANALYSIS

Econometric Analysis provides a broad introduction to the field of econometrics. This
field grows continually—a list of journals devoted at least in part, if not completely,
to econometrics now includes The Journal of Applied Econometrics, The Journal of
Econometrics, The Econometrics Journal, Econometric Theory, Econometric Reviews,
Journal of Business and Economic Statistics, Empirical Economics, Foundations and
Trends in Econometrics, The Review of Economics and Statistics, and Econometrica.
Constructing a textbook-style survey to introduce the topic at a graduate level has
become increasingly ambitious. Nonetheless, I believe that one can successfully seek
that objective in a single textbook. This text attempts to present, at an entry level, enough
of the topics in econometrics that a student can comfortably move from here to practice
or more advanced study in one or more specialized areas. The book is also intended as
a bridge for students and analysts in the social sciences between an introduction to the
field and the professional literature.

NEW TO THIS EDITION

This seventh edition is a major revision of Econometric Analysis. Among the most
obvious changes are

e Reorganization of the early material that is taught in the first-semester course,

including

— All material on hypothesis testing and specification presented in a single
chapter

—  New results on prediction

—  Greater and earlier emphasis on instrumental variables and endogeneity

— Additional results on basic panel data models

New applications and examples, with greater detail

Greater emphasis on specific areas of application in the advanced material

New material on simulation-based methods, especially bootstrapping and Monte

Carlo studies

Several examples that explain interaction effects

Specific recent applications including quantile regression

New applications in discrete choice modeling

New material on endogeneity and its implications for model structure
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THE SEVENTH EDITION OF ECONOMETRIC ANALYSIS

The book has two objectives. The first is to introduce students to applied econometrics,
including basic techniques in linear regression analysis and some of the rich variety
of models that are used when the linear model proves inadequate or inappropriate.
Modern software has made complicated modeling very easy to do, and an understanding
of the underlying theory is also important. The second objective is to present students
with sufficient theoretical background so that they will recognize new variants of the
models learned about here as merely natural extensions that fit within a common body
of principles. This book contains a substantial amount of theoretical material, such as
that on GMM, maximum likelihood estimation, and asymptotic results for regression
models.

This text is intended for a one-year graduate course for social scientists. Prereq-
uisites should include calculus, mathematical statistics, and an introduction to econo-
metrics at the level of, say, Gujarati’s (2002) Basic Econometrics, Stock and Watson’s
(2006) Introduction to Econometrics, Kennedy’s (2008) Guide to Econometrics, or
Wooldridge’s (2009) Introductory Econometrics: A Modern Approach. 1 assume, for ex-
ample, that the reader has already learned about the basics of econometric methodology
including the fundamental role of economic and statistical assumptions; the distinctions
between cross-section, time-series, and panel data sets; and the essential ingredients of
estimation, inference, and prediction with the multiple linear regression model. Self-
contained (for our purposes) summaries of the matrix algebra, mathematical statistics,
and statistical theory used throughout the book are given in Appendices A through
D. I rely heavily on matrix algebra throughout. This may be a bit daunting to some
early on but matrix algebra is an indispensable tool and I hope the reader will come
to agree that it is a means to an end, not an end in itself. With matrices, the unity of a
variety of results will emerge without being obscured by a curtain of summation signs.
All the matrix algebra needed in the text is presented in Appendix A. Appendix E and
Chapter 15 contain a description of numerical methods that will be useful to practicing
econometricians (and to us in the later chapters of the book).

Contemporary computer software has made estimation of advanced nonlinear mod-
els as routine as least squares. I have included five chapters on estimation methods used
in current research and five chapters on applications in micro- and macroeconometrics.
The nonlinear models used in these fields are now the staples of the applied economet-
rics literature. As a consequence, this book also contains a fair amount of material that
will extend beyond many first courses in econometrics. Once again, I have included this
in the hope of laying a foundation for study of the professional literature in these areas.

One overriding purpose has motivated all seven editions of this book. The vast
majority of readers of this book will be users, not developers, of econometrics. I be-
lieve that it is simply not sufficient to recite the theory of estimation, hypothesis testing,
and econometric analysis. Although the often-subtle theory is extremely important,
the application is equally crucial. To that end, I have provided hundreds of numerical
examples. My purpose in writing this work, and in my continuing efforts to update it,
is to show readers how to do econometric analysis. I unabashedly accept the unflatter-
ing assessment of a correspondent who once likened this book to a “user’s guide to
econometrics.”
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PLAN OF THE BOOK

The arrangement of the book is as follows:

Part I begins the formal development of econometrics with its fundamental pillar,
the linear multiple regression model. Estimation and inference with the linear least
squares estimator are analyzed in Chapters 2 through 6. The nonlinear regression model
is introduced in Chapter 7 along with quantile, semi- and nonparametric regression, all
as extensions of the familiar linear model. Instrumental variables estimation is developed
in Chapter 8.

Part II presents three major extensions of the regression model. Chapter 9 presents
the consequences of relaxing one of the main assumptions of the linear model, ho-
moscedastic nonautocorrelated disturbances, to introduce the generalized regression
model. The focus here is on heteroscedasticity; autocorrelation is mentioned, but a de-
tailed treatment is deferred to Chapter 20 in the context of time-series data. Chapter 10
introduces systems of regression equations, in principle, as the approach to modeling
simultaneously a set of random variables and, in practical terms, as an extension of the
generalized linear regression model. Finally, panel data methods, primarily fixed and
random effects models of heterogeneity, are presented in Chapter 11.

The second half of the book is devoted to topics that will extend the linear regression
model in many directions. Beginning with Chapter 12, we proceed to the more involved
methods of analysis that contemporary researchers use in analysis of “real-world” data.
Chapters 12 to 16 in Part III present different estimation methodologies. Chapter 12
presents an overview by making the distinctions between parametric, semiparametric
and nonparametric methods. The leading application of semiparametric estimation in
the current literature is the generalized method of moments (GMM) estimator presented
in Chapter 13. This technique provides the platform for much of modern economet-
rics. Maximum likelihood estimation is developed in Chapter 14. Monte Carlo and
simulation-based methods such as bootstrapping that have become a major compo-
nent of current research are developed in Chapter 15. Finally, Bayesian methods are
introduced in Chapter 16.

Parts IV and V develop two major subfields of econometric methods, microecono-
metrics, which is typically based on cross-section and panel data, and macroeconomet-
rics, which is usually associated with analysis of time-series data. In Part IV, Chapters 17
to 19 are concerned with models of discrete choice, censoring, truncation, sample selec-
tion, duration, treatment effects, and the analysis of counts of events. In Part V, Chap-
ters 20 and 21, we consider two topics in time-series analysis, models of serial correlation
and regression models for nonstationary data—the usual substance of macroeconomic
analysis.

REVISIONS

I have substantially rearranged the early part of the book to produce what I hope is a
more natural sequence of topics for the graduate econometrics course. Chapter 4 is now
devoted entirely to point and interval estimation, including prediction and forecasting.
Finite sample, then asymptotic properties of least squares are developed in detail. All
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of the material on hypothesis testing and specification search is moved into Chapter 5,
rather than fragmented over several chapters as in the sixth edition. I have also brought
the material on instrumental variables much farther forward in the text, from after the
development of the generalized regression model in the sixth edition to Chapter 8 in this
one, immediately after full development of the linear regression model. This accords
with the greater emphasis on this method in recent applications. A very large number
of other rearrangements of the material will also be evident. Chapter 7 now contains
a range of advanced extensions of the linear regression model, including nonlinear,
quantile, partially linear, and nonparametric regression. This is also a point at which the
differences between parametric, semiparametric, and nonparametric methods can be
examined. One conspicuous modification is the excision of the long chapter on linear
simultaneous equations models. Some of the material from this chapter appears else-
where. Two-stage least squares now appears with instrumental variables estimation.
Remaining parts of this chapter that are of lesser importance in recent treatments, such
as rank and order conditions for identification of linear models and 3SLS and FIML
estimation, have been deleted or greatly reduced and placed in context elsewhere in the
text. The material on discrete choice models has been rearranged to orient the topics
to the behavioral foundations. Chapter 17 now broadly introduces discrete choice and
random utility models, and then builds on variants of the binary choice model. The
analysis is continued in Chapter 18 with unordered, then ordered choice models and,
finally, models for counts. The last chapter of the section studies models for continu-
ous variables in the contexts of particular data-generating mechanisms and behavioral
contexts.

I have added new material and some different examples and applications at numer-
ous points. Topics that have been expanded or given greater emphasis include treat-
ment effects, bootstrapping, simulation-based estimation, robust estimation, missing
and faulty data, and a variety of different new methods of discrete choice analysis in
microeconometrics. I have also added or expanded material on techniques recently of
interest, such as quantile regression and stochastic frontier models.

Inote a few specific highlights of the revision: In general terms, [ have increased the
focus on robust methods a bit. I have placed discussions of specification tests at several
points, consistent with the trend in the literature to examine more closely the fragility
of heavily parametric models. A few of the specific new applications are as follows:

e Chapter 15 on simulation-based estimation has been considerably expanded. It
now includes substantially more material on bootstrapping standard errors and
confidence intervals. The Krinsky and Robb (1986) approach to asymptotic
inference has been placed here as well.

e A great deal of attention has been focused in recent papers on how to understand
interaction effects in nonlinear models. Chapter 7 contains a lengthy application
of interaction effects in a nonlinear (exponential) regression model. The issue is
revisited in Chapter 17.

e As an exercise that will challenge the student’s facility with asymptotic
distribution theory, I have added a detailed proof of the Murphy and Topel (2002)
result for two-step estimation in Chapter 14.

e Sources and treatment of endogeneity appear at various points, for example an
application of inverse probability weighting to deal with attrition in Chapter 17.
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The seventh edition is a major revision of Econometric Analysis both in terms of
organization of the material and in terms of new ideas and treatments. I hope that
readers will find the changes helpful.

SOFTWARE AND DATA

There are many computer programs that are widely used for the computations described
in this book. All were written by econometricians or statisticians, and in general, all
are regularly updated to incorporate new developments in applied econometrics. A
sampling of the most widely used packages and Internet home pages where you can
find information about them are

EViews WWW.eviews.com (QMS, Irvine, CA)

Gauss www .aptech.com (Aptech Systems, Kent, WA)

LIMDEP vwww.limdep.com (Econometric Software, Plainview, NY)
MATLAB vwww.mathworks.com (Mathworks, Natick, MA)

NLOGIT www.nlogit.com (Econometric Software, Plainview, NY)
R www.r-project.org/ (The R Project for Statistical Computing)
RATS www.estima.com (Estima, Evanston, IL)

SAS WWW.Sas.com (SAS, Cary, NC)

Shazam econometrics.com (Northwest Econometrics Ltd., Gibsons, Canada)
Stata www.stata.com (Stata, College Station, TX)

TSP www.tspintl.com (TSP International, Stanford, CA)

A more extensive list of computer software used for econometric analysis can be
found at the resource Web site, http://www.oswego.edu/~economic/econsoftware.htm.

With only a few exceptions, the computations described in this book can be carried
out with any of the packages listed. NLOGIT was used for the computations in the ap-
plications. This text contains no instruction on using any particular program or language.
(The author’s Web site for the text does provide some code and data for replication
of the numerical examples.) Many authors have produced RATS, LIMDEP/NLOGIT,
EViews, SAS, or Stata code for some of our applications, including, in a few cases,
the documentation for their computer programs. There are also quite a few volumes
now specifically devoted to econometrics associated with particular packages, such as
Cameron and Trivedi’s (2009) companion to their treatise on microeconometrics.

The data sets used in the examples are also available on the Web site for the
text, http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm. Throughout
the text, these data sets are referred to “Table Fn.m,” for example Table F4.1. The
“F” refers to Appendix F at the back of the text which contains descriptions of the data
sets. The actual data are posted in generic ASCII and portable formats on the Web
site with the other supplementary materials for the text. There are now thousands of
interesting Web sites containing software, data sets, papers, and commentary on econo-
metrics. It would be hopeless to attempt any kind of a survey here. One code/data site
that is particularly agreeably structured and well targeted for readers of this book is
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the data archive for the Journal of Applied Econometrics. They have archived all the
nonconfidential data sets used in their publications since 1988 (with some gaps before
1995). This useful site can be found at http://qed.econ.queensu.ca/jae/. Several of the
examples in the text use the JAE data sets. Where we have done so, we direct the reader
to the JAE’s Web site, rather than our own, for replication. Other journals have begun
to ask their authors to provide code and data to encourage replication. Another vast,
easy-to-navigate site for aggregate data on the U.S. economy is www.economagic.com.
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1.1

1
ECONOMETRICS

INTRODUCTION

This book will present an introductory survey of econometrics. We will discuss the fun-
damental ideas that define the methodology and examine a large number of specific
models, tools and methods that econometricians use in analyzing data. This chapter will
introduce the central ideas that are the paradigm of econometrics. Section 1.2 defines
the field and notes the role that theory plays in motivating econometric practice. Sec-
tion 1.3 discusses the types of applications that are the focus of econometric analyses. The
process of econometric modeling is presented in Section 1.4 with a classic application,
Keynes’s consumption function. A broad outline of the book is presented in Section 1.5.
Section 1.6 notes some specific aspects of the presentation, including the use of numer-
ical examples and the mathematical notation that will be used throughout the book.

1.2 THE PARADIGM OF ECONOMETRICS

In the first issue of Econometrica, Ragnar Frisch (1933) said of the Econometric Society
that

its main object shall be to promote studies that aim at a unification of the
theoretical-quantitative and the empirical-quantitative approach to economic
problems and that are penetrated by constructive and rigorous thinking similar
to that which has come to dominate the natural sciences. But there are sev-
eral aspects of the quantitative approach to economics, and no single one of
these aspects taken by itself, should be confounded with econometrics. Thus,
econometrics is by no means the same as economic statistics. Nor is it identical
with what we call general economic theory, although a considerable portion of
this theory has a definitely quantitative character. Nor should econometrics be
taken as synonomous [sic] with the application of mathematics to economics.
Experience has shown that each of these three viewpoints, that of statistics,
economic theory, and mathematics, is a necessary, but not by itself a sufficient,
condition for a real understanding of the quantitative relations in modern eco-
nomic life. It is the unification of all three that is powerful. And it is this unifi-
cation that constitutes econometrics.

The Society responded to an unprecedented accumulation of statistical information.
They saw a need to establish a body of principles that could organize what would
otherwise become a bewildering mass of data. Neither the pillars nor the objectives
of econometrics have changed in the years since this editorial appeared. Econometrics
concerns itself with the application of mathematical statistics and the tools of statistical
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inference to the empirical measurement of relationships postulated by an underlying
theory.

The crucial role that econometrics plays in economics has grown over time. The
Nobel Prize in Economic Sciences has recognized this contribution with numerous
awards to econometricians, including the first which was given to (the same) Ragnar
Frisch in 1969, Lawrence Klein in 1980, Trygve Haavelmo in 1989, James Heckman
and Daniel McFadden in 2000, and Robert Engle and Clive Granger in 2003. The 2000
prize was noteworthy in that it celebrated the work of two scientists whose research
was devoted to the marriage of behavioral theory and econometric modeling.

Example 1.1 Behavioral Models and the Nobel Laureates
The pioneering work by both James Heckman and Dan McFadden rests firmly on a theoretical
foundation of utility maximization.

For Heckman'’s, we begin with the standard theory of household utility maximization over
consumption and leisure. The textbook model of utility maximization produces a demand for
leisure time that translates into a supply function of labor. When home production (work in
the home as opposed to the outside, formal labor market) is considered in the calculus, then
desired “hours” of (formal) labor can be negative. An important conditioning variable is the
“reservation” wage—the wage rate that will induce formal labor market participation. On the
demand side of the labor market, we have firms that offer market wages that respond to such
attributes as age, education, and experience. What can we learn about labor supply behavior
based on observed market wages, these attributes and observed hours in the formal market?
Less than it might seem, intuitively because our observed data omit half the market—the data
on formal labor market activity are not randomly drawn from the whole population.

Heckman’s observations about this implicit truncation of the distribution of hours or
wages revolutionized the analysis of labor markets. Parallel interpretations have since guided
analyses in every area of the social sciences. The analysis of policy interventions such as
education initiatives, job training and employment policies, health insurance programs, mar-
ket creation, financial regulation and a host of others is heavily influenced by Heckman’s
pioneering idea that when participation is part of the behavior being studied, the analyst
must be cognizant of the impact of common influences in both the presence of the interven-
tion and the outcome. We will visit the literature on sample selection and treatment/program
evaluation in Chapter 18.

Textbook presentations of the theories of demand for goods that produce utility, since
they deal in continuous variables, are conspicuously silent on the kinds of discrete choices
that consumers make every day—what brand of product to choose, whether to buy a large
commodity such as a car or a refrigerator, how to travel to work, whether to rent or buy a
home, where to live, what candidate to vote for, and so on. Nonetheless, a model of “random
utility” defined over the alternatives available to the consumer provides a theoretically sound
plateform for studying such choices. Important variables include, as always, income and
relative prices. What can we learn about underlying preference structures from the discrete
choices that consumers make? What must be assumed about these preferences to allow
this kind of inference? What kinds of statistical models will allow us to draw inferences
about preferences? McFadden’s work on how commuters choose to travel to work, and on
the underlying theory appropriate to this kind of modeling, has guided empirical research
in discrete consumer choices for several decades. We will examine McFadden’s models of
discrete choice in Chapter 18.

The connection between underlying behavioral models and the modern practice
of econometrics is increasingly strong. A useful distinction is made between microe-
conometrics and macroeconometrics. The former is characterized by its analysis of cross
section and panel data and by its focus on individual consumers, firms, and micro-level
decision makers. Practitioners rely heavily on the theoretical tools of microeconomics in-
cluding utility maximization, profit maximization, and market equilibrium. The analyses
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are directed at subtle, difficult questions that often require intricate formulations. A few
applications are as follows:

e  What are the likely effects on labor supply behavior of proposed negative income
taxes? [Ashenfelter and Heckman (1974).]

e Does attending an elite college bring an expected payoff in expected lifetime in-
come sufficient to justify the higher tuition? [Kreuger and Dale (1999) and Kreuger
(2000).]

e Does a voluntary training program produce tangible benefits? Can these benefits
be accurately measured? [Angrist (2001).]

e Do smaller class sizes bring real benefits in student performance? [Hanuschek
(1999), Hoxby (2000), Angrist and Lavy (1999).]

e Does the presence of health insurance induce individuals to make heavier use of
the health care system—is moral hazard a measurable problem? [Riphahn et al.
(2003).]

Macroeconometrics is involved in the analysis of time-series data, usually of broad ag-
gregates such as price levels, the money supply, exchange rates, output, investment,
economic growth and so on. The boundaries are not sharp. For example, an application
that we will examine in this text concerns spending patterns of municipalities, which
rests somewhere between the two fields. The very large field of financial econometrics
is concerned with long time-series data and occasionally vast panel data sets, but with
a sharply focused orientation toward models of individual behavior. The analysis of
market returns and exchange rate behavior is neither exclusively macro- nor microe-
conometric. (We will not be spending any time in this book on financial econometrics. For
those with an interest in this field, I would recommend the celebrated work by Campbell,
Lo, and Mackinlay (1997) or, for a more time-series—oriented approach, Tsay (2005).)
Macroeconomic model builders rely on the interactions between economic agents and
policy makers. For examples:

e Doesamonetary policy regime that is strongly oriented toward controlling inflation
impose a real cost in terms of lost output on the U.S. economy? [Cecchetti and Rich
(2001).]

e Did 2001’s largest federal tax cut in U.S. history contribute to or dampen the con-
current recession? Or was it irrelevant?

Each of these analyses would depart from a formal model of the process underlying the
observed data.

1.3 THE PRACTICE OF ECONOMETRICS

We can make another useful distinction between theoretical econometrics and applied
econometrics. Theorists develop new techniques for estimation and hypothesis testing
and analyze the consequences of applying particular methods when the assumptions
that justify those methods are not met. Applied econometricians are the users of these
techniques and the analysts of data (“real world” and simulated). The distinction is far
from sharp; practitioners routinely develop new analytical tools for the purposes of the
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study that they are involved in. This book contains a large amount of econometric theory,
but it is directed toward applied econometrics. I have attempted to survey techniques,
admittedly some quite elaborate and intricate, that have seen wide use “in the field.”
Applied econometric methods will be used for estimation of important quantities,
analysis of economic outcomes such as policy changes, markets or individual behavior,
testing theories, and for forecasting. The last of these is an art and science in itself that
is the subject of a vast library of sources. Although we will briefly discuss some aspects
of forecasting, our interest in this text will be on estimation and analysis of models.
The presentation, where there is a distinction to be made, will contain a blend of mi-
croeconometric and macroeconometric techniques and applications. It is also necessary
to distinguish between time-series analysis (which is not our focus) and methods that
primarily use time-series data. The former is, like forecasting, a growth industry served
by its own literature in many fields. While we will employ some of the techniques of
time-series analysis, we will spend relatively little time developing first principles.

1.4 ECONOMETRIC MODELING

Econometric analysis usually begins with a statement of a theoretical proposition.
Consider, for example, a classic application by one of Frisch’s contemporaries:

Example 1.2 Keynes’s Consumption Function
From Keynes’s (1936) General Theory of Employment, Interest and Money:

We shall therefore define what we shall call the propensity to consume as the func-
tional relationship f between X, a given level of income, and C, the expenditure on
consumption out of the level of income, so that C = f(X).

The amount that the community spends on consumption depends (i) partly on
the amount of its income, (i) partly on other objective attendant circumstances, and
(iii) partly on the subjective needs and the psychological propensities and habits of
the individuals composing it. The fundamental psychological law upon which we are
entitled to depend with great confidence, both a priori from our knowledge of human
nature and from the detailed facts of experience, is that men are disposed, as a rule
and on the average, to increase their consumption as their income increases, but not
by as much as the increase in their income. That is,...dC/dX is positive and less
than unity.

But, apart from short period changes in the level of income, it is also obvious that
a higher absolute level of income will tend as a rule to widen the gap between income
and consumption. ... These reasons will lead, as a rule, to a greater proportion of
income being saved as real income increases.

The theory asserts a relationship between consumption and income, C = f(X), and claims
in the second paragraph that the marginal propensity to consume (MPC), dC/dX, is between
zero and one." The final paragraph asserts that the average propensity to consume (APC),
C/X, falls as income rises, or d(C/X)/dX = (MPC — APC)/X < 0. It follows that MPC <
APC. The most common formulation of the consumption function is a linear relationship,
C = o + XB, that satisfies Keynes’s “laws” if 8 lies between zero and one and if « is greater
than zero.

These theoretical propositions provide the basis for an econometric study. Given an
appropriate data set, we could investigate whether the theory appears to be consistent with

IModern economists are rarely this confident about their theories. More contemporary applications generally
begin from first principles and behavioral axioms, rather than simple observation.
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FIGURE 1.1 Aggregate U.S. Consumption and Income Data,
2000-2009.

the observed “facts.” For example, we could see whether the linear specification
appears to be a satisfactory description of the relationship between consumption and
income, and, if so, whether « is positive and g is between zero and one. Some issues
that might be studied are (1) whether this relationship is stable through time or whether
the parameters of the relationship change from one generation to the next (a change in the
average propensity to save, 1—APC, might represent a fundamental change in the behavior
of consumers in the economy); (2) whether there are systematic differences in the relation-
ship across different countries, and, if so, what explains these differences; and (3) whether
there are other factors that would improve the ability of the model to explain the relationship
between consumption and income. For example, Figure 1.1 presents aggregate consump-
tion and personal income in constant dollars for the U.S. for the 10 years of 2000-2009. (See
Appendix Table F1.1.) Apparently, at least superficially, the data (the facts) are consistent with
the theory. The relationship appears to be linear, albeit only approximately, the intercept of a
line that lies close to most of the points is positive and the slope is less than one, although
not by much. (However, if the line is fit by linear least squares regression, the intercept is
negative, not positive.)

Economic theories such as Keynes’s are typically sharp and unambiguous. Models
of demand, production, labor supply, individual choice, educational attainment, income
and wages, investment, market equilibrium, and aggregate consumption all specify pre-
cise, deterministic relationships. Dependent and independent variables are identified, a
functional form is specified, and in most cases, at least a qualitative statement is made
about the directions of effects that occur when independent variables in the model
change. The model is only a simplification of reality. It will include the salient features
of the relationship of interest but will leave unaccounted for influences that might well
be present but are regarded as unimportant.

Correlations among economic variables are easily observable through descriptive
statistics and techniques such as linear regression methods. The ultimate goal of the
econometric model builder is often to uncover the deeper causal connections through
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elaborate structural, behavioral models. Note, for example, Keynes’s use of the behavior
of a “representative consumer” to motivate the behavior of macroeconomic variables
such as income and consumption. Heckman’s model of labor supply noted in Exam-
ple 1.1is framed in a model of individual behavior. Berry, Levinsohn, and Pakes’s (1995)
detailed model of equilibrium pricing in the automobile market is another.

No model could hope to encompass the myriad essentially random aspects of eco-
nomic life. Itis thus also necessary to incorporate stochastic elements. As a consequence,
observations on a variable will display variation attributable not only to differences in
variables that are explicitly accounted for in the model, but also to the randomness
of human behavior and the interaction of countless minor influences that are not. It
is understood that the introduction of a random “disturbance” into a deterministic
model is not intended merely to paper over its inadequacies. It is essential to examine
the results of the study, in an ex post analysis, to ensure that the allegedly random,
unexplained factor is truly unexplainable. If it is not, the model is, in fact, inadequate.
[In the example given earlier, the estimated constant term in the linear least squares
regression is negative. Is the theory wrong, or is the finding due to random fluctuation
in the data? Another possibility is that the theory is broadly correct, but the world
changed between 1936 when Keynes devised his theory and 2000-2009 when the data
(outcomes) were generated. Or, perhaps linear least squares is not the appropriate
technique to use for this model, and that is responsible for the inconvenient result (the
negative intercept).] The stochastic element endows the model with its statistical prop-
erties. Observations on the variable(s) under study are thus taken to be the outcomes
of a random processes. With a sufficiently detailed stochastic structure and adequate
data, the analysis will become a matter of deducing the properties of a probability dis-
tribution. The tools and methods of mathematical statistics will provide the operating
principles.

A model (or theory) can never truly be confirmed unless it is made so broad as to
include every possibility. But it may be subjected to ever more rigorous scrutiny and,
in the face of contradictory evidence, refuted. A deterministic theory will be invali-
dated by a single contradictory observation. The introduction of stochastic elements
into the model changes it from an exact statement to a probabilistic description about
expected outcomes and carries with it an important implication. Only a preponder-
ance of contradictory evidence can convincingly invalidate the probabilistic model, and
what constitutes a “preponderance of evidence” is a matter of interpretation. Thus, the
probabilistic model is less precise but at the same time, more robust.

The techniques used in econometrics have been employed in a widening variety of
fields, including political methodology, sociology [see, e.g., Long (1997) and DeMaris
(2004)], health economics, medical research (how do we handle attrition from medi-
cal treatment studies?) environmental economics, economic geography, transportation
engineering, and numerous others. Practitioners in these fields and many more are all
heavy users of the techniques described in this text.

The process of econometric analysis departs from the specification of a theoretical
relationship. We initially proceed on the optimistic assumption that we can obtain

2See Keuzenkamp and Magnus (1995) for a lengthy symposium on testing in econometrics.
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precise measurements on all the variables in a correctly specified model. If the ideal
conditions are met at every step, the subsequent analysis will be routine. Unfortunately,
they rarely are. Some of the difficulties one can expect to encounter are the following:

e The data may be badly measured or may correspond only vaguely to the variables
in the model. “The interest rate” is one example.

e Some of the variables may be inherently unmeasurable. “Expectations” is a case in
point.

e The theory may make only a rough guess as to the correct form of the model, if
it makes any at all, and we may be forced to choose from an embarrassingly long
menu of possibilities.

e The assumed stochastic properties of the random terms in the model may be
demonstrably violated, which may call into question the methods of estimation
and inference procedures we have used.

Some relevant variables may be missing from the model.

e The conditions under which data are collected leads to a sample of observations

that is systematically unrepresentative of the population we wish to study.

The ensuing steps of the analysis consist of coping with these problems and attempting
to extract whatever information is likely to be present in such obviously imperfect data.
The methodology is that of mathematical statistics and economic theory. The product
is an econometric model.

1.5 PLAN OF THE BOOK

Econometrics is a large and growing field. It is a challenge to chart a course through
that field for the beginner. Our objective in this survey is to develop in detail a set of
tools, then use those tools in applications. The following set of applications is large and
will include many that readers will use in practice. But, it is not exhaustive. We will
attempt to present our results in sufficient generality that the tools we develop here can
be extended to other kinds of situations and applications not described here.

One possible approach is to organize (and orient) the areas of study by the type
of data being analyzed —cross section, panel, discrete data, then time series being the
obvious organization. Alternatively, we could distinguish at the outset between micro-
and macroeconometrics.® Ultimately, all of these will require a common set of tools,
including, for example, the multiple regression model, the use of moment conditions
for estimation, instrumental variables (IV) and maximum likelihood estimation. With
that in mind, the organization of this book is as follows: The first half of the text develops

3An excellent reference on the former that is at a more advanced level than this book is Cameron and
Trivedi (2005). As of this writing, there does not appear to be available a counterpart, large-scale pedagogical
survey of macroeconometrics that includes both econometric theory and applications. The numerous more
focused studies include books such as Bardsen, G., Eitrheim, @., Jansen, E., and Nymoen, R., The Econo-
metrics of Macroeconomic Modelling, Oxford University Press, 2005 and survey papers such as Wallis, K.,
“Macroeconometric Models,” published in Macroeconomic Policy: Iceland in an Era of Global Integration
(M. Gudmundsson, T.T. Herbertsson, and G. Zoega, eds), pp. 399-414. Reykjavik: University of Iceland Press,
2000 also at http://www.ecomod.net/conferences/ecomod2001/papers_web/Wallis_Iceland.pdf
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fundamental results that are common to all the applications. The concept of multiple
regression and the linear regression model in particular constitutes the underlying plat-
form of most modeling, even if the linear model itself is not ultimately used as the
empirical specification. This part of the text concludes with developments of IV esti-
mation and the general topic of panel data modeling. The latter pulls together many
features of modern econometrics, such as, again, I'V estimation, modeling heterogeneity,
and a rich variety of extensions of the linear model. The second half of the text presents
a variety of topics. Part 111 is an overview of estimation methods. Finally, Parts IV and
V present results from microeconometrics and macroeconometrics, respectively. The
broad outline is as follows:

I. Regression Modeling

II

I

Iv.

VI

Chapters 2 through 6 present the multiple linear regression model. We will
discuss specification, estimation, and statistical inference. This part develops the
ideas of estimation, robust analysis, functional form, and principles of model
specification.

Generalized Regression, Instrumental Variables, and Panel Data

Chapter 7 extends the regression model to nonlinear functional forms. The method
of instrumental variables is presented in Chapter 8. Chapters 9 and 10 introduce
the generalized regression model and systems of regression models. This section
ends with Chapter 11 on panel data methods.

Estimation Methods

Chapters 12 through 16 present general results on different methods of estimation
including GMM, maximum likelihood, and simulation based methods. Various es-
timation frameworks, including non- and semiparametric and Bayesian estimation
are presented in Chapters 12 and 16.

Microeconometric Methods

Chapters 17 through 19 are about microeconometrics, discrete choice modeling,
and limited dependent variables, and the analysis of data on events—how many
occur in a given setting and when they occur. Chapters 17 to 19 are devoted to
methods more suited to cross sections and panel data sets.

Macroeconometric Methods

Chapters 20 and 21 focus on time-series modeling and macroeconometrics.
Background Materials

Appendices A through E present background material on tools used in econo-
metrics including matrix algebra, probability and distribution theory, estimation,
and asymptotic distribution theory. Appendix E presents results on computation.
Appendices A through E are chapter-length surveys of the tools used in econo-
metrics. Because it is assumed that the reader has some previous training in each
of these topics, these summaries are included primarily for those who desire a
refresher or a convenient reference. We do not anticipate that these appendices
can substitute for a course in any of these subjects. The intent of these chapters
is to provide a reasonably concise summary of the results, nearly all of which
are explicitly used elsewhere in the book. The data sets used in the numerical
examples are described in Appendix F. The actual data sets and other supple-
mentary materials can be downloaded from the author’s web site for the text:
http://pages.stern.nyu.edu/~wgreene/Text/.
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1.6 PRELIMINARIES

Before beginning, we note some specific aspects of the presentation in the text.

1.6.1 NUMERICAL EXAMPLES

There are many numerical examples given throughout the discussion. Most of these
are either self-contained exercises or extracts from published studies. In general, their
purpose is to provided a limited application to illustrate a method or model. The reader
can, if they wish, replicate them with the data sets provided. This will generally not entail
attempting to replicate the full published study. Rather, we use the data sets to provide
applications that relate to the published study in a limited, manageable fashion that
also focuses on a particular technique, model or tool. Thus, Riphahn, Wambach, and
Million (2003) provide a very useful, manageable (though relatively large) laboratory
data set that the reader can use to explore some issues in health econometrics. The
exercises also suggest more extensive analyses, again in some cases based on published
studies.

1.6.2 SOFTWARE AND REPLICATION

As noted in the preface, there are now many powerful computer programs that can
be used for the computations described in this book. In most cases, the examples pre-
sented can be replicated with any modern package, whether the user is employing a
high level integrated program such as NLOGIT, Stata, or SAS, or writing their own
programs in languages such as R, MatLab, or Gauss. The notable exception will be
exercises based on simulation. Since, essentially, every package uses a different random
number generator, it will generally not be possible to replicate exactly the examples
in this text that use simulation (unless you are using the same computer program we
are). Nonetheless, the differences that do emerge in such cases should be attributable
to, essentially, minor random variation. You will be able to replicate the essential results
and overall features in these applications with any of the software mentioned. We will
return to this general issue of replicability at a few points in the text, including in Sec-
tion 15.2 where we discuss methods of generating random samples for simulation based
estimators.

1.6.3 NOTATIONAL CONVENTIONS

We will use vector and matrix notation and manipulations throughout the text. The
following conventions will be used: A scalar variable will be denoted with an italic
lowercase letter, such as y or x,x, A column vector of scalar values will be denoted

Bi
2
by a boldface, lowercase letter, such as f = . | and, likewise for, x, and b. The
Bk
dimensions of a column vector are always denoted as those of a matrix with one column,
such as K x 1 or n x 1 and so on. A matrix will always be denoted by a boldface
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X1 X2 - XK
. X1 X2 e X2K .
uppercase letter,such asthe nx K matrix,X = | . . . | -Specificelements
Xnl  Xn2 - XpK

in a matrix are always subscripted so that the first subscript gives the row and the
second gives the column. Transposition of a vector or a matrix is denoted with a prime.
A row vector is obtained by transposing a column vector. Thus, 8’ = [B1, B2, - - ., Bk]-
The product of a row and a column vector will always be denoted in a form such as
B'x = Bix1 + Boxy + - -+ + Brxk. The elements in a matrix, X, form a set of vectors.
In terms of its columns, X = [xy, X,, ..., Xg|—each column is an n x 1 vector. The one
possible, unfortunately unavoidable source of ambiguity is the notation necessary to
denote a row of a matrix such as X. The elements of the ith row of X are the row vector,
X; = [xi1, Xi2, ..., xix]. When the matrix, such as X, refers to a data matrix, we will
prefer to use the “i” subscript to denote observations, or the rows of the matrix and “k”
to denote the variables, or columns. As we note unfortunately, this would seem to imply
that x;, the transpose of x; would be the ith column of X, which will conflict with our
notation. However, with no simple alternative notation available, we will maintain this
convention, with the understanding that x; always refers to the row vector that is the ith
row of an X matrix. A discussion of the matrix algebra results used in the book is given
in Appendix A. A particularly important set of arithmetic results about summation and
the elements of the matrix product matrix, XX appears in Section A.2.7.
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2

THE LINEAR REGRESSION
MODEL

INTRODUCTION

Econometrics is concerned with model building. An intriguing point to begin the in-
quiry is to consider the question, “What is the model?” The statement of a “model”
typically begins with an observation or a proposition that one variable “is caused by”
another, or “varies with another,” or some qualitative statement about a relationship
between a variable and one or more covariates that are expected to be related to the
interesting one in question. The model might make a broad statement about behavior,
such as the suggestion that individuals’ usage of the health care system depends on,
for example, perceived health status, demographics such as income, age, and education,
and the amount and type of insurance they have. It might come in the form of a verbal
proposition, or even a picture such as a flowchart or path diagram that suggests direc-
tions of influence. The econometric model rarely springs forth in full bloom as a set of
equations. Rather, it begins with an idea of some kind of relationship. The natural next
step for the econometrician is to translate that idea into a set of equations, with a notion
that some feature of that set of equations will answer interesting questions about the
variable of interest. To continue our example, a more definite statement of the rela-
tionship between insurance and health care demanded might be able to answer, how
does health care system utilization depend on insurance coverage? Specifically, is the
relationship “positive” —all else equal, is an insured consumer more likely to “demand
more health care,” or is it “negative”? And, ultimately, one might be interested in a
more precise statement, “how much more (or less)”? This and the next several chapters
will build up the set of tools that model builders use to pursue questions such as these
using data and econometric methods.

From a purely statistical point of view, the researcher might have in mind a vari-
able, y, broadly “demand for health care, H,” and a vector of covariates, x (income, I,
insurance, T'), and a joint probability distribution of the three, p(H, I, T). Stated in this
form, the “relationship” is not posed in a particularly interesting fashion—what is the
statistical process that produces health care demand, income, and insurance coverage.
However, it is true that p(H, I, T) = p(H|I, T)p(I, T), which decomposes the proba-
bility model for the joint process into two outcomes, the joint distribution of insurance
coverage and income in the population and the distribution of “demand for health care”
for a specific income and insurance coverage. From this perspective, the conditional dis-
tribution, p(H|I, T) holds some particular interest, while p(/, T), the distribution of
income and insurance coverage in the population is perhaps of secondary, or no interest.
(On the other hand, from the same perspective, the conditional “demand” for insur-
ance coverage, given income, p(7|I), might also be interesting.) Continuing this line of
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thinking, the model builder is often interested not in joint variation of all the variables
in the model, but in conditional variation of one of the variables related to the others.

The idea of the conditional distribution provides a useful starting point for thinking
about a relationship between a variable of interest, a “y,” and a set of variables, “x,”
that we think might bear some relationship to it. There is a question to be considered
now that returns us to the issue of “what is the model?” What feature of the condi-
tional distribution is of interest? The model builder, thinking in terms of features of the
conditional distribution, often gravitates to the expected value, focusing attention on
E[y|x], that is, the regression function, which brings us to the subject of this chapter.
For the preceding example, above, this might be natural if y were “doctor visits” as in
an example examined at several points in the chapters to follow. If we were studying
incomes, I, however, which often have a highly skewed distribution, then the mean
might not be particularly interesting. Rather, the conditional median, for given ages,
M([I|x], might be a more interesting statistic. On the other hand, still considering the
distribution of incomes (and still conditioning on age), other quantiles, such as the 20"
percentile, or a poverty line defined as, say, the 5" percentile, might be more interest-
ing yet. Finally, consider a study in finance, in which the variable of interest is asset
returns. In at least some contexts, means are not interesting at all—it is variances, and
conditional variances in particular, that are most interesting.

The point is that we begin the discussion of the regression model with an understand-
ing of what we mean by “the model.” For the present, we will focus on the conditional
mean which is usually the feature of interest. Once we establish how to analyze the re-
gression function, we will use it as a useful departure point for studying other features,
such as quantiles and variances. The linear regression model is the single most useful
tool in the econometricians kit. Although to an increasing degree in contemporary re-
search it is often only the departure point for the full analysis, it remains the device used
to begin almost all empirical research. And, it is the lens through which relationships
among variables are usually viewed. This chapter will develop the linear regression
model. Here, we will detail the fundamental assumptions of the model. The next sev-
eral chapters will discuss more elaborate specifications and complications that arise in
the application of techniques that are based on the simple models presented here.

2.2 THE LINEAR REGRESSION MODEL

The multiple linear regression model is used to study the relationship between a depen-
dent variable and one or more independent variables. The generic form of the linear
regression model is

y=fO1,x,....xk) +&

=x1p1+x2p2+ -+ xkBk t+ &,

where y is the dependent or explained variable and xi, ..., xx are the independent
or explanatory variables. One’s theory will specify f(xi, x2, ..., xg). This function is
commonly called the population regression equation of y on xi, ..., xx. In this set-
ting, y is the regressand and x;, k=1, ..., and K are the regressors or covariates. The
underlying theory will specify the dependent and independent variables in the model.
It is not always obvious which is appropriately defined as each of these —for example,
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a demand equation, quantity =1 + price x , + income x B3 + ¢, and an inverse
demand equation, price = y; + quantity x y, + income x y3; + u are equally valid
representations of a market. For modeling purposes, it will often prove useful to think
in terms of “autonomous variation.” One can conceive of movement of the independent
variables outside the relationships defined by the model while movement of the depen-
dent variable is considered in response to some independent or exogenous stimulus.'.

The term ¢ is a random disturbance, so named because it “disturbs” an otherwise
stable relationship. The disturbance arises for several reasons, primarily because we
cannot hope to capture every influence on an economic variable in a model, no matter
how elaborate. The net effect, which can be positive or negative, of these omitted factors
is captured in the disturbance. There are many other contributors to the disturbance
in an empirical model. Probably the most significant is errors of measurement. It is
easy to theorize about the relationships among precisely defined variables; it is quite
another to obtain accurate measures of these variables. For example, the difficulty of
obtaining reasonable measures of profits, interest rates, capital stocks, or, worse yet,
flows of services from capital stocks, is a recurrent theme in the empirical literature.
At the extreme, there may be no observable counterpart to the theoretical variable.
The literature on the permanent income model of consumption [e.g., Friedman (1957)]
provides an interesting example.

We assume that each observation in a sample (y;, X1, Xi2, ..., Xig),i =1,...,1,18
generated by an underlying process described by

yi=xnp1+xb+ -+ xikBk + &

The observed value of y; is the sum of two parts, a deterministic part and the random
part, &;. Our objective is to estimate the unknown parameters of the model, use the
data to study the validity of the theoretical propositions, and perhaps use the model to
predict the variable y. How we proceed from here depends crucially on what we assume
about the stochastic process that has led to our observations of the data in hand.

Example 2.1 Keynes’s Consumption Function

Example 1.2 discussed a model of consumption proposed by Keynes and his General Theory
(1936). The theory that consumption, C, and income, X, are related certainly seems consistent
with the observed “facts” in Figures 1.1 and 2.1. (These data are in Data Table F2.1.) Of
course, the linear function is only approximate. Even ignoring the anomalous wartime years,
consumption and income cannot be connected by any simple deterministic relationship.
The linear model, C = « + X, is intended only to represent the salient features of this part
of the economy. It is hopeless to attempt to capture every influence in the relationship. The
next step is to incorporate the inherent randomness in its real-world counterpart. Thus, we
write C = f(X, ¢), where ¢ is a stochastic element. It is important not to view ¢ as a catchall
for the inadequacies of the model. The model including ¢ appears adequate for the data
not including the war years, but for 1942-1945, something systematic clearly seems to be
missing. Consumption in these years could not rise to rates historically consistent with these
levels of income because of wartime rationing. A model meant to describe consumption in
this period would have to accommodate this influence.

It remains to establish how the stochastic element will be incorporated in the equation.
The most frequent approach is to assume that it is additive. Thus, we recast the equation

By this definition, it would seem that in our demand relationship, only income would be an independent
variable while both price and quantity would be dependent. That makes sense —in a market, price and quantity
are determined at the same time, and do change only when something outside the market changes
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FIGURE 2.1 Consumption Data, 1940-1950.

in stochastic terms: C =« + X + ¢. This equation is an empirical counterpart to Keynes’s
theoretical model. But, what of those anomalous years of rationing? If we were to ignore
our intuition and attempt to “fit” a line to all these data—the next chapter will discuss
at length how we should do that—we might arrive at the dotted line in the figure as our best
guess. This line, however, is obviously being distorted by the rationing. A more appropriate
specification for these data that accommodates both the stochastic nature of the data and
the special circumstances of the years 1942-1945 might be one that shifts straight down
in the war years, C =a + X + duaryearsbw + €, Where the new variable, dyaryears €quals one in
1942-1945 and zero in other years and §,, < 0.

One of the most useful aspects of the multiple regression model is its ability to identify
the independent effects of a set of variables on a dependent variable. Example 2.2
describes a common application.

Example 2.2 Earnings and Education
A number of recent studies have analyzed the relationship between earnings and educa-
tion. We would expect, on average, higher levels of education to be associated with higher
incomes. The simple regression model

earnings = B1 + . education + ¢,

however, neglects the fact that most people have higher incomes when they are older than
when they are young, regardless of their education. Thus, B, will overstate the marginal
impact of education. If age and education are positively correlated, then the regression model
will associate all the observed increases in income with increases in education. A better
specification would account for the effect of age, as in

earnings = 1 + B2 education + 3 age + ¢.

It is often observed that income tends to rise less rapidly in the later earning years than in
the early ones. To accommodate this possibility, we might extend the model to

earnings = B4 + B» education + s age + B4 age® + ¢.

We would expect g3 to be positive and g, to be negative.
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The crucial feature of this model is that it allows us to carry out a conceptual experi-
ment that might not be observed in the actual data. In the example, we might like to (and
could) compare the earnings of two individuals of the same age with different amounts of
“education” even if the data set does not actually contain two such individuals. How edu-
cation should be measured in this setting is a difficult problem. The study of the earnings
of twins by Ashenfelter and Krueger (1994), which uses precisely this specification of the
earnings equation, presents an interesting approach. [Studies of twins and siblings have
provided an interesting thread of research on the education and income relationship. Two
other studies are Ashenfelter and Zimmerman (1997) and Bonjour, Cherkas, Haskel, Hawkes,
and Spector (2003).] We will examine this study in some detail in Section 8.5.3.

The experiment embodied in the earnings model thus far suggested is a comparison of
two otherwise identical individuals who have different years of education. Under this interpre-
tation, the “impact” of education would be dE[Earnings|Age, Education]/dEducation = B,.
But, one might suggest that the experiment the analyst really has in mind is the truly unob-
servable impact of the additional year of education on a particular individual. To carry out the
experiment, it would be necessary to observe the individual twice, once under circumstances
that actually occur, Education;, and a second time under the hypothetical (counterfactual)
circumstance, Education; + 1. If we consider Education in this example as a treatment,
then the real objective of the experiment is to measure the impact of the treatment on the
treated. The ability to infer this result from nonexperimental data that essentially compares
“otherwise similar individuals will be examined in Chapter 19.

A large literature has been devoted to another intriguing question on this subject. Edu-
cation is not truly “independent” in this setting. Highly motivated individuals will choose to
pursue more education (for example, by going to college or graduate school) than others. By
the same token, highly motivated individuals may do things that, on average, lead them to
have higher incomes. If so, does a positive 8, that suggests an association between income
and education really measure the effect of education on income, or does it reflect the result of
some underlying effect on both variables that we have not included in our regression model?
We will revisit the issue in Chapter 19.2

2.3 ASSUMPTIONS OF THE LINEAR
REGRESSION MODEL

The linear regression model consists of a set of assumptions about how a data set will
be produced by an underlying “data generating process.” The theory will specify a de-
terministic relationship between the dependent variable and the independent variables.
The assumptions that describe the form of the model and relationships among its parts
and imply appropriate estimation and inference procedures are listed in Table 2.1.

2.3.1 LINEARITY OF THE REGRESSION MODEL

Let the column vector x; be the n observations on variable x;, k = 1, ..., K, and as-
semble these data in an n x K data matrix, X. In most contexts, the first column of X is
assumed to be a column of 1s so that g is the constant term in the model. Let y be the
n observations, yj, ..., ¥, and let & be the column vector containing the » disturbances.

2This model lays yet another trap for the practitioner. In a cross section, the higher incomes of the older
individuals in the sample might tell an entirely different, perhaps macroeconomic story (a “cohort effect”)
from the lower incomes of younger individuals as time and their incomes evolve. It is not necessarily possible
to deduce the characteristics of incomes of younger people in the sample if they were older by comparing the
older individuals in the sample to the younger ones. A parallel problem arises in the analysis of treatment
effects that we will examine in Chapter 19.
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TABLE 2.1 Assumptions of the Linear Regression Model

Al. Linearity: y; = x;181 + X282 + - - - + X;x Bk + €. The model specifies a linear relationship
between y and xy, ..., xg.

A2. Full rank: There is no exact linear relationship among any of the independent variables
in the model. This assumption will be necessary for estimation of the parameters of the model.
A3. Exogeneity of the independent variables: E[e; | x;1,xj,...,x;x] = 0. This states that
the expected value of the disturbance at observation i in the sample is not a function of the
independent variables observed at any observation, including this one. This means that the
independent variables will not carry useful information for prediction of ¢;.

Ad4. Homoscedasticity and nonautocorrelation: Each disturbance, ¢; has the same finite vari-
ance, o, and is uncorrelated with every other disturbance, ¢ j- This assumption limits the
generality of the model, and we will want to examine how to relax it in the chapters to follow.

AS5. Data generation: The data in (x;, X2, ..., X;x) may be any mixture of constants and ran-
dom variables. The crucial elements for present purposes are the strict mean independence
assumption A3 and the implicit variance independence assumption in A4. Analysis will be
done conditionally on the observed X, so whether the elements in X are fixed constants or
random draws from a stochastic process will not influence the results. In later, more advanced
treatments, we will want to be more specific about the possible relationship between ¢; and x;.

A6. Normal distribution: The disturbances are normally distributed. Once again, this is a con-
venience that we will dispense with after some analysis of its implications.

The model in (2-1) as it applies to all n observations can now be written
y=xi1p1+ - +xgPk +¢, (2-2)

or in the form of Assumption 1,

AssumrTiON: 'y = X + €. (2-3)

A NOTATIONAL CONVENTION

Henceforth, to avoid a possibly confusing and cumbersome notation, we will use a
boldface x to denote a column or a row of X. Which of these applies will be clear from
the context. In (2-2), x, is the kth column of X. Subscripts j and k will be used to denote
columns (variables). It will often be convenient to refer to a single observation in (2-3),
which we would write

Yi=Xp+¢. (2-4)

Subscripts i and t will generally be used to denote rows (observations) of X. In (2-4), x;
is a column vector that is the transpose of the ith 1 x K row of X.

Our primary interest is in estimation and inference about the parameter vector .
Note that the simple regression model in Example 2.1 is a special case in which X has
only two columns, the first of which is a column of 1s. The assumption of linearity of the
regression model includes the additive disturbance. For the regression to be linear in
the sense described here, it must be of the form in (2-1) either in the original variables
or after some suitable transformation. For example, the model

y = AxPef
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is linear (after taking logs on both sides of the equation), whereas
y=Axf +¢

is not. The observed dependent variable is thus the sum of two components, a deter-
ministic element « + Bx and a random variable ¢. It is worth emphasizing that neither
of the two parts is directly observed because « and § are unknown.

The linearity assumption is not so narrow as it might first appear. In the regression
context, linearity refers to the manner in which the parameters and the disturbance enter
the equation, not necessarily to the relationship among the variables. For example, the
equationsy =a+px+¢e,y=a+pcos(x)+¢,y=a+pB/x+e,andy=a+flnx+¢
are all linear in some function of x by the definition we have used here. In the examples,
only x has been transformed, but y could have been as well, as in y = AxPe®, which
is a linear relationship in the logs of x and y; Iny = o 4+ Blnx + ¢. The variety of
functions is unlimited. This aspect of the model is used in a number of commonly used
functional forms. For example, the loglinear model is

lny =p1+BInx, + Bslnxs+---+ Brlnxg + e.

This equation is also known as the constant elasticity form as in this equation, the
elasticity of y with respect to changes in x is dIn y/d Inx; = B, which does not vary
with x;. The loglinear form is often used in models of demand and production. Different
values of § produce widely varying functions.

Example 2.3 The U.S. Gasoline Market
Data on the U.S. gasoline market for the years 1953-2004 are given in Table F2.2 in
Appendix F. We will use these data to obtain, among other things, estimates of the income,
own price, and cross-price elasticities of demand in this market. These data also present an
interesting question on the issue of holding “all other things constant,” that was suggested
in Example 2.2. In particular, consider a somewhat abbreviated model of per capita gasoline
consumption:

In(G/pop) =p1+ B2 In(lncome/pop) + B3 In priceG + Ba In Pnewcars + Bs In Pusedcars +e.

This model will provide estimates of the income and price elasticities of demand for gasoline
and an estimate of the elasticity of demand with respect to the prices of new and used cars.
What should we expect for the sign of 8,7 Cars and gasoline are complementary goods, so if
the prices of new cars rise, ceteris paribus, gasoline consumption should fall. Or should it? If
the prices of new cars rise, then consumers will buy fewer of them; they will keep their used
cars longer and buy fewer new cars. If older cars use more gasoline than newer ones, then
the rise in the prices of new cars would lead to higher gasoline consumption than otherwise,
not lower. We can use the multiple regression model and the gasoline data to attempt to
answer the question.

A semilog model is often used to model growth rates:
Iny, =x8 + 8t + &.

In this model, the autonomous (at least not explained by the model itself) proportional,
per period growth rate is d In y/dt = §. Other variations of the general form

fO) =gxB+e)

will allow a tremendous variety of functional forms, all of which fit into our definition
of a linear model.
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The linear regression model is sometimes interpreted as an approximation to some
unknown, underlying function. (See Section A.8.1 for discussion.) By this interpretation,
however, the linear model, even with quadratic terms, is fairly limited in that such
an approximation is likely to be useful only over a small range of variation of the
independent variables. The translog model discussed in Example 2.4, in contrast, has
proved far more effective as an approximating function.

Example 2.4 The Translog Model
Modern studies of demand and production are usually done with a flexible functional form.
Flexible functional forms are used in econometrics because they allow analysts to model
complex features of the production function, such as elasticities of substitution, which are
functions of the second derivatives of production, cost, or utility functions. The linear model
restricts these to equal zero, whereas the loglinear model (e.g., the Cobb-Douglas model)
restricts the interesting elasticities to the uninteresting values of -1 or +1. The most popular
flexible functional form is the translog model, which is often interpreted as a second-order
approximation to an unknown functional form. [See Berndt and Christensen (1973).] One

way to derive it is as follows. We first write y = g(x1, ..., xx). Then,Iny =1Ing(...) = f(...).
Since by a trivial transformation x, = exp(In xx), we interpret the function as a function of the
logarithms of the x’s. Thus, Iny = f(Inxy, ..., Inxk).
Now, expand this function in a second-order Taylor series around the pointx=[1,1, ..., 1]
so that at the expansion point, the log of each variable is a convenient zero. Then
K
Iny = £(0) + ) "[97() /010 XJjinxeo IN X
k=1

1

K K
+5 3 107 F()/0 N XD N Tjinaco IN Xk I X + .
k=1 I=1

N |

The disturbance in this model is assumed to embody the familiar factors and the error of
approximation to the unknown function. Since the function and its derivatives evaluated at
the fixed value 0 are constants, we interpret them as the coefficients and write

K K K
1
|ny=ﬁ0+§ ﬂklnXk+§ E E v INXk InX; + €.
k=1

k=1 =1

This model is linear by our definition but can, in fact, mimic an impressive amount of curvature
when it is used to approximate another function. An interesting feature of this formulation
is that the loglinear model is a special case, y = 0. Also, there is an interesting test of the
underlying theory possible because if the underlying function were assumed to be continuous
and twice continuously differentiable, then by Young’s theorem it must be true that yy = .
We will see in Chapter 10 how this feature is studied in practice.

Despite its great flexibility, the linear model will not accommodate all the situations
we will encounter in practice. In Example 14.10 and Chapter 18, we will examine the
regression model for doctor visits that was suggested in the introduction to this chapter.
An appropriate model that describes the number of visits has conditional mean function
E[y|x] = exp(x'B). Itis tempting to linearize this directly by taking logs, since In E[y|x] =
x'B.But, In E[y|x]is not equal to E[In y|x]. In that setting, y can equal zero (and does for
most of the sample), so X’ (which can be negative) is not an appropriate model for In y
(which does not exist) nor for y which cannot be negative. The methods we consider
in this chapter are not appropriate for estimating the parameters of such a model.
Relatively straightforward techniques have been developed for nonlinear models such
as this, however. We shall treat them in detail in Chapter 7.
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2.3.2 FULL RANK

Assumption 2 is that there are no exact linear relationships among the variables.

AssumpTION: X is an n x K matrix with rank K. 2-5)

Hence, X has full column rank; the columns of X are linearly independent and there
are at least K observations. [See (A-42) and the surrounding text.] This assumption is
known as an identification condition. To see the need for this assumption, consider an
example.

Example 2.5 Short Rank
Suppose that a cross-section model specifies that consumption, C, relates to income as
follows:

C = B4 + B2 nonlabor income + B3 salary + B4 total income + ¢,

where total income is exactly equal to salary plus nonlabor income. Clearly, there is an exact
linear dependency in the model. Now let

By =B +a,

Bs=Bs +a,
and

Bi=PBs—a,

where a is any number. Then the exact same value appears on the right-hand side of C if
we substitute g;, g5, and B, for B, B3, and B4. Obviously, there is no way to estimate the
parameters of this model.

If there are fewer than K observations, then X cannot have full rank. Hence, we make
the (redundant) assumption that » is at least as large as K.

In a two-variable linear model with a constant term, the full rank assumption means
that there must be variation in the regressor x. If there is no variation in x, then all our
observations will lie on a vertical line. This situation does not invalidate the other
assumptions of the model; presumably, it is a flaw in the data set. The possibility that
this suggests is that we could have drawn a sample in which there was variation in x,
but in this instance, we did not. Thus, the model still applies, but we cannot learn about
it from the data set in hand.

Example 2.6 An Inestimable Model
In Example 3.4, we will consider a model for the sale price of Monet paintings. Theorists and
observers have different models for how prices of paintings at auction are determined. One
(naive) student of the subject suggests the model

In Price = By + B2 InSize 4+ B3 In Aspect Ratio + B4 In Height + ¢
= B1 + BoXo + PaXs + PaXa + ¢,

where Size = Width x Height and Aspect Ratio = Width/Height. By simple arithmetic, we can
see that this model shares the problem found with the consumption model in Example 2.5—
in this case, xo—x4 = X3 + X4. S0, this model is, like the previous one, not estimable—it is not
identified. It is useful to think of the problem from a different perspective here (so to speak).
In the linear model, it must be possible for the variables to vary linearly independently. But,
in this instance, while it is possible for any pair of the three covariates to vary independently,
the three together cannot. The “model,” that is, the theory, is an entirely reasonable model
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as it stands. Art buyers might very well consider all three of these features in their valuation
of a Monet painting. However, it is not possible to learn about that from the observed data,
at least not with this linear regression model.

2.3.3 REGRESSION

The disturbance is assumed to have conditional expected value zero at every observa-
tion, which we write as

Ele; | X] =0. (2-6)
For the full set of observations, we write Assumption 3 as
Eler | X]
E [82 | X]
AssumpTioN:  Efe | X] = i =0. 2-7)
Elen| X]

There is a subtle point in this discussion that the observant reader might have
noted. In (2-7), the left-hand side states, in principle, that the mean of each ¢; condi-
tioned on all observations x; is zero. This conditional mean assumption states, in words,
that no observations on x convey information about the expected value of the distur-
bance. It is conceivable —for example, in a time-series setting— that although x; might
provide no information about E[e;|-], X; at some other observation, such as in the next
time period, might. Our assumption at this point is that there is no information about
E[e; | -] contained in any observation x;. Later, when we extend the model, we will
study the implications of dropping this assumption. [See Wooldridge (1995).] We will
also assume that the disturbances convey no information about each other. That is,
Elei €1, ..., €1, €41, ..., €] = 0. In sum, at this point, we have assumed that the
disturbances are purely random draws from some population.

The zero conditional mean implies that the unconditional mean is also zero, since

Elei] = Ex[E[ei | X]] = Ex[0] = 0.

Since, for each ¢;, Cov|[ E [¢; | X], X] = Cov|g;, X], Assumption 3implies that Cov|[e;, X|=
0 for all i. The converse is not true; E[e;] = 0 does not imply that E[e;|x;] = 0. Exam-
ple 2.7 illustrates the difference.

Example 2.7 Nonzero Conditional Mean of the Disturbances

Figure 2.2 illustrates the important difference between E[g;] = 0 and E[g; |x;] = 0. The overall
mean of the disturbances in the sample is zero, but the mean for specific ranges of x is
distinctly nonzero. A pattern such as this in observed data would serve as a useful indicator
that the assumption of the linear regression should be questioned. In this particular case,
the true conditional mean function (which the researcher would not know in advance) is
actually E[y|x] = 1+ exp(1.5x). The sample data are suggesting that the linear model is not
appropriate for these data. This possibility is pursued in an application in Example 6.6.

In most cases, the zero overall mean assumption is not restrictive. Consider a two-
variable model and suppose that the mean of ¢ is i # 0. Then « + Sx + ¢ is the same as
(¢ + ) + Bx + (e—w). Letting o’ = « + p and ¢’ = e—u produces the original model.
For an application, see the discussion of frontier production functions in Chapter 18.
But, if the original model does not contain a constant term, then assuming E[g;] = 0
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FIGURE 2.2 Disturbances with Nonzero Conditional Mean and Zero
Unconditional Mean.

could be substantive. This suggests that there is a potential problem in models without
constant terms. As a general rule, regression models should not be specified without con-
stant terms unless this is specifically dictated by the underlying theory.> Arguably, if we
have reason to specify that the mean of the disturbance is something other than zero,
we should build it into the systematic part of the regression, leaving in the disturbance
only the unknown part of e. Assumption 3 also implies that

E[y|X] = X8. 2-8)

Assumptions 1 and 3 comprise the linear regression model. The regression of y on X is
the conditional mean, E [y | X], so that without Assumption 3, X is not the conditional
mean function.

The remaining assumptions will more completely specify the characteristics of the
disturbances in the model and state the conditions under which the sample observations
on x are obtained.

2.3.4 SPHERICAL DISTURBANCES

The fourth assumption concerns the variances and covariances of the disturbances:

Var[e; | X] = o2, foralli =1,...,n,

3Models that describe first differences of variables might well be specified without constants. Consider y; — y;_;.
If there is a constant term « on the right-hand side of the equation, then y; is a function of at, which is an
explosive regressor. Models with linear time trends merit special treatment in the time-series literature. We
will return to this issue in Chapter 21.
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and
Covle;, e | X] =0, foralli # j.

Constant variance is labeled homoscedasticity. Consider a model that describes the
profits of firms in an industry as a function of, say, size. Even accounting for size, mea-
sured in dollar terms, the profits of large firms will exhibit greater variation than those
of smaller firms. The homoscedasticity assumption would be inappropriate here. Survey
data on household expenditure patterns often display marked heteroscedasticity, even
after accounting for income and household size.

Uncorrelatedness across observations is labeled generically nonautocorrelation. In
Figure 2.1, there is some suggestion that the disturbances might not be truly independent
across observations. Although the number of observations is limited, it does appear
that, on average, each disturbance tends to be followed by one with the same sign. This
“inertia” is precisely what is meant by autocorrelation, and it is assumed away at this
point. Methods of handling autocorrelation in economic data occupy a large proportion
of the literature and will be treated at length in Chapter 20. Note that nonautocorrelation
does not imply that observations y; and y; are uncorrelated. The assumption is that
deviations of observations from their expected values are uncorrelated.

The two assumptions imply that

[Ele1e1|X] Ele1e2|X] -+ Ele18,1X]
Elere1|X] Elere2|X] -+ Ele2en | X]
Elee' | X] = ) ) . .
| Elene1 |X] Elene2 | X] --- Elenen | X]
(62 0 - 0
0 o> --- 0
0 0 - o?

which we summarize in Assumption 4:

Assumprion:  E[ee’ | X] = oL (2-9)

By using the variance decomposition formula in (B-69), we find
Var[e] = E[Var[e | X]] + Var[E[e | X]] = oL

Once again, we should emphasize that this assumption describes the information about
the variances and covariances among the disturbances that is provided by the indepen-
dent variables. For the present, we assume that there is none. We will also drop this
assumption later when we enrich the regression model. We are also assuming that the
disturbances themselves provide no information about the variances and covariances.
Although a minor issue at this point, it will become crucial in our treatment of time-
series applications. Models such as Var[e, | 1] = 02 +ae? |, a “GARCH” model (see
Chapter 20), do not violate our conditional variance assumption, but do assume that
Varle, | &1] # Varle,].
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Disturbances that meet the assumptions of homoscedasticity and nonautocorrela-
tion are sometimes called spherical disturbances.*

2.3.5 DATA GENERATING PROCESS FOR THE REGRESSORS

It is common to assume that x; is nonstochastic, as it would be in an experimental
situation. Here the analyst chooses the values of the regressors and then observes y;.
This process might apply, for example, in an agricultural experiment in which y; is yield
and x; is fertilizer concentration and water applied. The assumption of nonstochastic
regressors at this point would be a mathematical convenience. With it, we could use
the results of elementary statistics to obtain our results by treating the vector x; sim-
ply as a known constant in the probability distribution of y;. With this simplification,
Assumptions A3 and A4 would be made unconditional and the counterparts would now
simply state that the probability distribution of ¢; involves none of the constants in X.

Social scientists are almost never able to analyze experimental data, and relatively
few of their models are built around nonrandom regressors. Clearly, for example, in
any model of the macroeconomy, it would be difficult to defend such an asymmetric
treatment of aggregate data. Realistically, we have to allow the data on x; to be random
the same as y;, so an alternative formulation is to assume that x; is a random vector and
our formal assumption concerns the nature of the random process that produces x;. If x;
is taken to be a random vector, then Assumptions 1 through 4 become a statement about
the joint distribution of y; and x;. The precise nature of the regressor and how we view
the sampling process will be a major determinant of our derivation of the statistical
properties of our estimators and test statistics. In the end, the crucial assumption is
Assumption 3, the uncorrelatedness of X and . Now, we do note that this alternative
is not completely satisfactory either, since X may well contain nonstochastic elements,
including a constant, a time trend, and dummy variables that mark specific episodes
in time. This makes for an ambiguous conclusion, but there is a straightforward and
economically useful way out of it. We will assume that X can be a mixture of constants
and random variables, and the mean and variance of ¢; are both independent of all
elements of X.

AssumpTiON: X may be fixed or random. (2-10)

2.3.6 NORMALITY

Itisconvenient to assume that the disturbances are normally distributed, with zero mean
and constant variance. That is, we add normality of the distribution to Assumptions 3
and 4.

AssumptioN: & | X ~ N[0, oI]. (2-11)

4The term will describe the multivariate normal distribution; see (B-95). If £ = ¢2I'in the multivariate normal
density, then the equation f(x) = c is the formula for a “ball” centered at u with radius o in n-dimensional
space. The name spherical is used whether or not the normal distribution is assumed; sometimes the “spherical
normal” distribution is assumed explicitly.
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In view of our description of the source of &, the conditions of the central limit
theorem will generally apply, at least approximately, and the normality assumption will
be reasonable in most settings. A useful implication of Assumption 6is thatitimplies that
observations on ¢; are statistically independent as well as uncorrelated. [See the third
point in Section B.9, (B-97) and (B-99).] Normality is sometimes viewed as an unneces-
sary and possibly inappropriate addition to the regression model. Except in those cases
in which some alternative distribution is explicitly assumed, as in the stochastic frontier
model discussed in Chapter 18, the normality assumption is probably quite reasonable.

Normality is not necessary to obtain many of the results we use in multiple regression
analysis, although it will enable us to obtain several exact statistical results. It does prove
useful in constructing confidence intervals and test statistics, as shown in Section 4.5
and Chapter 5. Later, it will be possible to relax this assumption and retain most of the
statistical results we obtain here. (See Sections 4.4 and 5.6.)

2.3.7 INDEPENDENCE

The term “independent” has been used several ways in this chapter.

In Section 2.2, the right-hand-side variables in the model are denoted the indepen-
dent variables. Here, the notion of independence refers to the sources of variation. In
the context of the model, the variation in the independent variables arises from sources
that are outside of the process being described. Thus, in our health services vs. income
example in the introduction, we have suggested a theory for how variation in demand
for services is associated with variation in income. But, we have not suggested an expla-
nation of the sample variation in incomes; income is assumed to vary for reasons that
are outside the scope of the model.

The assumption in (2-6), E[¢;|X] = 0, is mean independence. Its implication is that
variation in the disturbances in our data is not explained by variation in the indepen-
dent variables. We have also assumed in Section 2.3.4 that the disturbances are uncor-
related with each other (Assumption A4 in Table 2.1). This implies that E[g;|e;] = 0
when i # j—the disturbances are also mean independent of each other. Conditional
normality of the disturbances assumed in Section 2.3.6 (Assumption A6) implies that
they are statistically independent of each other, which is a stronger result than mean
independence.

Finally, Section 2.3.2 discusses the linear independence of the columns of the data
matrix, X. The notion of independence here is an algebraic one relating to the column
rank of X. In this instance, the underlying interpretation is that it must be possible
for the variables in the model to vary linearly independently of each other. Thus, in
Example 2.6, we find that it is not possible for the logs of surface area, aspect ratio, and
height of a painting all to vary independently of one another. The modeling implication
is that if the variables cannot vary independently of each other, then it is not possible to
analyze them in a linear regression model that assumes the variables can each vary while
holding the others constant. There is an ambiguity in this discussion of independence
of the variables. We have both age and age squared in a model in Example 2.2. These
cannot vary independently, but there is no obstacle to formulating a regression model
containing both age and age squared. The resolution is that age and age squared, though
not functionally independent, are linearly independent. That is the crucial assumption
in the linear regression model.
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FIGURE 2.3 The Classical Regression Model.

2.4 SUMMARY AND CONCLUSIONS

This chapter has framed the linear regression model, the basic platform for model build-
ing in econometrics. The assumptions of the classical regression model are summarized
in Figure 2.3, which shows the two-variable case.
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INTRODUCTION

Chapter 2 defined the linear regression model as a set of characteristics of the pop-
ulation that underlies an observed sample of data. There are a number of different
approaches to estimation of the parameters of the model. For a variety of practical and
theoretical reasons that we will explore as we progress through the next several chap-
ters, the method of least squares has long been the most popular. Moreover, in most
cases in which some other estimation method is found to be preferable, least squares
remains the benchmark approach, and often, the preferred method ultimately amounts
to a modification of least squares. In this chapter, we begin the analysis of this important
set of results by presenting a useful set of algebraic tools.

3.2 LEAST SQUARES REGRESSION

66

The unknown parameters of the stochastic relationship y; =x!f8 + ¢; are the objects
of estimation. It is necessary to distinguish between population quantities, such as
and ¢;, and sample estimates of them, denoted b and ¢;. The population regression is
Ely; |x;] = x]B, whereas our estimate of E[y; |x;] is denoted

9 =xb.
The disturbance associated with the ith data point is
& =y —X,p.
For any value of b, we shall estimate ¢; with the residual
e =Yy —Xxb.
From the definitions,
Vi=x.+e =xb+e.

These equations are summarized for the two variable regression in Figure 3.1.

The population quantity g is a vector of unknown parameters of the probability
distribution of y; whose values we hope to estimate with our sample data, (y;, X;), i =
1, ..., n. This is a problem of statistical inference. It is instructive, however, to begin by
considering the purely algebraic problem of choosing a vector b so that the fitted line
x/b is close to the data points. The measure of closeness constitutes a fitting criterion.
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E(ylx) = a + Bx

FIGURE 3.1 Population and Sample Regression.

Although numerous candidates have been suggested, the one used most frequently is
least squares.'
3.2.1 THE LEAST SQUARES COEFFICIENT VECTOR

The least squares coefficient vector minimizes the sum of squared residuals:

e =Y _ (i —x/bg)*, 3-1)
>
i=1 i=1

where by denotes the choice for the coefficient vector. In matrix terms, minimizing the
sum of squares in (3-1) requires us to choose by to

Minimizey, S(by) = ejey = (y — Xby)'(y — Xby). (3-2)
Expanding this gives
epep =y'y — by X'y — yXbg + by X'Xby (3-3)
or
S(bo) = y'y — 2y'Xby + by X'Xby.
The necessary condition for a minimum is

3S(bo)

= —2X'y + 2X'Xby = 0.2 (-9
abo

I'We have yet to establish that the practical approach of fitting the line as closely as possible to the data by
least squares leads to estimates with good statistical properties. This makes intuitive sense and is, indeed, the
case. We shall return to the statistical issues in Chapter 4.

2See Appendix A.8 for discussion of calculus results involving matrices and vectors.
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Let b be the solution. Then, after manipulating (3-4), we find that b satisfies the least
squares normal equations,

X'Xb = X'y. (3-5)

If the inverse of X'X exists, which follows from the full column rank assumption
(Assumption A2 in Section 2.3), then the solution is

b= (X'X)"'Xy. (3-6)
For this solution to minimize the sum of squares,

92S(by)

=2X'X
dbyg ob),

must be a positive definite matrix. Let ¢ = ¢/X’Xec for some arbitrary nonzero vector c.
Then

n
g=vv= E viz, where v = Xec.
i=1

Unless every element of v is zero, g is positive. But if v could be zero, then v would be a
linear combination of the columns of X that equals 0, which contradicts the assumption
that X has full column rank. Since ¢ is arbitrary, q is positive for every nonzero ¢, which
establishes that 2X’X is positive definite. Therefore, if X has full column rank, then the
least squares solution b is unique and minimizes the sum of squared residuals.

3.2.2 APPLICATION: AN INVESTMENT EQUATION

To illustrate the computations in a multiple regression, we consider an example based on
the macroeconomic data in Appendix Table F3.1. To estimate an investment equation,
we first convert the investment and GNP series in Table F3.1 to real terms by dividing
them by the CPI and then scale the two series so that they are measured in trillions of
dollars. The other variables in the regression are a time trend (1, 2, .. .), an interest rate,
and the rate of inflation computed as the percentage change in the CPI. These produce
the data matrices listed in Table 3.1. Consider first a regression of real investment on
a constant, the time trend, and real GNP, which correspond to xi, x;, and x3. Inserting
the specific variables of the example into (3-5), we have

bin  +bET +b%G =X%Y,
T + ST + b LG =5 Y,
b1 Z;G; + b3 TG + b3EiGl-2 =X%,G;Y.

A solution can be obtained by first dividing the first equation by n and rearranging it to
obtain

by =Y—-bT—-bG
= 0.20333 — b, x 8 — b3 x 1.2873. 3-7)
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TABLE 3.1 Data Matrices

Real Real Interest Inflation
Investment Constant Trend GNP Rate Rate
x) a (T) (G) (R) P)
0.161 1 1 1.058 5.16 4.40
0.172 1 1.088 5.87 5.15
0.158 1 3 1.086 5.95 5.37
0.173 1 4 1.122 4.88 4.99
0.195 1 5 1.186 4.50 4.16
0.217 1 6 1.254 6.44 5.75
0.199 1 7 1.246 7.83 8.82
y=0.163 X=1 8 1.232 6.25 9.31
0.195 1 9 1.298 5.50 5.21
0.231 1 10 1.370 5.46 5.83
0.257 1 11 1.439 7.46 7.40
0.259 1 12 1.479 10.28 8.64
0.225 1 13 1.474 11.77 9.31
0.241 1 14 1.503 13.42 9.44
0.204 1 15 1.475 11.02 5.99

Note: Subsequent results are based on these values. Slightly different results are obtained if the raw data in
Table F3.1 are input to the computer program and transformed internally.

Insert this solution in the second and third equations, and rearrange terms again to yield

a set of two equations:
by%i(T; — T)? + b3%i(T = T)G — G) = Zi(T, - T)(Y; = Y), 3-8)
by (T — T)(Gi — G) + b3%i(G; — G)? =%(Gi - G) (Y - Y).

This result shows the nature of the solution for the slopes, which can be computed
from the sums of squares and cross products of the deviations of the variables. Letting
lowercase letters indicate variables measured as deviations from the sample means, we
find that the least squares solutions for b, and b3 are

. it yi E,glz — XigiyiZitigi o 1.6040(0.359609) — 0.066196(9.82) .

by, = = —0.0171984,
? Titr¥Yig? — (Zigiti)? 280(0.359609) — (9.82)2
SigiyiZit? — ity Titigi  0.066196(280) — 1.6040(9.82)
by = i - = 0.653723.
’ Tit?Yig? — (Zigiti)? 280(0.359609) — (9.82)2

With these solutions in hand, b; can now be computed using (3-7); by = —0.5006309.

Suppose that we just regressed investment on the constant and GNP, omitting the
time trend. At least some of the correlation we observe in the data will be explainable
because both investment and real GNP have an obvious time trend. Consider how this
shows up in the regression computation. Denoting by “b,,” the slope in the simple,
bivariate regression of variable y on a constant and the variable x, we find that the slope
in this reduced regression would be

by = E’ ! 2’ = 0.184078. 3-9)

i8i
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Now divide both the numerator and denominator in the expression for b3 by Eitiz i giz.
By manipulating it a bit and using the definition of the sample correlation between G
and T, rgzl = (Zigit;)?/(Z;g? Xit?), and defining by, and b, likewise, we obtain

1

b byb
byp, = —28 X8 () 653723, 3-10
T - ry 1-rg (3-10)

(The notation “by,..” used on the left-hand side is interpreted to mean the slope in
the regression of y on g “in the presence of ¢.”) The slope in the multiple regression
differs from that in the simple regression by including a correction that accounts for the
influence of the additional variable ¢ on both Y and G. For a striking example of this
effect, in the simple regression of real investment on a time trend, b,, = 1.604/280 =
0.0057286, a positive number that reflects the upward trend apparent in the data. But, in
the multiple regression, after we account for the influence of GNP on real investment,
the slope on the time trend is —0.0171984, indicating instead a downward trend. The
general result for a three-variable regression in which x; is a constant term is

by — by3bsy

3-11
1-— r223 ( )

by2‘3 =

Itis clear from this expression that the magnitudes of by, 3 and b\, can be quite different.
They need not even have the same sign.

In practice, you will never actually compute a multiple regression by hand or with a
calculator. For a regression with more than three variables, the tools of matrix algebra
are indispensable (as is a computer). Consider, for example, an enlarged model of
investment that includes —in addition to the constant, time trend, and GNP —an interest
rate and the rate of inflation. Least squares requires the simultaneous solution of five
normal equations. Letting X and y denote the full data matrices shown previously, the
normal equations in (3-5) are

15.000 120.00 19310 111.79  99.770| |by 3.0500
120.000 1240.0 16430 1035.9 875.60 by 26.004
19310 164.30 25.218 148.98 131.22 by| = | 3.9926

111.79 10359  148.98 953.86 799.02 by 23.521
99.770  875.60 131.22 799.02 716.67 bs 20.732

The solution is
b = (X’X)"'X'y = (—0.50907, —0.01658, 0.67038, —0.002326, —0.00009401)’.
3.2.3 ALGEBRAIC ASPECTS OF THE LEAST SQUARES SOLUTION
The normal equations are
X'Xb - X'y =-X'(y—Xb) = —X'e=0. 3-12)

Hence, for every column x; of X, xje = 0. If the first column of X is a column of 1s,
which we denote i, then there are three implications.
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1. The least squares residuals sum to zero. This implication follows from xje = i'e =
E,»e,» =0.

2. The regression hyperplane passes through the point of means of the data. The first
normal equation implies that y = X’b.

3. The mean of the fitted values from the regression equals the mean of the actual values.
This implication follows from point 1 because the fitted values are just § = Xb.

It is important to note that none of these results need hold if the regression does not
contain a constant term.

3.2.4 PROJECTION
The vector of least squares residuals is
e =y — Xb. (3-13)
Inserting the result in (3-6) for b gives
e=y— XXX) Xy=>I-XXX)'X)y=My. (3-149)

The n x n matrix M defined in (3-14) is fundamental in regression analysis. You can
easily show that M is both symmetric (M = M’) and idempotent (M = M?). In view of
(3-13), we can interpret M as a matrix that produces the vector of least squares residuals
in the regression of y on X when it premultiplies any vector y. (It will be convenient
later on to refer to this matrix as a “residual maker.”) It follows that

MX = 0. (3-15)

One way to interpret this result is that if X is regressed on X, a perfect fit will result and
the residuals will be zero.

Finally, (3-13) implies that y = Xb + e, which is the sample analog to (2-3). (See
Figure 3.1 as well.) The least squares results partition y into two parts, the fitted values
¥ = Xb and the residuals e. [See Section A.3.7, especially (A-54).] Since MX = 0, these
two parts are orthogonal. Now, given (3-13),

§=y—e=(1-My=XXX) "Xy =Py. (3-16)

The matrix P is a projection matrix. It is the matrix formed from X such that when a
vector y is premultiplied by P, the result is the fitted values in the least squares regression
of y on X. This is also the projection of the vector y into the column space of X. (See
Sections A3.5 and A3.7.) By multiplying it out, you will find that, like M, P is symmetric
and idempotent. Given the earlier results, it also follows that M and P are orthogonal;

PM =MP = 0.
As might be expected from (3-15)
PX =X

As a consequence of (3-14) and (3-16), we can see that least squares partitions the
vector y into two orthogonal parts,

y = Py + My = projection + residual.
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FIGURE 3.2 Projection of y into the Column Space of X.

The result is illustrated in Figure 3.2 for the two variable case. The gray shaded plane is
the column space of X. The projection and residual are the orthogonal dotted rays. We
can also see the Pythagorean theorem at work in the sums of squares,

Yy = YP'Py + yM'My
=§y+ee.

In manipulating equations involving least squares results, the following equivalent
expressions for the sum of squared residuals are often useful:

ee=yMMy=yMy=ye=c¢ly,
fe=yy—b'XXb=yy-—bXy=yy-yXb.

3.3 PARTITIONED REGRESSION AND
PARTIAL REGRESSION

It is common to specify a multiple regression model when, in fact, interest centers on
only one or a subset of the full set of variables. Consider the earnings equation discussed
in Example 2.2. Although we are primarily interested in the association of earnings and
education, age is, of necessity, included in the model. The question we consider here is
what computations are involved in obtaining, in isolation, the coefficients of a subset of
the variables in a multiple regression (for example, the coefficient of education in the
aforementioned regression).
Suppose that the regression involves two sets of variables, X; and X;. Thus,

y=XB+e=X8;+Xo8, +¢.
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What is the algebraic solution for b,? The normal equations are
Xoy

A solution can be obtained by using the partitioned inverse matrix of (A-74). Alterna-
tively, (1) and (2) in (3-17) can be manipulated directly to solve for b,. We first solve
(1) for by:

@ (XX XX, | (b,

b = X[ X)Xy — (X[ X)) ' X[ Xoby = (X[ X)) T X (y — Xoby). (3-18)

This solution states that by is the set of coefficients in the regression of y on X, minus
a correction vector. We digress briefly to examine an important result embedded in
(3-18). Suppose that X, X, = 0. Then, b; = (X} X;) !Xy, which is simply the coefficient
vector in the regression of y on X;. The general result is given in the following theorem.

THEOREM 3.1 Orthogonal Partitioned Regression

In the multiple linear least squares regression of y on two sets of variables X and
Xy, if the two sets of variables are orthogonal, then the separate coefficient vectors
can be obtained by separate regressions of y on X; alone and'y on X; alone.
Proof: The assumption of the theorem is that X\ X, = 0 in the normal equations
in (3-17). Inserting this assumption into (3-18) produces the immediate solution
forby = (X[ X)Xy and likewise for by.

If the two sets of variables X; and X, are not orthogonal, then the solution for b,
and b, found by (3-17) and (3-18) is more involved than just the simple regressions
in Theorem 3.1. The more general solution is given by the following theorem, which
appeared in the first volume of Econometrica:®

THEOREM 3.2 Frisch-Waugh (1933)-Lovell (1963) Theorem

In the linear least squares regression of vector'y on two sets of variables, X, and
X, the subvector by is the set of coefficients obtained when the residuals from a
regression of y on X alone are regressed on the set of residuals obtained when
each column of X, is regressed on Xj.

3The theorem, such as it was, appeared in the introduction to the paper: “The partial trend regression method
can never, indeed, achieve anything which the individual trend method cannot, because the two methods lead
by definition to identically the same results.” Thus, Frisch and Waugh were concerned with the (lack of)
difference between a regression of a variable y on a time trend variable, t, and another variable, x, compared
to the regression of a detrended y on a detrended x, where detrending meant computing the residuals of the
respective variable on a constant and the time trend, t. A concise statement of the theorem, and its matrix
formulation were added later, by Lovell (1963).
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To prove Theorem 3.2, begin from equation (2) in (3-17), which is
X’2X1b1 + X/2X2b2 = X’zy

Now, insert the result for by that appears in (3-18) into this result. This produces

X5 X0 (X X)) ' Xy — XX (X X)) T X Xobs + X5 Xob, = Xoy.
After collecting terms, the solution is

_ -1 .
by = [X5 (= Xy (X{X) ™ XDXo] ™ [ X5 — X (X[ X)) ™ X))y]
= (XoMiXo) ™ (X;Myy). (3-19)

The matrix appearing in the parentheses inside each set of square brackets is the “resid-
ual maker” defined in (3-14), in this case defined for a regression on the columns of Xj.
Thus, M X is a matrix of residuals; each column of M; X is a vector of residuals in the
regression of the corresponding column of X, on the variables in X;. By exploiting the
fact that My, like M, is symmetric and idempotent, we can rewrite (3-19) as

b, = (X3'X35) " 1X5y", (3-20)
where
X; = M1X2 and y>k = Mly

This result is fundamental in regression analysis.

This process is commonly called partialing out or netting out the effect of X;.
For this reason, the coefficients in a multiple regression are often called the partial
regression coefficients. The application of this theorem to the computation of a single
coefficient as suggested at the beginning of this section is detailed in the following:
Consider the regression of y on a set of variables X and an additional variable z. Denote
the coefficients b and c.

COROLLARY 3.2.1 Individual Regression Coefficients

The coefficient on z in a multiple regression of y on W = [X, z] is computed as
c=(ZMz)" 1 (ZMy) = (z"'z*)~'z"y* where z* and y* are the residual vectors from
least squares regressions of z and 'y on X;z* = Mz and y* = My where M is
defined in (3-14).

Proof: This is an application of Theorem 3.2 in which X; is X and X, is z.

In terms of Example 2.2, we could obtain the coefficient on education in the multiple
regression by first regressing earnings and education on age (or age and age squared)
and then using the residuals from these regressions in a simple regression. In a classic
application of this latter observation, Frisch and Waugh (1933) (who are credited with
the result) noted that in a time-series setting, the same results were obtained whether
a regression was fitted with a time-trend variable or the data were first “detrended” by
netting out the effect of time, as noted earlier, and using just the detrended data in a
simple regression.*

4Recall our earlier investment example.
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As an application of these results, consider the case in which X is i, a constant term
that is a column of 1s in the first column of X. The solution for b, in this case will then be
the slopes in a regression that contains a constant term. Using Theorem 3.2 the vector
of residuals for any variable in Xj in this case will be

x = x — X1 (X X)) X x

=x — i)'’

=x—i(l/n)ix (3-21)
=x—1iX
= M.

(See Section A.5.4 where we have developed this result purely algebraically.) For this
case, then, the residuals are deviations from the sample mean. Therefore, each column
of M;X, is the original variable, now in the form of deviations from the mean. This
general result is summarized in the following corollary.

COROLLARY 3.2.2 Regression with a Constant Term

The slopes in a multiple regression that contains a constant term are obtained
by transforming the data to deviations from their means and then regressing the
variable y in deviation form on the explanatory variables, also in deviation form.

[We used this result in (3-8).] Having obtained the coefficients on X,, how can we
recover the coefficients on X; (the constant term)? One way is to repeat the exercise
while reversing the roles of X; and X;. But there is an easier way. We have already
solved for b,. Therefore, we can use (3-18) in a solution for b;. If X is just a column of
1s, then the first of these produces the familiar result

by =y —xb,—--- —Xkbg

[which is used in (3-7)].

Theorem 3.2 and Corollaries 3.2.1 and 3.2.2 produce a useful interpretation of the
partitioned regression when the model contains a constant term. According to Theorem
3.1, if the columns of X are orthogonal, that is, xx,,, = 0 for columns k and m, then the
separate regression coefficients in the regression of y on X when X = [xy, xp, ..., Xg]
are simply x;y/x;xr. When the regression contains a constant term, we can compute
the multiple regression coefficients by regression of y in mean deviation form on the
columns of X, also in deviations from their means. In this instance, the “orthogonality”
of the columns means that the sample covariances (and correlations) of the variables
are zero. The result is another theorem:
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THEOREM 3.3 Orthogonal Regression

If the multiple regression of y on X contains a constant term and the variables in
the regression are uncorrelated, then the multiple regression slopes are the same as
the slopes in the individual simple regressions of y on a constant and each variable
in turn.

Proof: The result follows from Theorems 3.1 and 3.2.

3.4 PARTIAL REGRESSION AND PARTIAL

CORRELATION COEFFICIENTS

The use of multiple regression involves a conceptual experiment that we might not be
able to carry out in practice, the ceteris paribus analysis familiar in economics. To pursue
Example 2.2, a regression equation relating earnings to age and education enables
us to do the conceptual experiment of comparing the earnings of two individuals of
the same age with different education levels, even if the sample contains no such pair
of individuals. 1t is this characteristic of the regression that is implied by the term
partial regression coefficients. The way we obtain this result, as we have seen, is first
to regress income and education on age and then to compute the residuals from this
regression. By construction, age will not have any power in explaining variation in these
residuals. Therefore, any correlation between income and education after this “purging”
is independent of (or after removing the effect of) age.

The same principle can be applied to the correlation between two variables. To
continue our example, to what extent can we assert that this correlation reflects a direct
relationship rather than that both income and education tend, on average, to rise as
individuals become older? To find out, we would use a partial correlation coefficient,
which is computed along the same lines as the partial regression coefficient. In the con-
text of our example, the partial correlation coefficient between income and education,
controlling for the effect of age, is obtained as follows:

1. y. = the residuals in a regression of income on a constant and age.
2. z, = the residuals in a regression of education on a constant and age.
3. The partial correlation rj, is the simple correlation between y, and z,.

This calculation might seem to require a formidable amount of computation. Using
Corollary 3.2.1, the two residual vectors in points 1 and 2 are y, = My and z, = Mz
where M = I-X(X’X) !X’ is the residual maker defined in (3-14). We will assume that
there is a constant term in X so that the vectors of residuals y, and z, have zero sample
means. Then, the square of the partial correlation coefficient is

*2 — (z:ky*)z
(22 (YY)

There is a convenient shortcut. Once the multiple regression is computed, the ¢ ratio in
(5-13) for testing the hypothesis that the coefficient equals zero (e.g., the last column of
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Table 4.1) can be used to compute

12
*2 z 3-22
Tyz 12 + degrees of freedom’ (3-22)
where the degrees of freedom is equal to n—(K + 1). The proof of this less than perfectly
intuitive result will be useful to illustrate some results on partitioned regression. We will
rely on two useful theorems from least squares algebra. The first isolates a particular
diagonal element of the inverse of a moment matrix such as (X’X)!.

THEOREM 3.4 Diagonal Elements of the Inverse

of a Moment Matrix
Let W denote the partitioned matrix [X, z]—that is, the K columns of X plus an
additional column labeled 7. The last diagonal element of (W'W) ™ is (zMz)~! =
(z.z,) "' wherez, =Mz and M =1 — X(X’X)"'X".
Proof: This is an application of the partitioned inverse formula in (A-74) where
A = X'X Ap = X'z, Ay = 77X and Ay = 7'z. Note that this theorem
generalizes the development in Section A.2.8, where X contains only a constant
term, 1.

We can use Theorem 3.4 to establish the result in (3-22). Let ¢ and u denote the
coefficient onzand the vector of residuals in the multiple regression of y on W = [X, z],
respectively. Then, by definition, the squared ¢ ratio in (3-22) is

2 c?

2= u'u 1
{n —(K+ 1)] Wikt
where (W'W) ;14_1’ k1 1s the (K+41) (last) diagonal element of (W'W)~L. (The bracketed
term appears in (4-17). We are using only the algebraic result at this point.) The theorem
states that this element of the matrix equals (z,z,) . From Corollary 3.2.1, we also have
that ¢? = [(z.y.)/(z.z.)]*. For convenience, let DF = n — (K + 1). Then,
»_ (@y./Zz) _ (2y)’DF

¢ (wu/DF)/Zz, (W) (z,z.)
It follows that the result in (3-22) is equivalent to

t

: (. or (i) .

tz _ (u’u)(Z;Z*) _ (u'u)(zll*) _ (Z*y*)
2+ DF (z;y*)zDF B (ZQY*)Z B 7'y, 2 + (w'u) (z.z, .
’ (wu)(zz.) +DF (w'w)(Zz.) +1 ( +y ) (u'w) ( * )

Divide numerator and denominator by (z/z.) (y.,y.) to obtain

tzz (Z;y*)z/(Z;Z*)(y;y*) r;?

2+ DF ~ (2y)?/(z)(y.y.) + Ww(Zz)/@z)yy.)  ri+ (u'u)/(y;y(*g '23)
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We will now use a second theorem to manipulate u'u and complete the derivation. The
result we need is given in Theorem 3.5.

THEOREM 3.5 Change in the Sum of Squares When a Variable is
Added to a Regression
If €’e is the sum of squared residuals when y is regressed on X and w'u is the sum
of squared residuals when'y is regressed on X and z, then
vu=¢e—c? (zz,) < €'e, (3-24)

where c is the coefficient on z in the long regression of y on [X, z] and 7., = Mz is
the vector of residuals when z is regressed on X.

Proof: In the long regression of y on X and 1z, the vector of residuals isu =y —
Xd — ze. Note that unless X'z = 0, d will not equal b = (X’X) ™' X"y. (See Section
4.3.2.) Moreover, unless ¢ = 0, uwill not equal e = y—Xb. From Corollary 3.2.1,
c = (z;z*)‘l(z;y*). From (3-18), we also have that the coefficients on X in this
long regression are

d=X'X)"'X'(y —z¢) = b — (X'X)"'X'zc.
Inserting this expression for d in that for u gives
u=y—Xb+XXX) 'X'zc —2c =e—Mzc =e —z,.c.
Then,
vu=e'e+ci(zz,) —2c(Ze)

But, e = My =y, and z.e = 7.y, = c(Z,z,). Inserting this result in u'u immedi-
ately above gives the result in the theorem.

Returning to the derivation, then, e’e = y.y, and c? (z\z,) = (Z V:)2/ (z,z,). Therefore,

wu Yy = @y /En o
Y. ¥+ Y.y e

Inserting this in the denominator of (3-23) produces the result we sought.

Example 3.1 Partial Correlations

For the data in the application in Section 3.2.2, the simple correlations between investment
and the regressors, ry, and the partial correlations, rj,, between investment and the four
regressors (given the other variables) are listed in Table 3.2. As is clear from the table, there is
no necessary relation between the simple and partial correlation coefficients. One thing worth
noting is the signs of the coefficients. The signs of the partial correlation coefficients are the
same as the signs of the respective regression coefficients, three of which are negative. All
the simple correlation coefficients are positive because of the latent “effect” of time.
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TABLE 3.2 Correlations of Investment with Other Variables

Simple Partial

Correlation Correlation
Time 0.7496 —0.9360
GNP 0.8632 0.9680
Interest 0.5871 —0.5167
Inflation 0.4777 —0.0221

3.5 GOODNESS OF FIT AND THE ANALYSIS

OF VARIANCE

79

The original fitting criterion, the sum of squared residuals, suggests a measure of the
fit of the regression line to the data. However, as can easily be verified, the sum of
squared residuals can be scaled arbitrarily just by multiplying all the values of y by the
desired scale factor. Since the fitted values of the regression are based on the values
of x, we might ask instead whether variation in x is a good predictor of variation in y.
Figure 3.3 shows three possible cases for a simple linear regression model. The measure
of fit described here embodies both the fitting criterion and the covariation of y and x.

FIGURE 3.3 Sample Data.
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FIGURE 3.4 Decomposition of y;.

Variation of the dependent variable is defined in terms of deviations from its mean,
(yi — ¥). The total variation in y is the sum of squared deviations:

SST=) (3 —7)
i=1

In terms of the regression equation, we may write the full set of observations as
y=Xb+e=§y+e.
For an individual observation, we have
yVi=J9;ite=xb+e.

If the regression contains a constant term, then the residuals will sum to zero and the
mean of the predicted values of y; will equal the mean of the actual values. Subtracting
y from both sides and using this result and result 2 in Section 3.2.3 gives

yi—y=9—y+te=x-%b+e.
Figure 3.4 illustrates the computation for the two-variable regression. Intuitively, the
regression would appear to fit well if the deviations of y from its mean are more largely
accounted for by deviations of x from its mean than by the residuals. Since both terms

in this decomposition sum to zero, to quantify this fit, we use the sums of squares
instead. For the full set of observations, we have

M’y = M°Xb + MCe,
where M is the n x n idempotent matrix that transforms observations into deviations

from sample means. (See (3-21) and Section A.2.8.) The column of M’X corresponding
to the constant term is zero, and, since the residuals already have mean zero, M'e = e.
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Then, since @ M’X = e'X = 0, the total sum of squares is
yM’y = b’X'M’Xb + e’e.
Write this as total sum of squares = regression sum of squares + error sum of squares, or
SST = SSR + SSE. (3-25)

(Note that this is the same partitioning that appears at the end of Section 3.2.4.)

We can now obtain a measure of how well the regression line fits the data by
using the

a4 ’
coefficient of determination: SSR = XM Xb =1- i. (3-26)
SST y'MOy y'MOy

The coefficient of determination is denoted R2. As we have shown, it must be between
0 and 1, and it measures the proportion of the total variation in y that is accounted for
by variation in the regressors. It equals zero if the regression is a horizontal line, that
is, if all the elements of b except the constant term are zero. In this case, the predicted
values of y are always y, so deviations of x from its mean do not translate into different
predictions for y. As such, x has no explanatory power. The other extreme, R*>=1,
occurs if the values of x and y all lie in the same hyperplane (on a straight line for a
two variable regression) so that the residuals are all zero. If all the values of y; lic on a
vertical line, then R? has no meaning and cannot be computed.

Regression analysis is often used for forecasting. In this case, we are interested in
how well the regression model predicts movements in the dependent variable. With this
in mind, an equivalent way to compute R is also useful. First

b’X'M’Xb = My,
but § = Xb,y = §+ ¢,M% = e, and X'e = 0, so M’y = §'M’y. Multiply
R? = yM"y/yM°y = My/y'M’y by 1 = $'M°y/§'M"§ to obtain
o S0 =)@ = HF
[Zi i = HZ G = 92
which is the squared correlation between the observed values of y and the predictions
produced by the estimated regression equation.

(3-27)

Example 3.2 Fit of a Consumption Function

The data plotted in Figure 2.1 are listed in Appendix Table F2.1. For these data, where y is
C and x is X, we have y = 273.2727, x = 323.2727, S,, = 12,618.182, S, = 12,300.182,
S,y = 8,423.182 so SST = 12,618.182,b = 8,423.182/12,300.182 = 0.6848014, SSR =
b®S,x = 5,768.2068, and SSE = SST — SSR = 6,849.975. Then R?> = b%S,,/SST =
0.457135. As can be seen in Figure 2.1, this is a moderate fit, although it is not particu-
larly good for aggregate time-series data. On the other hand, it is clear that not accounting
for the anomalous wartime data has degraded the fit of the model. This value is the R? for
the model indicated by the dotted line in the figure. By simply omitting the years 1942-1945
from the sample and doing these computations with the remaining seven observations—the
heavy solid line—we obtain an R? of 0.93697. Alternatively, by creating a variable WAR which
equals 1 in the years 1942-1945 and zero otherwise and including this in the model, which
produces the model shown by the two solid lines, the R? rises to 0.94639.

We can summarize the calculation of R? in an analysis of variance table, which
might appear as shown in Table 3.3.
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TABLE 3.3 Analysis of Variance

Source Degrees of Freedom Mean Square
Regression b'X'y — nj? K — 1 (assuming a constant term)
Residual ee n—K 52
Total yy — nj? n—1 Sy/(n—1) =s;
Coefficient of R>=1-¢e/(Yy—nj?)

determination

TABLE 3.4 Analysis of Variance for the Investment Equation

Source Degrees of Freedom Mean Square
Regression 0.0159025 4 0.003976
Residual 0.0004508 10 0.00004508
Total 0.016353 14 0.0011681

R? = 0.0159025/0.016353 = 0.97245

Example 3.3 Analysis of Variance for an Investment Equation
The analysis of variance table for the investment equation of Section 3.2.2 is given in
Table 3.4.

3.5.1 THE ADJUSTED R-SQUARED AND A MEASURE OF FIT

There are some problems with the use of R? in analyzing goodness of fit. The first
concerns the number of degrees of freedom used up in estimating the parameters.
[See (3-22) and Table 3.3] R? will never decrease when another variable is added to a
regression equation. Equation (3-23) provides a convenient means for us to establish
this result. Once again, we are comparing a regression of y on X with sum of squared
residuals e’e to a regression of y on X and an additional variable z, which produces sum
of squared residuals u'u. Recall the vectors of residuals z, = Mz and y, = My = e,
which implies that e’e = (y’y.). Let ¢ be the coefficient on z in the longer regression.
Then ¢ = (z.z,) "' (zy.), and inserting this in (3-24) produces
’ ’ (z:ky*)z

uu:ee—(Z;—Z*):e’e(l—r;f), (3-28)

where rJ is the partial correlation between y and z, controlling for X. Now divide
through both sides of the equality by y’M’y. From (3-26), w'u/y'My is (1 — R%,) for the
regression on X and z and e’e/y'M'y is (1 — R%). Rearranging the result produces the

following:

THEOREM 3.6 Change in R> When a Variable Is Added

to a Regression
Let R,2(Z be the coefficient of determination in the regression of y on X and an
additional variable z, let R be the same for the regression of y on X alone, and
let r}_ be the partial correlation between y and z, controlling for X. Then

Ry, =Ry + (1—-Rg)riz. (3-29)
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Thus, the R? in the longer regression cannot be smaller. It is tempting to exploit
this result by just adding variables to the model; R*> will continue to rise to its limit
of 1.° The adjusted R? (for degrees of freedom), which incorporates a penalty for these
results is computed as follows®:

R2 — ee/(n— K)

For computational purposes, the connection between R? and R? is

R2=1-"

-1 5
- K(l R%).
The adjusted R? may decline when a variable is added to the set of independent variables.
Indeed, R? may even be negative. To consider an admittedly extreme case, suppose that
x and y have a sample correlation of zero. Then the adjusted R? will equal —1/(n — 2).
[Thus, the name “adjusted R-squared” is a bit misleading—as can be seen in (3-30),
R? is not actually computed as the square of any quantity.] Whether R? rises or falls
depends on whether the contribution of the new variable to the fit of the regression
more than offsets the correction for the loss of an additional degree of freedom. The
general result (the proof of which is left as an exercise) is as follows.

THEOREM 3.7 Change in R? When a Variable Is Added
to a Regression
In a multiple regression, R? will fall (rise) when the variable x is deleted from the

regression if the square of the t ratio associated with this variable is greater (less)
than 1.

We have shown that R? will never fall when a variable is added to the regression.
We now consider this result more generally. The change in the residual sum of squares
when a set of variables X, is added to the regression is

’ ’ ’ !
e e = eje — b, XM Xobo,

where we use subscript 1 to indicate the regression based on X alone and 1,2 to indicate
the use of both X; and X,. The coefficient vector b, is the coefficients on X, in the
multiple regression of y on X; and X,. [See (3-19) and (3-20) for definitions of b, and
M;.] Therefore,

e'lel — b’2X’2M1X2b2 _ R2 n b'ZX’2M1X2b2

2 _
R1.2 =1- eroy -1 yIMOy

SThis result comes at a cost, however. The parameter estimates become progressively less precise as we do
so. We will pursue this result in Chapter 4.

This measure is sometimes advocated on the basis of the unbiasedness of the two quantities in the fraction.
Since the ratio is not an unbiased estimator of any population quantity, it is difficult to justify the adjustment
on this basis.
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which is greater than R12 unless b, equals zero. (M;X; could not be zero unless X, was a
linear function of Xy, in which case the regression on X; and X, could not be computed.)
This equation can be manipulated a bit further to obtain

y’Mly b'ZX'ZM1X2b2
yMy  yMyy

R, =R} +

But yM,y = e}ey, so the first term in the productis 1 — Rlz. The second is the multiple
correlation in the regression of My on M; X, or the partial correlation (after the effect
of X is removed) in the regression of y on Xj,. Collecting terms, we have

R, =R+ (1— Rlz)r§2.1~

[This is the multivariate counterpart to (3-29).]

Therefore, it is possible to push R? as high as desired just by adding regressors.
This possibility motivates the use of the adjusted R? in (3-30), instead of R? as a
method of choosing among alternative models. Since R? incorporates a penalty for
reducing the degrees of freedom while still revealing an improvement in fit, one pos-
sibility is to choose the specification that maximizes R?. It has been suggested that
the adjusted R?> does not penalize the loss of degrees of freedom heavily enough.’
Some alternatives that have been proposed for comparing models (which we index
by j) are

I’l—K}‘

2
(1-Rj).
which minimizes Amemiya’s (1985) prediction criterion,

e.e; K K
PCj = 1]< <1+f) =s; <1+’)
n—K; n n

and the Akaike and Bayesian information criteria which are given in (5-43) and
(5-44).8

3.5.2 R-SQUARED AND THE CONSTANT TERM IN THE MODEL

A second difficulty with R? concerns the constant term in the model. The proof that
0< R?><1 requires X to contain a column of 1s. If not, then (1) M’e+#e and
(2) eM°X # 0, and the term 2¢/M°Xb in yM'y = (M°Xb + M%)’ (M°Xb + M'e)
in the expansion preceding (3-25) will not drop out. Consequently, when we compute
ee
RP=1———
y' My
the result is unpredictable. It will never be higher and can be far lower than the same
figure computed for the regression with a constant termincluded. It can even be negative.

7See, for example, Amemiya (1985, pp. 50-51).
8Most authors and computer programs report the logs of these prediction criteria.
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Computer packages differ in their computation of R?. An alternative computation,

R — b’ X'M'y

yM%y -
is equally problematic. Again, this calculation will differ from the one obtained with the
constant term included; this time, R?> may be larger than 1. Some computer packages
bypass these difficulties by reporting a third “R?,” the squared sample correlation be-
tween the actual values of y and the fitted values from the regression. This approach
could be deceptive. If the regression contains a constant term, then, as we have seen, all
three computations give the same answer. Even if not, this last one will still produce a
value between zero and one. But, it is not a proportion of variation explained. On the
other hand, for the purpose of comparing models, this squared correlation might well be
a useful descriptive device. It is important for users of computer packages to be aware
of how the reported R? is computed. Indeed, some packages will give a warning in the
results when a regression is fit without a constant or by some technique other than linear
least squares.

3.5.3 COMPARING MODELS

The value of R? of 0.94639 that we obtained for the consumption function in Ex-
ample 3.2 seems high in an absolute sense. Is it? Unfortunately, there is no absolute
basis for comparison. In fact, in using aggregate time-series data, coefficients of deter-
mination this high are routine. In terms of the values one normally encounters in cross
sections, an R? of 0.5 is relatively high. Coefficients of determination in cross sections
of individual data as high as 0.2 are sometimes noteworthy. The point of this discussion
is that whether a regression line provides a good fit to a body of data depends on the
setting.

Little can be said about the relative quality of fits of regression lines in different
contexts or in different data sets even if they are supposedly generated by the same data
generating mechanism. One must be careful, however, even in a single context, to be
sure to use the same basis for comparison for competing models. Usually, this concern
is about how the dependent variable is computed. For example, a perennial question
concerns whether a linear or loglinear model fits the data better. Unfortunately, the
question cannot be answered with a direct comparison. An R? for the linear regression
model is different from an R? for the loglinear model. Variation in y is different from
variation in In y. The latter R? will typically be larger, but this does not imply that the
loglinear model is a better fit in some absolute sense.

It is worth emphasizing that R? is a measure of linear association between x and y.
For example, the third panel of Figure 3.3 shows data that might arise from the model

Vi =a+ B —y) +e

(The constant y allows x to be distributed about some value other than zero.) The
relationship between y and x in this model is nonlinear, and a linear regression would
find no fit.

A final word of caution is in order. The interpretation of R? as a proportion of
variation explained is dependent on the use of least squares to compute the fitted
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values. It is always correct to write
Yi—y=0Gi—y) +e

regardless of how J; is computed. Thus, one might use j; = exp(l?l\yi) from a loglinear
model in computing the sum of squares on the two sides, however, the cross-product
term vanishes only if least squares is used to compute the fitted values and if the model
contains a constant term. Thus, the cross-product term has been ignored in computing
R’ for the loglinear model. Only in the case of least squares applied to a linear equation
with a constant term can R? be interpreted as the proportion of variation in y explained
by variation in x. An analogous computation can be done without computing deviations
from means if the regression does not contain a constant term. Other purely algebraic
artifacts will crop up in regressions without a constant, however. For example, the value
of R? will change when the same constant is added to each observation on y, but it
is obvious that nothing fundamental has changed in the regression relationship. One
should be wary (even skeptical) in the calculation and interpretation of fit measures for
regressions without constant terms.

3.6 LINEARLY TRANSFORMED REGRESSION

As a final application of the tools developed in this chapter, we examine a purely alge-
braic result that is very useful for understanding the computation of linear regression
models. In the regression of y on X, suppose the columns of X are linearly transformed.
Common applications would include changes in the units of measurement, say by chang-
ing units of currency, hours to minutes, or distances in miles to kilometers. Example 3.4
suggests a slightly more involved case.

Example 3.4 Art Appreciation
Theory 1 of the determination of the auction prices of Monet paintings holds that the price
is determined by the dimensions (width, W and height, H) of the painting,

InP=ﬂ1(1) +ﬁgan+ﬂ3InH+e
= Bi1X1 + BoXo + BaXs + .

Theory 2 claims, instead, that art buyers are interested specifically in surface area and aspect
ratio,

InP = yi1(1) + y2 In(WH) + y3In(W/H) + ¢
= Y1Z1 + YoZ2 + y3Z3 + U.

It is evident that z; = X1, Zo = X» + X3 and z3 = x», — X3. In matrix terms, Z = XP where

10 0
P=|0 1 1]
01 —1

The effect of a transformation on the linear regression of y on X compared to that
of y on Z is given by Theorem 3.8.
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THEOREM 3.8 Transformed Variables

In the linear regression of y on Z = XP where P is a nonsingular matrix that
transforms the columns of X, the coefficients will equal P~'b where b is the vector
of coefficients in the linear regression of y on X, and the R?> will be identical.
Proof: The coefficients are

d=(Z'7)"'Zy = [(XP)(XP)] '(XP)y = (P’X'XP) 'P'X'y
=P {(X'X)"'P'P'y =P 'b.

The vector of residuals isu = y—Z(P~'b) = y—XPP~'b = y—Xb = e. Since the
residuals are identical, the numerator of 1— R? is the same, and the denominator
is unchanged. This establishes the resullt.

This is a useful practical, algebraic result. For example, it simplifies the analysis in the
first application suggested, changing the units of measurement. If an independent vari-
able is scaled by a constant, p, the regression coefficient will be scaled by 1/p. There is
no need to recompute the regression.

3.7 SUMMARY AND CONCLUSIONS

This chapter has described the purely algebraic exercise of fitting a line (hyperplane) to a
set of points using the method of least squares. We considered the primary problem first,
using a data set of n observations on K variables. We then examined several aspects of
the solution, including the nature of the projection and residual maker matrices and sev-
eral useful algebraic results relating to the computation of the residuals and their sum of
squares. We also examined the difference between gross or simple regression and corre-
lation and multiple regression by defining “partial regression coefficients” and “partial
correlation coefficients.” The Frisch—-Waugh-Lovell theorem (3.2) is a fundamentally
useful tool in regression analysis that enables us to obtain in closed form the expres-
sion for a subvector of a vector of regression coefficients. We examined several aspects
of the partitioned regression, including how the fit of the regression model changes
when variables are added to it or removed from it. Finally, we took a closer look at the
conventional measure of how well the fitted regression line predicts or “fits” the data.

Key Terms and Concepts

e Adjusted R? ¢ Frisch—Waugh theorem e Multiple regression

e Analysis of variance e Goodness of fit e Netting out

e Bivariate regression e [east squares e Normal equations

e Coefficient of determination e Least squares normal ¢ Orthogonal regression
e Degrees of Freedom equations e Partial correlation

e Disturbance e Moment matrix coefficient

e Fitting criterion e Multiple correlation e Partial regression coefficient
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e Partialing out e Population regression ¢ Residual maker
e Partitioned regression ¢ Projection e Total variation
e Prediction criterion ¢ Projection matrix
¢ Population quantity ¢ Residual

Exercises

1. The two variable regression. For the regression model y = o + Bx + ¢,

a. Show that the least squares normal equations imply X;e; = 0 and X;x;e; = 0.

b. Show that the solution for the constant term is a = y — bx.

c. Show that the solution for bis b = [Y1_ (xi — ) (yi — M/ (i — %)?].

d. Prove that these two values uniquely minimize the sum of squares by showing
that the diagonal elements of the second derivatives matrix of the sum of squares
with respect to the parameters are both positive and that the determinant is
4n[(XF, x?) — nx?] = 4n[Y>"", (x; — %)?], which is positive unless all values of
x are the same.

. Change in the sum of squares. Suppose that b is the least squares coefficient vector

in the regression of y on X and that ¢ is any other K x 1 vector. Prove that the
difference in the two sums of squared residuals is

¥y — Xo)'(y — Xe) — (y — Xb)'(y — Xb) = (¢ — b)’X'X(c —b).

Prove that this difference is positive.

. Partial Frisch and Waugh. In the least squares regression of y on a constant and X,

to compute the regression coefficients on X, we can first transform y to deviations
from the mean y and, likewise, transform each column of X to deviations from the
respective column mean; second, regress the transformed y on the transformed X
without a constant. Do we get the same result if we only transform y? What if we
only transform X?

. Residual makers. What is the result of the matrix product M{M where M; is defined

in (3-19) and M is defined in (3-14)?

. Adding an observation. A data set consists of n observations on X,, and y,.. The least

squares estimator based on these n observations is b, = (X, X,)"'X/y,. Another
observation, x; and y;, becomes available. Prove that the least squares estimator
computed using this additional observation is

bn,s = b (X;Xn)ilxs (ys - Xzbn)

n +
1+ x0(X X)X

Note that the last term is ey, the residual from the prediction of y; using the coeffi-
cients based on X,, and b,,. Conclude that the new data change the results of least
squares only if the new observation on y cannot be perfectly predicted using the
information already in hand.

. Deleting an observation. A common strategy for handling a case in which an ob-

servation is missing data for one or more variables is to fill those missing variables
with Os and add a variable to the model that takes the value 1 for that one ob-
servation and 0 for all other observations. Show that this “strategy” is equivalent
to discarding the observation as regards the computation of b but it does have an
effect on R?. Consider the special case in which X contains only a constant and one
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variable. Show that replacing missing values of x with the mean of the complete
observations has the same effect as adding the new variable.

7. Demand system estimation. Let Y denote total expenditure on consumer durables,
nondurables, and services and Ey, E,, and E; are the expenditures on the three
categories. As defined, Y = E; + E, + E;. Now, consider the expenditure system

Ei=aq+ BaY + Vaa Pi + Van Po + vas B + €4,
Ey, =an+ BiY + VaPi + Van Bo + Vs Ps + €n,
Es =a,+ B, Y + Vsde + ysnPn + VSSPS + &s.

Prove that if all equations are estimated by ordinary least squares, then the sum
of the expenditure coefficients will be 1 and the four other column sums in the
preceding model will be zero.

8. Change in adjusted R>. Prove that the adjusted R? in (3-30) rises (falls) when
variable x; is deleted from the regression if the square of the ¢ ratio on x; in the
multiple regression is less (greater) than 1.

9. Regression without a constant. Suppose that you estimate a multiple regression first
with, then without, a constant. Whether the R? is higher in the second case than
the first will depend in part on how it is computed. Using the (relatively) standard
method R? = 1 — (¢’e/y'M"y), which regression will have a higher R*?

10. Three variables, N, D, and Y, all have zero means and unit variances. A fourth
variableis C = N+ D. In the regression of C on Y, the slope is 0.8. In the regression
of C on N, the slope is 0.5. In the regression of D on Y, the slope is 0.4. What is the
sum of squared residuals in the regression of C on D? There are 21 observations
and all moments are computed using 1/(n — 1) as the divisor.

11. Using the matrices of sums of squares and cross products immediately preceding
Section 3.2.3, compute the coefficients in the multiple regression of real investment
on a constant, real GNP and the interest rate. Compute R>.

12. In the December 1969, American Economic Review (pp. 886-896), Nathaniel Leff
reports the following least squares regression results for a cross section study of the
effect of age composition on savings in 74 countries in 1964:

InS/Y =7.3439 +0.1596In Y/N + 0.0254In G — 1.35201n D; — 0.39901n D»,
InS/N =2.7851+1.1486In Y/N + 0.0265In G — 1.34381In D; — 0.39661n D>,

where S/Y = domestic savings ratio, S/N = per capita savings, Y/ N = per capita
income, D; = percentage of the population under 15, D, = percentage of the popu-
lation over 64, and G = growth rate of per capita income. Are these results correct?
Explain. [See Goldberger (1973) and Leff (1973) for discussion.]

Application

The data listed in Table 3.5 are extracted from Koop and Tobias’s (2004) study of
the relationship between wages and education, ability, and family characteristics. (See
Appendix Table F3.2.) Their data set is a panel of 2,178 individuals with a total of 17,919
observations. Shown in the table are the first year and the time-invariant variables for
the first 15 individuals in the sample. The variables are defined in the article.
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TABLE 3.5 Subsample from Koop and Tobias Data

Mother’s Father’s
Person Education Wage [Experience Ability education education Siblings

1 13 1.82 1 1.00 12 12 1
2 15 2.14 4 1.50 12 12 1
3 10 1.56 1 —0.36 12 12 1
4 12 1.85 1 0.26 12 10 4
5 15 241 2 0.30 12 12 1
6 15 1.83 2 0.44 12 16 2
7 15 1.78 3 0.91 12 12 1
8 13 212 4 0.51 12 15 2
9 13 1.95 2 0.86 12 12 2
10 11 2.19 5 0.26 12 12 2
11 12 2.44 1 1.82 16 17 2
12 13 2.41 4 —-1.30 13 12 5
13 12 2.07 3 —0.63 12 12 4
14 12 2.20 6 —0.36 10 12 2
15 12 212 3 0.28 10 12 3

Let X; equal a constant, education, experience, and ability (the individual’s own

characteristics). Let X; contain the mother’s education, the father’s education, and the
number of siblings (the household characteristics). Let y be the wage.

a.

b.

Compute the least squares regression coefficients in the regression of y on Xj.
Report the coefficients.

Compute the least squares regression coefficients in the regression of y on X; and
X,. Report the coefficients.

Regress each of the three variables in X; on all the variables in X;. These new
variables are X3. What are the sample means of these three variables? Explain the
finding.

Using (3-26), compute the R’ for the regression of y on X; and X,. Repeat the
computation for the case in which the constant term is omitted from X;. What
happens to R??

Compute the adjusted R? for the full regression including the constant term. Inter-
pret your result.

Referring to the result in part c, regress y on X; and X3. How do your results
compare to the results of the regression of y on X; and X,? The comparison you
are making is between the least squares coefficients when y is regressed on X; and
M; X, and when y is regressed on X; and X,. Derive the result theoretically. (Your
numerical results should match the theory, of course.)
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4

THE LEAST SOUARES
ESTIMATOR

INTRODUCTION

Chapter 3 treated fitting the linear regression to the data by least squares as a purely
algebraic exercise. In this chapter, we will examine in detail least squares as an estimator
of the model parameters of the linear regression model (defined in Table 4.1). We begin
in Section 4.2 by returning to the question raised but not answered in Footnote 1,
Chapter 3—that is, why should we use least squares? We will then analyze the estimator
in detail. There are other candidates for estimating 8. For example, we might use the
coefficients that minimize the sum of absolute values of the residuals. The question of
which estimator to choose is based on the statistical properties of the candidates, such
as unbiasedness, consistency, efficiency, and their sampling distributions. Section 4.3
considers finite-sample properties such as unbiasedness. The finite-sample properties
of the least squares estimator are independent of the sample size. The linear model is
one of relatively few settings in which definite statements can be made about the exact
finite-sample properties of any estimator. In most cases, the only known properties
are those that apply to large samples. Here, we can only approximate finite-sample
behavior by using what we know about large-sample properties. Thus, in Section 4.4,
we will examine the large-sample or asymptotic properties of the least squares estimator
of the regression model.!

Discussions of the properties of an estimator are largely concerned with point
estimation—that is, in how to use the sample information as effectively as possible to
produce the best single estimate of the model parameters. Interval estimation, con-
sidered in Section 4.5, is concerned with computing estimates that make explicit the
uncertainty inherent in using randomly sampled data to estimate population quanti-
ties. We will consider some applications of interval estimation of parameters and some
functions of parameters in Section 4.5. One of the most familiar applications of interval
estimation is in using the model to predict the dependent variable and to provide a
plausible range of uncertainty for that prediction. Section 4.6 considers prediction and
forecasting using the estimated regression model.

The analysis assumes that the data in hand correspond to the assumptions of the
model. In Section 4.7, we consider several practical problems that arise in analyzing
nonexperimental data. Assumption A2, full rank of X, is taken as a given. As we noted
in Section 2.3.2, when this assumption is not met, the model is not estimable, regardless
of the sample size. Multicollinearity, the near failure of this assumption in real-world

IThis discussion will use our results on asymptotic distributions. It may be helpful to review Appendix D
before proceeding to this material.
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TABLE 4.1 Assumptions of the Classical Linear Regression Model

Al. Linearity: y; = x;181 + xif2 + - - + Xix Bk + &i-

A2. Full rank: The n x K sample data matrix, X, has full column rank.

A3. Exogeneity of the independent variables: E[¢; | X1, X2, ..., xjx] =0, i,j=1,...,n
There is no correlation between the disturbances and the independent variables.

Ad4. Homoscedasticity and nonautocorrelation: Each disturbance, ¢;, has the same finite
variance, o2, and is uncorrelated with every other disturbance, & j» conditioned on X.

AS. Stochastic or nonstochastic data: (x;, x;», ..., x;x)i=1,...,n.
A6. Normal distribution: The disturbances are normally distributed.

data, is examined in Sections 4.7.1 to 4.7.3. Missing data have the potential to derail
the entire analysis. The benign case in which missing values are simply manageable
random gaps in the data set is considered in Section 4.7.4. The more complicated case
of nonrandomly missing data is discussed in Chapter 18. Finally, the problem of badly
measured data is examined in Section 4.7.5.

4.2 MOTIVATING LEAST SQUARES

Ease of computation is one reason that least squares is so popular. However, there are
several other justifications for this technique. First, least squares is a natural approach
to estimation, which makes explicit use of the structure of the model as laid out in the
assumptions. Second, even if the true model is not a linear regression, the regression
line fit by least squares is an optimal linear predictor for the dependent variable. Thus, it
enjoys a sort of robustness that other estimators do not. Finally, under the very specific
assumptions of the classical model, by one reasonable criterion, least squares will be
the most efficient use of the data. We will consider each of these in turn.

4.2.1 THE POPULATION ORTHOGONALITY CONDITIONS

Letx denote the vector of independent variables in the population regression model and
for the moment, based on assumption A5, the data may be stochastic or nonstochas-
tic. Assumption A3 states that the disturbances in the population are stochastically
orthogonal to the independent variables in the model; that is, E [¢ | x] = 0. It follows that
Cov][x, ] =0. Since (by the law of iterated expectations—Theorem B.1) E,{E[e |x]} =
E[e] = 0, we may write this as

EcE.[xe] = EEy[x(y — X )] = 0
or
EcE)[xy] = Ex[xx]B. @1

(The right-hand side is not a function of y so the expectation is taken only over x.) Now,
recall the least squares normal equations, X'y = X'Xb. Divide this by n and write it as
a summation to obtain

(i;xiy,) = (i;xix§> b. 4-2)
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Equation (4-1) is a population relationship. Equation (4-2) is a sample analog. Assuming
the conditions underlying the laws of large numbers presented in Appendix D are
met, the sums on the left-hand and right-hand sides of (4-2) are estimators of their
counterparts in (4-1). Thus, by using least squares, we are mimicking in the sample the
relationship in the population. We’ll return to this approach to estimation in Chapters 12
and 13 under the subject of GMM estimation.

4.2.2 MINIMUM MEAN SQUARED ERROR PREDICTOR

As an alternative approach, consider the problem of finding an optimal linear predictor
for y. Once again, ignore Assumption A6 and, in addition, drop Assumption A1 that
the conditional mean function, E [y |x] is linear. For the criterion, we will use the mean
squared error rule, so we seek the minimum mean squared error linear predictor of y,
which we’ll denote x'y. The expected squared error of this predictor is

MSE = E, E[y — x'y]*
This can be written as
2 ;22
MSE = E,x{y — E[yIx]}" + Eyx{E[yIx] - X'y }".

We seek the y that minimizes this expectation. The first term is not a function of y, so
only the second term needs to be minimized. Note that this term is not a function of y,
so the outer expectation is actually superfluous. But, we will need it shortly, so we will
carry it for the present. The necessary condition is

IE, B {[E(y|x) —x'y]*} A[E(y|x) — X’y]z}
ay ay
= —2E,E{x[E(y|x) —x'y]} =0.

:EyEx{

Note that we have interchanged the operations of expectation and differentiation in
the middle step, since the range of integration is not a function of y. Finally, we have
the equivalent condition

E,E[XE(y|X)] = E, K[xx]y.

The left-hand side of this resultis £x Ey[xE(y | x)] = Cov[x, E(y | x)] + E [X] Ex[ E(y | x)] =
Cov[x, y] + E[x]E[y] = ExE,[xy]. (We have used Theorem B.2.) Therefore, the nec-
essary condition for finding the minimum MSE predictor is

ExEy[xy] = ExEy[xx]y. 4-3)

This is the same as (4-1), which takes us to the least squares condition once again.
Assuming that these expectations exist, they would be estimated by the sums in
(4-2), which means that regardless of the form of the conditional mean, least squares
is an estimator of the coefficients of the minimum expected mean squared error lin-
ear predictor. We have yet to establish the conditions necessary for the if part of the
theorem, but this is an opportune time to make it explicit:
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THEOREM 4.1 Minimum Mean Squared Error Predictor

If the data generating mechanism generating (X;, yi)i=1....n is such that the law of
large numbers applies to the estimators in (4-2) of the matrices in (4-1), then the
minimum expected squared error linear predictor of y; is estimated by the least
squares regression line.

4.2.3 MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION

Finally, consider the problem of finding a linear unbiased estimator. If we seck the one
that has smallest variance, we will be led once again to least squares. This proposition
will be proved in Section 4.3.5.

The preceding does not assert that no other competing estimator would ever be
preferable to least squares. We have restricted attention to linear estimators. The pre-
ceding result precludes what might be an acceptably biased estimator. And, of course,
the assumptions of the model might themselves not be valid. Although AS and A6 are
ultimately of minor consequence, the failure of any of the first four assumptions would
make least squares much less attractive than we have suggested here.

4.3 FINITE SAMPLE PROPERTIES
OF LEAST SQUARES

An “estimator” is a strategy, or formula for using the sample data that are drawn from a
population. The “properties” of that estimator are a description of how that estimator
can be expected to behave when it is applied to a sample of data. To consider an
example, the concept of unbiasedness implies that “on average” an estimator (strategy)
will correctly estimate the parameter in question; it will not be systematically too high
or too low. It seems less than obvious how one could know this if they were only going
to draw a single sample of data from the population and analyze that one sample.
The argument adopted in classical econometrics is provided by the sampling properties
of the estimation strategy. A conceptual experiment lies behind the description. One
imagines “repeated sampling” from the population and characterizes the behavior of
the “sample of samples.” The underlying statistical theory of the the estimator provides
the basis of the description. Example 4.1 illustrates.

Example 4.1 The Sampling Distribution of a Least Squares Estimator
The following sampling experiment shows the nature of a sampling distribution and the
implication of unbiasedness. We drew two samples of 10,000 random draws on variables
w; and x; from the standard normal population (mean zero, variance 1). We generated a
set of ¢’s equal to 0.5w; and then y; = 0.5 + 0.5x; + ¢. We take this to be our popula-
tion. We then drew 1,000 random samples of 100 observations on (y;, x;) from this popu-
lation, and with each one, computed the least squares slope, using at replication r, b, =
(=19 (Xir — %) Yir | /[Z]%(Xir — X-)2]. The histogram in Figure 4.1 shows the result of the ex-
periment. Note that the distribution of slopes has a mean roughly equal to the “true value”
of 0.5, and it has a substantial variance, reflecting the fact that the regression slope, like any
other statistic computed from the sample, is a random variable. The concept of unbiasedness
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FIGURE 4.1 Histogram for Sampled Least Squares Regression
Slopes

relates to the central tendency of this distribution of values obtained in repeated sampling
from the population. The shape of the histogram also suggests the normal distribution of the
estimator that we will show theoretically in Section 4.3.8. (The experiment should be replica-
ble with any regression program that provides a random number generator and a means of
drawing a random sample of observations from a master data set.)

4.3.1 UNBIASED ESTIMATION

The least squares estimator is unbiased in every sample. To show this, write
b=XX)"Xy=XX)"'XXB+¢e) =8+ XX)"Xe. 4-4)
Now, take expectations, iterating over X;
E[b|X] =8+ E[X'X)'X'e|X].
By Assumption A3, the second term is 0, so
E[b|X] = B. 4-5)
Therefore,
E[b] = Ex{E[b|X]} = Ex[B] = B. (4-6)

The interpretation of this result is that for any particular set of observations, X, the least
squares estimator has expectation 8. Therefore, when we average this over the possible
values of X, we find the unconditional mean is 8 as well.
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You might have noticed that in this section we have done the analysis conditioning
on X—that is, conditioning on the entire sample, while in Section 4.2 we have con-
ditioned y; on x;. (The sharp-eyed reader will also have noticed that in Table 4.1, in
assumption A3, we have conditioned E[e;|.] on x;, that is, on all 7 and j, which is, once
again, on X, notjust x;.) In Section 4.2, we have suggested a way to view the least squares
estimator in the context of the joint distribution of a random variable, y, and a random
vector, x. For the purpose of the discussion, this would be most appropriate if our data
were going to be a cross section of independent observations. In this context, as shown
in Section 4.2.2, the least squares estimator emerges as the sample counterpart to the
slope vector of the minimum mean squared error predictor, y, which is a feature of the
population. In Section 4.3, we make a transition to an understanding of the process that
is generating our observed sample of data. The statement that E[b|X] = f is best under-
stood from a Bayesian perspective; for the data that we have observed, we can expect
certain behavior of the statistics that we compute, such as the least squares slope vector,
b. Much of the rest of this chapter, indeed much of the rest of this book, will examine the
behavior of statistics as we consider whether what we learn from them in a particular
sample can reasonably be extended to other samples if they were drawn under similar
circumstances from the same population, or whether what we learn from a sample can
be inferred to the full population. Thus, it is useful to think of the conditioning operation
in E[b|X] in both of these ways at the same time, from the purely statistical viewpoint
of deducing the properties of an estimator and from the methodological perspective of
deciding how much can be learned about a broader population from a particular finite
sample of data.

4.3.2 BIAS CAUSED BY OMISSION OF RELEVANT VARIABLES

The analysis has been based on the assumption that the correct specification of the
regression model is known to be

y=XB +e. @7

There are numerous types of specification errors that one might make in constructing
the regression model. The most common ones are the omission of relevant variables
and the inclusion of superfluous (irrelevant) variables.

Suppose that a corrrectly specified regression model would be

y=X81 +Xo8; +¢, 4-8)

where the two parts of X have K; and K, columns, respectively. If we regress y on X;
without including X, then the estimator is

b, = (XX ' Xy = 81 + X[ X)X X8, + (X X)) ' Xje. (4-9)

Taking the expectation, we see that unless X{X, = 0 or 8, = 0, by is biased. The well-
known result is the omitted variable formula:

E[by |X] = B; +Pi12B,, (4-10)
where

P, = (X(X) X)X, 4-11)
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FIGURE 4.2 Per Capita Gasoline Consumption vs. Price, 1953-2004.

Each column of the Kj x K, matrix Py, is the column of slopes in the least squares
regression of the corresponding column of X, on the columns of Xj.

Example 4.2 Omitted Variable
If a demand equation is estimated without the relevant income variable, then (4-10) shows
how the estimated price elasticity will be biased. The gasoline market data we have examined
in Example 2.3 provides a striking example. Letting b be the estimator, we obtain

Covlprice, income]
Var[price]

where y is the income coefficient. In aggregate data, it is unclear whether the missing co-
variance would be positive or negative. The sign of the bias in b would be the same as this
covariance, however, because Var[price] and y would be positive for a normal good such as
gasoline. Figure 4.2 shows a simple plot of per capita gasoline consumption, G/Pop, against
the price index PG. The plot is considerably at odds with what one might expect. But a look
at the data in Appendix Table F2.2 shows clearly what is at work. Holding per capita income,
Income/Pop, and other prices constant, these data might well conform to expectations. In
these data, however, income is persistently growing, and the simple correlations between
G/Pop and Income/Pop and between PG and Income/Pop are 0.938 and 0.934, respectively,
which are quite large. To see if the expected relationship between price and consumption
shows up, we will have to purge our data of the intervening effect of Income/Pop. To do so,
we rely on the Frisch-Waugh result in Theorem 3.2. In the simple regression of log of per
capita gasoline consumption on a constant and the log of the price index, the coefficient is
0.29904, which, as expected, has the “wrong” sign. In the multiple regression of the log of
per capita gasoline consumption on a constant, the log of the price index and the log of per
capita income, the estimated price elasticity, A, is —0.16949 and the estimated income elas-
ticity, 7, is 0.96595. This conforms to expectations. The results are also broadly consistent
with the widely observed result that in the U.S. market at least in this period (1953-2004), the
main driver of changes in gasoline consumption was not changes in price, but the growth in
income (output).

El[b|price, income] = B +
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In this development, it is straightforward to deduce the directions of bias when there
is a single included variable and one omitted variable. It is important to note, however,
that if more than one variable is included, then the terms in the omitted variable formula
involve multiple regression coefficients, which themselves have the signs of partial, not
simple, correlations. For example, in the demand equation of the previous example, if
the price of a closely related product had been included as well, then the simple corre-
lation between price and income would be insufficient to determine the direction of the
bias in the price elasticity. What would be required is the sign of the correlation between
price and income net of the effect of the other price. This requirement might not be ob-
vious, and it would become even less so as more regressors were added to the equation.

4.3.3 INCLUSION OF IRRELEVANT VARIABLES

If the regression model is correctly given by
y=XiB +e 4-12)

and we estimate it as if (4-8) were correct (i.e., we include some extra variables), then it
might seem that the same sorts of problems considered earlier would arise. In fact, this
case is not true. We can view the omission of a set of relevant variables as equivalent
to imposing an incorrect restriction on (4-8). In particular, omitting X, is equivalent
to incorrectly estimating (4-8) subject to the restriction 8, =0. Incorrectly imposing a
restriction produces a biased estimator. Another way to view this error is to note that it
amounts to incorporating incorrect information in our estimation. Suppose, however,
that our error is simply a failure to use some information that is correct.

The inclusion of the irrelevant variables X in the regression is equivalent to failing
to impose B, =0 on (4-8) in estimation. But (4-8) is not incorrect; it simply fails to
incorporate 8, =0. Therefore, we do not need to prove formally that the least squares
estimator of B in (4-8) is unbiased even given the restriction; we have already proved it.
We can assert on the basis of all our earlier results that

By B4
E[blx]_[ﬁj_[ﬂ] (4-13)
Then where is the problem? It would seem that one would generally want to “overfit”
the model. From a theoretical standpoint, the difficulty with this view is that the failure
to use correct information is always costly. In this instance, the cost will be reduced
precision of the estimates. As we will show in Section 4.7.1, the covariance matrix in
the short regression (omitting X5) is never larger than the covariance matrix for the
estimator obtained in the presence of the superfluous variables.> Consider a single-
variable comparison. If x; is highly correlated with x;, then incorrectly including x; in
the regression will greatly inflate the variance of the estimator of ;.

4.3.4 THE VARIANCE OF THE LEAST SQUARES ESTIMATOR

If the regressors can be treated as nonstochastic, as they would be in an experimental
situation in which the analyst chooses the values in X, then the sampling variance

2There is no loss if Xq X, = 0, which makes sense in terms of the information about X; contained in X,
(here, none). This situation is not likely to occur in practice, however.
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of the least squares estimator can be derived by treating X as a matrix of constants.
Alternatively, we can allow X to be stochastic, do the analysis conditionally on the
observed X, then consider averaging over X as we did in obtaining (4-6) from (4-5).
Using (4-4) again, we have

b=XX)"'X'(XB+¢) =8+ XX) Xe. 4-14)

Since we can write b = B + Ae, where A is (X’X)"!X’, b is a linear function of the
disturbances, which, by the definition we will use, makes it a linear estimator. As we
have seen, the expected value of the second term in (4-14) is 0. Therefore, regardless
of the distribution of e, under our other assumptions, b is a linear, unbiased estimator of
B. By assumption A4, Var[e|X] = o*L. Thus, conditional covariance matrix of the least
squares slope estimator is

Var[b | X] = E[(b - B)(b — B |X]
= E[(X'X) ' X'ee’X(X'X) ! | X]
= X'X)"'X' E[ee’ | X]X(X'X) ! (4-15)
= X'X) " X' @ DXX'X)!
=o2(X’X)"L.
Example 4.3 Sampling Variance in the Two-Variable Regression Model
Suppose that X contains only a constant term (column of 1s) and a single regressor x. The

lower-right element of ¢2(X'X) " is

o2

Z?=1 (x; _)_()2.
Note, in particular, the denominator of the variance of b. The greater the variation in x, the
smaller this variance. For example, consider the problem of estimating the slopes of the two

regressions in Figure 4.3. A more precise result will be obtained for the data in the right-hand
panel of the figure.

Var[b|x] =Var[b— B |x] =

FIGURE 4.3 Effect of Increased Variation in x Given the Same Conditional and Overall
Variation in y.

X
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4.3.56 THE GAUSS-MARKOV THEOREM

We will now obtain a general result for the class of linear unbiased estimators of §.

THEOREM 4.2 Gauss—-Markov Theorem
In the linear regression model with regressor matrix X, the least squares estimator
b is the minimum variance linear unbiased estimator of B. For any vector of con-
stants w, the minimum variance linear unbiased estimator of W' in the regression
model is w'b, where b is the least squares estimator.

Note that the theorem makes no use of Assumption A6, normality of the distribution
of the disturbances. Only Al to A4 are necessary. A direct approach to proving this
important theorem would be to define the class of linear and unbiased estimators (b, =
Cy such that E[b;|X] = B) and then find the member of that class that has the smallest
variance. We will use an indirect method instead. We have already established that b is
a linear unbiased estimator. We will now consider other linear unbiased estimators of
B and show that any other such estimator has a larger variance.

Let by = Cy be another linear unbiased estimator of 8, where Cis a K x n matrix.
If by is unbiased, then

E[Cy|X] = E[(CXB + Ce) | X] = B,

which implies that CX = 1. There are many candidates. For example, consider using
just the first K (or, any K) linearly independent rows of X. Then C = [X;" : 0], where
X, is the inverse of the matrix formed from the K rows of X. The covariance matrix of
by can be found by replacing (X’X)~!X’ with C in (4-14); the result is Var[by | X] =
o>CC’. Now let D = C — (X’X)"'X’ so Dy = by — b. Then,

Var[by | X] = o*[(D + X'X)"'X)(D + (X'X)'X)'].
We know that CX = I = DX + (X’X)~(X’X), so DX must equal 0. Therefore,
Var[bg | X] = ¢*(X’X)"! + ¢’DD’ = Var[b | X] + o°DD'.

Since a quadratic form in DD’ is ¢'DD’q = 2’z > 0, the conditional covariance matrix
of by equals that of b plus a nonnegative definite matrix. Therefore, every quadratic
form in Var[by | X] is larger than the corresponding quadratic form in Var[b | X], which
establishes the first result.

The proof of the second statement follows from the previous derivation, since the
variance of w'b is a quadratic form in Var[b | X], and likewise for any by and proves that
each individual slope estimator by is the best linear unbiased estimator of 8. (Let w be all
zeros except for a one in the kth position.) The theorem is much broader than this, how-
ever, since the result also applies to every other linear combination of the elements of .

4.3.6 THE IMPLICATIONS OF STOCHASTIC REGRESSORS

The preceding analysis is done conditionally on the observed data. A convenient method
of obtaining the unconditional statistical properties of b is to obtain the desired results
conditioned on X first and then find the unconditional result by “averaging” (e.g., by



CHAPTER 4 4 The Least Squares Estimator 101

integrating over) the conditional distributions. The crux of the argument is that if we
can establish unbiasedness conditionally on an arbitrary X, then we can average over
X’s to obtain an unconditional result. We have already used this approach to show the
unconditional unbiasedness of b in Section 4.3.1, so we now turn to the conditional
variance.

The conditional variance of b is

Var[b | X] = o2(X'X) L.
For the exact variance, we use the decomposition of variance of (B-69):
Var[b] = Ex[Var[b | X]] + Varx[E [b | X]].
The second term is zero since E[b|X] = g for all X, so
Var[b] = Ex[c2(X'X)!] = o2 Ex[(X'X)7!].

Our earlier conclusion is altered slightly. We must replace (X’X)~! with its expected
value to get the appropriate covariance matrix, which brings a subtle change in the
interpretation of these results. The unconditional variance of b can only be described
in terms of the average behavior of X, so to proceed further, it would be necessary to
make some assumptions about the variances and covariances of the regressors. We will
return to this subject in Section 4.4.

We showed in Section 4.3.5 that

Var[b | X] < Var[by | X]

for any linear and unbiased by # b and for the specific X in our sample. But if this
inequality holds for every particular X, then it must hold for

Var[b] = Ex[Var[b|X]].

That is, if it holds for every particular X, then it must hold over the average value(s)
of X.

The conclusion, therefore, is that the important results we have obtained thus far
for the least squares estimator, unbiasedness, and the Gauss—Markov theorem hold
whether or not we condition on the particular sample in hand or consider, instead,
sampling broadly from the population.

THEOREM 4.3 Gauss-Markov Theorem (Concluded)

In the linear regression model, the least squares estimator b is the
minimum variance linear unbiased estimator of B whether X is stochastic or
nonstochastic, so long as the other assumptions of the model continue to hold.

4.3.7 ESTIMATING THE VARIANCE OF THE LEAST
SQUARES ESTIMATOR

If we wish to test hypotheses about 8 or to form confidence intervals, then we will require
a sample estimate of the covariance matrix, Var[b | X] = o2(X’X)"!. The population
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parameter o2 remains to be estimated. Since o is the expected value of £ and ¢; is an
estimate of ¢;, by analogy,

1 n
F=13a
ni:]

would seem to be a natural estimator. But the least squares residuals are imperfect
estimates of their population counterparts; e; = y; —X'b = &; —x/(b — ). The estimator
is distorted (as might be expected) because B is not observed directly. The expected
square on the right-hand side involves a second term that might not have expected
value zero.

The least squares residuals are

e = My = M[XS + ¢] = Me,
asMX = 0. [See (3-15).] An estimator of o> will be based on the sum of squared residuals:
e'e = ¢'Me. (4-16)
The expected value of this quadratic form is
Ele'e|X] = E[e¢'Me | X].

The scalar ¢’Me is a 1 x 1 matrix, so it is equal to its trace. By using the result on cyclic
permutations (A-94),

E[tr(e'Me) | X] = E[tr(Mee’) | X].
Since M is a function of X, the result is
tr(ME[e€’ | X]) = tr(Mo’D) = o tr(M).
The trace of M is
tr[L, — X(X'X)"1X'] = tr(I,) — tr[(X'X) " 'X'X] = tr(I,,) — tr(Ig) = n — K.
Therefore,
Elee|X] = (n— K)o?,

so the natural estimator is biased toward zero, although the bias becomes smaller as the
sample size increases. An unbiased estimator of o is
’
5 e'e
ST = . 4'17
K 4-17)
The estimator is unbiased unconditionally as well, since E[s*]= Ex{E[s*|X]}=
Ex[0?] =0?. The standard error of the regression is s, the square root of s2. With s,
we can then compute

Est. Var[b | X] = s*(X'X) 1.

Henceforth, we shall use the notation Est. Var[-] to indicate a sample estimate of the
sampling variance of an estimator. The square root of the kth diagonal element of
this matrix, {[s2(X'X)_1]kk}1/ ?_is the standard error of the estimator by, which is often
denoted simply “the standard error of by.”
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4.3.8 THE NORMALITY ASSUMPTION

To this point, our specification and analysis of the regression model are semiparametric
(see Section 12.3). We have not used Assumption A6 (see Table 4.1), normality of e,
in any of our results. The assumption is useful for constructing statistics for forming
confidence intervals. In (4-4), b is a linear function of the disturbance vector e. If we
assume that e has a multivariate normal distribution, then we may use the results of
Section B.10.2 and the mean vector and covariance matrix derived earlier to state that

b|X ~ N[B,c2(X'X)"]. (4-18)

This specifies a multivariate normal distribution, so each element of b | X is normally
distributed:

bi| X ~ N[Br. o *(X'X); |- 4-19)

We found evidence of this result in Figure 4.1 in Example 4.1.

The distribution of b is conditioned on X. The normal distribution of b in a finite
sample is a consequence of our specific assumption of normally distributed disturbances.
Without this assumption, and without some alternative specific assumption about the
distribution of &, we will not be able to make any definite statement about the exact
distribution of b, conditional or otherwise. In an interesting result that we will explore at
length in Section 4.4, we will be able to obtain an approximate normal distribution for b,
with or without assuming normally distributed disturbances and whether the regressors
are stochastic or not.

4.4 LARGE SAMPLE PROPERTIES OF THE LEAST
SQUARES ESTIMATOR

Using only assumptions A1 through A4 of the classical model listed in Table 4.1, we have
established the following exact finite-sample properties for the least squares estimators
b and s> of the unknown parameters g and o

E[b|X] = E[b] = B—the least squares coefficient estimator is unbiased

E[s?|X] = E[s?] = 0> —the disturbance variance estimator is unbiased

Var[b|X] = 0>(X’X)~! and Var[b] = o2 E[(X'X)"!]

Gauss —Markov theorem: The MVLUE of w' is w'b for any vector of constants, w.

For this basic model, it is also straightforward to derive the large-sample, or asymp-
totic properties of the least squares estimator. The normality assumption, A6, becomes
inessential at this point, and will be discarded save for discussions of maximum likeli-
hood estimation in Section 4.4.6 and in Chapter 14.

4.4.1 CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF g

Unbiasedness is a useful starting point for assessing the virtues of an estimator. It assures
the analyst that their estimator will not persistently miss its target, either systematically
too high or too low. However, as a guide to estimation strategy, it has two shortcomings.
First, save for the least squares slope estimator we are discussing in this chapter, it is
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relatively rare for an econometric estimator to be unbiased. In nearly all cases beyond
the multiple regression model, the best one can hope for is that the estimator improves
in the sense suggested by unbiasedness as more information (data) is brought to bear on
the study. As such, we will need a broader set of tools to guide the econometric inquiry.
Second, the property of unbiasedness does not, in fact, imply that more information
is better than less in terms of estimation of parameters. The sample means of random
samples of 2, 100, and 10,000 are all unbiased estimators of a population mean— by this
criterion all are equally desirable. Logically, one would hope that a larger sample is
better than a smaller one in some sense that we are about to define (and, by extension,
an extremely large sample should be much better, or even perfect). The property of
consistency improves on unbiasedness in both of these directions.

To begin, we leave the data generating mechanism for X unspecified—X may be
any mixture of constants and random variables generated independently of the process
that generates e. We do make two crucial assumptions. The first is a modification of
Assumption AS in Table 4.1;

ASa. (x;,&)i=1,...,nis asequence of independent observations.

The second concerns the behavior of the data in large samples;

’

plim

n— 00

= Q, apositive definite matrix. (4-20)

[We will return to (4-20) shortly.] The least squares estimator may be written

’ —1 ’
b=p+ (an> (X e). @-21)

n

If Q! exists, then

Xl
plimb = g + Q_lplim( e)
n

because the inverse is a continuous function of the original matrix. (We have invoked
Theorem D.14.) We require the probability limit of the last term. Let

1., 1¢ 1
ZXE = ;Xisi = iz:;wi =W. 4-22)

Then
plimb = g+ Q! plim w.

From the exogeneity Assumption A3, we have E [w;]| = Ex[ E[w; | x;]] = Ex[x; E[&; | X]]
=0, so the exact expectation is E[w] = 0. For any element in x; that is nonstochastic,
the zero expectations follow from the marginal distribution of ¢;. We now consider the
variance. By (B-70), Var[w] = E[Var[w|X]] + Var[ E[w | X]]. The second term is zero
because E[¢; |x;] = 0. To obtain the first, we use E[ee’ | X] = oL, so

Var[w | X] = E[wW | X] = %X'E[ee'lX]X% = (6—2) (X’X)

n n
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TABLE 4.2 Grenander Conditions for Well-Behaved Data

G1. For each column of X, xi, if d?, = XXy, then lim,_. . d?, = +00. Hence, x; does not
degenerate to a sequence of zeros. Sums of squares will continue to grow as the sample size
increases. No variable will degenerate to a sequence of zeros.

G2. Lim,_x%/d% = 0foralli = 1,..., n. This condition implies that no single observation
will ever dominate x)x,, and as n — oo, individual observations will become less important.
G3. Let R, be the sample correlation matrix of the columns of X, excluding the constant term
if there is one. Then lim,,_, , R, = C, a positive definite matrix. This condition implies that the
full rank condition will always be met. We have already assumed that X has full rank in a finite
sample, so this assumption ensures that the condition will never be violated.

Therefore,

Var[w] = (%) E(Xn—x>

The variance will collapse to zero if the expectation in parentheses is (or converges to)
a constant matrix, so that the leading scalar will dominate the product as n increases.
Assumption (4-20) should be sufficient. (Theoretically, the expectation could diverge
while the probability limit does not, but this case would not be relevant for practical
purposes.) It then follows that

lim Var[w] =0-Q =0. (4-23)

n— 00

Since the mean of w is identically zero and its variance converges to zero, w converges
in mean square to zero, so plim w = 0. Therefore,

X/
plim™— =0, (4-24)
n
SO
plimb=8+Q " 0= (4-25)

This result establishes that under Assumptions A1-A4 and the additional assumption
(4-20), b is a consistent estimator of 8 in the linear regression model.

Time-series settings that involve time trends, polynomial time series, and trending
variables often pose cases in which the preceding assumptions are too restrictive. A
somewhat weaker set of assumptions about X that is broad enough to include most of
these is the Grenander conditions listed in Table 4.2.> The conditions ensure that the
data matrix is “well behaved” in large samples. The assumptions are very weak and
likely to be satisfied by almost any data set encountered in practice.*

4.4.2 ASYMPTOTIC NORMALITY OF THE LEAST
SQUARES ESTIMATOR

As a guide to estimation, consistency is an improvement over unbiasedness. Since we
are in the process of relaxing the more restrictive assumptions of the model, includ-
ing A6, normality of the disturbances, we will also lose the normal distribution of the

3Judge et al. (1985, p. 162).
4White (2001) continues this line of analysis.
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estimator that will enable us to form confidence intervals in Section 4.5. It seems that
the more general model we have built here has come at a cost. In this section, we will
find that normality of the disturbances is not necessary for establishing the distribu-
tional results we need to allow statistical inference including confidence intervals and
testing hypotheses. Under generally reasonable assumptions about the process that
generates the sample data, large sample distributions will provide a reliable foundation
for statistical inference in the regression model (and more generally, as we develop
more elaborate estimators later in the book).

To derive the asymptotic distribution of the least squares estimator, we shall use
the results of Section D.3. We will make use of some basic central limit theorems, so in
addition to Assumption A3 (uncorrelatedness), we will assume that observations are
independent. Tt follows from (4-21) that

XX\ 1\,
ﬁ(b—ﬂ):( - ) (W)Xe. (4-26)

Since the inverse matrix is a continuous function of the original matrix, plim(X'X/n)~! =
Q. Therefore, if the limiting distribution of the random vector in (4-26) exists, then
that limiting distribution is the same as that of

XX\ /1 1
li — |X'e =Q 7' —= | Xe. 4-27
() | (Gaxeme (G e
Thus, we must establish the limiting distribution of
1
<ﬁ>x'e _ Jn(w - E[w)). (4-28)

where E[w] = 0. [See (4-22).] We can use the multivariate Lindeberg—Feller version of
the central limit theorem (D.19.A) to obtain the limiting distribution of \/nw.> Using
that formulation, w is the average of n independent random vectors w; = x;¢;, with
means 0 and variances

Var[x;e;] = 02 E[x;x]] = 0%Q;. (4-29)

The variance of /nWw is

o’Q, 202(%>[Q1+Q2+"'+Qn]- (4-30)

As long as the sum is not dominated by any particular term and the regressors are well
behaved, which in this case means that (4-20) holds,

lim ¢2Q, = ¢°Q. (4-31)

n—o00

Therefore, we may apply the Lindeberg-Feller central limit theorem to the vector ./nw,
as we did in Section D.3 for the univariate case /nx. We now have the elements we
need for a formal result. If [x;¢;],i =1, ..., n are independent vectors distributed with

SNote that the Lindeberg-Levy version does not apply because Var[w;] is not necessarily constant.
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mean 0 and variance 0>Q; < oo, and if (4-20) holds, then

1 ’ d 2
(ﬁ)Xe‘ — N[0,0°Q]. (4-32)
It then follows that
a1 y,  d -1 -1,.2 -1
Q <7ﬁ>X€ — N[Q0,Q" ¢c°Q)Q']. (4-33)
Combining terms,
Jab - ) -% N[0, 02Q 7] (4-34)

Using the technique of Section D.3, we obtain the asymptotic distribution of b:

THEOREM 4.4 Asymptotic Distribution of b with Independent
Observations

If {&;} are independently distributed with mean zero and finite variance o> and x;j,

is such that the Grenander conditions are met, then

2
b< N [,3, %Ql} . (4-35)

In practice, it is necessary to estimate (1/n7)Q~! with (X’X)~! and o with e’e/(n — K).

If ¢ is normally distributed, then result (4-18), normality of b/X, holds in every
sample, so it holds asymptotically as well. The important implication of this derivation
is that if the regressors are well behaved and observations are independent, then the
asymptotic normality of the least squares estimator does not depend on normality of
the disturbances; it is a consequence of the central limit theorem. We will consider other,
more general cases in the sections to follow.

4.4.3 CONSISTENCY OF s? AND THE ESTIMATOR OF Asy. Var[b]

To complete the derivation of the asymptotic properties of b, we will require an estimator
of Asy. Var[b] = (¢2/n)Q~'.% With (4-20), it is sufficient to restrict attention to s2, so
the purpose here is to assess the consistency of s? as an estimator of o2, Expanding

produces

1 ’ X\ /XXX
2= [e'e — &'X(X'X)"'X/e] = — |22 _ (£ e\|
n—K n—k| n n n n

The leading constant clearly converges to 1. We can apply (4-20), (4-24) (twice), and
the product rule for probability limits (Theorem D.14) to assert that the second term

6See McCallum (1973) for some useful commentary on deriving the asymptotic covariance matrix of the least
squares estimator.
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in the brackets converges to 0. That leaves

S| =

n

g2 = Z el

i=1

This is a narrow case in which the random variables &7 are independent with the same
finite mean o2, so not much is required to get the mean to converge almost surely to
02 = E[¢?]. By the Markov theorem (D.8), what is needed is for E[| &7 |'*?] to be finite,
so the minimal assumption thus far is that ¢; have finite moments up to slightly greater
than 2. Indeed, if we further assume that every ¢; has the same distribution, then by
the Khinchine theorem (D.5) or the corollary to D8, finite moments (of ¢;) up to 2 is
sufficient. Mean square convergence would require E [¢}] = ¢. < 0o. Then the terms in
the sum are independent, with mean o and variance ¢, —o*. So, under fairly weak con-
ditions, the first term in brackets converges in probability to o2, which gives our result,

plim s? = o2,

and, by the product rule,
plim s2(X'X/n) ! = 02QL.
The appropriate estimator of the asymptotic covariance matrix of b is
Est. Asy. Var[b] = s?(X'X) 1.

4.4.4 ASYMPTOTIC DISTRIBUTION OF A FUNCTION OF b:
THE DELTA METHOD

We can extend Theorem D.22 to functions of the least squares estimator. Let f(b) be
a set of J continuous, linear, or nonlinear and continuously differentiable functions of
the least squares estimator, and let
of(b)

]
where Cis the J x K matrix whose jth row is the vector of derivatives of the jth function
with respect to b’. By the Slutsky theorem (D.12),

plim f(b) = f(8)

Ch) =

and
. of(B)
lim C(b) = —- =T.
plim C(b) of
Using a linear Taylor series approach, we expand this set of functions in the approxi-
mation

f(b) =£(B) + T x (b — B) + higher-order terms.

The higher-order terms become negligible in large samples if plim b = B. Then, the
asymptotic distribution of the function on the left-hand side is the same as that on the
right. Thus, the mean of the asymptotic distribution is plim f(b) = f(8), and the asymp-
totic covariance matrix is { T[Asy. Var(b— g)]I"' }, which gives us the following theorem:
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THEOREM 4.5 Asymptotic Distribution of a Function of b
If £(b) is a set of continuous and continuously differentiable functions of b
such that T = 0f(B) /3B’ and if Theorem 4.4 holds, then

2
fb) L N [f(/s), r (%Q‘]> r'} . (4-36)

In practice, the estimator of the asymptotic covariance matrix would be

Est. Asy. Var[f(b)] = C[s>(X'X)"!]C".

If any of the functions are nonlinear, then the property of unbiasedness that holds
for b may not carry over to f(b). Nonetheless, it follows from (4-25) that f(b) is a
consistent estimator of f(8), and the asymptotic covariance matrix is readily available.

Example 4.4 Nonlinear Functions of Parameters: The Delta Method
A dynamic version of the demand for gasoline model in Example 2.3 would be used to
separate the short- and long-term impacts of changes in income and prices. The model
would be

In(G/Pop): = 1+ B2 In Pa,t + B3 In(Income /Pop)t + B4 INPact
+B5 In Puet +y IN(G/Pop)s—1 + &,

where P,. and P,. are price indexes for new and used cars. In this model, the short-run
price and income elasticities are 8, and B;. The long-run elasticities are ¢ = B>/(1 — y)
and ¢3 = B3/(1 — y), respectively. To estimate the long-run elasticities, we will estimate
the parameters by least squares and then compute these two nonlinear functions of the
estimates. We can use the delta method to estimate the standard errors.

Least squares estimates of the model parameters with standard errors and t ratios are
given in Table 4.3. The estimated short-run elasticities are the estimates given in the table.
The two estimated long-run elasticities are f, = b, /(1 — ¢) = —0.069532/(1 — 0.830971) =
—0.411358 and f; = 0.164047/(1 — 0.830971) = 0.970522. To compute the estimates of
the standard errors, we need the partial derivatives of these functions with respect to the six
parameters in the model:

g, =3¢/ =1[0,1/(1-7),0,0,0, B2/(1 —y)?] = [0, 5.91613, 0, 0, 0, —2.43365],
g, = d¢3/3B8 =10,0,1/(1—¥),0,0, z/(1 — ¥)*] =1[0,0,5.91613,0,0,5.74174].

Using (4-36), we can now compute the estimates of the asymptotic variances for the two
estimated long-run elasticities by computing g5[s*(X'X)~']g> and g [s?(X'X)~"]1gs. The results
are 0.023194 and 0.0263692, respectively. The two asymptotic standard errors are the square
roots, 0.152296 and 0.162386.

4.4.5 ASYMPTOTIC EFFICIENCY

We have not established any large-sample counterpart to the Gauss—Markov theorem.
That is, it remains to establish whether the large-sample properties of the least squares
estimator are optimal by any measure. The Gauss—Markov theorem establishes finite
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TABLE 4.3 Regression Results for a Demand Equation

Sum of squared residuals: 0.0127352
Standard error of the regression: 0.0168227
R? based on 51 observations 0.9951081
Variable Coefficient Standard Error t Ratio
Constant —3.123195 0.99583 —3.136
In Pg —0.069532 0.01473 —4.720
In Income/ Pop 0.164047 0.05503 2.981
In P, —0.178395 0.05517 —3.233
In P, 0.127009 0.03577 3.551
last period In G/ Pop 0.830971 0.04576 18.158

Estimated Covariance Matrix for b (e — n = times 10™")
Constant In Pg In(Income/Pop) InP,. InP,. In(G/Pop) -1

0.99168
—0.0012088 0.00021705
—0.052602 1.62165e-5 0.0030279
0.0051016  —0.00021705 —0.00024708 0.0030440
0.0091672  —4.0551e-5 —0.00060624 —0.0016782  0.0012795
0.043915 —0.0001109 —0.0021881 0.00068116  8.57001e-5 0.0020943

sample conditions under which least squares is optimal. The requirements that the es-
timator be linear and unbiased limit the theorem’s generality, however. One of the
main purposes of the analysis in this chapter is to broaden the class of estimators in
the linear regression model to those which might be biased, but which are consistent.
Ultimately, we shall also be interested in nonlinear estimators. These cases extend be-
yond the reach of the Gauss—Markov theorem. To make any progress in this direction,
we will require an alternative estimation criterion.

DEFINITION 4.1 Asymptotic Efficiency

An estimator is asymptotically efficient if it is consistent, asymptotically normally
distributed, and has an asymptotic covariance matrix that is not larger than the
asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.

We can compare estimators based on their asymptotic variances. The complication
in comparing two consistent estimators is that both converge to the true parameter
as the sample size increases. Moreover, it usually happens (as in our example 4.5),
that they converge at the same rate —that is, in both cases, the asymptotic variance of
the two estimators are of the same order, such as O(1/n). In such a situation, we can
sometimes compare the asymptotic variances for the same n to resolve the ranking.
The least absolute deviations estimator as an alternative to least squares provides an
example.
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Example 4.5 Least Squares vs. Least Absolute Deviations—A Monte
Carlo Study
We noted earlier (Section 4.2) that while it enjoys several virtues, least squares is not the only
available estimator for the parameters of the linear regresson model. Least absolute devia-
tions (LAD) is an alternative. (The LAD estimator is considered in more detail in Section 7.3.1.)
The LAD estimator is obtained as

n
b ap = the minimizer of ZH lyvi — xibol,
in contrast to the linear least squares estimator, which is
n
b.s = the minimizer of Z;:1 (v — x/bg)?.
Suppose the regression model is defined by
Yi = x/’ﬂ + &,

where the distribution of ¢; has conditional mean zero, constant variance o2, and conditional
median zero as well—the distribution is symmetric—and plim(1/n)X'e = 0. That is, all the
usual regression assumptions, but with the normality assumption replaced by symmetry of
the distribution. Then, under our assumptions, b s is a consistent and asymptotically normally
distributed estimator with asymptotic covariance matrix given in Theorem 4.4, which we will
call 02A. As Koenker and Bassett (1978, 1982), Huber (1987), Rogers (1993), and Koenker
(2005) have discussed, under these assumptions, b ap is also consistent. A good estimator
of the asymptotic variance of by ap would be (1/2)?[1/f(0)]?A where f(0) is the density of ¢
at its median, zero. This means that we can compare these two estimators based on their
asymptotic variances. The ratio of the asymptotic variance of the kth element of b 4p to the
corresponding element of b s would be

gk = Var(byLap) /Var(bis) = (1/2)%(1/0%)[1/f(0)]°.
If ¢ did actually have a normal distribution with mean (and median) zero, then
f(e) = (2m0?) 72 exp(—&?/(207))

so f(0) = (27 o) ~1/? and for this special case g, = 7/2. Thus, if the disturbances are normally
distributed, then LAD will be asymptotically less efficient by a factor of /2 = 1.573.

The usefulness of the LAD estimator arises precisely in cases in which we cannot assume
normally distributed disturbances. Then it becomes unclear which is the better estimator. It
has been found in a long body of research that the advantage of the LAD estimator is most
likely to appear in small samples and when the distribution of ¢ has thicker tails than the
normal — that is, when outlying values of y; are more likely. As the sample size grows larger,
one can expect the LS estimator to regain its superiority. We will explore this aspect of the
estimator in a small Monte Carlo study.

Examples 2.6 and 3.4 note an intriguing feature of the fine art market. At least in some
settings, large paintings sell for more at auction than small ones. Appendix Table F4.1 contains
the sale prices, widths, and heights of 430 Monet paintings. These paintings sold at auction
for prices ranging from $10,000 up to as much as $33 million. A linear regression of the log
of the price on a constant term, the log of the surface area, and the aspect ratio produces
the results in the top line of Table 4.4. This is the focal point of our analysis. In order to study
the different behaviors of the LS and LAD estimators, we will do the following Monte Carlo
study:” We will draw without replacement 100 samples of R observations from the 430. For
each of the 100 samples, we will compute b, s, and by ap . We then compute the average of

"Being a Monte Carlo study that uses a random number generator, there is a question of replicability. The
study was done with NLOGIT and is replicable. The program can be found on the Web site for the text.
The qualitative results, if not the precise numerical values, can be reproduced with other programs that allow
random sampling from a data set.
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TABLE 4.4 Estimated Equations for Art Prices

Constant Log Area Aspect Ratio
Standard Standard Standard

Full Sample Mean Deviation Mean Deviation Mean Deviation

LS —8.42653 0.61184  1.33372 0.09072 —0.16537 0.12753

LAD —7.62436 0.89055  1.20404 0.13626 —0.21260 0.13628
R=10

LS —9.39384 6.82900  1.40481 1.00545 0.39446 2.14847

LAD —8.97714  10.24781  1.34197 1.48038 0.35842 3.04773
R =50

LS —8.73099 212135  1.36735 0.30025 —0.06594 0.52222

LAD —-8.91671 2.51491  1.38489 0.36299 —0.06129 0.63205
R =100

LS —8.36163 1.32083  1.32758 0.17836 —0.17357 0.28977

LAD —8.05195 1.54190  1.27340 0.21808 —0.20700 0.29465

the 100 vectors and the sample variance of the 100 observations.® The sampling variability
of the 100 sets of results corresponds to the notion of “variation in repeated samples.” For
this experiment, we will do this for R = 10, 50, and 100. The overall sample size is fairly
large, so it is reasonable to take the full sample results as at least approximately the “true
parameters.” The standard errors reported for the full sample LAD estimator are computed
using bootstrapping. Briefly, the procedure is carried out by drawing B—we used B = 100—
samples of n (430) observations with replacement, from the full sample of n observations. The
estimated variance of the LAD estimator is then obtained by computing the mean squared
deviation of these B estimates around the full sample LAD estimates (not the mean of the B
estimates). This procedure is discussed in detail in Section 15.4.

If the assumptions underlying our regression model are correct, we should observe the
following:

—h

Since both estimators are consistent, the averages should resemble the preceding main
results, the more so as R increases.

As R increases, the sampling variance of the estimators should decline.

We should observe generally that the standard deviations of the LAD estimates are larger
than the corresponding values for the LS estimator.

When R is small, the LAD estimator should compare more favorably to the LS estimator,
but as R gets larger, the advantage of the LS estimator should become apparent.

> wbn

A kernel density estimate for the distribution of the least squares residuals appears in Fig-
ure 4.4. There is a bit of skewness in the distribution, so a main assumption underlying our
experiment may be violated to some degree. Results of the experiments are shown in Ta-
ble 4.4. The force of the asymptotic results can be seen most clearly in the column for the
coefficient on log Area. The decline of the standard deviation as R increases is evidence of
the consistency of both estimators. In each pair of results (LS, LAD), we can also see that the
estimated standard deviation of the LAD estimator is greater by a factor of about 1.2 to 1.4,
which is also to be expected. Based on the normal distribution, we would have expected this
ratio to be v/1.573 = 1.254.

8Note that the sample size R is not a negligible fraction of the population size, 430 for each replication.
However, this does not call for a finite population correction of the variances in Table 4.4. We are not
computing the variance of a sample of R observations drawn from a population of 430 paintings. We are
computing the variance of a sample of R statistics each computed from a different subsample of the full
population. There are a bit less than 1020 different samples of 10 observations we can draw. The number of
different samples of 50 or 100 is essentially infinite.
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FIGURE 4.4 Kernel Dansity Estimator for Least Squares Residuals.

4.4.6 MAXIMUM LIKELIHOOD ESTIMATION

We have motivated the least squares estimator in two ways: First, we obtained Theorem
4.1, which states that the least squares estimator mimics the coefficients in the minimum
mean squared error predictor of y in the joint distribution of y and x. Second, Theorem
4.2, the Gauss—Markov theorem, states that the least squares estimator is the minimum
variance linear unbiased estimator of § under the assumptions of the model. Neither
of these results relies on Assumption A6, normality of the distribution of ¢. A natural
question at this point would be, what is the role of this assumption? There are two. First,
the assumption of normality will produce the basis for determining the appropriate
endpoints for confidence intervals in Sections 4.5 and 4.6. But, we found in Section 4.4.2
that based on the central limit theorem, we could base inference on the asymptotic
normal distribution of b, even if the disturbances were not normally distributed. That
would seem to make the normality assumption no longer necessary, which is largely
true but for a second result.

If the disturbances are normally distributed, then the least squares estimator is
also the maximum likelihood estimator (MLE). We will examine maximum likelihood
estimation in detail in Chapter 14, so we will describe it only briefly at this point. The
end result is that by virtue of being an MLE, least squares is asymptotically efficient
among consistent and asymptotically normally distributed estimators. This is a large
sample counterpart to the Gauss—Markov theorem (known formally as the Cramér—
Rao bound). What the two theorems have in common is that they identify the least
squares estimator as the most efficient estimator in the assumed class of estimators.
They differ in the class of estimators assumed:

Gauss—Markov: Linear and unbiased estimators
ML: Based on normally distributed disturbances, consistent and asymp-
totically normally distributed estimators
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These are not “nested.” Notice, for example, that the MLE result does not require
unbiasedness or linearity. Gauss—Markov does not require normality or consistency.
The Gauss—Markov theorem is a finite sample result while the Cramér—Rao bound
is an asymptotic (large-sample) property. The important aspect of the development
concerns the efficiency property. Efficiency, in turn, relates to the question of how best
to use the sample data for statistical inference. In general, it is difficult to establish
that an estimator is efficient without being specific about the candidates. The Gauss—
Markov theorem is a powerful result for the linear regression model. However, it has no
counterpart in any other modeling context, so once we leave the linear model, we will
require different tools for comparing estimators. The principle of maximum likelihood
allows the analyst to assert asymptotic efficiency for the estimator, but only for the
specific distribution assumed. Example 4.6 establishes that bis the MLE in the regression
model with normally distributed disturbances. Example 4.7 then considers a case in
which the regression disturbances are not normally distributed and, consequently, b is
less efficient than the MLE.

Example 4.6 MLE with Normally Distributed Disturbances
With normally distributed disturbances, y; |x; is normally distributed with mean x; 8 and vari-
ance o2, so the density of y;|x; is

exp [—3(yi —x/B)?]
V2mo? ’

The log likelihood for a sample of n independent observations is equal to the log of the joint
density of the observed random variables. For a random sample, the joint density would be
the product, so the log likelihood, given the data, which is written InL(8, o2|y,X) would be the
sum of the logs of the densities. This would be (after a bit of manipulation)

f(yilx) =

InL(B, a®ly.X) = —(n/2)[Ino® + In27 + (1/0%) 1% (y; — X B)?].

The values of g and o2 that maximize this function are the maximum likelihood estimators of
B and 2. As we will explore further in Chapter 14, the functions of the data that maximize this
function with respect to g and o2 are the least squares coefficient vector, b, and the mean
squared residual, e’e/n. Once again, we leave for Chapter 14 a derivation of the following
result,

AsyVar[Bu.] = —E[9*InL/3Bap1" = 2E[(XX) 7],

which is exactly what appears in Section 4.3.6. This shows that the least squares estimator
is the maximum likelihood estimator. It is consistent, asymptotically (and exactly) normally
distributed, and, under the assumption of normality, by virtue of Theorem 14.4, asymptotically
efficient.

It is important to note that the properties of an MLE depend on the specific dis-
tribution assumed for the observed random variable. If some nonnormal distribution
is specified for ¢ and it emerges that b is not the MLE, then least squares may not be
efficient. The following example illustrates.

Example 4.7 The Gamma Regression Model
Greene (1980a) considers estimation in a regression model with an asymmetrically distributed
disturbance,

y=(a+0vVP) +XB+ (e —0ovP) =a* +XB +¢",
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where ¢ has the gamma distribution in Section B.4.5 [see (B-39)] and ¢ = +/P/A is the
standard deviation of the disturbance. In this model, the covariance matrix of the least squares
estimator of the slope coefficients (not including the constant term) is

Asy. Var[b | X] = o?(X'M®X) ",
whereas for the maximum likelihood estimator (which is not the least squares estimator),’
Asy.Var[B,, 1 ~ 1 — (2/P)]c2(X'M®X) .

But for the asymmetry parameter, this result would be the same as for the least squares
estimator. We conclude that the estimator that accounts for the asymmetric disturbance
distribution is more efficient asymptotically.

Another example that is somewhat similar to the model in Example 4.7 is the stochastic
frontier model developed in Chapter 18. In these two cases in particular, the distribution
of the disturbance is asymmetric. The maximum likelihood estimators are computed in
a way that specifically accounts for this while the least squares estimator treats observa-
tions above and below the regression line symmetrically. That difference is the source
of the asymptotic advantage of the MLE for these two models.

4.5 INTERVAL ESTIMATION

The objective of interval estimation is to present the best estimate of a parameter with
an explicit expression of the uncertainty attached to that estimate. A general approach,
for estimation of a parameter 6, would be

6 + sampling variability. 4-37)

(We are assuming that the interval of interest would be symmetic around 4.) Follow-
ing the logic that the range of the sampling variability should convey the degree of
(un)certainty, we consider the logical extremes. We can be absolutely (100 percent)
certain that the true value of the parameter we are estimating lies in the range  + oo.
Of course, this is not particularly informative. At the other extreme, we should place no
certainty (0 percent) on the range # =+ 0. The probability that our estimate precisely hits
the true parameter value should be considered zero. The point is to choose a value of
a —0.05 or 0.01 is conventional —such that we can attach the desired confidence (prob-
ability), 100(1 — ) percent, to the interval in (4-13). We consider how to find that range
and then apply the procedure to three familiar problems, interval estimation for one of
the regression parameters, estimating a function of the parameters and predicting the
value of the dependent variable in the regression using a specific setting of the indepen-
dent variables. For this purpose, we depart from Assumption A6 that the disturbances
are normally distributed. We will then relax that assumption and rely instead on the
asymptotic normality of the estimator.

9The matrix MO produces data in the form of deviations from sample means. (See Section A.2.8.) In Greene’s
model, P must be greater than 2.
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4.5.1 FORMING A CONFIDENCE INTERVAL FOR A COEFFICIENT

From(4-18), we have that b|X ~ N[B,02(X’X)"!]. It follows that for any particular
element of b, say by,

b ~ N[Bi, 02 S]

where S¥ denotes the kth diagonal element of (X’X)~!. By standardizing the variable,
we find

_ bie— B
= /2 Skk

has a standard normal distribution. Note that zj, which is a function of by, B, o and
Skk nonetheless has a distribution that involves none of the model parameters or the
data; zy is a pivotal statistic. Using our conventional 95 percent confidence level, we
know that Prob[—1.96 < z; < 1.96]. By a simple manipulation, we find that

(4-38)

Prob [bk —1.96vV 028k < B < by 4+ 1.96v 025k | = 0.95. (4-39)

Note that this is a statement about the probability that the random interval bx+ the
sampling variability contains 8;, not the probability that 8, lies in the specified interval.
If we wish to use some other level of confidence, not 95 percent, then the 1.96 in (4-39)
is replaced by the appropriate z(1—q/2). (We are using the notation z(;_/2) to denote the
value of z such that for the standard normal variable z, Prob[z < z(q_e2)] = 1 — /2.
Thus, zp975 = 1.96, which corresponds to « = 0.05.)

We would have our desired confidence interval in (4-39), save for the complication
that o2 is not known, so the interval is not operational. It would seem natural to use s°
from the regression. This is, indeed, an appropriate approach. The quantity

(n—K)szze'ez(i)'M(i) (4-40)

o? o? o o

is an idempotent quadratic form in a standard normal vector, (&/0). Therefore, it has a
chi-squared distribution with degrees of freedom equal to the rank(M) = trace(M) =
n— K. (See Section B11.4 for the proof of this result.) The chi-squared variable in (4-40)
is independent of the standard normal variable in (14). To prove this, it suffices to show

that
(15#) - x (2

is independent of (n — K)s%/o%. In Section B.11.7 (Theorem B.12), we found that a suf-
ficient condition for the independence of a linear form Lx and an idempotent quadratic
form x’ Ax in a standard normal vector x is that LA = 0. Letting &/o be the x, we find that
the requirement here would be that (X’X)"'X’M = 0. It does, as seen in (3-15). The
general result is central in the derivation of many test statistics in regression analysis.
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THEOREM 4.6 Independence of b and s*

If e is normally distributed, then the least squares coefficient estimator b is sta-
tistically independent of the residual vector e and therefore, all functions of e,
including s>.

Therefore, the ratio

(bx — Br) /v o2 Skk _ br — Br
VI —K)s?/o?]/(n— K) /528K

has a ¢ distribution with (n — K) degrees of freedom.'” We can use # to test hypotheses
or form confidence intervals about the individual elements of .

The result in (4-41) differs from (14) in the use of s instead of 2, and in the pivotal
distribution, ¢ with (n — K) degrees of freedom, rather than standard normal. It follows
that a confidence interval for gx can be formed using

f = (4-41)

Prob [bk — t—a/2) -k V28K < Br < b+ ta—a) n-x) V2SS | =1 —a,  (4-42)

where #(1_q/2) (-] is the appropriate critical value from the ¢ distribution. Here, the
distribution of the pivotal statistic depends on the sample size through (n — K), but,
once again, not on the parameters or the data. The practical advantage of (4-42) is that
it does not involve any unknown parameters. A confidence interval for i can be based
on (4-42).

Example 4.8 Confidence Interval for the Income Elasticity of Demand
for Gasoline
Using the gasoline market data discussed in Examples 4.2 and 4.4, we estimated the following
demand equation using the 52 observations:

In(G/Pop) = B1+ B2 In Pg + Bz In(Income/Pop) + B4 In Poc + Bs In Py + ¢.

Least squares estimates of the model parameters with standard errors and t ratios are given
in Table 4.5.

TABLE 4.5 Regression Results for a Demand Equation

Sum of squared residuals: 0.120871
Standard error of the regression: 0.050712
R? based on 52 observations 0.958443
Variable Coefficient Standard Error t Ratio
Constant —21.21109 0.75322 —28.160
In Ps —0.021206 0.04377 —0.485
In Income/ Pop 1.095874 0.07771 14.102
In P, —0.373612 0.15707 —2.379
In P, 0.02003 0.10330 0.194

10See (B-36) in Section B.4.2. It is the ratio of a standard normal variable to the square root of a chi-squared
variable divided by its degrees of freedom.
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To form a confidence interval for the income elasticity, we need the critical value from the
t distribution with n — K = 52 — 5 = 47 degrees of freedom. The 95 percent critical value
is 2.012. Therefore a 95 percent confidence interval for 3 is 1.095874 4+ 2.012 (0.07771) =
[0.9395,1.2522].

4.5.2 CONFIDENCE INTERVALS BASED ON LARGE SAMPLES

If the disturbances are not normally distributed, then the development in the previous
section, which departs from this assumption, is not usable. But, the large sample results
in Section 4.4 provide an alternative approach. Based on the development that we used
to obtain Theorem 4.4 and (4-35), we have that the limiting distribution of the statistic

L Vb= By
" /%szk

is standard normal, where Q = [plim(X’X/n)]~! and QO is the kth diagonal ele-
ment of Q. Based on the Slutsky theorem (D.16), we may replace o> with a consistent
estimator, s> and obtain a statistic with the same limiting distribution. And, of course,
we estimate Q with (X’X/n)~!. This gives us precisely (4-41), which states that under the
assumptions in Section 4.4, the “¢” statistic in (4-41) converges to standard normal even
if the disturbances are not normally distributed. The implication would be that to em-
ploy the asymptotic distribution of b, we should use (4-42) to compute the confidence
interval but use the critical values from the standard normal table (e.g., 1.96) rather
than from the ¢ distribution. In practical terms, if the degrees of freedom in (4-42) are
moderately large, say greater than 100, then the ¢ distribution will be indistinguishable
from the standard normal, and this large sample result would apply in any event. For
smaller sample sizes, however, in the interest of conservatism, one might be advised to
use the critical values from the ¢ table rather the standard normal, even in the absence
of the normality assumption. In the application in Example 4.8, based on a sample of
52 observations, we formed a confidence interval for the income elasticity of demand
using the critical value of 2.012 from the ¢ table with 47 degrees of freedom. If we chose
to base the interval on the asymptotic normal distribution, rather than the standard
normal, we would use the 95 percent critical value of 1.96. One might think this is a bit
optimistic, however, and retain the value 2.012, again, in the interest of conservatism.

Example 4.9 Confidence Interval Based on the Asymptotic Distribution
In Example 4.4, we analyzed a dynamic form of the demand equation for gasoline,

IN(G/Pop): = B1 + B2In Pst + BsIn(Income/Pop) + - -+ y In(G/POP)_1 + &.

In this model, the long-run price and income elasticities are 9p = Bo/(1—y) and 6, = B3/(1—y).
We computed estimates of these two nonlinear functions using the least squares and the
delta method, Theorem 4.5. The point estimates were —0.411358 and 0.970522, respectively.
The estimated asymptotic standard errors were 0.152296 and 0.162386. In order to form
confidence intervals for 6, and 6,, we would generally use the asymptotic distribution, not
the finite-sample distribution. Thus, the two confidence intervals are

0p = —0.411358 + 1.96(0.152296) = [—0.709858, —0.112858]
and

6, = 0.970523 + 1.96(0.162386) = [0.652246, 1.288800].
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In asample of 51 observations, one might argue that using the critical value for the limiting nor-
mal distribution might be a bit optimistic. If so, using the critical value for the t distribution with
51 — 6 = 45 degrees of freedom would give a slightly wider interval. For example, for the the
income elasticity the interval would be 0.970523 +2.014(0.162386) = [0.643460, 1.297585].
We do note this is a practical adjustment. The statistic based on the asymptotic standard
error does not actually have a t distribution with 45 degrees of freedom.

4.5.3 CONFIDENCE INTERVAL FOR A LINEAR COMBINATION
OF COEFFICIENTS: THE OAXACA DECOMPOSITION

With normally distributed disturbances, the least squares coefficient estimator, b, is
normally distributed with mean B and covariance matrix o>(X’X)~!. In Example 4.8,
we showed how to use this result to form a confidence interval for one of the elements
of B. By extending those results, we can show how to form a confidence interval for a
linear function of the parameters. Qaxaca’s (1973) and Blinder’s (1973) decomposition
provides a frequently used application.!!

Let w denote a K x 1 vector of known constants. Then, the linear combination
¢ = wbis normally distributed with mean y = w8 and variance 0> = w'[02(X’X) ! ]w,
which we estimate with s> = w'[s?(X’X)~!]w. With these in hand, we can use the earlier
results to form a confidence interval for y:

Prob[c — t1-a/2) [n-KSc £V = ¢+ la-ap) K] =1 — . (4-43)

This general result can be used, for example, for the sum of the coefficients or for a
difference.

Consider, then, Oaxaca’s (1973) application. In a study of labor supply, separate
wage regressions are fit for samples of 7, men and 7 y women. The underlying regression
models are

Inwage,,; =X, ;B +éemi» i=1,....,ny
and
Inwage,; =X ;Br+erj, j=1,...,np.

The regressor vectors include sociodemographic variables, such as age, and human cap-
ital variables, such as education and experience. We are interested in comparing these
two regressions, particularly to see if they suggest wage discrimination. Oaxaca sug-
gested a comparison of the regression functions. For any two vectors of characteristics,

Ellnwage,, ;|Xn:] — E[Inwage ¢ ;[xr;] = X}, ;B,, — X; By
=X} i B — X i By + X, By — Xy By
=X, (B — By) + Xmi —Xr.;) By

The second term in this decomposition is identified with differences in human capital
that would explain wage differences naturally, assuming that labor markets respond
to these differences in ways that we would expect. The first term shows the differential
in log wages that is attributable to differences unexplainable by human capital; holding
these factors constant at x,,, makes the first term attributable to other factors. Oaxaca

11See Bourgignon et al. (2002) for an extensive application.



120 PART | ¢ The Linear Regression Model

suggested that this decomposition be computed at the means of the two regressor vec-
tors, X, and X, and the least squares coefficient vectors, b,, and b . If the regressions
contain constant terms, then this process will be equivalent to analyzing In y,, —In y;.

We are interested in forming a confidence interval for the first term, which will
require two applications of our result. We will treat the two vectors of sample means as
known vectors. Assuming that we have two independent sets of observations, our two
estimators, b,, and b s, are independent with means §,, and B f and covariance matrices
o2 (X! X,,)~! and aj%(X’fX 7)1 The covariance matrix of the difference is the sum of
these two matrices. We are forming a confidence interval for X, d where d = b,, — by.
The estimated covariance matrix is

Est. Var[d] = s,, (X}, X,) "' + 57X, X7\ (4-44)

Now, we can apply the result above. We can also form a confidence interval for the
second term; just define w = X, — Xy and apply the earlier result to w'b .

4.6 PREDICTION AND FORECASTING

After the estimation of the model parameters, a common use of regression modeling
is for prediction of the dependent variable. We make a distinction between “predic-
tion” and “forecasting” most easily based on the difference between cross section and
time-series modeling. Prediction (which would apply to either case) involves using the
regression model to compute fitted (predicted) values of the dependent variable, ei-
ther within the sample or for observations outside the sample. The same set of results
will apply to cross sections, panels, and time series. We consider these methods first.
Forecasting, while largely the same exercise, explicitly gives a role to “time” and often
involves lagged dependent variables and disturbances that are correlated with their
past values. This exercise usually involves predicting future outcomes. An important
difference between predicting and forecasting (as defined here) is that for predicting,
we are usually examining a “scenario” of our own design. Thus, in the example below
in which we are predicting the prices of Monet paintings, we might be interested in
predicting the price of a hypothetical painting of a certain size and aspect ratio, or one
that actually exists in the sample. In the time-series context, we will often try to forecast
an event such as real investment next year, not based on a hypothetical economy but
based on our best estimate of what economic conditions will be next year. We will use
the term ex post prediction (or ex post forecast) for the cases in which the data used
in the regression equation to make the prediction are either observed or constructed
experimentally by the analyst. This would be the first case considered here. An ex ante
forecast (in the time-series context) will be one that requires the analyst to forecast the
independent variables first before it is possible to forecast the dependent variable. In
an exercise for this chapter, real investment is forecasted using a regression model that
contains real GDP and the consumer price index. In order to forecast real investment,
we must first forecast real GDP and the price index. Ex ante forecasting is considered
briefly here and again in Chapter 20.



CHAPTER 4 4 The Least Squares Estimator 121

4.6.1 PREDICTION INTERVALS

Suppose that we wish to predict the value of y° associated with a regressor vector x.
The actual value would be

yO — XO/ﬂ + 80.
It follows from the Gauss—Markov theorem that
3 =x"b (4-45)

is the minimum variance linear unbiased estimator of E[y°|x"] = x”B. The prediction
error is

eozj)o_y(]:(b_ﬂ)lxo_'_so.

The prediction variance of this estimator is

Var[e"|X, x°] = o + Var[(b — B)'x" X, x"] = o +x” [0?(X'X)!]x". (4-46)
If the regression contains a constant term, then an equivalent expression is
0 0 2 S S 0_ = 0_ 07 /%
Var[e’|X, x] = o 1+E+,Z=;kz=;(xj — %) (%) (ZM°Z)" |, (4-47)

where Z is the K — 1 columns of X not including the constant, Z’M"Z is the matrix of
sums of squares and products for the columns of X in deviations from their means [see
(3-21)] and the “jk” superscript indicates the jk element of the inverse of the matrix.
This result suggests that the width of a confidence interval (i.e., a prediction interval)
depends on the distance of the elements of x from the center of the data. Intuitively, this
idea makes sense; the farther the forecasted point is from the center of our experience,
the greater is the degree of uncertainty. Figure 4.5 shows the effect for the bivariate
case. Note that the prediction variance is composed of three parts. The second and third
become progressively smaller as we accumulate more data (i.e., as n increases). But,
the first term, o2 is constant, which implies that no matter how much data we have, we
can never predict perfectly.

The prediction variance can be estimated by using s in place of o2. A confidence
(prediction) interval for y° would then be formed using

prediction interval = 5° = t1_q2) [n—kj5€ (€°) (4-48)

where #(1_q/2),[n—k] 1S the appropriate critical value for 100(1 — o) percent significance
from the ¢ table for n — K degrees of freedom and se(e”) is the square root of the
estimated prediction variance.

4.6.2 PREDICTING y WHEN THE REGRESSION MODEL
DESCRIBES LOG y

It is common to use the regression model to describe a function of the dependent
variable, rather than the variable, itself. In Example 4.5 we model the sale prices of
Monet paintings using

In Price = B + B In Area + B3AspectRatio + «.
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FIGURE 4.5 Prediction Intervals.

(Area is width times height of the painting and aspect ratio is the height divided by
the width.) The log form is convenient in that the coefficient provides the elasticity of
the dependent variable with respect to the independent variable, that is, in this model,
B> = 3 E[InPrice|lnArea,AspectRatio]/dlnArea. However, the equation in this form is
less interesting for prediction purposes than one that predicts the price, itself. The
natural approach for a predictor of the form

Iny’ =x"b
would be to use
30 = exp(x”b).

The problem is that E[y|x’] is not equal to exp(E[In y|x"]). The appropriate conditional
mean function would be

E[yx"] = E[exp(x” + ¢")|x’]
= exp(x”B) E[exp(e”) x"].

The second term is not exp(E[¢°|x"]) = 1 in general. The precise result if £°x° is
normally distributed with mean zero and variance o is E[exp(¢*)|x] = exp(c?/2).
(See Section B.4.4.) The implication for normally distributed disturbances would be
that an appropriate predictor for the conditional mean would be

3% = expx”b + 5%/2) > exp(x”b), (4-49)

which would seem to imply that the naive predictor would systematically underpredict
y. However, this is not necessarily the appropriate interpretation of this result. The
inequality implies that the naive predictor will systematically underestimate the condi-
tional mean function, not necessarily the realizations of the variable itself. The pertinent
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question is whether the conditional mean function is the desired predictor for the ex-
ponent of the dependent variable in the log regression. The conditional median might
be more interesting, particularly for a financial variable such as income, expenditure, or
the price of a painting. If the distribution of the variable in the log regression is symmet-
rically distributed (as they are when the disturbances are normally distributed), then
the exponent will be asymmetrically distributed with a long tail in the positive direction,
and the mean will exceed the median, possibly vastly so. In such cases, the median is
often a preferred estimator of the center of a distribution. For estimating the median,
rather then the mean, we would revert to the original naive predictor, 3° = exp(x”b).

Given the preceding, we consider estimating E[exp(y)|x"]. If we wish to avoid the
normality assumption, then it remains to determine what one should use for E[exp(s”)]
x’]. Duan (1983) suggested the consistent estimator (assuming that the expectation is a
constant, that is, that the regression is homoscedastic),

A 1
Elexpe)IX') =" =~ | exp(ep). (4-50)

where ¢; is a least squares residual in the original log form regression. Then, Duan’s
smearing estimator for prediction of y° is

3% = K exp(x”b ).

4.6.3 PREDICTION INTERVAL FOR y WHEN THE REGRESSION
MODEL DESCRIBES LOG Yy

We obtained a prediction interval in (4-48) for In y|x" in the loglinear model Iny =
XB+e,

[ln 5’20WER’ In 5’?/PPER] = |x"b - l1—a/2).[n-K]5€ (e()) X"b + la—a/2).[n-K]S€ (e()) :

For a given choice of «, say, 0.05, these values give the 0.025 and 0.975 quantiles of
the distribution of In y|x". If we wish specifically to estimate these quantiles of the
distribution of y|x’, not Iny|x’, then we would use:

(YL ower: Yopper] = {exp XD = ta—aya)n-xise (¢°)]. exp [X"b +ta-ay2)(n-x15€ (i:ﬂSi)
This follows from the result that if Prob[lny < InL] = 1 — «/2, then Prob[y < L] =
1—«a/2. The resultis that the natural estimator is the right one for estimating the specific
quantiles of the distribution of the original variable. However, if the objective is to find
an interval estimator for y|x" that is as narrow as possible, then this approach is not
optimal. If the distribution of y is asymmetric, as it would be for a loglinear model
with normally distributed disturbances, then the naive interval estimator is longer than
necessary. Figure 4.6 shows why. We suppose that (L, U) in the figure is the prediction
interval formed by (4-51). Then, the probabilities to the left of L and to the right of U
each equal «/2. Consider alternatives Ly = 0 and U instead. As we have constructed
the figure, the area (probability) between L and L equals the area between U, and U.
But, because the density is so much higher at L, the distance (0, U)), the dashed interval,
is visibly shorter than that between (L, U). The sum of the two tail probabilities is still
equal to «, so this provides a shorter prediction interval. We could improve on (4-51) by
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using, instead, (0, Ug) where Uy is simply exp[x”b + (1_a) (- k15€(€®)] (i.€., we put the
entire tail area to the right of the upper value). However, while this is an improvement,
it goes too far, as we now demonstrate.

Consider finding directly the shortest prediction interval. We treat this as an opti-
mization problem:

Minimize(L, U) : I = U — Lsubjectto F(L) +[1 — F(U)] = «,

where F is the cdf of the random variable y (not Iny). That is, we seek the shortest interval
for which the two tail probabilities sum to our desired « (usually 0.05). Formulate this
as a Lagrangean problem,

Minimize(L, U, A) : " =U — L+ A[F(L) + (1 — F(U)) — «].
The solutions are found by equating the three partial derivatives to zero:
/oL =—-1+xrf(L) =0,
ar'/oU =1—-x1f(U) =0,
alr/or=FL)+[1-FU)]—-a=0,

where f(L) = F'(L) and f(U) = F’'(U) are the derivtives of the cdf, which are the
densities of the random variable at L and U, respectively. The third equation enforces
the restriction that the two tail areas sum to « but does not force them to be equal. By
adding the first two equations, we find that A[ f(L) — f(U)] = 0, which, if A is not zero,
means that the solution is obtained by locating (L*, U*) such that the tail areas sum to
« and the densities are equal. Looking again at Figure 4.6, we can see that the solution
we would seek is (L*, U*) where 0 < L* < L and U* < Uj. This is the shortest interval,
and it is shorter than both [0, Uy] and [L, U]

This derivation would apply for any distribution, symmetric or otherwise. For a
symmetric distribution, however, we would obviously return to the symmetric inter-
val in (4-51). It provides the correct solution for when the distribution is asymmetric.

FIGURE 4.6 Lognormal Distribution for Prices of Monet Paintings.
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In Bayesian analysis, the counterpart when we examine the distribution of a parameter
conditioned on the data, is the highest posterior density interval. (See Section 16.4.2.)
For practical application, this computation requires a specific assumption for the dis-
tribution of y|x’, such as lognormal. Typically, we would use the smearing estimator
specifically to avoid the distributional assumption. There also is no simple formula to
use to locate this interval, even for the lognormal distribution. A crude grid search
would probably be best, though each computation is very simple. What this derivation
does establish is that one can do substantially better than the naive interval estimator,
for example using [0, Up].

Example 4.10 Pricing Art
In Example 4.5, we suggested an intriguing feature of the market for Monet paintings, that
larger paintings sold at auction for more than than smaller ones. In this example, we will
examine that proposition empirically. Table F4.1 contains data on 430 auction prices for
Monet paintings, with data on the dimensions of the paintings and several other variables
that we will examine in later examples. Figure 4.7 shows a histogram for the sample of sale
prices (in $million). Figure 4.8 shows a histogram for the logs of the prices.

Results of the linear regression of InPrice on InArea (height times width) and Aspect Ratio
(height divided by width) are given in Table 4.6.

We consider using the regression model to predict the price of one of the paintings, a 1903
painting of Charing Cross Bridge that sold for $3,522,500. The painting is 25.6” high and 31.9”
wide. (This is observation 60 in the sample.) The log area equals In(25.6 x 31.9) = 6.705198
and the aspect ratio equals 25.6/31.9 = 0.802508. The prediction for the log of the price
would be

In P|x° = —8.42653 + 1.33372(6.705198) — 0.16537(0.802508) = 0.383636.

FIGURE 4.7 Histogram for Sale Prices of 430 Monet Paintings
($million).
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FIGURE 4.8 Histogram of Logs of Auction Prices for Monet

Paintings.

TABLE 4.6 Estimated Equation for Log Price

Mean of log Price 0.33274
Sum of squared residuals 519.17235
Standard error of regression 1.10266
R-squared 0.33620
Adjusted R-squared 0.33309
Number of observations 430
Standard Mean

Variable Coefficient Error t of X
Constant —8.42653 0.61183 —13.77 1.00000
LogArea 1.33372 0.09072 14.70 6.68007
AspectRatio —0.16537 0.12753 —1.30 0.90759
Estimated Asymptotic Covariance Matrix

Constant LogArea AspectRatio
Constant 0.37434 —0.05429 —0.00974
LogArea —0.05429 0.00823 —0.00075
AspectRatio —0.00974 —0.00075 0.01626

Note that the mean log price is 0.33274, so this painting is expected to sell for roughly
5 percent more than the average painting, based on its dimensions. The estimate of the
prediction variance is computed using (4-47); s, = 1.104027. The sample is large enough
to use the critical value from the standard normal table, 1.96, for a 95 percent confidence
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interval. A prediction interval for the log of the price is therefore
0.383636 + 1.96(1.104027) = [—1.780258, 2.547529].

For predicting the price, the naive predictor would be exp(0.383636) = $1.476411M, which is
far under the actual sale price of $3.5225M. To compute the smearing estimator, we require
the mean of the exponents of the residuals, which is 1.813045. The revised point estimate
for the price would thus be 1.813045 x 1.47641 = $2.660844M—this is better, but still fairly
far off. This particular painting seems to have sold for relatively more than history (the data)
would have predicted.

To compute an interval estimate for the price, we begin with the naive prediction by simply
exponentiating the lower and upper values for the log price, which gives a prediction interval
for 95 percent confidence of [$0.168595M, $12.77503M]. Using the method suggested in
Section 4.6.3, however, we are able to narrow this interval to [0.021261, 9.027543], a range
of $9M compared to the range based on the simple calculation of $12.5M. The interval divides
the 0.05 tail probability into 0.00063 on the left and 0.04937 on the right. The search algorithm
is outlined next.

Grid Search Algorithm for Optimal Prediction Interval [LO, UO]

x? = (1,/09(25.6 x 31.9),25.6/31.9)’;

(10 = exp(x°b), 60 = /s2 + xV[s2(X'X) ~"]x;

Confidence interval for logP|x°: [Lower, Upper] = [1° — 1.966, /i° + 1.965]];
Naive confidence interval for Price|x’: L1 = exp(Lower) ; U1 = exp(Upper);
Initial value of L was .168595, LO = this value;

Grid search for optimal interval, decrement by A = .005 (chosen ad hoc);
Decrement LO and compute companion UO until densities match;

() LO = LO — A = new value of LO;

fL0) = [LOGSV2T] "exp [~ ((InLO - ) /32)":
F(LO) = @((In(LO) - z°)/ 69) = left tail probability;

UO = exp(6J@ " [F(LO) + 0.95] + /1°) = next value of UO;
fU0) = [U0GSv2r] "exp |~ 1 ((InUO - % /63)°]:

1 — F(UO) = 1 — @((In(UO) - 2%)/5J) = right tail probability;
Compare f(LO) to f(UO). If not equal, return to (*). If equal, exit.

4.6.4 FORECASTING

The preceding discussion assumes that x° is known with certainty, ex post, or has been
forecast perfectly, ex ante. If x” must, itself, be forecast (an ex ante forecast), then the
formula for the forecast variance in (4-46) would have to be modified to incorporate the
uncertainty in forecasting x’. This would be analogous to the term o in the prediction
variance that accounts for the implicit prediction of ¢°. This will vastly complicate
the computation. Many authors view it as simply intractable. Beginning with Feldstein
(1971), derivation of firm analytical results for the correct forecast variance for this
case remain to be derived except for simple special cases. The one qualitative result
that seems certain is that (4-46) will understate the true variance. McCullough (1996)
presents an alternative approach to computing appropriate forecast standard errors
based on the method of bootstrapping. (See Chapter 15.)
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Various measures have been proposed for assessing the predictive accuracy of fore-
casting models.!> Most of these measures are designed to evaluate ex post forecasts, that
is, forecasts for which the independent variables do not themselves have to be forecast.
Two measures that are based on the residuals from the forecasts are the root mean

squared error,
1 a2
RMSE = | /mzij 0 = 90,

and the mean absolute error,
1 .
MAE = E E lyi — ¥il,

where n° is the number of periods being forecasted. (Note that both of these, as well as
the following measures, below are backward looking in that they are computed using the
observed data on the independent variable.) These statistics have an obvious scaling
problem —multiplying values of the dependent variable by any scalar multiplies the
measure by that scalar as well. Several measures that are scale free are based on the
Theil U statistic:'®

A/n"3% v

This measure is related to R? but is not bounded by zero and one. Large values indicate
a poor forecasting performance. An alternative is to compute the measure in terms of
the changes in y:

0 S 9)?
U \/(1/:1 0=

(/0 Y (Ay: — A§)?
1/ (Ay;)°

where Ay; = y; — y;—1 and Aj; = Ji — y;i_1, or, in percentage changes, Ay, = (y; —
vi—1)/yi—1 and AY; = (J; — yi—1)/yi—1. These measures will reflect the model’s ability to
track turning points in the data.

4.7 DATA PROBLEMS

The analysis to this point has assumed that the data in hand, X and y, are well measured
and correspond to the assumptions of the model in Table 2.1 and to the variables
described by the underlying theory. At this point, we consider several ways that “real-
world” observed nonexperimental data fail to meet the assumptions. Failure of the
assumptions generally has implications for the performance of the estimators of the

12See Theil (1961) and Fair (1984).
13Theil (1961).
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model parameters —unfortunately, none of them good. The cases we will examine are

e  Multicollinearity: Although the full rank assumption, A2, is met, it almost fails.
(“Almost” is a matter of degree, and sometimes a matter of interpretation.)
Multicollinearity leads to imprecision in the estimator, though not to any systematic
biases in estimation.

e Missing values: Gaps in X and/or y can be harmless. In many cases, the analyst
can (and should) simply ignore them, and just use the complete data in the sam-
ple. In other cases, when the data are missing for reasons that are related to the
outcome being studied, ignoring the problem can lead to inconsistency of the esti-
mators.

e Measurement error: Data often correspond only imperfectly to the theoretical con-
struct that appears in the model—individual data on income and education are
familiar examples. Measurement error is never benign. The least harmful case is
measurement error in the dependent variable. In this case, at least under probably
reasonable assumptions, the implication is to degrade the fit of the model to the
data compared to the (unfortunately hypothetical) case in which the data are ac-
curately measured. Measurement error in the regressors is malignant—it produces
systematic biases in estimation that are difficult to remedy.

4.7.1 MULTICOLLINEARITY

The Gauss—Markov theorem states that among all linear unbiased estimators, the least
squares estimator has the smallest variance. Although this result is useful, it does not
assure us that the least squares estimator has a small variance in any absolute sense.
Consider, for example, a model that contains two explanatory variables and a constant.
For either slope coefficient,

o? o?

(1 - 7122) > i1 (X — Xp)? N (1 - ’”122)Skk’

Var[by | X] = k=1,2. (4-52)

If the two variables are perfectly correlated, then the variance is infinite. The case of
an exact linear relationship among the regressors is a serious failure of the assumptions
of the model, not of the data. The more common case is one in which the variables
are highly, but not perfectly, correlated. In this instance, the regression model retains
all its assumed properties, although potentially severe statistical problems arise. The
problem faced by applied researchers when regressors are highly, although not per-
fectly, correlated include the following symptoms:

e Small changes in the data produce wide swings in the parameter estimates.
Coefficients may have very high standard errors and low significance levels even
though they are jointly significant and the R? for the regression is quite high.

e (Coefficients may have the “wrong” sign or implausible magnitudes.

For convenience, define the data matrix, X, to contain a constant and K — 1 other
variables measured in deviations from their means. Let x, denote the kth variable, and
let X denote all the other variables (including the constant term). Then, in the inverse
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matrix, (X’X)~!, the kth diagonal element is

-1

(X Meoxe) ™ = [xXjxi — XXt (Xl X)) ™ XX

, -1 -
—lwx, [1— X1 X (k) (sz)x(k)) X,(k)xk
= | XXk XXk (4-53)
B 1
(1= R Sw

where R} is the R? in the regression of x; on all the other variables. In the multiple
regression model, the variance of the kth least squares coefficient estimator is o times
this ratio. It then follows that the more highly correlated a variable is with the other
variables in the model (collectively), the greater its variance will be. In the most extreme
case, in which x; can be written as a linear combination of the other variables, so that
R} =1, the variance becomes infinite. The result

o2

(1= RY) Yo ik — %)%

shows the three ingredients of the precision of the kth least squares coefficient estimator:

Var[by | X] = (4-54)

e  Other things being equal, the greater the correlation of x; with the other variables,
the higher the variance will be, due to multicollinearity.

e  Other things being equal, the greater the variation in x, the lower the variance will
be. This result is shown in Figure 4.3.

e Other things being equal, the better the overall fit of the regression, the lower
the variance will be. This result would follow from a lower value of o2. We have
yet to develop this implication, but it can be suggested by Figure 4.3 by imagining
the identical figure in the right panel but with all the points moved closer to the
regression line.

Since nonexperimental data will never be orthogonal (R2_ =0), to some extent
multicollinearity will always be present. When is multicollinearity a problem? That is,
when are the variances of our estimates so adversely affected by this intercorrelation that
we should be “concerned”? Some computer packages report a variance inflation factor
(VIF), 1/(1 — R}), for each coefficient in a regression as a diagnostic statistic. As can
be seen, the VIF for a variable shows the increase in Var[b] that can be attributable to
the fact that this variable is not orthogonal to the other variables in the model. Another
measure that is specifically directed at X is the condition number of X’X, which is the
square root of the ratio of the largest characteristic root of X'X (after scaling each
column so that it has unit length) to the smallest. Values in excess of 20 are suggested
as indicative of a problem [Belsley, Kuh, and Welsch (1980)]. (The condition number
for the Longley data of Example 4.11 is over 15,000!)

Example 4.11 Multicollinearity in the Longley Data
The data in Appendix Table F4.2 were assembled by J. Longley (1967) for the purpose of as-
sessing the accuracy of least squares computations by computer programs. (These data are
still widely used for that purpose.) The Longley data are notorious for severe multicollinearity.
Note, for example, the last year of the data set. The last observation does not appear to
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TABLE 4.7 Longley Results: Dependent Variable is Employment

1947-1961 Variance Inflation 1947-1962
Constant 1,459,415 1,169,087
Year —721.756 143.4638 —576.464
GNP deflator —181.123 75.6716 —19.7681
GNP 0.0910678 132.467 0.0643940
Armed Forces —0.0749370 1.55319 —0.0101453

be unusual. But, the results in Table 4.7 show the dramatic effect of dropping this single
observation from a regression of employment on a constant and the other variables. The last
coefficient rises by 600 percent, and the third rises by 800 percent.

Several strategies have been proposed for finding and coping with multicollinear-
ity.!* Under the view that a multicollinearity “problem” arises because of a shortage
of information, one suggestion is to obtain more data. One might argue that if ana-
lysts had such additional information available at the outset, they ought to have used
it before reaching this juncture. More information need not mean more observations,
however. The obvious practical remedy (and surely the most frequently used) is to
drop variables suspected of causing the problem from the regression—that is, to im-
pose on the regression an assumption, possibly erroneous, that the “problem” variable
does not appear in the model. In doing so, one encounters the problems of specification
that we will discuss in Section 4.7.2. If the variable that is dropped actually belongs in the
model (in the sense that its coefficient, B, is not zero), then estimates of the remaining
coefficients will be biased, possibly severely so. On the other hand, overfitting—that is,
trying to estimate a model that is too large —is a common error, and dropping variables
from an excessively specified model might have some virtue.

Using diagnostic tools to “detect” multicollinearity could be viewed as an attempt
to distinguish a bad model from bad data. But, in fact, the problem only stems from
a prior opinion with which the data seem to be in conflict. A finding that suggests
multicollinearity is adversely affecting the estimates seems to suggest that but for this
effect, all the coefficients would be statistically significant and of the right sign. Of course,
this situation need not be the case. If the data suggest that a variable is unimportant in
a model, then, the theory notwithstanding, the researcher ultimately has to decide how
strong the commitment is to that theory. Suggested “remedies” for multicollinearity
might well amount to attempts to force the theory on the data.

4.7.2 PRETEST ESTIMATION

As a response to what appears to be a “multicollinearity problem,” it is often difficult
to resist the temptation to drop what appears to be an offending variable from the
regression, if it seems to be the one causing the problem. This “strategy” creates a
subtle dilemma for the analyst. Consider the partitioned multiple regression

y=XiB, +XoB, +e.

14See Hill and Adkins (2001) for a description of the standard set of tools for diagnosing collinearity.
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If we regress y only on X, the estimator is biased;
E[b|X] = B + P28,
The covariance matrix of this estimator is
Var[b|X] = o?(X| X)) .

(Keep in mind, this variance is around the E[b;|X], not around B;.) If B, is not actually
zero, then in the multiple regression of y on (Xj, X5), the variance of by, around its
mean, $; would be

Var[b;,X] = o*(X{M:X;) !
where
M, =1 - Xp(X5X,) 'X5,
or
Var[by 5 [X] = o*[X; X — X;Xo(X5X5) ' X5Xq ]

We compare the two covariance matrices. It is simpler to compare the inverses. [See
result (A-120).] Thus,

{Var[b; [ X]} ™! — (Var[bi, X]}™! = (1/6) XX (X5X0) ' X5 X,

which is a nonnegative definite matrix. The implication is that the variance of by is not
larger than the variance of by, (since its inverse is at least as large). It follows that
although b, is biased, its variance is never larger than the variance of the unbiased
estimator. In any realistic case (i.e., if X|X; is not zero), in fact it will be smaller. We
get a useful comparison from a simple regression with two variables measured as de-
viations from their means. Then, Var[b;|X] = 02/S1; where S1; = >, (xi1 — %1)? and
Var[b1,|X] = o?/[S11(1 — rlzz)] where r%z is the squared correlation between x; and x;.

The result in the preceding paragraph poses a bit of a dilemma for applied re-
searchers. The situation arises frequently in the search for a model specification. Faced
with a variable that a researcher suspects should be in the model, but that is causing a
problem of multicollinearity, the analyst faces a choice of omitting the relevant variable
or including it and estimating its (and all the other variables’) coefficient imprecisely.
This presents a choice between two estimators, by and by ». In fact, what researchers usu-
ally do actually creates a third estimator. It is common to include the problem variable
provisionally. Ifits  ratio is sufficiently large, it is retained; otherwise it is discarded. This
third estimator is called a pretest estimator. What is known about pretest estimators is
not encouraging. Certainly they are biased. How badly depends on the unknown pa-
rameters. Analytical results suggest that the pretest estimator is the least precise of the
three when the researcher is most likely to use it. [See Judge et al. (1985).] The conclu-
sion to be drawn is that as a general rule, the methodology leans away from estimation
strategies that include ad hoc remedies for multicollinearity.

4.7.3 PRINCIPAL COMPONENTS

A device that has been suggested for “reducing” multicollinearity [see, e.g., Gurmu,
Rilstone, and Stern (1999)] is to use a small number, say L, of principal components
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constructed as linear combinations of the K original variables. [See Johnson and Wichern
(2005, Chapter 8).] (The mechanics are illustrated in Example 4.12.) The argument
against using this approach is that if the original specification in the formy = X + ¢
were correct, then it is unclear what one is estimating when one regresses y on some
small set of linear combinations of the columns of X. For a set of L < K principal com-
ponents, if we regress y on Z = XC to obtain d, it follows that E[d] = § = C 8. (The
proof is considered in the exercises.) In an economic context, if 8 has an interpretation,
then it is unlikely that § will. (E.g., how do we interpret the price elasticity minus twice
the income elasticity?)

This orthodox interpretation cautions the analyst about mechanical devices for cop-
ing with multicollinearity that produce uninterpretable mixtures of the coefficients. But
there are also situations in which the model is built on a platform that might well in-
volve a mixture of some measured variables. For example, one might be interested in a
regression model that contains “ability,” ambiguously defined. As a measured counter-
part, the analyst might have in hand standardized scores on a set of tests, none of which
individually has any particular meaning in the context of the model. In this case, a mix-
ture of the measured test scores might serve as one’s preferred proxy for the underlying
variable. The study in Example 4.12 describes another natural example.

Example 4.12 Predicting Movie Success
Predicting the box office success of movies is a favorite exercise for econometricians. [See,
e.g., Litman (1983), Ravid (1999), De Vany (2003), De Vany and Walls (1999, 2002, 2003), and
Simonoff and Sparrow (2000).] The traditional predicting equation takes the form

Box Office Receipts = f(Budget, Genre, MPAA Rating, Star Power, Sequel, etc.) + e.

Coefficients of determination on the order of 0.4 are fairly common. Notwithstanding the
relative power of such models, the common wisdom in Hollywood is “nobody knows.” There
is tremendous randomness in movie success, and few really believe they can forecast it
with any reliability.”™ Versaci (2009) added a new element to the model, “Internet buzz.”
Internet buzz is vaguely defined to be Internet traffic and interest on familiar web sites such
as RottenTomatoes.com, ImDB.com, Fandango.com, and traileraddict.com. None of these
by itself defines Internet buzz. But, collectively, activity on these Web sites, say three weeks
before a movie’s opening, might be a useful predictor of upcoming success. Versaci’s data
set (Table F4.3) contains data for 62 movies released in 2009, including four Internet buzz
variables, all measured three weeks prior to the release of the movie:

buzz; = number of Internet views of movie trailer at traileraddict.com

buzz, = number of message board comments about the movie at ComingSoon.net

buzzs = total number of “can’t wait” (for release) plus “don’t care” votes at Fandango.com
buzz, = percentage of Fandango votes that are “can’t wait”

We have aggregated these into a single principal component as follows: We first com-
puted the logs of buzz; — buzz; to remove the scale effects. We then standardized the four
variables, so z, contains the original variable minus its mean, zx, then divided by its standard
deviation, sk. Let Z denote the resulting 62 x 4 matrix (z1, 25, z3,24). Then V = (1/61)Z2'Z
is the sample correlation matrix. Let ¢4 be the characteristic vector of V associated with
the largest characteristic root. The first principal component (the one that explains most of
the variation of the four variables) is Zc1. (The roots are 2.4142, 0.7742, 0.4522, 0.3585, so

3The assertion that “nobody knows” will be tested on a newly formed (April 2010) futures exchange
where investors can place early bets on movie success (and producers can hedge their own bets). See
http://www.cantorexchange.com/ for discussion. The real money exchange was created by Cantor Fitzgerald,
Inc. after they purchased the popular culture web site Hollywood Stock Exchange.



134

PART | ¢ The Linear Regression Model

TABLE 4.8 Regression Results for Movie Success

Internet Buzz Model Traditional Model
de 22.30215 35.66514
R 0.58883 0.34247
Variable Coefficient  Std.Error t Coefficient  Std.Error t
Constant 15.4002 0.64273 23.96 13.5768 0.68825 19.73
ACTION —0.86932  0.29333 -2.96 —0.30682  0.34401 —0.89
COMEDY —-0.01622  0.25608 —0.06 —0.03845  0.32001 —-0.12
ANIMATED —0.83324  0.43022 —1.94 —0.82032  0.53869 —-1.52
HORROR 0.37460  0.37109 1.01 1.02644  0.44008 2.33
G 0.38440  0.55315 0.69 0.25242  0.69196 0.36
PG 0.53359  0.29976 1.78 0.32970  0.37243 0.89
PG13 0.21505  0.21885 0.98 0.07176  0.27206 0.26
LOGBUDGT 0.26088  0.18529 1.41 0.70914  0.20812 341
SEQUEL 0.27505  0.27313 1.01 0.64368  0.33143 1.94
STARPOWR 0.00433  0.01285 0.34 0.00648  0.01608 0.40
BUZZ 0.42906  0.07839 5.47

the first principal component explains 2.4142/4 or 60.3 percent of the variation. Table 4.8
shows the regression results for the sample of 62 2009 movies. It appears that Internet buzz
adds substantially to the predictive power of the regression. The R? of the regression nearly
doubles, from 0.34 to 0.58 when Internet buzz is added to the model. As we will discuss in
Chapter 5, buzz is also a highly “significant” predictor of success.

4.7.4 MISSING VALUES AND DATA IMPUTATION

It is common for data sets to have gaps, for a variety of reasons. Perhaps the most
frequent occurrence of this problem is in survey data, in which respondents may simply
fail to respond to the questions. In a time series, the data may be missing because they
do not exist at the frequency we wish to observe them; for example, the model may
specify monthly relationships, but some variables are observed only quarterly. In panel
data sets, the gaps in the data may arise because of attrition from the study. This is
particularly common in health and medical research, when individuals choose to leave
the study—possibly because of the success or failure of the treatment that is being
studied.

There are several possible cases to consider, depending on why the data are missing.
The data may be simply unavailable, for reasons unknown to the analyst and unrelated
to the completeness or the values of the other observations in the sample. This is the
most benign situation. If this is the case, then the complete observations in the sample
constitute a usable data set, and the only issue is what possibly helpful information could
be salvaged from the incomplete observations. Griliches (1986) calls this the ignorable
case in that, for purposes of estimation, if we are not concerned with efficiency, then
we may simply delete the incomplete observations and ignore the problem. Rubin
(1976, 1987) and Little and Rubin (1987, 2002) label this case missing completely at
random, or MCAR. A second case, which has attracted a great deal of attention in
the econometrics literature, is that in which the gaps in the data set are not benign but
are systematically related to the phenomenon being modeled. This case happens most
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often in surveys when the data are “self-selected” or “self-reported.”'® For example, if
a survey were designed to study expenditure patterns and if high-income individuals
tended to withhold information about their income, then the gaps in the data set would
represent more than just missing information. The clinical trial case is another instance.
In this (worst) case, the complete observations would be qualitatively different from a
sample taken at random from the full population. The missing data in this situation are
termed not missing at random, or NMAR. We treat this second case in Chapter 19 with
the subject of sample selection, so we shall defer our discussion until later.

The intermediate case is that in which there is information about the missing data
contained in the complete observations that can be used to improve inference about
the model. The incomplete observations in this missing at random (M AR) case are also
ignorable, in the sense that unlike the NM AR case, simply using the complete data does
not induce any biases in the analysis, as long as the underlying process that produces the
missingness in the data does not share parameters with the model that is being estimated,
which seems likely. [See Allison (2002).] This case is unlikely, of course, if “missingness”
is based on the values of the dependent variable in a regression. Ignoring the incomplete
observations when they are MAR but not MCAR, does ignore information that is in the
sample and therefore sacrifices some efficiency. Researchers have used a variety of data
imputation methods to fill gaps in data sets. The (by far) simplest case occurs when the
gaps occur in the data on the regressors. For the case of missing data on the regressors,
it helps to consider the simple regression and multiple regression cases separately. In
the first case, X has two columns: the column of 1s for the constant and a column with
some blanks where the missing data would be if we had them. The zero-order method of
replacing each missing x with X based on the observed data results in no changes and is
equivalent to dropping the incomplete data. (See Exercise 7 in Chapter 3.) However, the
R? will be lower. An alternative, modified zero-order regression fills the second column
of X with zeros and adds a variable that takes the value one for missing observations
and zero for complete ones.!” We leave it as an exercise to show that this is algebraically
identical to simply filling the gaps with x. There is also the possibility of computing fitted
values for the missing x’s by a regression of x on y in the complete data. The sampling
properties of the resulting estimator are largely unknown, but what evidence there is
suggests that this is not a beneficial way to proceed.'®

These same methods can be used when there are multiple regressors. Once again, it
is tempting to replace missing values of x; with simple means of complete observations
or with the predictions from linear regressions based on other variables in the model
for which data are available when x; is missing. In most cases in this setting, a general
characterization can be based on the principle that for any missing observation, the

16The vast surveys of Americans’ opinions about sex by Ann Landers (1984, passim) and Shere Hite (1987)
constitute two celebrated studies that were surely tainted by a heavy dose of self-selection bias. The latter was
pilloried in numerous publications for purporting to represent the population at large instead of the opinions
of those strongly enough inclined to respond to the survey. The former was presented with much greater
modesty.

17See Maddala (1977a, p. 202).

I8Afifi and Elashoff (1966, 1967) and Haitovsky (1968). Griliches (1986) considers a number of other
possibilities.
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“true” unobserved x;; is being replaced by an erroneous proxy that we might view
as Xjx = Xix + Ui, thatis, in the framework of measurement error. Generally, the least
squares estimator is biased (and inconsistent) in the presence of measurement error such
as this. (We will explore the issue in Chapter 8.) A question does remain: Is the bias
likely to be reasonably small? As intuition should suggest, it depends on two features
of the data: (a) how good the prediction of x; is in the sense of how large the variance
of the measurement error, 1y, is compared to that of the actual data, x;, and (b) how
large a proportion of the sample the analyst is filling.

The regression method replaces each missing value on an x; with a single prediction
from a linear regression of x; on other exogenous variables—in essence, replacing
the missing x;; with an estimate of it based on the regression model. In a Bayesian
setting, some applications that involve unobservable variables (such as our example
for a binary choice model in Chapter 17) use a technique called data augmentation to
treat the unobserved data as unknown “parameters” to be estimated with the structural
parameters, such as f in our regression model. Building on this logic researchers, for
example, Rubin (1987) and Allison (2002) have suggested taking a similar approach in
classical estimation settings. The technique involves a data imputation step that is similar
to what was suggested earlier, but with an extension that recognizes the variability in
the estimation of the regression model used to compute the predictions. To illustrate,
we consider the case in which the independent variable, x;, is drawn in principle from a
normal population, so it is a continuously distributed variable with a mean, a variance,
and a joint distribution with other variables in the model. Formally, an imputation step
would involve the following calculations:

1. Using as much information (complete data) as the sample will provide, linearly
regress x; on other variables in the model (and/or outside it, if other information
is available), Z, and obtain the coefficient vector d; with associated asymptotic
covariance matrix Ay and estimated disturbance variance s7.

2. For purposes of the imputation, we draw an observation from the estimated asymp-
totic normal distribution of dy, that is dy ,, = dx + v, where v, is a vector of random
draws from the normal distribution with mean zero and covariance matrix A.

3. For each missing observation in x; that we wish to impute, we compute, X; y ,, =
d}c’mzi,k + Sk.mli x Where Sk, is s divided by a random draw from the chi-squared
distribution with degrees of freedom equal to the number of degrees of freedom in
the imputation regression.

At this point, the iteration is the same as considered earlier, where the missing values
are imputed using a regression, albeit, a much more elaborate procedure. The regres-
sion is then computed using the complete data and the imputed data for the missing
observations, to produce coefficient vector b, and estimated covariance matrix, V,,.
This constitutes a single round. The technique of multiple imputation involves repeat-
ing this set of steps M times. The estimators of the parameter vector and the appropriate
asymptotic covariance matrix are
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Researchers differ on the effectiveness or appropriateness of multiple imputation.
When all is said and done, the measurement error in the imputed values remains. It
takes very strong assumptions to establish that the multiplicity of iterations will suffice
to average away the effect of this error. Very elaborate techniques have been developed
for the special case of joint normally distributed cross sections of regressors such as those
suggested above. However, the typical application to survey data involves gaps due to
nonresponse to qualitative questions with binary answers. The efficacy of the theory is
much less well developed for imputation of binary, ordered, count or other qualitative
variables.

The more manageable case is missing values of the dependent variable, y;. Once
again, it must be the case that y; is at least MAR and that the mechanism that is
determining presence in the sample does not share parameters with the model itself.
Assuming the data on x; are complete for all observations, one might consider filling
the gaps in the data on y; by a two-step procedure: (1) estimate § with b, using the
complete observations, X, and y,, then (2) fill the missing values, y,,, with predictions,
V¥ = Ximbe, and recompute the coefficients. We leave as an exercise (Exercise 17) to
show that the second step estimator is exactly equal to the first. However, the variance
estimator at the second step, s°, must underestimate o2, intuitively because we are
adding to the sample a set of observations that are fit perfectly. [See Cameron and
Trivedi (2005, Chapter 27).] So, this is not a beneficial way to proceed. The flaw in
the method comes back to the device used to impute the missing values for y;. Recent
suggestions that appear to provide some improvement involve using a randomized
version, ¥, = X,,b. + &,,, where &,, are random draws from the (normal) population
with zero mean and estimated variance s?[I+X,,(X.X,) !X/ ]. (The estimated variance
matrix corresponds to X,,,b. + &,,.) This defines an iteration. After reestimating 8 with
the augmented data, one can return to re-impute the augmented data with the new g,
then recompute b, and so on. The process would continue until the estimated parameter
vector stops changing. (A subtle point to be noted here: The same random draws should
be used in each iteration. If not, there is no assurance that the iterations would ever
converge.)

In general, not much is known about the properties of estimators based on using
predicted values to fill missing values of y. Those results we do have are largely from
simulation studies based on a particular data set or pattern of missing data. The results
of these Monte Carlo studies are usually difficult to generalize. The overall conclusion
seems to be that in a single-equation regression context, filling in missing values of
y leads to biases in the estimator which are difficult to quantify. The only reasonably
clear result is that imputations are more likely to be beneficial if the proportion of
observations that are being filled is small—the smaller the better.

4.7.5 MEASUREMENT ERROR

There are any number of cases in which observed data are imperfect measures of their
theoretical counterparts in the regression model. Examples include income, education,
ability, health, “the interest rate,” output, capital, and so on. Mismeasurement of the
variables in a model will generally produce adverse consequences for least squares
estimation. Remedies are complicated and sometimes require heroic assumptions. In
this section, we will provide a brief sketch of the issues. We defer to Section 8.5 a more
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detailed discussion of the problem of measurement error, the most common solution
(instrumental variables estimation), and some applications.

Itis convenient to distinguish between measurement error in the dependent variable
and measurement error in the regressor(s). For the second case, it is also useful to
consider the simple regression case and then extend it to the multiple regression model.
Consider a model to describe expected income in a population,

I"=xB+e (4-55)

where 7* is the intended total income variable. Suppose the observed counterpart is /,
earnings. How [ relates to /* is unclear; it is common to assume that the measurement
error is additive, so [ = I** + w. Inserting this expression for / into (4-55) gives

I=xB+e+w
=xB+v, (4-56)

which appears to be a slightly more complicated regression, but otherwise similar to
what we started with. As long as w and x are uncorrelated, that is the case. If w is a
homoscedastic zero mean error that is uncorrelated with x, then the only difference
between the models in (4-55) and (4-56) is that the disturbance variance in (4-56)
is 02 + 02 > o2. Otherwise both are regressions and, evidently B can be estimated
consistently by least squares in either case. The cost of the measurement error is in the
precision of the estimator, since the asymptotic variance of the estimator in (4-56) is
(o2/n)[plim(X’X/n)]~! while it is (o2/n)[plim(X'X/n)]~! if B is estimated using (4-55).
The measurement error also costs some fit. To see this, note that the R? in the sample
regression in (4-55) is

R =1— (ee/n)/X'M°I*/n).

The numerator converges to o while the denominator converges to the total variance
of I'*, which would approach o2 + g’Qf where Q = plim(X'X/n). Therefore,

plimR? = B’ OB/[02 + B’ OB].

The counterpart for (4-56), R?, differs only in that o7 is replaced by o2 > 02 in the
denominator. It follows that

plimR?> — plimR* > 0.

This implies that the fit of the regression in (4-56) will, at least broadly in expectation,
be inferior to that in (4-55). (The preceding is an asymptotic approximation that might
not hold in every finite sample.)

These results demonstrate the implications of measurement error in the dependent
variable. We note, in passing, that if the measurement error is not additive, if it is
correlated with x, or if it has any other features such as heteroscedasticity, then the
preceding results are lost, and nothing in general can be said about the consequence of
the measurement error. Whether there is a “solution” is likewise an ambiguous question.
The preceding explanation shows that it would be better to have the underlying variable
if possible. In the absence, would it be preferable to use a proxy? Unfortunately, / is
already a proxy, so unless there exists an available I” which has smaller measurement
error variance, we have reached an impasse. On the other hand, it does seem that the
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outcome is fairly benign. The sample does not contain as much information as we might
hope, but it does contain sufficient information consistently to estimate 8 and to do
appropriate statistical inference based on the information we do have.

The more difficult case occurs when the measurement error appears in the inde-
pendent variable(s). For simplicity, we retain the symbols 7 and I* for our observed and
theoretical variables. Consider a simple regression,

y=p1+ Bl +e,

where y is the perfectly measured dependent variable and the same measurement equa-
tion, I = I* 4+ w applies now to the independent variable. Inserting / into the equation
and rearranging a bit, we obtain

y=p1+BI+ (e~ pow)

— B+ ol + . 4-57)
It appears that we have obtained (4-56) once again. Unfortunately, this is not the case,
because Cov[l,v] = Cov[l* + w,e — pow] = —pyo2. Since the regressor in (4-57) is

correlated with the disturbance, least squares regression in this case is inconsistent.
There is a bit more that can be derived—this is pursued in Section 8.5, so we state it
here without proof. In this case,

plimb, = o7 /(07 + 0,))]

where o2 is the marginal variance of I*. The scale factor is less than one, so the least
squares estimator is biased toward zero. The larger is the measurement error variance,
the worse is the bias. (This is called least squares attenuation.) Now, suppose there are
additional variables in the model;

y=XB1+ BI"+ ¢.

In this instance, almost no useful theoretical results are forthcoming. The following fairly
general conclusions can be drawn—once again, proofs are deferred to Section 8.5:

1. The least squares estimator of B is still biased toward zero.
2. All the elements of the estimator of 8 are biased, in unknown directions, even
though the variables in x are not measured with error.

Solutions to the “measurement error problem” come in two forms. If there is outside
information on certain model parameters, then it is possible to deduce the scale factors
(using the method of moments) and undo the bias. For the obvious example, in (4-57),
if o2 were known, then it would be possible to deduce o? from Var[l] = 02 + 02 and
thereby compute the necessary scale factor to undo the bias. This sort of information is
generally not available. A second approach that has been used in many applications is
the technique of instrumental variables. This is developed in detail for this application
in Section 8.5.

4.7.6 OUTLIERS AND INFLUENTIAL OBSERVATIONS

Figure 4.9 shows a scatter plot of the data on sale prices of Monet paintings that were
used in Example 4.10. Two points have been highlighted. The one marked “I”” and noted
with the square overlay shows the smallest painting in the data set. The circle marked
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FIGURE 4.9 Log Price vs. Log Area for Monet Paintings.

“O” highlights a painting that fetched an unusually low price, at least in comparison
to what the regression would have predicted. (It was not the least costly painting in
the sample, but it was the one most poorly predicted by the regression.) Since least
squares is based on squared deviations, the estimator is likely to be strongly influenced
by extreme observations such as these, particularly if the sample is not very large.

An “influential observation” is one that is likely to have a substantial impact on the
least squares regression coefficient(s). For a simple regression such as the one shown in
Figure 4.9, Belsley, Kuh, and Welsh (1980) defined an influence measure, for observa-
tion i,

1 (xi - )_Cn)z

hi=-+5—— -5
" n 20 (x; — X,)2

(4-58)
where X, and the summation in the denominator of the fraction are computed without
this observation. (The measure derives from the difference between b and b;, where
the latter is computed without the particular observation. We will return to this shortly.)
It is suggested that an observation should be noted as influential if 4; > 2/n. The de-
cision is whether to drop the observation or not. We should note, observations with
high “leverage” are arguably not “outliers” (which remains to be defined), because the
analysis is conditional on x;. To underscore the point, referring to Figure 4.9, this obser-
vation would be marked even if it fell precisely on the regression line —the source of the
influence is the numerator of the second term in /4;, which is unrelated to the distance of
the point from the line. In our example, the “influential observation” happens to be the
result of Monet’s decision to paint a small painting. The point is that in the absence of
an underlying theory that explains (and justifies) the extreme values of x;, eliminating



CHAPTER 4 4 The Least Squares Estimator 141

such observations is an algebraic exercise that has the effect of forcing the regression
line to be fitted with the values of x; closest to the means.

The change in the linear regression coefficient vector in a multiple regression when
an observation is added to the sample is

1 -1
X Xi)  xi (yi —xbg)) (4-59)
, — (XX i \Yi = X;Da)
1+x; ( (t)X(l)) X;

where b is computed with observation i in the sample, b;) is computed without observa-
tion i and X;, does not include observation i. (See Exercise 6 in Chapter 3.) It is difficult
to single out any particular feature of the observation that would drive this change. The
influence measure,

b—bg, = Ab =

l’ll‘,‘ = X (X,(l)X(l‘))_l X;

K-1K-1

303 () = ) (v — ) (2, MOZg)) "™, (4-60)

j=1 k=1

:I*—*

has been used to flag influential observations. [See, once again, Belsley, Kuh, and Welsh
(1980) and Cook (1977).] In this instance, the selection criterion would be /;; >2(K—1)/n.
Squared deviations of the elements of x; from the means of the variables appear in /4;;,
so it is also operating on the difference of x; from the center of the data. (See the
expression for the forecast variance in Section 4.6.1 for an application.)

In principle, an “outlier,” is an observation that appears to be outside the reach of
the model, perhaps because it arises from a different data generating process. Point “O”
in Figure 4.9 appears to be a candidate. Outliers could arise for several reasons. The
simplest explanation would be actual data errors. Assuming the data are not erroneous,
it then remains to define what constitutes an outlier. Unusual residuals are an obvi-
ous choice. But, since the distribution of the disturbances would anticipate a certain
small percentage of extreme observations in any event, simply singling out observa-
tions with large residuals is actually a dubious exercise. On the other hand, one might
suspect that the outlying observations are actually generated by a different population.
“Studentized” residuals are constructed with this in mind by computing the regression
coefficients and the residual variance without observation i for each observation in the
sample and then standardizing the modified residuals. The ith studentized residual is

. ee_ez/(l_hu)
e(i) = h”)/\/ —— (4-61)

where e is the residual vector for the full sample, based on b, including e; the residual
for observation i. In principle, this residual has a ¢ distribution with n — 1 — K degrees
of freedom (or a standard normal distribution asymptotically). Observations with large
studentized residuals, that is, greater than 2.0, would be singled out as outliers.

There are several complications that arise with isolating outlying observations in
this fashion. First, there is no a priori assumption of which observations are from the
alternative population, if this is the view. From a theoretical point of view, this would
suggest a skepticism about the model specification. If the sample contains a substan-
tial proportion of outliers, then the properties of the estimator based on the reduced
sample are difficult to derive. In the next application, the suggested procedure deletes
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TABLE 4.9 Estimated Equations for Log Price

Number of observations 430 410
Mean of log Price 0.33274 0.36043
Sum of squared residuals 519.17235 383.17982
Standard error of regression 1.10266 0.97030
R-squared 0.33620 0.39170
Adjusted R-squared 0.33309 0.38871
Coefficient Standard Error t
Variable n =430 n =410 n =430 n =410 n =430 n =410
Constant —8.42653 —8.67356 0.61183 0.57529 —13.77 —15.08
LogArea 1.33372 1.36982 0.09072 0.08472 14.70 16.17
AspectRatio —0.16537 —0.14383 0.12753 0.11412 —1.30 —1.26

4.7 percent of the sample (20 observations). Finally, it will usually occur that obser-
vations that were not outliers in the original sample will become “outliers” when the
original set of outliers is removed. It is unclear how one should proceed at this point.
(Using the Monet paintings data, the first round of studentizing the residuals removes
20 observations. After 16 iterations, the sample size stabilizes at 316 of the original 430
observations, a reduction of 26.5 percent.) Table 4.9 shows the original results (from
Table 4.6) and the modified results with 20 outliers removed. Since 430 is a relatively
large sample, the modest change in the results is to be expected.

It is difficult to draw a firm general conclusions from this exercise. It remains likely
that in very small samples, some caution and close scrutiny of the data are called for.
If it is suspected at the outset that a process prone to large observations is at work,
it may be useful to consider a different estimator altogether, such as least absolute
deviations, or even a different model specification that accounts for this possibility. For
example, the idea that the sample may contain some observations that are generated
by a different process lies behind the latent class model that is discussed in Chapters 14
and 18.

4.8 SUMMARY AND CONCLUSIONS

This chapter has examined a set of properties of the least squares estimator that will
apply in all samples, including unbiasedness and efficiency among unbiased estimators.
The formal assumptions of the linear model are pivotal in the results of this chapter. All
of them are likely to be violated in more general settings than the one considered here.
For example, in most cases examined later in the book, the estimator has a possible
bias, but that bias diminishes with increasing sample sizes. For purposes of forming
confidence intervals and testing hypotheses, the assumption of normality is narrow,
so it was necessary to extend the model to allow nonnormal disturbances. These and
other “large-sample” extensions of the linear model were considered in Section 4.4. The
crucial results developed here were the consistency of the estimator and a method of
obtaining an appropriate covariance matrix and large-sample distribution that provides
the basis for forming confidence intervals and testing hypotheses. Statistical inference in
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the form of interval estimation for the model parameters and for values of the dependent
variable was considered in Sections 4.5 and 4.6. This development will continue in
Chapter 5 where we will consider hypothesis testing and model selection.

Finally, we considered some practical problems that arise when data are less than
perfect for the estimation and analysis of the regression model, including multicollinear-

ity, missing observations, measurement error, and outliers.

Key Terms and Concepts

e Assumptions

e Asymptotic covariance
matrix

e Asymptotic distribution

e Asymptotic efficiency

e Asymptotic normality

e Asymptotic properties

e Attrition

e Bootstrap

e Condition number

¢ Confidence interval

¢ Consistency

¢ Consistent estimator

e Data imputation

o Efficient scale

e Estimator

¢ Ex ante forecast

¢ Ex post forecast

e Finite sample properties

e Gauss—Markov theorem

¢ Grenander conditions

e Highest posterior density
interval

e Identification

e [gnorable case

e Inclusion of superfluous
(irrelevant) variables

e Indicator

e Interval estimation

Exercises

e [ cast squares attenuation

e Lindeberg—Feller Central
Limit Theorem

e Linear estimator

¢ Linear unbiased estimator

e Maximum likelihood
estimator

e Mean absolute error

e Mean square convergence

e Mean squared error

e Measurement error

e Method of moments

e Minimum mean squared
error

e Minimum variance linear
unbiased estimator

e Missing at random

e Missing completely at
random

e Missing observations

¢ Modified zero-order
regression

e Monte Carlo study

e Multicollinearity

e Not missing at random

e Oaxaca’s and Blinder’s
decomposition

e Omission of relevant
variables

¢ Optimal linear predictor

¢ Orthogonal random
variables

e Panel data

e Pivotal statistic

e Point estimation

e Prediction error

e Prediction interval

e Prediction variance

e Pretest estimator

e Principal components

e Probability limit

¢ Root mean squared error

e Sample selection

e Sampling distribution

e Sampling variance

e Semiparametric

e Smearing estimator

e Specification errors

e Standard error

e Standard error of the
regression

e Stationary process

o Statistical properties

e Stochastic regressors

e Theil U statistic

e f ratio

e Variance inflation factor

e Zero-order method

1. Suppose that you have two independent unbiased estimators of the same parameter
6, say 6, and 5, with different variances v; and v,. What linear combination § =
c101 + ¢20, is the minimum variance unbiased estimator of 6?

2. Consider the simple regression y; = Bx; +¢&; where E[e | x] = 0 and E[¢? | x] = o2
a. What is the minimum mean squared error linear estimator of 8? [Hint: Let the

estimator be (8 = c’y). Choose ¢ to minimize Var(B) + (E(B — B))?. The answer
is a function of the unknown parameters.]
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b. For the estimator in part a, show that ratio of the mean squared error of  to
that of the ordinary least squares estimator b is
MSE[B]  ? B>

= h LI
MSE[] ~ A+ T T [o2xx]

Note that 7 is the square of the population analog to the “¢ ratio” for testing
the hypothesis that 8 = 0, which is given in (5-11). How do you interpret the
behavior of this ratio as t — 00?

3. Suppose that the classical regression model applies but that the true value of the
constant is zero. Compare the variance of the least squares slope estimator com-
puted without a constant term with that of the estimator computed with an unnec-
essary constant term.

4. Suppose that the regression model is y; = o + Bx; + ¢, where the disturbances
e; have f(g;) = (1/A)exp(—e;/1), &; > 0. This model is rather peculiar in that all
the disturbances are assumed to be nonnegative. Note that the disturbances have
El[e; | x;] = A and Var[g; | x;] = A%. Show that the least squares slope is unbiased
but that the intercept is biased.

5. Prove that the least squares intercept estimator in the classical regression model is
the minimum variance linear unbiased estimator.

6. As a profit-maximizing monopolist, you face the demand curve Q = o+ P +¢.In
the past, you have set the following prices and sold the accompanying quantities:

Q0|3 3 7 6 10 15 16 13 9 15 9 15 12 18 21
Pl18 16 17 12 15 15 4 13 11 6 8 10 7 7 7

Suppose that your marginal cost is 10. Based on the least squares regression, com-
pute a 95 percent confidence interval for the expected value of the profit-maximizing
output.

7. The following sample moments for x = [1, x1, x, x3] were computed from 100 ob-
servations produced using a random number generator:

100 123 96 109 460

n~ _ |123 252 125 189| , _ |810| ,

XX=196 125 167 146 XY= |15 YY =374
109 189 146 168 712

The true model underlying these datais y = x; + x, + x3 + ¢.

a. Compute the simple correlations among the regressors.

b. Compute the ordinary least squares coefficients in the regression of y on a con-
stant xq, xp, and x3.

c. Compute the ordinary least squares coefficients in the regression of y on a con-
stant, x; and x,, on a constant, x; and x3, and on a constant, x, and x3.

d. Compute the variance inflation factor associated with each variable.

e. The regressors are obviously collinear. Which is the problem variable?

8. Consider the multiple regression of y on K variables X and an additional variable z.
Prove that under the assumptions A1 through A6 of the classical regression model,
the true variance of the least squares estimator of the slopes on X is larger when z
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is included in the regression than when it is not. Does the same hold for the sample
estimate of this covariance matrix? Why or why not? Assume that X and z are
nonstochastic and that the coefficient on z is nonzero.

For the classical normal regression model y = Xf + ¢ with no constant term and
K regressors, assuming that the true value of § is zero, what is the exact expected
value of F[K,n — K] = (R*/K)/[(1 — R*)/(n — K)]?

Prove that E[b’b] = '8 + o2 Z,Ile(l /Ar) where b is the ordinary least squares
estimator and Ay is a characteristic root of X’'X.

For the classical normal regression model y = X + ¢ with no constant term and
K regressors, what is plim F[K,n — K] = plim TR assuming that the true
value of B is zero?

Let e; be the ith residual in the ordinary least squares regression of y on X in the
classical regression model, and let ¢; be the corresponding true disturbance. Prove
that plim(e; — ¢;) = 0.

For the simple regression model y; = p + &;, & ~ N[0, %], prove that the sam-
ple mean is consistent and asymptotically normally distributed. Now consider the

alternative estimator i = >, w;y;, w; = m = 2’7 Note that ), w; = 1.
i

Prove that this is a consistent estimator of © and obtain its asymptotic variance.
[Hint: Y, i> = n(n+1)(2n+1)/6.]

Consider a data set consisting of n observations, n, complete and #,, incomplete,
for which the dependent variable, y;, is missing. Data on the independent variables,
x;, are complete for all n observations, X, and X,,. We wish to use the data to
estimate the parameters of the linear regression model y = X + . Consider the
following the imputation strategy: Step 1: Linearly regress y. on X, and compute
b.. Step 2: Use X, to predict the missing y,, with X,,,b.. Then regress the full sample
of observations, (y., X;,b.), on the full sample of regressors, (X., X;,).

a. Show that the first and second step least squares coefficient vectors are identical.
b. Is the second step coefficient estimator unbiased?

c. Show that the sum of squared residuals is the same at both steps.

d. Show that the second step estimator of o2 is biased downward.

In (4-13), we find that when superfluous variables X, are added to the regression of
y on X the least squares coefficient estimator is an unbiased estimator of the true
parameter vector, 8 = (B/,0")’. Show that in this long regression, e’e/(n — K; — K)
is also unbiased as estimator of 0.

In Section 4.7.3, we consider regressing y on a set of principal components, rather
than the original data. For simplicity, assume that X does not contain a constant
term, and that the K variables are measured in deviations from the means and
are “standardized” by dividing by the respective standard deviations. We consider
regression of y on L principal components, Z = XC;, where L < K. Let d denote
the coefficient vector. The regression model is y = X + . In the discussion, it is
claimed that E[d] = C’, 8. Prove the claim.

Example 4.10 presents a regression model that is used to predict the auction prices
of Monet paintings. The most expensive painting in the sample sold for $33.0135M
(log = 17.3124). The height and width of this painting were 35” and 39.4”, respec-
tively. Use these data and the model to form prediction intervals for the log of the
price and then the price for this painting.
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Applications

1. Data on U.S. gasoline consumption for the years 1953 to 2004 are given in
Table F2.2. Note, the consumption data appear as total expenditure. To obtain
the per capita quantity variable, divide GASEXP by GASP times Pop. The other
variables do not need transformation.

a.

Compute the multiple regression of per capita consumption of gasoline on per
capita income, the price of gasoline, all the other prices and a time trend. Report
all results. Do the signs of the estimates agree with your expectations?

. Test the hypothesis that at least in regard to demand for gasoline, consumers do

not differentiate between changes in the prices of new and used cars.

. Estimate the own price elasticity of demand, the income elasticity, and the cross-

price elasticity with respect to changes in the price of public transportation. Do
the computations at the 2004 point in the data.

. Reestimate the regression in logarithms so that the coefficients are direct esti-

mates of the elasticities. (Do not use the log of the time trend.) How do your
estimates compare with the results in the previous question? Which specification
do you prefer?

. Compute the simple correlations of the price variables. Would you conclude that

multicollinearity is a “problem” for the regression in part a or part d?

. Notice that the price index for gasoline is normalized to 100 in 2000, whereas the

other price indices are anchored at 1983 (roughly). If you were to renormalize
the indices so that they were all 100.00 in 2004, then how would the results of the
regression in part a change? How would the results of the regression in part d
change?

. This exercise is based on the model that you estimated in part d. We are inter-

ested in investigating the change in the gasoline market that occurred in 1973.
First, compute the average values of log of per capita gasoline consumption in
the years 1953-1973 and 1974-2004 and report the values and the difference. If
we divide the sample into these two groups of observations, then we can decom-
pose the change in the expected value of the log of consumption into a change
attributable to change in the regressors and a change attributable to a change in
the model coefficients, as shown in Section 4.5.3. Using the Oaxaca—Blinder ap-
proach described there, compute the decomposition by partitioning the sample
and computing separate regressions. Using your results, compute a confidence
interval for the part of the change that can be attributed to structural change in
the market, that is, change in the regression coefficients.

2. Christensen and Greene (1976) estimated a generalized Cobb-Douglas cost func-
tion for electricity generation of the form

InC=a+pmQ+y[i(n Q) +8&InP+8§In P +5;In Py +e.

Py, P, and Py indicate unit prices of capital, labor, and fuel, respectively, Q1is output
and Cis total cost. To conform to the underlying theory of production, it is necessary
to impose the restriction that the cost function be homogeneous of degree one in
the three prices. This is done with the restriction 8y + 6, +6y =1,0r6y =1 -8, — 4.
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Inserting this result in the cost function and rearranging produces the estimating
equation,

In(C/Py) =+ pIn O+ y[3(n Q2] + 8 In(Pe/ Py) + 8 In(P/ Py) + &.

The purpose of the generalization was to produce a U-shaped average total cost

curve. [See Example 6.6 for discussion of Nerlove’s (1963) predecessor to this study.]

We are interested in the efficient scale, which is the output at which the cost curve

reaches its minimum. That is the point at which (0 In C/d1In Q) o= =1 or Q" =

exp[(1 — B)/y]-

a. Data on 158 firms extracted from Christensen and Greene’s study are given in
Table F4.4. Using all 158 observations, compute the estimates of the parameters
in the cost function and the estimate of the asymptotic covariance matrix.

b. Note that the cost function does not provide a direct estimate of §;. Compute
this estimate from your regression results, and estimate the asymptotic standard
error.

c. Compute an estimate of Q* using your regression results and then form a con-
fidence interval for the estimated efficient scale.

d. Examine the raw data and determine where in the sample the efficient scale lies.
That is, determine how many firms in the sample have reached this scale, and
whether, in your opinion, this scale is large in relation to the sizes of firms in
the sample. Christensen and Greene approached this question by computing the
proportion of total output in the sample that was produced by firms that had not
yet reached efficient scale. (Note: There is some double counting in the data set —
more than 20 of the largest “firms” in the sample we are using for this exercise
are holding companies and power pools that are aggregates of other firms in
the sample. We will ignore that complication for the purpose of our numerical
exercise.)
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5

HYPOTHESIS TESTS AND
MODEL SELECTION

—V V=

INTRODUCTION

The linear regression model is used for three major purposes: estimation and prediction,
which were the subjects of the previous chapter, and hypothesis testing. In this chapter,
we examine some applications of hypothesis tests using the linear regression model. We
begin with the methodological and statistical theory. Some of this theory was developed
in Chapter 4 (including the idea of a pivotal statistic in Section 4.5.1) and in Appendix
C.7. In Section 5.2, we will extend the methodology to hypothesis testing based on the
regression model. After the theory is developed, Sections 5.3-5.7 will examine some
applications in regression modeling. This development will be concerned with the im-
plications of restrictions on the parameters of the model, such as whether a variable
is “relevant” (i.e., has a nonzero coefficient) or whether the regression model itself is
supported by the data (i.e., whether the data seem consistent with the hypothesis that
all of the coefficients are zero). We will primarily be concerned with linear restrictions
in this discussion. We will turn to nonlinear restrictions near the end of the development
in Section 5.7. Section 5.8 considers some broader types of hypotheses, such as choosing
between two competing models, such as whether a linear or a loglinear model is better
suited to the data. In each of the cases so far, the testing procedure attempts to resolve
a competition between two theories for the data; in Sections 5.2-5.7 between a narrow
model and a broader one and in Section 5.8, between two arguably equal models. Section
5.9 illustrates a particular specification test, which is essentially a test of a proposition
such as “the model is correct” vs. “the model is inadequate.” This test pits the theory
of the model against “some other unstated theory.” Finally, Section 5.10 presents some
general principles and elements of a strategy of model testing and selection.

5.2 HYPOTHESIS TESTING METHODOLOGY

148

We begin the analysis with the regression model as a statement of a proposition,
y=XB +e. 5-1)
To consider a specific application, Example 4.6 depicted the auction prices of paintings
In Price = 1 + B, In Size 4+ B3AspectRatio + ¢. (5-2)

Some questions might be raised about the “model” in (5-2), fundamentally, about the
variables. It seems natural that fine art enthusiasts would be concerned about aspect ra-
tio, which is an element of the aesthetic quality of a painting. But, the idea that size should
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be an element of the price is counterintuitive, particularly weighed against the surpris-
ingly small sizes of some of the world’s most iconic paintings such as the Mona Lisa
(30” high and 21” wide) or Dali’s Persistence of Memory (only 9.5” high and 13” wide).
A skeptic might question the presence of InSize in the equation, or, equivalently, the
nonzero coefficient, 8,. To settle the issue, the relevant empirical question is whether
the equation specified appears to be consistent with the data—that is, the observed sale
prices of paintings. In order to proceed, the obvious approach for the analyst would be
to fit the regression first and then examine the estimate of 8,. The “test” at this point,
is whether b, in the least squares regression is zero or not. Recognizing that the least
squares slope is a random variable that will never be exactly zero even if 8, really is, we
would soften the question to be whether the sample estimate seems to be close enough
to zero for us to conclude that its population counterpart is actually zero, that is, that the
nonzero value we observe is nothing more than noise that is due to sampling variability.
Remaining to be answered are questions including; How close to zero is close enough
to reach this conclusion? What metric is to be used? How certain can we be that we
have reached the right conclusion? (Not absolutely, of course.) How likely is it that our
decision rule, whatever we choose, will lead us to the wrong conclusion? This section
will formalize these ideas. After developing the methodology in detail, we will construct
a number of numerical examples.

5.2.1 RESTRICTIONS AND HYPOTHESES

The approach we will take is to formulate a hypothesis as a restriction on a model.
Thus, in the classical methodology considered here, the model is a general statement
and a hypothesis is a proposition that narrows that statement. In the art example in
(5-2), the narrower statement is (5-2) with the additional statement that g, = 0—
without comment on f; or 3. We define the null hypothesis as the statement that
narrows the model and the alternative hypothesis as the broader one. In the example,
the broader model allows the equation to contain both InSize and AspectRatio—it
admits the possibility that either coefficient might be zero but does not insist upon it.
The null hypothesis insists that 8, = 0 while it also makes no comment about g; or 8.
The formal notation used to frame this hypothesis would be

In Price = B1 + B, In Size 4+ B3AspectRatio + ¢,
Hy: g, =0, (5-3)
Hy: gy # 0.

Note that the null and alternative hypotheses, together, are exclusive and exhaustive.
There is no third possibility; either one or the other of them is true, not both.

The analysis from this point on will be to measure the null hypothesis against the
data. The data might persuade the econometrician to reject the null hypothesis. It would
seem appropriate at that point to “accept” the alternative. However, in the interest of
maintaining flexibility in the methodology, that is, an openness to new information,
the appropriate conclusion here will be either to reject the null hypothesis or not to
reject it. Not rejecting the null hypothesis is not equivalent to “accepting” it—though
the language might suggest so. By accepting the null hypothesis, we would implicitly
be closing off further investigation. Thus, the traditional, classical methodology leaves
open the possibility that further evidence might still change the conclusion. Our testing
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methodology will be constructed so as either to

Reject Hy: The data are inconsistent with the hypothesis with a reasonable degree
of certainty.
Do not reject Hy: The data appear to be consistent with the null hypothesis.

5.2.2 NESTED MODELS

The general approach to testing a hypothesis is to formulate a statistical model that
contains the hypothesis as a restriction on its parameters. A theory is said to have
testable implications if it implies some testable restrictions on the model. Consider, for
example, a model of investment, /;,

Inly = B1+ Boir + B3Ap  + faln Y, + Bst + &, (5-4)

which states that investors are sensitive to nominal interest rates, i,, the rate of inflation,
Apy, (the log of) real output, InY,, and other factors that trend upward through time,
embodied in the time trend, . An alternative theory states that “investors care about
real interest rates.” The alternative model is

Inly = 1+ Boic — Ap) + B3Api + aIn Y + Bst + & (5-5)

Although this new model does embody the theory, the equation still contains both
nominal interest and inflation. The theory has no testable implication for our model.
But, consider the stronger hypothesis, “investors care only about real interest rates.”
The resulting equation,

Inl; = Bi+ Bo(is — Ap) + Baln Y, + Bst + &, (5-6)

is now restricted; in the context of (5-4), the implication is that 8, + 83 = 0. The stronger
statement implies something specific about the parameters in the equation that may or
may not be supported by the empirical evidence.

The description of testable implications in the preceding paragraph suggests (cor-
rectly) that testable restrictions will imply that only some of the possible models con-
tained in the original specification will be “valid”; that is, consistent with the theory. In
the example given earlier, (5-4) specifies a model in which there are five unrestricted
parameters (81, B2, B3, Ba, B5). But, (5-6) shows that only some values are consistent
with the theory, that is, those for which 83 = —pg,. This subset of values is contained
within the unrestricted set. In this way, the models are said to be nested. Consider a
different hypothesis, “investors do not care about inflation.” In this case, the smaller set
of coefficients is (81, B2, 0, B4, B5). Once again, the restrictions imply a valid parameter
space that is “smaller” (has fewer dimensions) than the unrestricted one. The general
result is that the hypothesis specified by the restricted model is contained within the
unrestricted model.

Now, consider an alternative pair of models: Modely: “Investors care only about
inflation”; Model;: “Investors care only about the nominal interest rate.” In this case,
the two parameter vectors are (81, 0, 83, B4, B5) by Modely and (81, B2, 0, B4, Bs) by
Model;. In this case, the two specifications are both subsets of the unrestricted model,
but neither model is obtained as a restriction on the other.They have the same number
of parameters; they just contain different variables. These two models are nonnested.
For the present, we are concerned only with nested models. Nonnested models are
considered in Section 5.8.
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5.2.3 TESTING PROCEDURES—NEYMAN-PEARSON
METHODOLOGY

In the example in (5-2), intuition suggests a testing approach based on measuring
the data against the hypothesis. The essential methodology suggested by the work of
Neyman and Pearson (1933) provides a reliable guide to testing hypotheses in the set-
ting we are considering in this chapter. Broadly, the analyst follows the logic, “What
type of data will lead me to reject the hypothesis?” Given the way the hypothesis is
posed in Section 5.2.1, the question is equivalent to asking what sorts of data will sup-
port the model. The data that one can observe are divided into a rejection region and
an acceptance region. The testing procedure will then be reduced to a simple up or
down examination of the statistical evidence. Once it is determined what the rejection
region is, if the observed data appear in that region, the null hypothesis is rejected. To
see how this operates in practice, consider, once again, the hypothesis about size in the
art price equation. Our test is of the hypothesis that 8, equals zero. We will compute
the least squares slope. We will decide in advance how far the estimate of 8, must be
from zero to lead to rejection of the null hypothesis. Once the rule is laid out, the test,
itself, is mechanical. In particular, for this case, b, is “far” from zero if b, > ﬁ?* or by <
,320’. If either case occurs, the hypothesis is rejected. The crucial element is that the rule
is decided upon in advance.

5.2.4 SIZE, POWER, AND CONSISTENCY OF A TEST

Since the testing procedure is determined in advance and the estimated coefficient(s)
in the regression are random, there are two ways the Neyman—Pearson method can
make an error. To put this in a numerical context, the sample regression corresponding
to (5-2) appears in Table 4.6. The estimate of the coefficient on InArea is 1.33372 with
an estimated standard error of 0.09072. Suppose the rule to be used to test is decided
arbitrarily (at this point—we will formalize it shortly) to be: If b, is greater than +1.0
or less than —1.0, then we will reject the hypothesis that the coefficient is zero (and
conclude that art buyers really do care about the sizes of paintings). So, based on this
rule, we will, in fact, reject the hypothesis. However, since b, is a random variable, there
are the following possible errors:

Type I error: 8, = 0, but we reject the hypothesis.
The null hypothesis is incorrectly rejected.
Type II error: B, # 0, but we do not reject the hypothesis.
The null hypothesis is incorrectly retained.

The probability of a Type I error is called the size of the test. The size of a test is the
probability that the test will incorrectly reject the null hypothesis. As will emerge later,
the analyst determines this in advance. One minus the probability of a Type II error is
called the power of a test. The power of a test is the probability that it will correctly
reject a false null hypothesis. The power of a test depends on the alternative. It is not
under the control of the analyst. To consider the example once again, we are going to
reject the hypothesisif |b;| > 1. If 8, is actually 1.5, then based on the results we’ve seen,
we are quite likely to find a value of b, that is greater than 1.0. On the other hand, if 8,
is only 0.3, then it does not appear likely that we will observe a sample value greater
than 1.0. Thus, again, the power of a test depends on the actual parameters that underlie
the data. The idea of power of a test relates to its ability to find what it is looking for.
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A test procedure is consistent if its power goes to 1.0 as the sample size grows to
infinity. This quality is easy to see, again, in the context of a single parameter, such as
the one being considered here. Since least squares is consistent, it follows that as the
sample size grows, we will be able to learn the exact value of 8,, so we will know if it is
zero or not. Thus, for this example, it is clear that as the sample size grows, we will know
with certainty if we should reject the hypothesis. For most of our work in this text, we
can use the following guide: A testing procedure about the parameters in a model is
consistent if it is based on a consistent estimator of those parameters. Since nearly all
our work in this book is based on consistent estimators and save for the latter sections
of this chapter, where our tests will be about the parameters in nested models, our tests
will be consistent.

5.2.5 A METHODOLOGICAL DILEMMA: BAYESIAN
VERSUS CLASSICAL TESTING

Aswenoted earlier, the Neyman—Pearson testing methodology we will employ here is an
all-or-nothing proposition. We will determine the testing rule(s) in advance, gather the
data, and either reject or not reject the null hypothesis. There is no middle ground. This
presents the researcher with two uncomfortable dilemmas. First, the testing outcome,
that is, the sample data might be uncomfortably close to the boundary of the rejection
region. Consider our example. If we have decided in advance to reject the null hypothesis
if b, > 1.00, and the sample value is 0.9999, it will be difficult to resist the urge to
reject the null hypothesis anyway, particularly if we entered the analysis with a strongly
held belief that the null hypothesis is incorrect. (I.e., intuition notwithstanding, I am
convinced that art buyers really do care about size.) Second, the methodology we have
laid out here has no way of incorporating other studies. To continue our example, if
I were the tenth analyst to study the art market, and the previous nine had decisively
rejected the hypothesis that 8, = 0, I will find it very difficult not to reject that hypothesis
even if my evidence suggests, based on my testing procedure, that I should not.

This dilemma is built into the classical testing methodology. There is a middle
ground. The Bayesian methodology that we will discuss in Chapter 16 does not face
this dilemma because Bayesian analysts never reach a firm conclusion. They merely
update their priors. Thus, the first case noted, in which the observed data are close to
the boundary of the rejection region, the analyst will merely be updating the prior with
somethat slightly less persuasive evidence than might be hoped for. But, the methodol-
ogy is comfortable with this. For the second instance, we have a case in which there is a
wealth of prior evidence in favor of rejecting Hy. It will take a powerful tenth body of
evidence to overturn the previous nine conclusions. The results of the tenth study (the
posterior results) will incorporate not only the current evidence, but the wealth of prior
data as well.

5.3 TWO APPROACHES TO TESTING HYPOTHESES

The general linear hypothesis is a set of J restrictions on the linear regression model,

y=XB+e,
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The restrictions are written

rmpr+rof+ - +rkBrk=aq
mpBr+rop+ -+ Bk =q

. G-7)
rnpr+rpfr+ - +rkBr =q.
The simplest case is a single restriction on one coefficient, such as
Bk =0.
The more general case can be written in the matrix form,
RB =q. (5-8)

Each row of R is the coefficients in one of the restrictions. Typically, R will have only a
few rows and numerous zeros in each row. Some examples would be as follows:

1. One of the coefficients is zero, 8; = 0,
R=[0 0 --- 1 0 --- 0Olandq=0.
2. Two of the coefficients are equal, Bx = ;,
R=0 01 --- —-1 ... 0Olandq=0.
3. A set of the coefficients sum to one, 8, + 83 + B4 = 1,
R=[0 1 1 1 0 ---]Jandq=1.

4. A subset of the coefficients are all zero, g1 =0, 8, =0, and g3 =0,

1000 --- 0 0
R=|01 00 --- 0|=[I 0O]landq= |0
0010 ---0 0
5. Several linear restrictions, 8, + 83 =1, B4 + B = 0, and B5 + Bg = 0,
01 1 0 00 1
R=|0 0 0 1 0 1|andq= 10
000 011 0

6. All the coefficients in the model except the constant term are zero,
R=[0:1x_i]andq =0.

The matrix R has K columns to be conformable with 8, J rows for a total of J
restrictions, and full row rank, so J must be less than or equal to K. The rows of R
must be linearly independent. Although it does not violate the condition, the case of
J = K must also be ruled out. If the K coefficients satisfy J/ = K restrictions, then R is
square and nonsingular and 8 = R™!q. There is no estimation or inference problem. The
restriction R = q imposes J restrictions on K otherwise free parameters. Hence, with
the restrictions imposed, there are, in principle, only K — J free parameters remaining.

We will want to extend the methods to nonlinear restrictions. In a following ex-
ample, below, the hypothesis takes the form Hy: 8;/B8x = B/ Bm- The general nonlinear
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hypothesis involves a set of J possibly nonlinear restrictions,

c(B) =q. (5-9)

where ¢(B) is a set of J nonlinear functions of 8. The linear hypothesis is a special case.
The counterpart to our requirements for the linear case are that, once again, J be strictly
less than K, and the matrix of derivatives,

G(B) = dc(B)/0p’, (5-10)

have full row rank. This means that the restrictions are functionally independent. In the
linear case, G(f) is the matrix of constants, R that we saw earlier and functional inde-
pendence is equivalent to linear independence. We will consider nonlinear restrictions
in detail in Section 5.7. For the present, we will restrict attention to the general linear
hypothesis.

The hypothesis implied by the restrictions is written

Hy:RB —q =0,
Hi:RB—q#0.

We will consider two approaches to testing the hypothesis, Wald tests and fit based
tests. The hypothesis characterizes the population. If the hypothesis is correct, then
the sample statistics should mimic that description. To continue our earlier example,
the hypothesis states that a certain coefficient in a regression model equals zero. If the
hypothesis is correct, then the least squares coefficient should be close to zero, at least
within sampling variability. The tests will proceed as follows:

e Wald tests: The hypothesis states that RB — q equals 0. The least squares estimator,
b, is an unbiased and consistent estimator of f. If the hypothesis is correct, then
the sample discrepancy, Rb — q should be close to zero. For the example of a single
coefficient, if the hypothesis that gy equals zero is correct, then b should be close
to zero. The Wald test measures how close Rb — q is to zero.

e Fit based tests: We obtain the best possible fit—highest R>—by using least squares
without imposing the restrictions. We proved this in Chapter 3. We will show here
that the sum of squares will never decrease when we impose the restrictions —except
for an unlikely special case, it will increase. For example, when we impose 8, = 0
by leaving x; out of the model, we should expect R’ to fall. The empirical device
to use for testing the hypothesis will be a measure of how much R? falls when we
impose the restrictions.

AN IMPORTANT ASSUMPTION

To develop the test statistics in this section, we will assume normally distributed dis-
turbances. As we saw in Chapter 4, with this assumption, we will be able to obtain the
exact distributions of the test statistics. In Section 5.6, we will consider the implications
of relaxing this assumption and develop an alternative set of results that allows us to
proceed without it.
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5.4 WALD TESTS BASED ON THE DISTANCE
MEASURE

The Wald test is the most commonly used procedure. It is often called a “significance
test.” The operating principle of the procedure is to fit the regression without the re-
strictions, and then assess whether the results appear, within sampling variability, to
agree with the hypothesis.

5.4.1 TESTING A HYPOTHESIS ABOUT A COEFFICIENT

The simplest case is a test of the value of a single coefficient. Consider, once again, our
art market example in Section 5.2. The null hypothesis is

Hy: pr = B,

where g7 is the hypothesized value of the coefficient, in this case, zero. The Wald distance
of a coefficient estimate from a hypothesized value is the linear distance, measured in
standard deviation units. Thus, for this case, the distance of by from ﬂ,? would be

b= B

© Jo2Skk’
As we saw in (4-38), W (which we called z; before) has a standard normal distribution
assuming that E[b;] = BY. Note thatif E[b;] is not equal to B, then W still has a normal

distribution, but the mean is not zero. In particular, if E[b] is } which is different from
BY, then

Wi (5-11)

i — B
(E.g., if the hypothesis is that 8, = B = 0, and g does not equal zero, then the expected
of Wy = by/v 2S5k will equal B}/+/o2 Sk, which is not zero.) For purposes of using Wy
to test the hypothesis, our interpretation is that if 8 does equal B, then by will be close
to ﬁ,?, with the distance measured in standard error units. Therefore, the logic of the
test, to this point, will be to conclude that H is incorrect—should be rejected —if Wy is
“large.”

Before we determine a benchmark for large, we note that the Wald measure sug-
gested here is not usable because o2 is not known. It was estimated by s. Once again,
invoking our results from Chapter 4, if we compute W using the sample estimate of
o2, we obtain

E{Wi E[b] = B} = (5-12)

t_m—ﬁ

“T s
Assuming that B does indeed equal B, that is, “under the assumption of the null
hypothesis,” then #; has a ¢ distribution with n — K degrees of freedom. [See (4-41).]
We can now construct the testing procedure. The test is carried out by determining in
advance the desired confidence with which we would like to draw the conclusion—the
standard value is 95 percent. Based on (5-13), we can say that

(5-13)

Prob{—t(*l_a/z),[n_[(] << +t(*l—(x/2),[n—K]}’
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where *(1_q2) [s—k] 1S the appropriate value from a ¢ table. By this construction, finding
a sample value of #; that falls outside this range is unlikely. Our test procedure states
that it is so unlikely that we would conclude that it could not happen if the hypothesis
were correct, so the hypothesis must be incorrect.

A common test is the hypothesis that a parameter equals zero—equivalently, this
is a test of the relevance of a variable in the regression. To construct the test statistic,
we set B to zero in (5-13) to obtain the standard “ ratio,”

L3

Sbk

ty =

This statistic is reported in the regression results in several of our earlier examples, such
as 4.10 where the regression results for the model in (5-2) appear. This statistic is usually
labeled the ¢ ratio for the estimator by. If |brl/spk > t(1—a/2) [n—K], WheTe f(1_q/2) [n—K] 1S
the 100(1 — «/2) percent critical value from the ¢ distribution with (n — K) degrees
of freedom, then the null hypothesis that the coefficient is zero is rejected and the
coefficient (actually, the associated variable) is said to be “statistically significant.” The
value of 1.96, which would apply for the 95 percent significance level in a large sample,
is often used as a benchmark value when a table of critical values is not immediately
available. The ¢ ratio for the test of the hypothesis that a coefficient equals zero is a
standard part of the regression output of most computer programs.

Another view of the testing procedure is useful. Also based on (4-39) and (5-13),
we formed a confidence interval for B as by + t*s;. We may view this interval as the set
of plausible values of g with a confidence level of 100(1 — &) percent, where we choose
«a, typically 5 percent. The confidence interval provides a convenient tool for testing
a hypothesis about B, since we may simply ask whether the hypothesized value, g is
contained in this range of plausible values.

Example 5.1 Art Appreciation

Regression results for the model in (5-3) based on a sample of 430 sales of Monet paintings
appear in Table 4.6 in Example 4.10. The estimated coefficient on InArea is 1.33372 with an
estimated standard error of 0.09072. The distance of the estimated coefficient from zero is
1.33372/0.09072 = 14.70. Since this is far larger than the 95 percent critical value of 1.96, we
reject the hypothesis that g, equals zero; evidently buyers of Monet paintings do care about
size. In constrast, the coefficient on AspectRatio is —0.16537 with an estimated standard
error of 0.12753, so the associated t ratio for the test of Hy:8;3 = 0 is only —1.30. Since this
is well under 1.96, we conclude that art buyers (of Monet paintings) do not care about the
aspect ratio of the paintings. As a final consideration, we examine another (equally bemusing)
hypothesis, whether auction prices are inelastic Hy: 8, < 1 or elastic H: 8> > 1 with respect
to area. This is a one-sided test. Using our Neyman-Pearson guideline for formulating the
test, we will reject the null hypothesis if the estimated coefficient is sufficiently larger than 1.0
(and not if it is less than or equal to 1.0). To maintain a test of size 0.05, we will then place
all of the area for the critical region (the rejection region) to the right of 1.0; the critical value
from the table is 1.645. The test statistic is (1.33372 — 1.0) /0.09072 = 3.679 > 1.645. Thus,
we will reject this null hypothesis as well.

Example 5.2 Earnings Equation
Appendix Table F5.1 contains 753 observations used in Mroz’s (1987) study of the labor
supply behavior of married women. We will use these data at several points in this example.
Of the 753 individuals in the sample, 428 were participants in the formal labor market. For
these individuals, we will fit a semilog earnings equation of the form suggested in Example 2.2;

Inearnings = B1 + Brage + Bzage® + Bseducation + Bskids + e,
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TABLE 5.1 Regression Results for an Earnings Equation

Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044
R? based on 428 observations 0.040995
Variable Coefficient Standard Error t Ratio
Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Age? —0.0023147 0.00098688 —2.345
Education 0.067472 0.025248 2.672
Kids —0.35119 0.14753 —2.380
Estimated Covariance Matrix for b(e — n = times 10™")
Constant Age Ageé? Education Kids

3.12381
—0.14409 0.0070325

0.0016617 —8.23237e—5 9.73928e—7
—0.0092609 5.08549¢—5 —4.96761e—7 0.00063729

0.026749 —0.0026412 3.84102¢—5 —5.46193e—5 0.021766

where earnings is hourly wage times hours worked, education is measured in years of school-
ing, and kids is a binary variable which equals one if there are children under 18 in the house-
hold. (See the data description in Appendix F for details.) Regression results are shown in
Table 5.1. There are 428 observations and 5 parameters, so the t statistics have (428 — 5) =
423 degrees of freedom. For 95 percent significance levels, the standard normal value of
1.96 is appropriate when the degrees of freedom are this large. By this measure, all variables
are statistically significant and signs are consistent with expectations. It will be interesting
to investigate whether the effect of kids is on the wage or hours, or both. We interpret the
schooling variable to imply that an additional year of schooling is associated with a 6.7
percent increase in earnings. The quadratic age profile suggests that for a given education
level and family size, earnings rise to a peak at —b,/(2b3) which is about 43 years of age,
at which point they begin to decline. Some points to note: (1) Our selection of only those
individuals who had positive hours worked is not an innocent sample selection mechanism.
Since individuals chose whether or not to be in the labor force, it is likely (almost certain) that
earnings potential was a significant factor, along with some other aspects we will consider
in Chapter 19.

(2) The earnings equation is a mixture of a labor supply equation—hours worked by the
individual—and a labor demand outcome—the wage is, presumably, an accepted offer. As
such, it is unclear what the precise nature of this equation is. Presumably, it is a hash of the
equations of an elaborate structural equation system. (See Example 10.1 for discussion.)

5.4.2 THE F STATISTIC AND THE LEAST SQUARES DISCREPANCY
We now consider testing a set of J linear restrictions stated in the null hypothesis,
Hy:RB—q=0,
against the alternative hypothesis,
Hi :RB—q#0.

Given the least squares estimator b, our interest centers on the discrepancy vector
Rb — q = m. It is unlikely that m will be exactly 0. The statistical question is whether
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the deviation of m from 0 can be attributed to sampling error or whether it is significant.
Since b is normally distributed [see (4-18)] and m is a linear function of b, m is also nor-
mally distributed. If the null hypothesis is true, then R — q = 0 and m has mean vector

Em|X]=REDb|X]—-q=Rg—q=0.
and covariance matrix
Var[m | X] = Var[Rb — q| X] = R{Var[b| X]}R’ = «’R(X'X) 'R’.
We can base a test of H,, on the Wald criterion. Conditioned on X, we find:

W= m'{Var[le]}_lm

= (Rb — q)'[c’R(X’X)"'R']"'(Rb — q) (5-14)
(Rb — @/'[RX’X)"'R']"'(Rb — q)
~ x*[J1.

The statistic W has a chi-squared distribution with J degrees of freedom if the hypothe-
sis is correct.! Intuitively, the larger m is—that is, the worse the failure of least squares
to satisfy the restrictions—the larger the chi-squared statistic. Therefore, a large chi-
squared value will weigh against the hypothesis.

The chi-squared statistic in (5-14) is not usable because of the unknown o2. By
using s2 instead of o2 and dividing the result by J, we obtain a usable F statistic with
J and n — K degrees of freedom. Making the substitution in (5-14), dividing by J, and
multiplying and dividing by n — K, we obtain

_wo?

T s2

B (Rb — q)’[R(X’X)‘lR’]‘l(Rb -q) 1 o2 (n—K)

a ( o2 ) <7> (s_z) ((n — K)) 19

_ (Rb - @/'[¢’RX’X)"'R'|"(Rb — ¢)/J

- [(n — K)s?/a2]/(n — K)
If RB = q, that is, if the null hypothesis is true, then Rb —q =Rb — R =R(b — p) =
R(X'X)"'X’e. [See (4-4).] Let C = [R(X’X)~'R’] since

R(b - ﬂ) — R(X/X)flxl (€> =D <€) ,
o o

g

the numerator of F equals [(¢/0)'T(e/0)]/J where T = D’C~'D. The numerator is
W/J from (5-14) and is distributed as 1/J times a chi-squared [/ ], as we showed earlier.
We found in (4-16) that s> =e’e/(n — K) =&'Me/(n — K) where M is an idempotent
matrix. Therefore, the denominator of Fequals[(e/0)"M(e/o)]/(n — K). This statistic is
distributed as 1/(n — K) times a chi-squared [n— K]. Therefore, the Fstatisticis the ratio
of two chi-squared variables each divided by its degrees of freedom. Since M(e /o) and

IThis calculation is an application of the “full rank quadratic form” of Section B.11.6. Note that although the
chi-squared distribution is conditioned on X, it is also free of X.
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T(e/o) are both normally distributed and their covariance TM is 0, the vectors of the
quadratic forms are independent. The numerator and denominator of F are functions of
independent random vectors and are therefore independent. This completes the proof
of the F distribution. [See (B-35).] Canceling the two appearances of o2 in (5-15) leaves
the F statistic for testing a linear hypothesis:

(Rb — q)' {R[s>*(X’X)"'|R"} "'(Rb — q)

FlJ.n— KIX] = ;

(5-16)
For testing one linear restriction of the form

Hy:ripr+nrp+- +repx=vYB=gq,
(usually, some of the r’s will be zero), the F statistic is
_ (Ejr]‘bj — q)2
EjZkrjrk Est. COV[b/', bk] ’

If the hypothesis is that the jth coefficient is equal to a particular value, then R has a
single row with a 1 in the jth position and Os elsewhere, R(X’X) 'R is the jth diagonal
element of the inverse matrix, and Rb — q is (b; — g). The F statistic is then

(b; — ¢
Est. Var[b;]

Consider an alternative approach. The sample estimate of 1’ is

F[1,n— K]

F[l,n— K] =

riby +rby+ - +rxbg =r'b =g.

If g differs significantly from ¢, then we conclude that the sample data are not consistent
with the hypothesis. It is natural to base the test on

,_4-4a
se(q)
We require an estimate of the standard error of ¢. Since § is a linear function of b and we

have an estimate of the covariance matrix of b, s>(X’X)~!, we can estimate the variance
of § with

(5-17)

Est. Var[g | X] = ¥'[s2(X'X)""]r.

The denominator of ¢ is the square root of this quantity. In words, ¢ is the distance in
standard error units between the hypothesized function of the true coefficients and the
same function of our estimates of them. If the hypothesis is true, then our estimates
should reflect that, at least within the range of sampling variability. Thus, if the absolute
value of the preceding ¢ ratio is larger than the appropriate critical value, then doubt is
cast on the hypothesis.

There is a useful relationship between the statistics in (5-16) and (5-17). We can
write the square of the ¢ statistic as

, o G-9? @b —{r[s2XX) '} b —q)
© Var(@—q|X) 1 :

It follows, therefore, that for testing a single restriction, the ¢ statistic is the square root
of the F statistic that would be used to test that hypothesis.
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Example 5.3 Restricted Investment Equation
Section 5.2.2 suggested a theory about the behavior of investors: They care only about real
interest rates. If investors were only interested in the real rate of interest, then equal increases
in interest rates and the rate of inflation would have no independent effect on investment.
The null hypothesis is

Ho: B2+ B3 =0.

Estimates of the parameters of equations (5-4) and (5-6) using 1,950.1 to 2,000.4 quarterly
data on real investment, real GDP, an interest rate (the 90-day T-bill rate), and inflation mea-
sured by the change in the log of the CPI given in Appendix Table F5.2 are presented in
Table 5.2. (One observation is lost in computing the change in the CPl.)

To form the appropriate test statistic, we require the standard error of § = b, + bs,
which is

se(§) = [0.003192 + 0.002342 4+ 2(—3.718 x 1075)]"/2 = 0.002866.

The t ratio for the test is therefore

_ —0.00860 + 0.00331
N 0.002866

Using the 95 percent critical value from t [203-5] = 1.96 (the standard normal value), we
conclude that the sum of the two coefficients is not significantly different from zero, so the
hypothesis should not be rejected.

There will usually be more than one way to formulate a restriction in a regression model.
One convenient way to parameterize a constraint is to set it up in such a way that the standard
test statistics produced by the regression can be used without further computation to test the
hypothesis. In the preceding example, we could write the regression model as specified in
(5-5). Then an equivalent way to test Hy would be to fit the investment equation with both the
real interest rate and the rate of inflation as regressors and to test our theory by simply testing
the hypothesis that g3 equals zero, using the standard t statistic that is routinely computed.
When the regression is computed this way, b; = —0.00529 and the estimated standard error
is 0.00287, resulting in a t ratio of —1.844(!). (Exercise: Suppose that the nominal interest
rate, rather than the rate of inflation, were included as the extra regressor. What do you think
the coefficient and its standard error would be?)

Finally, consider a test of the joint hypothesis

= —1.845.

B2 + B3 = 0 (investors consider the real interest rate),
B4 =1 (the marginal propensity to invest equals 1),

Bs = 0 (there is no time trend).

TABLE 5.2 Estimated Investment Equations (Estimated standard errors in

parentheses)
131 ﬂz /33 ﬂ4 BS
Model (5-4) —-9.135 —0.00860 0.00331 1.930 —0.00566
(1.366) (0.00319) (0.00234) (0.183) (0.00149)

s =0.08618, R?=0.979753, e’e =1.47052,
Est. Cov[b,, bs] = —3.718e—6

Model (5-6) —7.907 —0.00443 0.00443 1.764 —0.00440
(1.201) (0.00227) (0.00227) (0.161) (0.00133)

s =0.8670, R®=0.979405, e'e =1.49578
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Then,

0 0 0 01 0 —0.0057

Inserting these values in F yields F =109.84. The 5 percent critical value for F[3, 198] is
2.65. We conclude, therefore, that these data are not consistent with the hypothesis. The
result gives no indication as to which of the restrictions is most influential in the rejection
of the hypothesis. If the three restrictions are tested one at a time, the t statistics in (5-17)
are —1.844, 5.076, and —3.803. Based on the individual test statistics, therefore, we would
expect both the second and third hypotheses to be rejected.

01100 0 —0.0053
R=|0 0 0 1 0], q=|1| and Rb—q=| 0.9302].

5.5 TESTING RESTRICTIONS USING THE FIT
OF THE REGRESSION

A different approach to hypothesis testing focuses on the fit of the regression. Recall
that the least squares vector b was chosen to minimize the sum of squared deviations,
¢’e. Since R? equals 1 — e’e/y’M"y and y'M'y is a constant that does not involve b, it
follows that b is chosen to maximize R?. One might ask whether choosing some other
value for the slopes of the regression leads to a significant loss of fit. For example, in the
investment equation (5-4), one might be interested in whether assuming the hypothesis
(that investors care only about real interest rates) leads to a substantially worse fit
than leaving the model unrestricted. To develop the test statistic, we first examine the
computation of the least squares estimator subject to a set of restrictions. We will then
construct a test statistic that is based on comparing the R”'s from the two regressions.

5.5.1 THE RESTRICTED LEAST SQUARES ESTIMATOR

Suppose that we explicitly impose the restrictions of the general linear hypothesis in
the regression. The restricted least squares estimator is obtained as the solution to

Minimizey, S(bg) = (y — Xbg)' (y — Xbg)  subject to Rby = q. (5-18)
A Lagrangean function for this problem can be written
L*(bg, ) = (y — Xby)'(y — Xbg) + 21" (Rb; — q).2 (5-19)
The solutions b, and A, will satisfy the necessary conditions
L*
21) = -2X'(y — Xb,) + 2R'A, = 0,
i (5-20)
oL _ 2(Rb ) =10
on, T W=D
Dividing through by 2 and expanding terms produces the partitioned matrix equation
X'X R'|[b,| [XYy
| 62
or,
Ad, =v.

2Since A is not restricted, we can formulate the constraints in terms of 2A. The convenience of the scaling
shows up in (5-20).
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Assuming that the partitioned matrix in brackets is nonsingular, the restricted least
squares estimator is the upper part of the solution

d. =Alv. (5-22)

If, in addition, X’X is nonsingular, then explicit solutions for b, and A, may be obtained
by using the formula for the partitioned inverse (A-74),3

b, =b— (X’X)"'R'[RX’X)"'R’]"'(Rb — q)
=b — Cm,
and (5-23)
1. = [RX’X)"'R']"'(Rb — q).

Greene and Seaks (1991) show that the covariance matrix for b, is simply o times
the upper left block of A~1. Once again, in the usual case in which X’X is nonsingular,
an explicit formulation may be obtained:

Var[b, | X] = 02(X’X) ! — ¢2(X’X) 'R’ [RX’X) 'R 'R(X'X) L. (5-24)
Thus,
Var[b, | X] = Var[b | X]—a nonnegative definite matrix.

One way to interpret this reduction in variance is as the value of the information con-
tained in the restrictions.

Note that the explicit solution for A, involves the discrepancy vector Rb — q. If the
unrestricted least squares estimator satisfies the restriction, the Lagrangean multipliers
will equal zero and b, will equal b. Of course, this is unlikely. The constrained solution
b, is equal to the unconstrained solution b minus a term that accounts for the failure of
the unrestricted solution to satisfy the constraints.

5.5.2 THE LOSS OF FIT FROM RESTRICTED LEAST SQUARES

To develop a test based on the restricted least squares estimator, we consider a single
coefficient first and then turn to the general case of J linear restrictions. Consider the
change in the fit of a multiple regression when a variable z is added to a model that
already contains K — 1 variables, x. We showed in Section 3.5 (Theorem 3.6) (3-29) that
the effect on the fit would be given by

Ry, = Ry + (1 - RY)ri2, (525)

where Ry, is the new R? after z is added, Rg is the original R* and r7, is the partial
correlation between y and z, controlling for x. So, as we knew, the fit improves (or, at
the least, does not deteriorate). In deriving the partial correlation coefficient between
y and z in (3-22) we obtained the convenient result

*2 tzz
r = N (5-26)
o2+ n—-K)

3The general solution given for d, may be usable even if X’X is singular. Suppose, for example, that XX is
4 x 4 with rank 3. Then X’X is singular. But if there is a parametric restriction on f, then the 5 x 5 matrix
in brackets may still have rank 5. This formulation and a number of related results are given in Greene and
Seaks (1991).
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where ¢2 is the square of the ¢ ratio for testing the hypothesis that the coefficient on z is
zero in the multiple regression of y on X and z. If we solve (5-25) for r;f and (5-26) for
tz2 and then insert the first solution in the second, then we obtain the result

R:, — R2)/1
2= ( X %)/ . (5-27)
(1 - Rg,)/(n = K)
We saw at the end of Section 5.4.2 that for a single restriction, such as g, = 0,

F[l,n— K] =*[n— K],

which gives us our result. That is, in (5-27), we see that the squared ¢ statistic (i.e., the
F statistic) is computed using the change in the R”. By interpreting the preceding as
the result of removing z from the regression, we see that we have proved a result for the
case of testing whether a single slope is zero. But the preceding result is general. The test
statistic for a single linear restriction is the square of the fratio in (5-17). By this construc-
tion, we see that for a single restriction, F is a measure of the loss of fit that results from
imposing that restriction. To obtain this result, we will proceed to the general case of
J linear restrictions, which will include one restriction as a special case.

The fit of the restricted least squares coefficients cannot be better than that of the
unrestricted solution. Let e, equal y — Xb,.. Then, using a familiar device,

e, =y— Xb—X(b,.—b)=e—X(b, —b).
The new sum of squared deviations is
ee,=¢ee+ (b, —b)X'X(b, —b) > €e.
(The middle term in the expression involves X'e, which is zero.) The loss of fit is
ee, —ee=(Rb—q'[RXX)'R]Rb-q). (5-28)

This expression appears in the numerator of the F statistic in (5-7). Inserting the
remaining parts, we obtain

_ (ele.—¢€e)/]

Finally, by dividing both numerator and denominator of F by %; (y; — y)?, we obtain the
general result:

(5-29)

(R* = R)/J
(1-R»)/(n-K)
This form has some intuitive appeal in that the difference in the fits of the two models
is directly incorporated in the test statistic. As an example of this approach, consider
the joint test that all the slopes in the model are zero. This is the overall Fratio that will
be discussed in Section 5.5.3, where R? = 0.

For imposing a set of exclusion restrictions such as gy = 0 for one or more coeffi-
cients, the obvious approach is simply to omit the variables from the regression and base
the test on the sums of squared residuals for the restricted and unrestricted regressions.
The F statistic for testing the hypothesis that a subset, say f,, of the coefficients are
all zero is constructed using R = (0:1), q =0, and J = K, = the number of elements in
B,. The matrix R(X’X)~'R’ is the K, x K lower right block of the full inverse matrix.

Fl[J,n—K]=

(5-30)
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Using our earlier results for partitioned inverses and the results of Section 3.3, we have
RX'X)" 'R’ = X;M; X;) !
and
Rb — q = b;.

Inserting these in (5-28) gives the loss of fit that results when we drop a subset of the
variables from the regression:

e.e, —e'e = b, XM Xob,.

The procedure for computing the appropriate F statistic amounts simply to comparing
the sums of squared deviations from the “short” and “long” regressions, which we saw
earlier.

Example 5.4 Production Function
The data in Appendix Table F5.3 have been used in several studies of production functions.*
Least squares regression of log output (value added) on a constant and the logs of labor and
capital produce the estimates of a Cobb-Douglas production function shown in Table 5.3.
We will construct several hypothesis tests based on these results. A generalization of the
Cobb-Douglas model is the translog model,®> which is

INY =B+ BNl + BsInK + B4(3In° L) + ps(3In° K) + BsInLINK +&.

As we shall analyze further in Chapter 10, this model differs from the Cobb-Douglas model
in that it relaxes the Cobb-Douglas’s assumption of a unitary elasticity of substitution. The
Cobb-Douglas model is obtained by the restriction 84 = 85 = 85 = 0. The results for the
two regressions are given in Table 5.3. The F statistic for the hypothesis of a Cobb-Douglas
model is

(0.85163 — 0.67993) /3
0.67993/21

The critical value from the F table is 3.07, so we would not reject the hypothesis that a
Cobb-Douglas model is appropriate.

The hypothesis of constant returns to scale is often tested in studies of production. This
hypothesis is equivalent to a restriction that the two coefficients of the Cobb-Douglas pro-
duction function sum to 1. For the preceding data,

(0.6030 + 0.3757 — 1)
FII, 24] = 0.01586 + 0.00728 — 2(0.00961) 0.1157,

which is substantially less than the 95 percent critical value of 4.26. We would not reject
the hypothesis; the data are consistent with the hypothesis of constant returns to scale. The
equivalent test for the translog model would be 8, + 83 = 1 and B4+ 5 + 286 = 0. The F
statistic with 2 and 21 degrees of freedom is 1.8991, which is less than the critical value of
3.47. Once again, the hypothesis is not rejected.

In most cases encountered in practice, it is possible to incorporate the restrictions of
a hypothesis directly on the regression and estimate a restricted model.® For example, to

F[3,21] = —1.768.

4The data are statewide observations on SIC 33, the primary metals industry. They were originally constructed
by Hildebrand and Liu (1957) and have subsequently been used by a number of authors, notably Aigner,
Lovell, and Schmidt (1977). The 28th data point used in the original study is incomplete; we have used only
the remaining 27.

SBerndt and Christensen (1973). See Example 2.4 and Section 10.5.2 for discussion.

This case is not true when the restrictions are nonlinear. We consider this issue in Chapter 7.
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TABLE 5.3 Estimated Production Functions

Translog Cobb-Douglas
Sum of squared residuals 0.67993 0.85163
Standard error of regression 0.17994 0.18837
R-squared 0.95486 0.94346
Adjusted R-squared 0.94411 0.93875
Number of observations 27 27
Standard Standard

Variable Coefficient Error t Ratio Coefficient Error t Ratio
Constant 0.944196 2911 0.324 1.171 0.3268 3.582
InL 3.61364 1.548 2.334 0.6030 0.1260 4.787
In K —1.89311 1.016 —1.863 0.3757 0.0853 4.402
IIn’ L —0.96405 0.7074 —1.363
% In* K 0.08529 0.2926 0.291
InLxInK 0.31239 0.4389 0.712
Estimated Covariance Matrix for Translog (Cobb-Douglas) Coefficient Estimates

Constant InL In K im’L ImK IWmLlmK
Constant 8.472

(0.1068)
InL —2.388 2.397

(—0.01984) (0.01586)

In K —0.3313 —1.231 1.033

(0.001189) (—0.00961) (0.00728)
Im’L —0.08760 —0.6658 0.5231 0.5004
Im*K —0.2332 0.03477 0.02637 0.1467 0.08562
InL InK 0.3635 0.1831 —0.2255 —0.2880 —0.1160 0.1927

impose the constraint 8, = 1 on the Cobb-Douglas model, we would write

InNY =81 +1.0InL +B3InK + ¢,
or
INY —InL =B+ BsInK +e¢.

Thus, the restricted model is estimated by regressing InY — InL on a constant and In K.
Some care is needed if this regression is to be used to compute an F statistic. If the F statis-
tic is computed using the sum of squared residuals [see (5-29)], then no problem will arise.
If (5-30) is used instead, however, then it may be necessary to account for the restricted
regression having a different dependent variable from the unrestricted one. In the preced-
ing regression, the dependent variable in the unrestricted regression is InY, whereas in the
restricted regression, itis InY — In L. The R? from the restricted regression is only 0.26979,
which would imply an F statistic of 285.96, whereas the correct value is 9.935. If we compute
the appropriate R? using the correct denominator, however, then its value is 0.92006 and the
correct F value results.

Note that the coefficient on In K is negative in the translog model. We might conclude that
the estimated output elasticity with respect to capital now has the wrong sign. This conclusion
would be incorrect, however; in the translog model, the capital elasticity of output is

alnyY

m =/33+/35InK+,86InL.
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If we insert the coefficient estimates and the mean values for In K and InL (not the logs of
the means) of 7.44592 and 5.7637, respectively, then the result is 0.5425, which is quite in
line with our expectations and is fairly close to the value of 0.3757 obtained for the Cobb-
Douglas model. The estimated standard error for this linear combination of the least squares
estimates is computed as the square root of

Est. Var[bs + bs InK + bgIn L] = w’(Est. Var[b])w,
where
w=(0,0,1,0,InK,InL)’

and b is the full 6 x 1 least squares coefficient vector. This value is 0.1122, which is reasonably
close to the earlier estimate of 0.0853.

5.5.3 TESTING THE SIGNIFICANCE OF THE REGRESSION

A question that is usually of interest is whether the regression equation as a whole is
significant. This test is a joint test of the hypotheses that all the coefficients except the
constant term are zero. If all the slopes are zero, then the multiple correlation coeffi-
cient, R?, is zero as well, so we can base a test of this hypothesis on the value of R?. The
central result needed to carry out the test is given in (5-30). This is the special case with
R?2 =0, so the F statistic, which is usually reported with multiple regression results is

_ R(K-1)
C(1-R)/(n-K)’

If the hypothesis that 8, = 0 (the part of 8 not including the constant) is true and the dis-
turbances are normally distributed, then this statistic has an F distribution with K-1 and
n- K degrees of freedom. Large values of F give evidence against the validity of the hy-
pothesis. Note that a large F is induced by a large value of R?. The logic of the test is that
the F statistic is a measure of the loss of fit (namely, all of R?) that results when we impose
the restriction that all the slopes are zero. If F is large, then the hypothesis is rejected.

FIK —1,n— K]

Example 5.5 F Test for the Earnings Equation
The F ratio for testing the hypothesis that the four slopes in the earnings equation in
Example 5.2 are all zero is

0.040995/(5 — 1)
(1 — 0.040995) /(428 — 5)

which is far larger than the 95 percent critical value of 2.39. We conclude that the data are
inconsistent with the hypothesis that all the slopes in the earnings equation are zero. We
might have expected the preceding result, given the substantial t ratios presented earlier.
But this case need not always be true. Examples can be constructed in which the indi-
vidual coefficients are statistically significant, while jointly they are not. This case can be re-
garded as pathological, but the opposite one, in which none of the coefficients is significantly
different from zero while R? is highly significant, is relatively common. The problem is that
the interaction among the variables may serve to obscure their individual contribution to the
fit of the regression, whereas their joint effect may still be significant.

F[4,423] = = 4521,

5.5.4 SOLVING OUT THE RESTRICTIONS AND A CAUTION ABOUT
USING R?

In principle, one can usually solve out the restrictions imposed by a linear hypothesis.
Algebraically, we would begin by partitioning R into two groups of columns, one with
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J and one with K — J, so that the first set are linearly independent. (There are many
ways to do so; any one will do for the present.) Then, with B likewise partitioned and
its elements reordered in whatever way is needed, we may write

RB =RiB1 + Ry =q.

If the J columns of R; are independent, then

B1=R;'[q—Ryp].

This suggests that one might estimate the restricted model directly using a transformed
equation, rather than use the rather cumbersome restricted estimator shown in (5-23).
A simple example illustrates. Consider imposing constant returns to scale on a two input
production function,

Iny=pg1+pInx; + B3Inx; +e.

The hypothesis of linear homogeneity is 8, + 3 = 1 or f3 = 1 — ,. Simply building
the restriction into the model produces

Iny =g +pBInx + (1 —p)Inx,+e
or
Iny=Inx; 4 g1 + fo(Inx; —Inxy) +&.

One can obtain the restricted least squares estimates by linear regression of (Iny — Inx;)
on a constant and (Inx; — Inx,). However, the test statistic for the hypothesis cannot be
tested using the familiar result in (5-30), because the denominators in the two R”’s are
different. The statistic in (5-30) could even be negative. The appropriate approach would
be to use the equivalent, but appropriate computation based on the sum of squared
residuals in (5-29). The general result from this example is that one must be careful in
using (5-30) that the dependent variable in the two regressions must be the same.

5.6 NONNORMAL DISTURBANCES
AND LARGE-SAMPLE TESTS

We now consider the relation between the sample test statistics and the data in X. First,
consider the conventional ¢ statistic in (4-41) for testing Hy : x = By,

b — By

\/$2(X' X)) '

Conditional on X, if By = Y (i.e., under Hy), then #|X has a ¢ distribution with
(n — K) degrees of freedom. What interests us, however, is the marginal, that is, the
unconditional distribution of . As we saw, b is only normally distributed conditionally
on X; the marginal distribution may not be normal because it depends on X (through
the conditional variance). Similarly, because of the presence of X, the denominator
of the ¢ statistic is not the square root of a chi-squared variable divided by its de-
grees of freedom, again, except conditional on this X. But, because the distributions

of (by — ﬁk)/\/sz(X'X),:kHX and [(n — K)s»/0?]|X are still independent N[0, 1] and

11X =
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x*[n — K], respectively, which do not involve X, we have the surprising result that,
regardless of the distribution of X, or even of whether X is stochastic or nonstochastic,
the marginal distributions of ¢ is still #, even though the marginal distribution of by may
be nonnormal. This intriguing result follows because f(¢ |X) is not a function of X. The
same reasoning can be used to deduce that the usual F ratio used for testing linear
restrictions, discussed in the previous section, is valid whether X is stochastic or not.
This result is very powerful. The implication is that if the disturbances are normally dis-
tributed, then we may carry out tests and construct confidence intervals for the parameters
without making any changes in our procedures, regardless of whether the regressors are
stochastic, nonstochastic, or some mix of the two.

The distributions of these statistics do follow from the normality assumption for €,
but they do not depend on X. Without the normality assumption, however, the exact
distributions of these statistics depend on the data and the parameters and are not F, ¢,
and chi-squared. At least at first blush, it would seem that we need either a new set of
critical values for the tests or perhaps a new set of test statistics. In this section, we will
examine results that will generalize the familiar procedures. These large-sample results
suggest that although the usual ¢ and F statistics are still usable, in the more general
case without the special assumption of normality, they are viewed as approximations
whose quality improves as the sample size increases. By using the results of Section D.3
(on asymptotic distributions) and some large-sample results for the least squares esti-
mator, we can construct a set of usable inference procedures based on already familiar
computations.

Assuming the data are well behaved, the asymptotic distribution of the least squares
coefficient estimator, b, is given by

2

b N{ﬂ, (;Ql] where Q = plim<X’nX). (5-31)

The interpretation is that, absent normality of e, as the sample size, n, grows, the normal
distribution becomes an increasingly better approximation to the true, though at this
point unknown, distribution of b. As n increases, the distribution of \/n(b— B) converges
exactly to a normal distribution, which is how we obtain the preceding finite-sample
approximation. This result is based on the central limit theorem and does not require
normally distributed disturbances. The second result we will need concerns the estimator
of o2
plim s? = 02, where s> = e’e/(n — K).

With these in place, we can obtain some large-sample results for our test statistics that
suggest how to proceed in a finite sample with nonnormal disturbances.

The sample statistic for testing the hypothesis that one of the coefficients, 8x equals
a particular value, g is

_ _Vn(be—B) .
s2(X'X/n)

(Note that two occurrences of \/n cancel to produce our familiar result.) Under the
null hypothesis, with normally distributed disturbances, #; is exactly distributed as ¢ with
n — K degrees of freedom. [See Theorem 4.6 and the beginning of this section.] The
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exact distribution of this statistic is unknown, however, if € is not normally distributed.
From the preceding results, we find that the denominator of #; converges to Vo 2Qp..
Hence, if #; has a limiting distribution, then it is the same as that of the statistic that
has this latter quantity in the denominator. (See point 3 Theorem D.16.) That is, the
large-sample distribution of #; is the same as that of

V(b — B7) '
Vo2 Qi

But 7, = (bx— E [bi])/(Asy. Var[b;])!/? from the asymptotic normal distribution (under
the hypothesis B = BY), so it follows that 7, has a standard normal asymptotic distri-
bution, and this result is the large-sample distribution of our ¢ statistic. Thus, as a large-
sample approximation, we will use the standard normal distribution to approximate
the true distribution of the test statistic 7, and use the critical values from the standard
normal distribution for testing hypotheses.

The result in the preceding paragraph is valid only in large samples. For moderately
sized samples, it provides only a suggestion that the ¢ distribution may be a reasonable
approximation. The appropriate critical values only converge to those from the standard
normal, and generally from above, although we cannot be sure of this. In the interest
of conservatism—that is, in controlling the probability of a Type I error—one should
generally use the critical value from the ¢ distribution even in the absence of normality.
Consider, for example, using the standard normal critical value of 1.96 for a two-tailed
test of a hypothesis based on 25 degrees of freedom. The nominal size of this test is
0.05. The actual size of the test, however, is the true, but unknown, probability that
|te] > 1.96, which is 0.0612 if the ¢[25] distribution is correct, and some other value if
the disturbances are not normally distributed. The end result is that the standard ¢ test
retains a large sample validity. Little can be said about the true size of a test based on
the ¢ distribution unless one makes some other equally narrow assumption about &, but
the ¢ distribution is generally used as a reliable approximation.

We will use the same approach to analyze the F statistic for testing a set of J
linear restrictions. Step 1 will be to show that with normally distributed disturbances,
JF converges to a chi-squared variable as the sample size increases. We will then show
that this result is actually independent of the normality of the disturbances; it relies on
the central limit theorem. Finally, we consider, as before, the appropriate critical values
to use for this test statistic, which only has large sample validity.

The F statistic for testing the validity of J linear restrictions, R — q = 0, is given in
(5-6). With normally distributed disturbances and under the null hypothesis, the exact
distribution of this statistic is F[J, n — K]. To see how F behaves more generally, divide
the numerator and denominator in (5-16) by o2 and rearrange the fraction slightly, so

Tk =

_ (Rb—g/{R[o>X'X)"'JR"} '(Rb— g

F J(s%/0?)

(5-32)

Since plim s> = 02, and plim(X’X/n) = Q, the denominator of F converges toJ and the
bracketed term in the numerator will behave the same as (62/ n)RQflR’. (See Theo-
rem D16.3.) Hence, regardless of what this distribution is, if F has a limiting distribution,
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then it is the same as the limiting distribution of
1
W = —(Rb - q/[R(c*/mQ 'R']"'(Rb — q)

1 _
= 7(Rb — q)'{Asy. Var[Rb — q]} "(Rb — q).

This expression is (1/J) times a Wald statistic, based on the asymptotic distribution.
The large-sample distribution of W* will be that of (1/J) times a chi-squared with J de-
grees of freedom. It follows that with normally distributed disturbances, JF converges
to a chi-squared variate with J degrees of freedom. The proof is instructive. [See White
(2001, p. 76).]

THEOREM 5.1 Limiting Distribution of the Wald Statistic
If i — B) -5 N[0, 02Q "] and if Hy : RS — q = 0 is true, then
W = (Rb — q)/{Rs>(X’X)"'R'}"'(Rb — q) = JF -5 x*[J].
Proof: Since R is a matrix of constants and R = q,
JiR(® — B) = Vn(Rb — @) —% N[0, R@>Q HR']. )
For convenience, write this equation as
z-% N[0, P]. Q)

In Section A.6.11, we define the inverse square root of a positive definite matrix
P as another matrix, say T, such that T> = P~!, and denote T as P/, Then, by
the same reasoning as in (1) and (2),

if -5 N[0, P], then P~1%2-% N[0, P~12PP'2] = N[0,1]. (3)

We now invoke Theorem D.21 for the limiting distribution of a function of a
random variable. The sum of squares of uncorrelated (i.e., independent) standard
normal variables is distributed as chi-squared. Thus, the limiting distribution of

P~ 122) (P~ 127) = 2P 12 -L 4 2()). @)
Reassembling the parts from before, we have shown that the limiting distribution
of

n(Rb — ¢)'[R(e*Q HR'] "' (Rb — q) ®)

is chi-squared, with J degrees of freedom. Note the similarity of this result to the
results of Section B.11.6. Finally, if

1 _1
plim s2 (—X'X) =0’Q", (©6)
n
then the statistic obtained by replacing o>Q~" by s>(X'X/n)~'in (5) has the same

limiting distribution. The n’s cancel, and we are left with the same Wald statistic
we looked at before. This step completes the proof.
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The appropriate critical values for the F test of the restrictions R —q=0 con-
verge from above to 1/J times those for a chi-squared test based on the Wald statis-
tic (see the Appendix tables). For example, for testing J =5 restrictions, the critical
value from the chi-squared table (Appendix Table G.4) for 95 percent significance is
11.07. The critical values from the F table (Appendix Table G.5) are 3.33 =16.65/5 for
n—K=10,2.60=13.00/5forn — K=25,2.40=12.00/5 forn — K=50,2.31 =11.55/5
for n — K=100, and 2.214 =11.07/5 for large n — K. Thus, with normally distributed
disturbances, as n gets large, the F test can be carried out by referring JF to the critical
values from the chi-squared table.

The crucial result for our purposes here is that the distribution of the Wald statisticis
built up from the distribution of b, which is asymptotically normal even without normally
distributed disturbances. The implication is that an appropriate large sample test statistic
is chi-squared = JF. Once again, this implication relies on the central limit theorem, not
on normally distributed disturbances. Now, what is the appropriate approach for a small
or moderately sized sample? As we saw earlier, the critical values for the F distribution
converge from above to (1/J) times those for the preceding chi-squared distribution.
As before, one cannot say that this will always be true in every case for every possible
configuration of the data and parameters. Without some special configuration of the
data and parameters, however, one, can expect it to occur generally. The implication is
that absent some additional firm characterization of the model, the F statistic, with the
critical values from the F table, remains a conservative approach that becomes more
accurate as the sample size increases.

Exercise 7 at the end of this chapter suggests another approach to testing that has
validity in large samples, a Lagrange multiplier test. The vector of Lagrange multipliers
in (5-23) is [R(X’X)"'R’]"!(Rb — q), that is, a multiple of the least squares discrepancy
vector. In principle, a test of the hypothesis that A, equals zero should be equivalent to a
test of the null hypothesis. Since the leading matrix has full rank, this can only equal zero
if the discrepancy equals zero. A Wald test of the hypothesis that A, = 0isindeed a valid
way to proceed. The large sample distribution of the Wald statistic would be chi-squared
with J degrees of freedom. (The procedure is considered in Exercise 7.) For a set of
exclusion restrictions, 8, = 0, there is a simple way to carry out this test. The chi-squared
statistic, in this case with K, degrees of freedom can be computed as nR? in the regression
of e, (the residuals in the short regression) on the full set of independent variables.

5.7 TESTING NONLINEAR RESTRICTIONS

The preceding discussion has relied heavily on the linearity of the regression model.
When we analyze nonlinear functions of the parameters and nonlinear regression
models, most of these exact distributional results no longer hold.

The general problem is that of testing a hypothesis that involves a nonlinear function
of the regression coefficients:

Hy:c(B) =q.

We shall look first at the case of a single restriction. The more general case, in which
¢(f) = qisaset of restrictions, is a simple extension. The counterpart to the test statistic
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we used earlier would be

cB)—q

7= — ,
estimated standard error

(5-33)

or its square, which in the preceding were distributed as ¢[n — K] and F[1,n — K],
respectively. The discrepancy in the numerator presents no difficulty. Obtaining an
estimate of the sampling variance of ¢(8) — g, however, involves the variance of a
nonlinear function of §.

The results we need for this computation are presented in Sections 4.4.4, B.10.3, and
D.3.1. A linear Taylor series approximation to ¢(f) around the true parameter vector g is

dc(B)
B

We must rely on consistency rather than unbiasedness here, since, in general, the ex-
pected value of a nonlinear function is not equal to the function of the expected value.
If plim B = B, then we are justified in using ¢(f) as an estimate of c¢(B). (The rele-
vant result is the Slutsky theorem.) Assuming that our use of this approximation is
appropriate, the variance of the nonlinear function is approximately equal to the vari-
ance of the right-hand side, which is, then,

Var[c(B)] ~ (agif)> Var[B](ag(/f)). (5-35)

The derivatives in the expression for the variance are functions of the unknown param-
eters. Since these are being estimated, we use our sample estimates in computing the
derivatives. To estimate the variance of the estimator, we can use s?(X’X) . Finally, we
rely on Theorem D.22 in Section D.3.1 and use the standard normal distribution instead
of the ¢ distribution for the test statistic. Using g(B) to estimate g(f8) = dc(B)/dpB, we
can now test a hypothesis in the same fashion we did earlier.

c(B) ~ c(B) + ( ) B -B). (5-34)

Example 5.6 A Long-Run Marginal Propensity to Consume
A consumption function that has different short- and long-run marginal propensities to con-
sume can be written in the form

|nC[=O{+,3|n\/t+)/|nCt,1+8t,

which is a distributed lag model. In this model, the short-run marginal propensity to consume
(MPC) (elasticity, since the variables are in logs) is 8, and the long-run MPC is § = /(1 —y).
Consider testing the hypothesis that § = 1.

Quarterly data on aggregate U.S. consumption and disposable personal income for the
years 1950 to 2000 are given in Appendix Table F5.2. The estimated equation based on these
data is

InC; = 0.003142 + 0.07495InY; +0.9246InC;_; + &, R?=0.999712, s=0.00874.
(0.01055) (0.02873) (0.02859)

Estimated standard errors are shown in parentheses. We will also require Est. Asy. Covlb, c] =
—0.0008207. The estimate of the long-run MPC is d = b/(1 — ¢) = 0.07495/(1 — 0.9246) =
0.99403. To compute the estimated variance of d, we will require

ad 1 ad b
b= = 7= 132626, go= - =

= 13.1834.
b 1-c 3.183

(1-92
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The estimated asymptotic variance of d is

Est. Asy. Var[d] = gZEst. Asy. Var[b] + g2Est. Asy. Varc] + 2g»g:Est. Asy. Covlb, c]
= 13.26262 x 0.028732 + 13.1834% x 0.028592
+2(13.2626)(13.1834)(—0.0008207) = 0.0002585.

The square root is 0.016078. To test the hypothesis that the long-run MPC is greater than or
equal to 1, we would use

~0.99403 -1
~0.016078

Because we are using a large sample approximation, we refer to a standard normal table
instead of the t distribution. The hypothesis that y = 1 is not rejected.

You may have noticed that we could have tested this hypothesis with a linear restriction
instead; if6 =1,theng =1—y,0or+y = 1. Theestimateisqg =b+c—1 = —0.00045. The
estimated standard error of this linear function is [0.028732 + 0.02859 — 2(0.0008207)]"/? =
0.00118. The t ratio for this test is —0.38135, which is almost the same as before. Since
the sample used here is fairly large, this is to be expected. However, there is nothing in the
computations that ensures this outcome. In a smaller sample, we might have obtained a
different answer. For example, using the last 11 years of the data, the t statistics for the two
hypotheses are 7.652 and 5.681. The Wald test is not invariant to how the hypothesis is
formulated. In a borderline case, we could have reached a different conclusion. This lack of
invariance does not occur with the likelihood ratio or Lagrange multiplier tests discussed
in Chapter 14. On the other hand, both of these tests require an assumption of normality,
whereas the Wald statistic does not. This illustrates one of the trade-offs between a more
detailed specification and the power of the test procedures that are implied.

= —0.37131.

The generalization to more than one function of the parameters proceeds along
similar lines. Let ¢(f) be a set of J functions of the estimated parameter vector and let
the J x K matrix of derivatives of ¢(f8) be

. ocB
G = 2B (5-36)
B
The estimate of the asymptotic covariance matrix of these functions is
Est. Asy. Var[¢] = G{Est. Asy. Var[8]} G’ (5-37)

The jth row of G is K derivatives of ¢ j with respect to the K elements of B. For example,
the covariance matrix for estimates of the short- and long-run marginal propensities to
consume would be obtained using

o 1 0
T 0 A=y /A=y

The statistic for testing the J hypotheses ¢(f8) = q is

G

W = (¢ — q)'{Est. Asy. Var[¢]} '@ — q). (5-38)

In large samples, W has a chi-squared distribution with degrees of freedom equal to the
number of restrictions. Note that for a single restriction, this value is the square of the
statistic in (5-33).
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5.8 CHOOSING BETWEEN NONNESTED MODELS

The classical testing procedures that we have been using have been shown to be most
powerful for the types of hypotheses we have considered.” Although use of these pro-
cedures is clearly desirable, the requirement that we express the hypotheses in the form
of restrictions on the model y = X + e,

Hy:Rp=q
Versus

H; :RB #q,

can be limiting. Two common exceptions are the general problem of determining which
of two possible sets of regressors is more appropriate and whether a linear or loglinear
model is more appropriate for a given analysis. For the present, we are interested in
comparing two competing linear models:

Hy:y=XB+¢&p (5-39a)
and
H :y=7Zy +e;. (5-39b)

The classical procedures we have considered thus far provide no means of forming a
preference for one model or the other. The general problem of testing nonnested hy-
potheses such as these has attracted an impressive amount of attention in the theoretical
literature and has appeared in a wide variety of empirical applications.®

5.8.1 TESTING NONNESTED HYPOTHESES

A useful distinction between hypothesis testing as discussed in the preceding chapters
and model selection as considered here will turn on the asymmetry between the null
and alternative hypotheses that is a part of the classical testing procedure.’ Because,
by construction, the classical procedures seek evidence in the sample to refute the
“null” hypothesis, how one frames the null can be crucial to the outcome. Fortunately,
the Neyman—Pearson methodology provides a prescription; the null is usually cast as
the narrowest model in the set under consideration. On the other hand, the classical
procedures never reach a sharp conclusion. Unless the significance level of the testing
procedure is made so high as to exclude all alternatives, there will always remain the
possibility of a Type 1 error. As such, the null hypothesis is never rejected with certainty,
but only with a prespecified degree of confidence. Model selection tests, in contrast,
give the competing hypotheses equal standing. There is no natural null hypothesis.
However, the end of the process is a firm decision—in testing (5-39a, b), one of the
models will be rejected and the other will be retained; the analysis will then proceed in

7See, for example, Stuart and Ord (1989, Chap. 27).

8Surveys on this subject are White (1982a, 1983), Gourieroux and Monfort (1994), McAleer (1995), and
Pesaran and Weeks (2001). McAleer’s survey tabulates an array of applications, while Gourieroux and Mon-
fort focus on the underlying theory.

9See Granger and Pesaran (2000) for discussion.
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the framework of that one model and not the other. Indeed, it cannot proceed until one
of the models is discarded. It is common, for example, in this new setting for the analyst
first to test with one model cast as the null, then with the other. Unfortunately, given
the way the tests are constructed, it can happen that both or neither model is rejected;
in either case, further analysis is clearly warranted. As we shall see, the science is a bit
inexact.

The earliest work on nonnested hypothesis testing, notably Cox (1961, 1962), was
done in the framework of sample likelihoods and maximum likelihood procedures.
Recent developments have been structured around a common pillar labeled the en-
compassing principle [Mizon and Richard (1986)]. In the large, the principle directs
attention to the question of whether a maintained model can explain the features of its
competitors, that is, whether the maintained model encompasses the alternative. Yet a
third approach is based on forming a comprehensive model that contains both competi-
tors as special cases. When possible, the test between models can be based, essentially,
on classical (-like) testing procedures. We will examine tests that exemplify all three
approaches.

5.8.2 AN ENCOMPASSING MODEL

The encompassing approach is one in which the ability of one model to explain features
of another is tested. Model 0 “encompasses” Model 1 if the features of Model 1 can be
explained by Model 0, but the reverse is not true.!? Because H, cannot be written as a
restriction on Hjp, none of the procedures we have considered thus far is appropriate.
One possibility is an artificial nesting of the two models. Let X be the set of variables in
X that are not in Z, define Z likewise with respect to X, and let W be the variables that
the models have in common. Then Hy and H; could be combined in a “supermodel”:

y=XB+Zy+Wé+e.

In principle, H; is rejected if it is found that y = 0 by a conventional F test, whereas Hj
is rejected if it is found that 8 = 0. There are two problems with this approach. First,
§ remains a mixture of parts of 8 and y, and it is not established by the F test that either
of these parts is zero. Hence, this test does not really distinguish between Hj and Hj;
it distinguishes between H; and a hybrid model. Second, this compound model may
have an extremely large number of regressors. In a time-series setting, the problem of
collinearity may be severe.

Consider an alternative approach. If Hj is correct, then y will, apart from the ran-
dom disturbance e, be fully explained by X. Suppose we then attempt to estimate y
by regression of y on Z. Whatever set of parameters is estimated by this regression,
say, ¢, if Hj is correct, then we should estimate exactly the same coefficient vector if we
were to regress X on Z, since & is random noise under H,. Because  must be esti-
mated, suppose that we use Xb instead and compute ¢). A test of the proposition that
Model 0 “encompasses” Model 1 would be a test of the hypothesis that E[¢ — ¢y] = 0.
It is straightforward to show [see Davidson and MacKinnon (2004, pp. 671-672)] that
the test can be carried out by using a standard F test to test the hypothesis that y; =0

10See Deaton (1982), Dastoor (1983), Gourieroux et al. (1983, 1995), and, especially, Mizon and Richard
(1986).
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in the augmented regression,
y=XB+Zy, +e¢i,

where Z; is the variables in Z that are not in X. (Of course, a line of manipulation
reveals that Z and Z; are the same, so the tests are also.)

5.8.3 COMPREHENSIVE APPROACH—THE J TEST

The underpinnings of the comprehensive approach are tied to the density function as
the characterization of the data generating process. Let fy(y; | data, B,) be the assumed
density under Model 0 and define the alternative likewise as fi(y; | data, B;). Then, a
comprehensive model which subsumes both of these is

[ fo(yi | data, By)]' [ fi(yi | data, B1)]*
c i d ) £ = .
Jel data. Bo- B Jeange of . Lfo(yi I data, B[ fi(y: | data, B)]* dy;

Estimation of the comprehensive model followed by a test of A = 0 or 1 is used to assess
the validity of Model 0 or 1, respectively.!!

The J test proposed by Davidson and MacKinnon (1981) can be shown [see Pesaran
and Weeks (2001)] to be an application of this principle to the linear regression model.
Their suggested alternative to the preceding compound model is

y=_0—-MXB +A(Zy) +e.

In this model, a test of A = 0 would be a test against H;. The problem is that A cannot
be separately estimated in this model; it would amount to a redundant scaling of the
regression coefficients. Davidson and MacKinnon’s J test consists of estimating y by
a least squares regression of y on Z followed by a least squares regression of y on X
and Zy, the fitted values in the first regression. A valid test, at least asymptotically,
of Hj is to test Hy : » = 0. If Hj is true, then plim A = 0. Asymptotically, the ratio
A/se(%) (i.e., the usual ¢ ratio) is distributed as standard normal and may be referred to
the standard table to carry out the test. Unfortunately, in testing Hy versus H; and vice
versa, all four possibilities (reject both, neither, or either one of the two hypotheses)
could occur. This issue, however, is a finite sample problem. Davidson and MacKinnon
show that as n — oo, if H is true, then the probability that A will differ significantly
from 0 approaches 1.

Example 5.7 J Test for a Consumption Function
Gaver and Geisel (1974) propose two forms of a consumption function:

Ho:Ci = B1+ B2Yi + BaYio1 + €ot,
and
H1:Ci = y1 + oY + v3Ciq + €11

The first model states that consumption responds to changes in income over two periods,
whereas the second states that the effects of changes in income on consumption persist
for many periods. Quarterly data on aggregate U.S. real consumption and real disposable
income are given in Appendix Table F5.2. Here we apply the J test to these data and the two
proposed specifications. First, the two models are estimated separately (using observations

11Silva (2001) presents an application to the choice of probit or logit model for binary choice.
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1950.2 through 2000.4). The least squares regression of C on a constant, Y, lagged Y, and
the fitted values from the second model produces an estimate of A of 1.0145 with a t ratio of
62.861. Thus, Hg should be rejected in favor of H4. But reversing the roles of Hy and H4, we
obtain an estimate of A of —10.677 with a t ratio of —7.188. Thus, H is rejected as well."?

5.9 A SPECIFICATION TEST

The tests considered so far have evaluated nested models. The presumption is that one of
the two models is correct. In Section 5.8, we broadened the range of models considered
to allow two nonnested models. It is not assumed that either model is necessarily the
true data generating process; the test attempts to ascertain which of two competing
models is closer to the truth. Specification tests fall between these two approaches. The
idea of a specification test is to consider a particular null model and alternatives that
are not explicitly given in the form of restrictions on the regression equation. A useful
way to consider some specification tests is as if the core model, y = X + ¢ is the
null hypothesis and the alternative is a possibly unstated generalization of that model.
Ramsey’s (1969) RESET test is one such test which seeks to uncover nonlinearities in
the functional form. One (admittedly ambiguous) way to frame the analysis is

Hy:y=XB+e,
H,:y = XpB + higher order powers of x; and other terms + .

A straightforward approach would be to add squares, cubes, and cross products of the
regressors to the equation and test down to Hy as a restriction on the larger model.
Two complications are that this approach might be too specific about the form of the
alternative hypothesis and, second, with a large number of variables in X, it could
become unwieldy. Ramsey’s proposed solution is to add powers of x! 8 to the regression
using the least squares predictions—typically, one would add the square and, perhaps
the cube. This would require a two-step estimation procedure, since in order to add
(x/b)? and (x!b)?, one needs the coefficients. The suggestion, then, is to fit the null
model first, using least squares. Then, for the second step, the squares (and cubes) of
the predicted values from this first-step regression are added to the equation and it is
refit with the additional variables. A (large-sample) Wald test is then used to test the
hypothesis of the null model.

As a general strategy, this sort of specification is designed to detect failures of the
assumptions of the null model. The obvious virtue of such a test is that it provides much
greater generality than a simple test of restrictions such as whether a coefficient is zero.
But, that generality comes at considerable cost:

1. The test is nonconstructive. It gives no indication what the researcher should do
next if the null model is rejected. This is a general feature of specification tests.
Rejection of the null model does not imply any particular alternative.

2. Since the alternative hypothesis is unstated, it is unclear what the power of this test
is against any specific alternative.

3. For this specific test (perhaps not for some other specification tests we will examine
later), because x'b uses the same b for every observation, the observations are

12For related discussion of this possibility, see McAleer, Fisher, and Volker (1982).
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correlated, while they are assumed to be uncorrelated in the original model. Because
of the two-step nature of the estimator, it is not clear what is the appropriate
covariance matrix to use for the Wald test. Two other complications emerge for this
test. First, it is unclear what the coefficients converge to, assuming they converge
to anything. Second, variance of the difference between x’b and x}§ is a function of
X, so the second-step regression might be heteroscedastic. The implication is that
neither the size nor the power of this test is necessarily what might be expected.

Example 5.8 Size of a RESET Test
To investigate the true size of the RESET test in a particular application, we carried out
a Monte Carlo experiment. The results in Table 4.6 give the following estimates of equa-
tion (5-2):

In Price = —8.42653 + 1.33372In Area — 0.16537Aspect Ratio + e where sd(e) = 1.10266.

We take the estimated right-hand side to be our population. We generated 5,000 samples
of 430 (the original sample size), by reusing the regression coefficients and generating a
new sample of disturbances for each replication. Thus, with each replication, r, we have
a new sample of observations on InPrice;, where the regression part is as above reused
and a new set of disturbances is generated each time. With each sample, we computed
the least squares coefficient, then the predictions. We then recomputed the least squares
regression while adding the square and cube of the prediction to the regression. Finally, with
each sample, we computed the chi-squared statistic, and rejected the null model if the chi-
squared statistic is larger than 5.99, the 95th percentile of the chi-squared distribution with
two degrees of freedom. The nominal size of this test is 0.05. Thus, in samples of 100, 500,
1,000, and 5,000, we should reject the null nodel 5, 25, 50, and 250 times. In our experiment,
the computed chi-squared exceeded 5.99 8, 31, 65, and 259 times, respectively, which
suggests that at least with sufficient replications, the test performs as might be expected.
We then investigated the power of the test by adding 0.1 times the square of In Area to
the predictions. It is not possible to deduce the exact power of the RESET test to detect
this failure of the null model. In our experiment, with 1,000 replications, the null hypothesis
is rejected 321 times. We conclude that the procedure does appear have power to detect
this failure of the model assumptions.

5.10 MODEL BUILDING—A GENERAL
TO SIMPLE STRATEGY

There has been a shift in the general approach to model building in the past 20 years
or so, partly based on the results in the previous two sections. With an eye toward
maintaining simplicity, model builders would generally begin with a small specification
and gradually build up the model ultimately of interest by adding variables. But, based
on the preceding results, we can surmise that just about any criterion that would be
used to decide whether to add a variable to a current specification would be tainted by
the biases caused by the incomplete specification at the early steps. Omitting variables
from the equation seems generally to be the worse of the two errors. Thus, the simple-
to-general approach to model building has little to recommend it. Building on the work
of Hendry [e.g., (1995)] and aided by advances in estimation hardware and software,
researchers are now more comfortable beginning their specification searches with large
elaborate models involving many variables and perhaps long and complex lag structures.
The attractive strategy is then to adopt a general-to-simple, downward reduction of the
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model to the preferred specification. [This approach has been completely automated in
Hendry’s PCGets® computer program. See, e.g., Hendry and Kotzis (2001).] Of course,
this must be tempered by two related considerations. In the “kitchen sink” regression,
which contains every variable that might conceivably be relevant, the adoption of a
fixed probability for the Type I error, say, 5 percent, ensures that in a big enough
model, some variables will appear to be significant, even if “by accident.” Second, the
problems of pretest estimation and stepwise model building also pose some risk of
ultimately misspecifying the model. To cite one unfortunately common example, the
statistics involved often produce unexplainable lag structures in dynamic models with
many lags of the dependent or independent variables.

5.10.1 MODEL SELECTION CRITERIA

The preceding discussion suggested some approaches to model selection based on
nonnested hypothesis tests. Fit measures and testing procedures based on the sum of
squared residuals, such as R? and the Cox (1961) test, are useful when interest centers
on the within-sample fit or within-sample prediction of the dependent variable. When
the model building is directed toward forecasting, within-sample measures are not nec-
essarily optimal. As we have seen, R? cannot fall when variables are added to a model,
so there is a built-in tendency to overfit the model. This criterion may point us away
from the best forecasting model, because adding variables to a model may increase the
variance of the forecast error (see Section 4.6) despite the improved fit to the data. With
this thought in mind, the adjusted R?,

R*=1-

n—1 ) n—1 e'e
Py S n—K<Z?=1(yi—,V)2>’ &40
has been suggested as a fit measure that appropriately penalizes the loss of degrees of
freedom that result from adding variables to the model. Note that R? may fall when
a variable is added to a model if the sum of squares does not fall fast enough. (The
applicable result appears in Theorem 3.7; R? does not rise when a variable is added to
a model unless the ¢ ratio associated with that variable exceeds one in absolute value.)
The adjusted R? has been found to be a preferable fit measure for assessing the fit of
forecasting models. [See Diebold (2003), who argues that the simple R? has a downward
bias as a measure of the out-of-sample, one-step-ahead prediction error variance.]
The adjusted R? penalizes the loss of degrees of freedom that occurs when a model
is expanded. There is, however, some question about whether the penalty is sufficiently
large to ensure that the criterion will necessarily lead the analyst to the correct model
(assuming that it is among the ones considered) as the sample size increases. Two alter-
native fit measures that have seen suggested are the Akaike Information Criterion,

AIC(K) = s;(1 — R»)e*™/" (5-41)
and the Schwarz or Bayesian Information Criterion,
BIC(K) = s;(1 — R)n"/". (5-42)

(There is no degrees of freedom correction in sg.) Both measures improve (decline) as
R? increases (decreases), but, everything else constant, degrade as the model size in-
creases. Like R 2, these measures place a premium on achieving a given fit with a smaller
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number of parameters per observation, K/n. Logs are usually more convenient; the
measures reported by most software are

AIC(K) — 1n<”> 42K (5-43)
n n

BIC(K) = ln<2> 4 Kinn (5-44)
n n

Both prediction criteria have their virtues, and neither has an obvious advantage over
the other. [See Diebold (2003).] The Schwarz criterion, with its heavier penalty for
degrees of freedom lost, will lean toward a simpler model. All else given, simplicity
does have some appeal.

5.10.2 MODEL SELECTION

The preceding has laid out a number of choices for model selection, but, at the same
time, has posed some uncomfortable propositions. The pretest estimation aspects of
specification search are based on the model builder’s knowledge of “the truth” and the
consequences of failing to use that knowledge. While the cautions about blind search
for statistical significance are well taken, it does seem optimistic to assume that the
correct model is likely to be known with hard certainty at the outset of the analysis. The
bias documented in (4-10) is well worth the modeler’s attention. But, in practical terms,
knowing anything about the magnitude presumes that we know what variables are in
X5, which need not be the case. While we can agree that the model builder will omit
income from a demand equation at their peril, we could also have some sympathy for
the analyst faced with finding the right specification for their forecasting model among
dozens of choices. The tests for nonnested models would seem to free the modeler from
having to claim that the specified set of models contain “the truth.” But, a moment’s
thought should suggest that the cost of this is the possibly deflated power of these
procedures to point toward that truth, The J test may provide a sharp choice between
two alternatives, but it neglects the third possibility, that both models are wrong. Vuong’s
test (see Section 14.6.6) does but, of course, it suffers from the fairly large inconclusive
region, which is a symptom of its relatively low power against many alternatives. The
upshot of all of this is that there remains much to be accomplished in the area of model
selection. Recent commentary has provided suggestions from two perspective, classical
and Bayesian.

5.10.3 CLASSICAL MODEL SELECTION
Hansen (2005) lists four shortcomings of the methodology we have considered here:

1. parametric vision

2. assuming a true data generating process
3. evaluation based on fit

4. ignoring model uncertainty

All four of these aspects have framed the analysis of the preceding sections. Hansen’s
view is that the analysis considered here is too narrow and stands in the way of progress
in model discovery.
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All the model selection procedures considered here are based on the likelihood
function, which requires a specific distributional assumption. Hansen argues for a focus,
instead, on semiparametric structures. For regression analysis, this points toward gen-
eralized method of moments estimators. Casualties of this reorientation will be dis-
tributionally based test statistics such as the Cox and Vuong statistics, and even the
AIC and BIC measures, which are transformations of the likelihood function. How-
ever, alternatives have been proposed [e.g, by Hong, Preston, and Shum (2000)]. The
second criticism is one we have addressed. The assumed “true” model can be a straight-
jacket. Rather (he argues), we should view our specifications as approximations to the
underlying true data generating process—this greatly widens the specification search,
to one for a model which provides the best approximation. Of course, that now forces
the question of what is “best.” So far, we have focused on the likelihood function,
which in the classical regression can be viewed as an increasing function of R?. The
author argues for a more “focused” information criterion (FIC) that examines di-
rectly the parameters of interest, rather than the fit of the model to the data. Each
of these suggestions seeks to improve the process of model selection based on famil-
iar criteria, such as test statistics based on fit measures and on characteristics of the
model.

A (perhaps the) crucial issue remaining is uncertainty about the model itself. The
search for the correct model is likely to have the same kinds of impacts on statistical
inference as the search for a specification given the form of the model (see Sections 4.3.2
and 4.3.3). Unfortunately, incorporation of this kind of uncertainty in statistical infer-
ence procedures remains an unsolved problem. Hansen suggests one potential route
would be the Bayesian model averaging methods discussed next although he does ex-
press some skepticism about Bayesian methods in general.

5.10.4 BAYESIAN MODEL AVERAGING

If we have doubts as to which of two models is appropriate, then we might well be
convinced to concede that possibly neither one is really “the truth.” We have painted
ourselves into a corner with our “left or right” approach to testing. The Bayesian
approach to this question would treat it as a problem of comparing the two hypothe-
ses rather than testing for the validity of one over the other. We enter our sampling
experiment with a set of prior probabilities about the relative merits of the two hy-
potheses, which is summarized in a “prior odds ratio,” Py; = Prob[ Hy]/Prob[ H,]. After
gathering our data, we construct the Bayes factor, which summarizes the weight of the
sample evidence in favor of one model or the other. After the data have been analyzed,
we have our “posterior odds ratio,” Py | data = Bayes factor x Fy;. The upshot is that
ex post, neither model is discarded; we have merely revised our assessment of the com-
parative likelihood of the two in the face of the sample data. Of course, this still leaves
the specification question open. Faced with a choice among models, how can we best
use the information we have? Recent work on Bayesian model averaging [Hoeting et al.
(1999)] has suggested an answer.

An application by Wright (2003) provides an interesting illustration. Recent
advances such as Bayesian VARs have improved the forecasting performance of econo-
metric models. Stock and Watson (2001, 2004) report that striking improvements in
predictive performance of international inflation can be obtained by averaging a large
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number of forecasts from different models and sources. The result is remarkably con-
sistent across subperiods and countries. Two ideas are suggested by this outcome. First,
the idea of blending different models is very much in the spirit of Hansen’s fourth
point. Second, note that the focus of the improvement is not on the fit of the model
(point 3), but its predictive ability. Stock and Watson suggested that simple equal-
weighted averaging, while one could not readily explain why, seems to bring large
improvements. Wright proposed Bayesian model averaging as a means of making the
choice of the weights for the average more systematic and of gaining even greater
predictive performance.

Leamer (1978) appears to be the first to propose Bayesian model averaging as a
means of combining models. The idea has been studied more recently by Min and Zellner
(1993) for output growth forecasting, Doppelhofer et al. (2000) for cross-country growth
regressions, Koop and Potter (2004) for macroeconomic forecasts, and others. Assume
that there are M models to be considered, indexed by m = 1, ..., M. For simplicity,
we will write the mth model in a simple form, f,(y|Z,8,,) where f(.) is the density,
y and Z are the data, and 6,, is the parameter vector for model m. Assume, as well, that
model m* is the true model, unknown to the analyst. The analyst has priors m,, over
the probabilities that model m is the correct model, so 7, is the prior probability that
m = m*. The posterior probabilities for the models are

Py, Z | m)m,,

I[1,, = Prob(m = m* |y, Z) = , (5-45)
’ L Py Z| 1)y
where P(y, Z | m) is the marginal likelihood for the mth model,
P(y,Z|m) = / Py, Z|0,,,m) P(8,,)d0,,, (5-46)

m

while P(y, Z|8,,, m) is the conditional (on 8,,) likelihood for the mth model and P(6,,)
is the analyst’s prior over the parameters of the mth model. This provides an alternative
set of weights to the I1,, = 1/M suggested by Stock and Watson. Let 8,, denote the
Bayesian estimate (posterior mean) of the parameters of model m. (See Chapter 16.)
Each model provides an appropriate posterior forecast density, f*(y|Z,#,,, m). The
Bayesian model averaged forecast density would then be

M
7= FOIZ.6, mIl,. (5-47)

m=1

A point forecast would be a similarly weighted average of the forecasts from the indi-
vidual models.

Example 5.9 Bayesian Averaging of Classical Estimates
Many researchers have expressed skepticism of Bayesian methods because of the apparent
arbitrariness of the specifications of prior densities over unknown parameters. In the Bayesian
model averaging setting, the analyst requires prior densities over not only the model prob-
abilities, m,, but also the model specific parameters, 6,,. In their application, Doppelhofer,
Miller, and Sala-i-Martin (2000) were interested in the appropriate set of regressors to include
in a long-term macroeconomic (income) growth equation. With 32 candidates, M for their
application was 232 (minus one if the zero regressors model is ignored), or roughly four bil-
lion. Forming this many priors would be optimistic in the extreme. The authors proposed a
novel method of weighting a large subset (roughly 21 million) of the 2™ possible (classical)
least squares regressions. The weights are formed using a Bayesian procedure; however,



CHAPTER 5 4 Hypothesis Tests and Model Selection 183

the estimates that are weighted are the classical least squares estimates. While this saves
considerable computational effort, it still requires the computation of millions of least squares
coefficient vectors. [See Sala-i-Martin (1997).] The end result is a model with 12 independent
variables.

5.11 SUMMARY AND CONCLUSIONS

This chapter has focused on the third use of the linear regression model, hypothesis
testing. The central result for testing hypotheses is the F statistic. The F ratio can be pro-
duced in two equivalent ways; first, by measuring the extent to which the unrestricted
least squares estimate differs from what a hypothesis would predict, and second, by
measuring the loss of fit that results from assuming that a hypothesis is correct. We then
extended the F statistic to more general settings by examining its large-sample proper-
ties, which allow us to discard the assumption of normally distributed disturbances and
by extending it to nonlinear restrictions.

This is the last of five chapters that we have devoted specifically to the methodology
surrounding the most heavily used tool in econometrics, the classical linear regression
model. We began in Chapter 2 with a statement of the regression model. Chapter 3 then
described computation of the parameters by least squares—a purely algebraic exercise.
Chapter 4 reinterpreted least squares as an estimator of an unknown parameter vector
and described the finite sample and large-sample characteristics of the sampling distri-
bution of the estimator. Chapter 5 was devoted to building and sharpening the regression
model, with statistical results for testing hypotheses about the underlying population.
In this chapter, we have examined some broad issues related to model specification and
selection of a model among a set of competing alternatives. The concepts considered
here are tied very closely to one of the pillars of the paradigm of econometrics; under-
lying the model is a theoretical construction, a set of true behavioral relationships that
constitute the model. It is only on this notion that the concepts of bias and biased esti-
mation and model selection make any sense — “bias” as a concept can only be described
with respect to some underlying “model” against which an estimator can be said to be
biased. That is, there must be a yardstick. This concept is a central result in the analysis of
specification, where we considered the implications of underfitting (omitting variables)
and overfitting (including superfluous variables) the model. We concluded this chapter
(and our discussion of the classical linear regression model) with an examination of
procedures that are used to choose among competing model specifications.

Key Terms and Concepts

¢ Acceptance region ¢ Biased estimator ¢ Functionally independent
e Adjusted R-squared e Comprehensive model e General nonlinear
o Akaike Information ¢ Consistent hypothesis

Criterion e Distributed lag e General-to-simple strategy
e Alternative hypothesis ¢ Discrepancy vector e Inclusion of superfluous
¢ Bayesian model averaging ¢ Encompassing principle variables
¢ Bayesian Information ¢ Exclusion restrictions o J test

Criterion ¢ Ex post forecast e Lack of invariance



e Lagrange multiplier test
e Linear restrictions

e Mean squared error

e Model selection

e Nested

e Nested models

e Nominal size

e Nonnested
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e One-sided test

e Parameter space

e Power of a test

e Prediction criterion

e Prediction interval

e Prediction variance

® Rejection region

¢ Restricted least squares

e Simple-to-general

e Size of the test

e Specification test

e Stepwise model building
e f ratio

e Testable implications

e Theil U statistic

e Wald criterion

¢ Nonnested models ¢ Root mean squared error e Wald distance

e Nonnormality e Sample discrepancy e Wald statistic

e Null hypothesis e Schwarz criterion e Wald test
Exercises

1. A multiple regression of y on a constant x; and x, produces the following results:
9 =44 0.4x; +0.9x;, R? = 8/60, e’e = 520, n = 29,

29 0 0
X'X=1|0 50 10].
0 10 80

Test the hypothesis that the two slopes sum to 1.
2. Using the results in Exercise 1, test the hypothesis that the slope on x; is 0 by running
the restricted regression and comparing the two sums of squared deviations.
3. The regression model to be analyzed is y = X8, + X8, + &, where X; and X,
have Kj and K, columns, respectively. The restriction is §, = 0.
a. Using (5-23), prove that the restricted estimator is simply [by,, 0], where by, is
the least squares coefficient vector in the regression of y on Xj.
b. Prove that if the restriction is 8, = ,33 for a nonzero /32, then the restricted
estimator of B is by, = (X[ X)X/ (y — Xz89).
4. The expression for the restricted coefficient vector in (5-23) may be written in the
form b, =[I — CR]b + w, where w does not involve b. What is C? Show that the
covariance matrix of the restricted least squares estimator is

2(X'X)™! — 2 (X'X) 'R [RX'’X) " 'RTIR(X'X) !
and that this matrix may be written as
Var[b | X]{[Var(b|X)]"! — R'[Var(Rb) | X]"'R} Var[b | X].

5. Prove the result that the restricted least squares estimator never has a larger
covariance matrix than the unrestricted least squares estimator.

6. Prove the result that the R? associated with a restricted least squares estimator
is never larger than that associated with the unrestricted least squares estimator.
Conclude that imposing restrictions never improves the fit of the regression.

7. An alternative way to test the hypothesis R — q = 0 is to use a Wald test of the
hypothesis that A, = 0, where A, is defined in (5-23). Prove that

% = N {Est. Var[,,]} A, = (n — K) [% — 1}
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11.

12.

13.

14.
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Note that the fraction in brackets is the ratio of two estimators of o2. By virtue
of (5-28) and the preceding discussion, we know that this ratio is greater than 1.
Finally, prove that this test statistic is equivalent to JF, where J is the number of
restrictions being tested and F is the conventional F statistic given in (5-16). For-
mally, the Lagrange multiplier test requires that the variance estimator be based on
the restricted sum of squares, not the unrestricted. Then, the test statistic would be
LM =nlJ/[(n — K)/F + J]. See Godfrey (1988).

Use the test statistic defined in Exercise 7 to test the hypothesis in Exercise 1.
Prove that under the hypothesis that R = q, the estimator

2 _ (= Xb.)'(y - Xb,)

* n—K+J ’
where J is the number of restrictions, is unbiased for o 2.
Show that in the multiple regression of y on a constant, x; and x, while imposing
the restriction B; + B, = 1 leads to the regression of y — x; on a constant and
X2 — X1.
Suppose the true regression model is given by (4-8). The result in (4-10) shows that
if either Py is nonzero or B, is nonzero, then regression of y on X; alone produces
a biased and inconsistent estimator of #;. Suppose the objective is to forecast y,
not to estimate the parameters. Consider regression of y on X; alone to estimate
B1 with by (which is biased). Is the forecast of y computed using X;b; also biased?
Assume that E[X;|X;] is a linear function of X;. Discuss your findings gener-
ally. What are the implications for prediction when variables are omitted from a
regression?
Compare the mean squared errors of b; and by » in Section 4.7.2. (Hint: The compar-
ison depends on the data and the model parameters, but you can devise a compact
expression for the two quantities.)
The log likelihood function for the linear regression model with normally distributed
disturbances is shown in Example 4.6. Show that at the maximum likelihood esti-
mators of b for B and e’e/n for o, the log likelihood is an increasing function of
R’ for the model.
Show that the model of the alternative hypothesis in Example 5.7 can be written

o0 o0
H: C=60+6Y,+0Y,_1+ ZGSJrZthS +e&ir + Z)\sgtfy
s=2 s=1
As such, it does appear that Hj is a restriction on H;. However, because there are
an infinite number of constraints, this does not reduce the test to a standard test of
restrictions. It does suggest the connections between the two formulations.

Applications

1.

The application in Chapter 3 used 15 of the 17,919 observations in Koop and
Tobias’s (2004) study of the relationship between wages and education, ability, and
family characteristics. (See Appendix Table F3.2.) We will use the full data set for
this exercise. The data may be downloaded from the Journal of Applied Economet-
rics data archive at http://www.econ.queensu.ca/jae/12004-v19.7/koop-tobias/. The
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data file is in two parts. The first file contains the panel of 17,919 observations on
variables:

Column 1; Person id (ranging from 1 to 2,178),
Column 2; Education,

Column 3; Log of hourly wage,

Column 4; Potential experience,

Column 5; Time trend.

Columns 2-5 contain time varying variables. The second part of the data set contains
time invariant variables for the 2,178 households. These are

Column 1; Ability,

Column 2; Mother’s education,

Column 3; Father’s education,

Column 4; Dummy variable for residence in a broken home,
Column 5; Number of siblings.

To create the data set for this exercise, it is necessary to merge these two data files.

The ith observation in the second file will be replicated 7; times for the set of 7;

observations in the first file. The person id variable indicates which rows must con-

tain the data from the second file. (How this preparation is carried out will vary

from one computer package to another.) (Note: We are not attempting to replicate

Koop and Tobias’s results here —we are only employing their interesting data set.)

Let Xy = [constant, education, experience, ability] and let X, = [mother’s education,

father’s education, broken home, number of siblings].

a. Compute the full regression of log wage on X; and X; and report all results.

b. Use an F test to test the hypothesis that all coefficients except the constant term
are zero.

c. Use an F statistic to test the joint hypothesis that the coefficients on the four
household variables in X, are zero.

d. Use a Wald test to carry out the test in part c.

2. The generalized Cobb-Douglas cost function examined in Application 2 in Chap-
ter 4 is a special case of the translog cost function,

InC=a+BmO0+6InFP+6&InPF+6ln Py
+ dral 3 (0 PO + dul5(In P)*] + dyr[5(In Pp)?]
+ pulln P[In B] + ¢ir[In P][In Ps] + ¢y[In P[In Py
y[3(n 0)%]
+ Oo[In O][In F] + 6 [In Q][In ] + Og¢[In O][In Pr] + .

The theoretical requirement of linear homogeneity in the factor prices imposes the
following restrictions:

Sk+6 +8p=1, Gk + b+ drr = 0, b+ du+ oy =0
b+ i+ =0, Ook +0a +0gr =0.

Note that although the underlying theory requires it, the model can be estimated
(by least squares) without imposing the linear homogeneity restrictions. [Thus, one
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could “test” the underlying theory by testing the validity of these restrictions. See
Christensen, Jorgenson, and Lau (1975).] We will repeat this exercise in part b.

A number of additional restrictions were explored in Christensen and Greene’s
(1976) study. The hypothesis of homotheticity of the production structure would
add the additional restrictions

QQk =0, QQ[ =0, 9Qf =0.

Homogeneity of the production structure adds the restriction y = 0. The hypothe-
sis that all elasticities of substitution in the production structure are equal to —1 is
imposed by the six restrictions ¢;; = 0 for all 7 and ;.

We will use the data from the earlier application to test these restrictions. For
the purposes of this exercise, denote by fy, ..., Bis the 15 parameters in the cost
function above in the order that they appear in the model, starting in the first line
and moving left to right and downward.

a. Write out the R matrix and q vector in (5-8) that are needed to impose the
restriction of linear homogeneity in prices.

b. “Test” the theory of production using all 158 observations. Use an F test to test
the restrictions of linear homogeneity. Note, you can use the general form of the
F statistic in (5-16) to carry out the test. Christensen and Greene enforced the
linear homogeneity restrictions by building them into the model. You can do this
by dividing cost and the prices of capital and labor by the price of fuel. Terms
with f subscripts fall out of the model, leaving an equation with 10 parameters.
Compare the sums of squares for the two models to carry out the test. Of course,
the test may be carried out either way and will produce the same result.

c. Test the hypothesis homotheticity of the production structure under the assump-
tion of linear homogeneity in prices.

d. Test the hypothesis of the generalized Cobb-Douglas cost function in Chap-
ter 4 against the more general translog model suggested here, once again (and
henceforth) assuming linear homogeneity in the prices.

e. The simple Cobb-Douglas function appears in the first line of the model above.
Test the hypothesis of the Cobb-Douglas model against the alternative of the
full translog model.

f. Test the hypothesis of the generalized Cobb-Douglas model against the homo-
thetic translog model.

g. Which of the several functional forms suggested here do you conclude is the
most appropriate for these data?

The gasoline consumption model suggested in part d of Application 1 in Chapter 4

may be written as

In(G/Pop) = a + Bpln Py + B;In (Income/Pop) + ypc In Py 4 Vue In Pye + yp In Py
+tyear+84In Py +8,In P, + §;In P, + ¢.

a. Carry out a test of the hypothesis that the three aggregate price indices are not
significant determinants of the demand for gasoline.

b. Consider the hypothesis that the microelasticities are a constant proportion of
the elasticity with respect to their corresponding aggregate. Thus, for some pos-
itive 6 (presumably between 0 and 1), y,c = 084, Yue = 084, ypr = 08;. The first
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two imply the simple linear restriction y,. = y,.. By taking ratios, the first (or
second) and third imply the nonlinear restriction
nc 8
JJ:_pt = i or yncav - th(sd =0.
Describe in detail how you would test the validity of the restriction.
c. Using the gasoline market data in Table F2.2, test the two restrictions suggested
here, separately and jointly.

4. The J test in Example 5.7 is carried out using more than 50 years of data. It is
optimistic to hope that the underlying structure of the economy did not change in
50years. Does the result of the test carried out in Example 5.7 persist if it is based on
data only from 1980 to 2000? Repeat the computation with this subset of the data.



6.1

6

FUNCTIONAL FORM AND
STRUCTURAL CHANGE

INTRODUCTION

This chapter will complete our analysis of the linear regression model. We begin by ex-
amining different aspects of the functional form of the regression model. Many different
types of functions are linear by the definition in Section 2.3.1. By using different trans-
formations of the dependent and independent variables, binary variables, and different
arrangements of functions of variables, a wide variety of models can be constructed that
are all estimable by linear least squares. Section 6.2 considers using binary variables to
accommodate nonlinearities in the model. Section 6.3 broadens the class of models
that are linear in the parameters. By using logarithms, quadratic terms, and interaction
terms (products of variables), the regression model can accommodate a wide variety of
functional forms in the data.

Section 6.4 examines the issue of specifying and testing for discrete change in the
underlying process that generates the data, under the heading of structural change. In
a time-series context, this relates to abrupt changes in the economic environment, such
as major events in financial (e.g., the world financial crisis of 2007-2009) or commodity
markets (such as the several upheavals in the oil market). In a cross section, we can
modify the regression model to account for discrete differences across groups such as
different preference structures or market experiences of men and women.

6.2 USING BINARY VARIABLES

One of the most useful devices in regression analysis is the binary, or dummy variable.
A dummy variable takes the value one for some observations to indicate the presence
of an effect or membership in a group and zero for the remaining observations. Bi-
nary variables are a convenient means of building discrete shifts of the function into a
regression model.

6.2.1 BINARY VARIABLES IN REGRESSION

Dummy variables are usually used in regression equations that also contain other quan-
titative variables. In the earnings equation in Example 5.2, we included a variable Kids
to indicate whether there were children in the household, under the assumption that for
many married women, this fact is a significant consideration in labor supply behavior.
The results shown in Example 6.1 appear to be consistent with this hypothesis.

189



190 PART | ¢ The Linear Regression Model

TABLE 6.1 Estimated Earnings Equation
In earnings = B + B, age + B3 age> + B4 education + Bs kids +

Sum of squared residuals: 599.4582

Standard error of the regression: 1.19044

R? based on 428 observations 0.040995

Variable Coefficient Standard Error t Ratio
Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Age? —0.0023147 0.00098688 —2.345
Education 0.067472 0.025248 2.672
Kids —0.35119 0.14753 —2.380

Example 6.1 Dummy Variable in an Earnings Equation

Table 6.1 following reproduces the estimated earnings equation in Example 5.2. The variable
Kids is a dummy variable, which equals one if there are children under 18 in the household and
zero otherwise. Since this is a semilog equation, the value of —0.35 for the coefficient is an
extremely large effect, one which suggests that all other things equal, the earnings of women
with children are nearly a third less than those without. This is a large difference, but one that
would certainly merit closer scrutiny. Whether this effect results from different labor market
effects that influence wages and not hours, or the reverse, remains to be seen. Second, having
chosen a nonrandomly selected sample of those with only positive earnings to begin with,
it is unclear whether the sampling mechanism has, itself, induced a bias in this coefficient.

Dummy variables are particularly useful in loglinear regressions. In a model of the

form
Iny =B+ pox + p3d + ¢,
the coefficient on the dummy variable, d, indicates a multiplicative shift of the function.
The percentage change in E[y|x,d] asociated with the change in d is
Elylx,d =1] — E[y|x,d = 0]
E[y|x,d = 0]
exp(Bi + Box + B3) E[exp(e)] — exp(B1 + Bax) E[exp(e)] }
exp(Bi + B2x) E[exp(e)]

% (AE[ylx,d]/Ad) = 100%{

= 100%{

= 100%[exp(B3) — 1].

Example 6.2 Value of a Signature

In Example 4.10 we explored the relationship between (log of) sale price and surface area for
430 sales of Monet paintings. Regression results from the example are included in Table 6.2.
The results suggest a strong relationship between area and price—the coefficient is 1.33372
indicating a highly elastic relationship and the t ratio of 14.70 suggests the relationship is
highly significant. A variable (effect) that is clearly left out of the model is the effect of the
artist’s signature on the sale price. Of the 430 sales in the sample, 77 are for unsigned
paintings. The results at the right of Table 6.2 include a dummy variable for whether the
painting is signed or not. The results show an extremely strong effect. The regression results
imply that

E[Price|Area, Aspect, Signature) =
exp[—9.64 + 1.35In Area — 0.08AspectRatio + 1.23Signature + 0.9932/2].
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TABLE 6.2 Estimated Equations for Log Price
Inprice = B + B2 In Area + Bsaspect ratio + Pasignature + ¢

Mean of In Price 0.33274
Number of observations 430
Sum of squared residuals 519.17235 420.16787
Standard error 1.10266 0.99313
R-squared 0.33620 0.46279
Adjusted R-squared 0.33309 0.45900

Standard Standard
Variable Coefficient Error t Coefficient Error t
Constant —8.42653 0.61183 —13.77  —9.64028 0.56422 —17.09
Ln area 1.33372 0.09072 14.70 1.34935 0.08172 16.51
Aspectratio  —0.16537 0.12753 —-130  —0.07857 0.11519 —0.68
Signature 0.00000 0.00000 0.00 1.25541 0.12530 10.02

(See Section 4.6.) Computing this result for a painting of the same area and aspect ratio, we
find the model predicts that the signature effect would be

100% x (AE|[Price]/Price) = 100%[exp(1.26) — 1] = 252%.

The effect of a signature on an otherwise similar painting is to more than double the price. The
estimated standard error for the signature coefficient is 0.1253. Using the delta method, we
obtain an estimated standard error for [exp(bs) — 1] of the square root of [exp(bs)]? x .12532,
which is 0.4417. For the percentage difference of 252%, we have an estimated standard
error of 44.17%.

Superficially, it is possible that the size effect we observed earlier could be explained by
the presence of the signature. If the artist tended on average to sign only the larger paintings,
then we would have an explanation for the counterintuitive effect of size. (This would be
an example of the effect of multicollinearity of a sort.) For a regression with a continuous
variable and a dummy variable, we can easily confirm or refute this proposition. The average
size for the 77 sales of unsigned paintings is 1,228.69 square inches. The average size of
the other 353 is 940.812 square inches. There does seem to be a substantial systematic
difference between signed and unsigned paintings, but it goes in the other direction. We
are left with significant findings of both a size and a signature effect in the auction prices of
Monet paintings. Aspect Ratio, however, appears still to be inconsequential.

There is one remaining feature of this sample for us to explore. These 430 sales involved
only 387 different paintings. Several sales involved repeat sales of the same painting. The
assumption that observations are independent draws is violated, at least for some of them.
We will examine this form of “clustering” in Chapter 11 in our treatment of panel data.

Itis common for researchers to include a dummy variable in a regression to account
for something that applies only to a single observation. For example, in time-series
analyses, an occasional study includes a dummy variable that is one only in a single
unusual year, such as the year of a major strike or a major policy event. (See, for
example, the application to the German money demand function in Section 21.3.5.) It
is easy to show (we consider this in the exercises) the very useful implication of this:

A dummy variable that takes the value one only for one observation has the effect of
deleting that observation from computation of the least squares slopes and variance
estimator (but not R-squared).
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6.2.2 SEVERAL CATEGORIES

When there are several categories, a set of binary variables is necessary. Correcting
for seasonal factors in macroeconomic data is a common application. We could write a
consumption function for quarterly data as

C = P14+ Poxi + 81D + 62 Do + 83 D13 + &4,

where x; is disposable income. Note that only three of the four quarterly dummy vari-
ables are included in the model. If the fourth were included, then the four dummy
variables would sum to one at every observation, which would reproduce the constant
term—a case of perfect multicollinearity. This is known as the dummy variable trap.
Thus, to avoid the dummy variable trap, we drop the dummy variable for the fourth quar-
ter. (Depending on the application, it might be preferable to have four separate dummy
variables and drop the overall constant.)! Any of the four quarters (or 12 months) can
be used as the base period.

The preceding is a means of deseasonalizing the data. Consider the alternative
formulation:

C = Bx; + 61D + 82Dy + 63Dy3 + 84 Dpa + ;. (6-1)

Using the results from Section 3.3 on partitioned regression, we know that the preceding
multiple regression is equivalent to first regressing C and x on the four dummy variables
and then using the residuals from these regressions in the subsequent regression of
deseasonalized consumption on deseasonalized income. Clearly, deseasonalizing in this
fashion prior to computing the simple regression of consumption on income produces
the same coefficient on income (and the same vector of residuals) as including the set
of dummy variables in the regression.

Example 6.3 Genre Effects on Movie Box Office Receipts

Table 4.8 in Example 4.12 presents the results of the regression of log of box office receipts
for 62 2009 movies on a number of variables including a set of dummy variables for genre:
Action, Comedy, Animated, or Horror. The left out category is “any of the remaining 9 genres”
in the standard set of 13 that is usually used in models such as this one. The four coefficients
are —0.869, —0.016, —0.833, +0.375, respectively. This suggests that, save for horror movies,
these genres typically fare substantially worse at the box office than other types of movies.
We note the use of b directly to estimate the percentage change for the category, as we
did in example 6.1 when we interpreted the coefficient of —0.35 on Kids as indicative of a
35 percent change in income, is an approximation that works well when b is close to zero
but deteriorates as it gets far from zero. Thus, the value of —0.869 above does not translate
to an 87 percent difference between Action movies and other movies. Using the formula we
used in Example 6.2, we find an estimated difference closer to [exp(—0.869) — 1] or about
58 percent.

6.2.3 SEVERAL GROUPINGS

The case in which several sets of dummy variables are needed is much the same as
those we have already considered, with one important exception. Consider a model of
statewide per capita expenditure on education y as a function of statewide per capita
income x. Suppose that we have observations on all n = 50 states for 7" = 10 years.

1See Suits (1984) and Greene and Seaks (1991).
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A regression model that allows the expected expenditure to change over time as well
as across states would be

Yie = o+ Bxy + 8 + 6, + &t (6-2)

As before, it is necessary to drop one of the variables in each set of dummy variables
to avoid the dummy variable trap. For our example, if a total of 50 state dummies and
10 time dummies is retained, a problem of “perfect multicollinearity” remains; the sums
of the 50 state dummies and the 10 time dummies are the same, that is, 1. One of the
variables in each of the sets (or the overall constant term and one of the variables in
one of the sets) must be omitted.

Example 6.4 Analysis of Covariance

The data in Appendix Table F6.1 were used in a study of efficiency in production of airline
services in Greene (2007a). The airline industry has been a favorite subject of study [e.g.,
Schmidt and Sickles (1984); Sickles, Good, and Johnson (1986)], partly because of interest
in this rapidly changing market in a period of deregulation and partly because of an abun-
dance of large, high-quality data sets collected by the (no longer existent) Civil Aeronautics
Board. The original data set consisted of 25 firms observed yearly for 15 years (1970 to 1984),
a “balanced panel.” Several of the firms merged during this period and several others expe-
rienced strikes, which reduced the number of complete observations substantially. Omitting
these and others because of missing data on some of the variables left a group of 10 full
observations, from which we have selected six for the examples to follow. We will fit a cost
equation of the form

INCit = B1+ P2IN Qi + B3 In* Qi + BaIn Pues 1 + Bs Loadfactor;

14 5
+ Z 0:Dj+ + Z SiFit+eit.
t—1 i—1

The dummy variables are D; ; which is the year variable and F; ; which is the firm variable. We
have dropped the last one in each group. The estimated model for the full specification is

INC;; = 13.56 + 0.88661n Q;; + 0.01261In> Q;; + 0.1281In Py;; — 0.8855LF;,

+ time effects + firm effects + g ;.

The year effects display a revealing pattern, as shown in Figure 6.1. This was a period of
rapidly rising fuel prices, so the cost effects are to be expected. Since one year dummy
variable is dropped, the effect shown is relative to this base year (1984).

We are interested in whether the firm effects, the time effects, both, or neither are sta-
tistically significant. Table 6.3 presents the sums of squares from the four regressions. The
F statistic for the hypothesis that there are no firm-specific effects is 65.94, which is highly
significant. The statistic for the time effects is only 2.61, which is larger than the critical value
of 1.84, but perhaps less so than Figure 6.1 might have suggested. In the absence of the

TABLE 6.3 F tests for Firm and Year Effects

Model Sum of Squares Restrictions F Deg.Fr.
Full model 0.17257 0 —

Time effects only 1.03470 5 65.94 [5,66]
Firm effects only 0.26815 14 2.61 [14,66]

No effects 1.27492 19 22.19 [19,66]
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FIGURE 6.1 Estimated Year Dummy Variable Coefficients.

year-specific dummy variables, the year-specific effects are probably largely absorbed by
the price of fuel.

6.2.4 THRESHOLD EFFECTS AND CATEGORICAL VARIABLES

In most applications, we use dummy variables to account for purely qualitative factors,
such as membership in a group, or to represent a particular time period. There are cases,
however, in which the dummy variable(s) represents levels of some underlying factor
that might have been measured directly if this were possible. For example, education
is a case in which we typically observe certain thresholds rather than, say, years of
education. Suppose, for example, that our interest is in a regression of the form

income = B1 + B, age + effect of education + ¢.

The data on education might consist of the highest level of education attained, such
as high school (HS), undergraduate (B), master’s (M), or Ph.D. (P). An obviously
unsatisfactory way to proceed is to use a variable E that is 0 for the first group, 1 for the
second, 2 for the third, and 3 for the fourth. That is, income = 1 + B, age + B3E + ¢.
The difficulty with this approach is that it assumes that the increment in income at each
threshold is the same; 83 is the difference between income with a Ph.D. and a master’s
and between a master’s and a bachelor’s degree. This is unlikely and unduly restricts
the regression. A more flexible model would use three (or four) binary variables, one
for each level of education. Thus, we would write

income = B+ Brage+3p B+ 5y M+ 5p P+ ¢.
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The correspondence between the coefficients and income for a given age is

High school: E [income | age, HS]| = B1 + B> age,

Bachelor’s:  E[income|age, Bl = B1 + B age + 3,

Master’s: E[income|age, M] = B + B2 age + du,

Ph.D.: E[income|age, Pl = B + B age + 8p.
The differences between, say, § p and §,; and between 8, and 85 are of interest. Obvi-
ously, these are simple to compute. An alternative way to formulate the equation that
reveals these differences directly is to redefine the dummy variables to be 1 if the indi-
vidual has the degree, rather than whether the degree is the highest degree obtained.

Thus, for someone with a Ph.D., all three binary variables are 1, and so on. By defining
the variables in this fashion, the regression is now

High school: E[income|age, HS] = B1 + B, age,

Bachelor’s:  E[income|age, Bl = B1 + B2 age + 3,
Master’s: E[income|age, M] = B + B> age + 85 + dum,
Ph.D.: E[income|age, P] = 1+ Brage+Sp+ Sy + Sp.

Instead of the difference between a Ph.D. and the base case, in this model §p is the
marginal value of the Ph.D. How equations with dummy variables are formulated is a
matter of convenience. All the results can be obtained from a basic equation.

6.2.5 TREATMENT EFFECTS AND DIFFERENCE
IN DIFFERENCES REGRESSION

Researchers in many fields have studied the effect of a treatment on some kind of
response. Examples include the effect of going to college on lifetime income [Dale
and Krueger (2002)], the effect of cash transfers on child health [Gertler (2004)], the
effect of participation in job training programs on income [Lal.onde (1986)], and pre-
versus postregime shifts in macroeconomic models [Mankiw (2006)], to name but a
few. These examples can be formulated in regression models involving a single dummy
variable:

Vi =X;B+8D; +ei,

where the shift parameter, §, measures the impact of the treatment or the policy change
(conditioned on x) on the sampled individuals. In the simplest case of a comparison of
one group to another,

Vi=pB1+ BD; +e¢,

we will have by = (¥|D; = 0), that is, the average outcome of those who did not ex-
perience the intervention, and b, = (y|D; = 1) — (y|D; = 0), the difference in the
means of the two groups. In the Dale and Krueger (2002) study, the model compared
the incomes of students who attended elite colleges to those who did not. When the
analysis is of an intervention that occurs over time, such as Krueger’s (1999) analysis
of the Tennessee STAR experiment in which school performance measures were ob-
served before and after a policy dictated a change in class sizes, the treatment dummy
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variable will be a period indicator, D; = 0 in period 1 and 1 in period 2. The effect in 3,
measures the change in the outcome variable, for example, school performance, pre- to
postintervention; b, = y; — ¥p.

The assumption that the treatment group does not change from period 1 to period 2
weakens this comparison. A strategy for strengthening the result is to include in the
sample a group of control observations that do not receive the treatment. The change in
the outcome for the treatment group can then be compared to the change for the control
group under the presumption that the difference is due to the intervention. An intriguing
application of this strategy is often used in clinical trials for health interventions to
accommodate the placebo effect. The placebo “effect” is a controversial, but apparently
tangible outcome in some clinical trials in which subjects “respond” to the treatment
even when the treatment is a decoy intervention, such as a sugar or starch pill in a drug
trial. [See Hrobjartsson and Gotzsche, 2001.] A broad template for assessment of the
results of such a clinical trial is as follows: The subjects who receive the placebo are
the controls. The outcome variable —level of cholesterol for example —is measured at
the baseline for both groups. The treatment group receives the drug; the control group
receives the placebo, and the outcome variable is measured posttreatment. The impact
is measured by the difference in differences,

E= [()_}exit“reatment) - (ybaseline“reatmenz)] - [(yexit|placeb0) - (ybaseline |Placeb0)]~

The presumption is that the difference in differences measurement is robust to the
placebo effect if it exists. If there is no placebo effect, the result is even stronger
(assuming there is a result).

An increasingly common social science application of treatment effect models with
dummy variables is in the evaluation of the effects of discrete changes in policy.? A
pioneering application is the study of the Manpower Development and Training Act
(MDTA) by Ashenfelter and Card (1985). The simplest form of the model is one with
a pre- and posttreatment observation on a group, where the outcome variable is y,
with

Vi=PB1+ BT+ BD + BTy x D +¢i, t =1,2. (6-3)

In this model, 7; is a dummy variable that is zero in the pretreatment period and
one after the treatment and D; equals one for those individuals who received the
“treatment.” The change in the outcome variable for the “treated” individuals will
be

WlDi =1 — (yulDi =D =B+ B+ Bz + Ba) — (B1+ B3) = B2 + Ba.

For the controls, this is

il Di = 0) — (vl Dy = 0) = (B1 + B2) — (B1) = p2.

The difference in differences is

(Y2l D; = 1) — (yi1| Di = )] = [(yi2| Di = 0) — (yin| Di = 0)] = Ba.

2Surveys of literatures on treatment effects, including use of, ‘D-i-D, estimators, are provided by Imbens and
Wooldridge (2009) and Millimet, Smith, and Vytlacil (2008).
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In the multiple regression of y;, on a constant, 7, D, and 7D, the least squares estimate
of B4 will equal the difference in the changes in the means,
by = (y|D =1, Period 2) — (y|D = 1, Period 1)
— (y|D =0, Period 2) — (y| D = 0, Period 1)
= AYy|treatment — Ay|control.

The regression is called a difference in differences estimator in reference to this result.

When the treatment is the result of a policy change or event that occurs completely
outside the context of the study, the analysis is often termed a natural experiment. Card’s

(1990) study of a major immigration into Miami in 1979 discussed in Example 6.5 is an
application.

Example 6.5 A Natural Experiment: The Mariel Boatlift

A sharp change in policy can constitute a natural experiment. An example studied by Card
(1990) is the Mariel boatlift from Cuba to Miami (May-September 1980), which increased the
Miami labor force by 7 percent. The author examined the impact of this abrupt change in labor
market conditions on wages and employment for nonimmigrants. The model compared Miami
to a similar city, Los Angeles. Let i denote an individual and D denote the “treatment,” which
for an individual would be equivalent to “lived in a city that experienced the immigration.”
For an individual in either Miami or Los Angeles, the outcome variable is

(Y;) =1 if they are unemployed and 0 if they are employed.

Let c denote the city and let t denote the period, before (1979) or after (1981) the immigration.
Then, the unemployment rate in city ¢ at time t is E[y; o|c, t] if there is no immigration and it
is E[y; 1]c, t] if there is the immigration. These rates are assumed to be constants. Then,

Elyiolc, t] = Bt + ve without the immigration,
Elyiilc, t] = Bt + yc+ 38 with the immigration.

The effect of the immigration on the unemployment rate is measured by §. The natural ex-
periment is that the immigration occurs in Miami and not in Los Angeles but is not a result
of any action by the people in either city. Then,

E[y;IM,79] = Bro+ym and E[y;IM,81] = Bg; +yw +8 for Miami,
E[y;IL,79] = 7o+ and E[yi|L, 81 = Bs1 + 1 for Los Angeles.

It is assumed that unemployment growth in the two cities would be the same if there were
no immigration. If neither city experienced the immigration, the change in the unemployment
rate would be

Elyi,0IM, 81] — E[yi,0IM, 79] = Bg1 — pro  for Miami,
ElyiolL, 81] — E[yiolL, 79] = Bs1 — B79 for Los Angeles.
If both cities were exposed to migration,
Elyi1IM, 81] — E[y;1IM, 79] = Bg1 — Bro +8 for Miami
Elyi1IL, 81] — E[yi1IL, 79] = Bg1 — Brg + 8 for Los Angeles.

Only Miami experienced the migration (the “treatment”). The difference in differences that
quantifies the result of the experiment is

{ELY;,1IM, 81] — E[yi1IM, 791} — {E[¥;,0lL, 81] — E[¥i,0lL, 79]} = 6.
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The author examined changes in employment rates and wages in the two cities over several
years after the boatlift. The effects were surprisingly modest given the scale of the experiment
in Miami.

One of the important issues in policy analysis concerns measurement of such treat-
ment effects when the dummy variable results from an individual participation decision.
In the clinical trial example given earlier, the control observations (it is assumed) do not
know they they are in the control group. The treatment assignment is exogenous to the
experiment. In contrast, in Keueger and Dale’s study, the assignment to the treatment
group, attended the elite college, is completely voluntary and determined by the indi-
vidual. A crucial aspect of the analysis in this case is to accommodate the almost certain
outcome that the “treatment dummy” might be measuring the latent motivation and
initiative of the participants rather than the effect of the program itself. That is the main
appeal of the natural experiment approach—it more closely (possibly exactly) repli-
cates the exogenous treatment assignment of a clinical trial.> We will examine some of
these cases in Chapters 8 and 19.

6.3 NONLINEARITY IN THE VARIABLES

It is useful at this point to write the linear regression model in a very general form: Let
zZ=2,2,...,21 be aset of Lindependent variables; let fi, f>, ..., fx be K linearly
independent functions of z; let g(y) be an observable function of y; and retain the usual
assumptions about the disturbance. The linear regression model may be written

g =pfi@+pL@+ - +Bxfx@ +e¢
= pix1 + Paxo + -+ Brxx + ¢ (6-4)
=xB +e.

By using logarithms, exponentials, reciprocals, transcendental functions, polynomials,
products, ratios, and so on, this “linear” model can be tailored to any number of
situations.

6.3.1 PIECEWISE LINEAR REGRESSION

If one is examining income data for a large cross section of individuals of varying ages
in a population, then certain patterns with regard to some age thresholds will be clearly
evident. In particular, throughout the range of values of age, income will be rising, but the
slope might change at some distinct milestones, for example, at age 18, when the typical
individual graduates from high school, and at age 22, when he or she graduates from
college. The time profile of income for the typical individual in this population might
appear as in Figure 6.2. Based on the discussion in the preceding paragraph, we could
fit such a regression model just by dividing the sample into three subsamples. However,
this would neglect the continuity of the proposed function. The result would appear
more like the dotted figure than the continuous function we had in mind. Restricted

3See Angrist and Krueger (2001) and Angrist and Pischke (2010) for discussions of this approach.
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regression and what is known as a spline function can be used to achieve the desired
effect.t
The function we wish to estimate is

E [income | age] = o + B° age if age < 18,

o' + Blage ifage > 18 and age < 22,
o + B%age if age > 22.

The threshold values, 18 and 22, are called knots. Let
d =1 ifage>t],
d =1 ifage>t;,

where ¢ = 18 and t; = 22. To combine all three equations, we use

income = By + B, age + yidy + 81dy age + y»dr + 8,dp age + «.

This relationship is the dashed function in Figure 6.2. The slopes in the three segments
are B, B2+ 681, and B, + &1 + ;. To make the function piecewise continuous, we require
that the segments join at the knots—that is,

B+ Batf = (Br +11) + (B2 + 8Dt

and

Br+y)+ B+t =B+ +y)+ B+ 681 +8)15.

4An important reference on this subject is Poirier (1974). An often-cited application appears in Garber and
Poirier (1974).
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These are linear restrictions on the coefficients. Collecting terms, the first one is
v+8itf =0 or y =811
Doing likewise for the second and inserting these in (6-3), we obtain
income = B1 + P age + 81d (age — 1)) + S, (age — t5) + €.

Constrained least squares estimates are obtainable by multiple regression, using a con-
stant and the variables

x| = age,
X, = age — 18 if age > 18 and 0 otherwise,
and
x3 = age — 22 if age > 22 and 0 otherwise.

We can test the hypothesis that the slope of the function is constant with the joint test
of the two restrictions §; = 0 and §, = 0.

6.3.2 FUNCTIONAL FORMS

A commonly used form of regression model is the loglinear model,

lny=1na+z,6klnXk+8=,81+Zﬂkxk+8.
k k

In this model, the coefficients are elasticities:

(22)(2) - s -
0 Xk y 9 In X

In the loglinear equation, measured changes are in proportional or percentage terms;
Br measures the percentage change in y associated with a 1 percent change in Xj;.
This removes the units of measurement of the variables from consideration in using the
regression model. An alternative approach sometimes taken is to measure the variables
and associated changes in standard deviation units. If the data are “standardized” before
estimation using x;; = (x;x — Xx)/sx and likewise for y, then the least squares regression
coefficients measure changes in standard deviation units rather than natural units or
percentage terms. (Note that the constant term disappears from this regression.) It is
not necessary actually to transform the data to produce these results; multiplying each
least squares coefficient by in the original regression by si/s, produces the same result.

A hybrid of the linear and loglinear models is the semilog equation

Iny = 1 + pox + &. (6-6)
We used this form in the investment equation in Section 5.2.2,
Inly =i+ B2 (i — Ap) + BsAp + BaIn Y, + Bst + &,

where the log of investment is modeled in the levels of the real interest rate, the price
level, and a time trend. In a semilog equation with a time trend such as this one,
dIn I/dt = Bs is the average rate of growth of /. The estimated value of —0.00566 in
Table 5.2 suggests that over the full estimation period, after accounting for all other
factors, the average rate of growth of investment was —(0.566 percent per year.
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The coefficients in the semilog model are partial- or semi-elasticities; in (6-6), B, is
dIn y/dx. This is a natural form for models with dummy variables such as the earnings
equation in Example 5.2. The coefficient on Kids of —0.35 suggests that all else equal,
earnings are approximately 35 percent less when there are children in the household.

The quadratic earnings equation in Example 6.1 shows another use of nonlineari-
ties in the variables. Using the results in Example 6.1, we find that for a woman with
12 years of schooling and children in the household, the age-earnings profile appears as
in Figure 6.3. This figure suggests an important question in this framework. It is tempting
to conclude that Figure 6.3 shows the earnings trajectory of a person at different ages,
but that is not what the data provide. The model is based on a cross section, and what it
displays is the earnings of different people of different ages. How this profile relates to
the expected earnings path of one individual is a different, and complicated question.

6.3.3 INTERACTION EFFECTS

Another useful formulation of the regression model is one with interaction terms. For
example, a model relating braking distance D to speed S and road wetness W might be

D=1+ S+ W+ BsSW + &.
In this model,
dE[D| S, W]
08

which implies that the marginal effect of higher speed on braking distance is increased
when the road is wetter (assuming that B4 is positive). If it is desired to form confidence
intervals or test hypotheses about these marginal effects, then the necessary standard

= o+ BuW,
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error is computed from

Var(aE[ms, W]

oS ) = Var[B,] + W? Var[B,] + 2W Cov|[B,. B,].

and similarly for d E[D| S, W]/dW. A value must be inserted for W. The sample mean
is a natural choice, but for some purposes, a specific value, such as an extreme value of
W in this example, might be preferred.

6.3.4 IDENTIFYING NONLINEARITY

If the functional form is not known a priori, then there are a few approaches that may
help at least to identify any nonlinearity and provide some information about it from the
sample. For example, if the suspected nonlinearity is with respect to a single regressor
in the equation, then fitting a quadratic or cubic polynomial rather than a linear function
may capture some of the nonlinearity. By choosing several ranges for the regressor in
question and allowing the slope of the function to be different in each range, a piecewise
linear approximation to the nonlinear function can be fit.

Example 6.6 Functional Form for a Nonlinear Cost Function

In a celebrated study of economies of scale in the U.S. electric power industry, Nerlove (1963)
analyzed the production costs of 145 American electricity generating companies. This study
produced several innovations in microeconometrics. It was among the first major applications
of statistical cost analysis. The theoretical development in Nerlove’s study was the first to
show how the fundamental theory of duality between production and cost functions could be
used to frame an econometric model. Finally, Nerlove employed several useful techniques
to sharpen his basic model.

The focus of the paper was economies of scale, typically modeled as a characteristic of
the production function. He chose a Cobb-Douglas function to model output as a function
of capital, K, labor, L, and fuel, F:

Q = agK K L F*r e,

where Q is output and ¢; embodies the unmeasured differences across firms. The economies
of scale parameter isr = ax +a; +ar. The value 1 indicates constant returns to scale. In this
study, Nerlove investigated the widely accepted assumption that producers in this industry
enjoyed substantial economies of scale. The production model is loglinear, so assuming that
other conditions of the classical regression model are met, the four parameters could be
estimated by least squares. However, he argued that the three factors could not be treated
as exogenous variables. For a firm that optimizes by choosing its factors of production, the
demand for fuel would be F* = F*(Q, Px, P., Pr) and likewise for labor and capital, so
certainly the assumptions of the classical model are violated.

In the regulatory framework in place at the time, state commissions set rates and firms
met the demand forthcoming at the regulated prices. Thus, it was argued that output (as well
as the factor prices) could be viewed as exogenous to the firm and, based on an argument by
Zellner, Kmenta, and Dreze (1966), Nerlove argued that at equilibrium, the deviation of costs
from the long-run optimum would be independent of output. (This has a testable implication
which we will explore in Section 19.2.4.) Thus, the firm’s objective was cost minimization
subject to the constraint of the production function. This can be formulated as a Lagrangean
problem,

MinK,L,FPKK —+ PLL —+ PFF +)\.(Q — O{oKaKLaL thF)

The solution to this minimization problem is the three factor demands and the multiplier
(which measures marginal cost). Inserted back into total costs, this produces an (intrinsically



CHAPTER 6 4 Functional Form and Structural Change 203

TABLE 6.4 Cobb-Douglas Cost Functions (standard errors in

parentheses)
log O log P, — log Pr log Px — log Pr R
All firms 0.721 0.593 —0.0085 0.932
(0.0174) (0.205) (0.191)
Group 1 0.400 0.615 —0.081 0.513
Group 2 0.658 0.094 0.378 0.633
Group 3 0.938 0.402 0.250 0.573
Group 4 0.912 0.507 0.093 0.826
Group 5 1.044 0.603 —0.289 0.921

linear) loglinear cost function,
P<K + P.L + PeF = C(Q, Px, P, Pe) = r AQ"" Pgr/" pi/" peelrefr,
or
INC =81+ BInQ+ B InPx + BLInP.+ BrIn Pr +u;j, (6-7)

where B, = 1/(ax + a1 + aF) is now the parameter of interest and 8; = «;/r, j = K, L,
F. Thus, the duality between production and cost functions has been used to derive the
estimating equation from first principles.

A complication remains. The cost parameters must sum to one; B« + 8. + B = 1, so
estimation must be done subject to this constraint.® This restriction can be imposed by
regressing In(C/Pr) on a constant, In Q, In(P«/Pr), and In(P./Pe). This first set of results
appears at the top of Table 6.4.°

Initial estimates of the parameters of the cost function are shown in the top row of Table 6.4.
The hypothesis of constant returns to scale can be firmly rejected. The t ratio is (0.721 —
1)/0.0174 = —16.03, so we conclude that this estimate is significantly less than 1 or, by
implication, r is significantly greater than 1. Note that the coefficient on the capital price is
negative. In theory, this should equal ax /r, which (unless the marginal product of capital is
negative) should be positive. Nerlove attributed this to measurement error in the capital price
variable. This seems plausible, but it carries with it the implication that the other coefficients
are mismeasured as well. [Christensen and Greene’s (1976) estimator of this model with these
data produced a positive estimate. See Section 10.5.2.]

The striking pattern of the residuals shown in Figure 6.4 and some thought about the
implied form of the production function suggested that something was missing from the
model.” In theory, the estimated model implies a continually declining average cost curve,

SIn the context of the econometric model, the restriction has a testable implication by the definition in
Chapter 5. But, the underlying economics require this restriction—it was used in deriving the cost function.
Thus, it is unclear what is implied by a test of the restriction. Presumably, if the hypothesis of the restriction
is rejected, the analysis should stop at that point, since without the restriction, the cost function is not a
valid representation of the production function.We will encounter this conundrum again in another form in
Chapter 10. Fortunately, in this instance, the hypothesis is not rejected. (It is in the application in Chapter 10.)

®Readers who attempt to replicate Nerlove’s study should note that he used common (base 10) logs in his
calculations, not natural logs. A practical tip: to convert a natural log to a common log, divide the former by
log, 10 = 2.302585093. Also, however, although the first 145 rows of the data in Appendix Table F6.2 are
accurately transcribed from the original study, the only regression listed in Table 6.3 that can be reproduced
with these data is the first one. The results for Groups 1-5 in the table have been recomputed here and do
not match Nerlove’s results. Likewise, the results in Table 6.4 have been recomputed and do not match the
original study.

7 A Durbin-Watson test of correlation among the residuals (see Section 20.7) revealed to the author a sub-
stantial autocorrelation. Although normally used with time series data, the Durbin—Watson statistic and a test
for “autocorrelation” can be a useful tool for determining the appropriate functional form in a cross-sectional
model. To use this approach, it is necessary to sort the observations based on a variable of interest (output).
Several clusters of residuals of the same sign suggested a need to reexamine the assumed functional form.
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FIGURE 6.4 Residuals from Predicted Cost.

which in turn implies persistent economies of scale at all levels of output. This conflicts with
the textbook notion of a U-shaped average cost curve and appears implausible for the data.
Note the three clusters of residuals in the figure. Two approaches were used to extend the
model.

By sorting the sample into five groups of 29 firms on the basis of output and fitting separate
regressions to each group, Nerlove fit a piecewise loglinear model. The results are given in the
lower rows of Table 6.4, where the firms in the successive groups are progressively larger. The
results are persuasive that the (log)linear cost function is inadequate. The output coefficient
that rises toward and then crosses 1.0 is consistent with a U-shaped cost curve as surmised
earlier.

A second approach was to expand the cost function to include a quadratic term in log
output. This approach corresponds to a much more general model and produced the results
given in Table 6.5. Again, a simple t test strongly suggests that increased generality is called
for;t = 0.051/0.00054 = 9.44. The output elasticity in this quadratic model is Bq+2y4q log Q.2
There are economies of scale when this value is less than 1 and constant returns to scale
when it equals 1. Using the two values given in the table (0.152 and 0.0052, respectively), we
find that this function does, indeed, produce a U-shaped average cost curve with minimum
atinQ =(1-0.152) /(2 x 0.051) = 8.31, or Q = 4079, which is roughly in the middle of the
range of outputs for Nerlove’s sample of firms.

This study was updated by Christensen and Greene (1976). Using the same data but a
more elaborate (translog) functional form and by simultaneously estimating the factor de-
mands and the cost function, they found results broadly similar to Nerlove’s. Their preferred
functional form did suggest that Nerlove’s generalized model in Table 6.5 did somewhat un-
derestimate the range of outputs in which unit costs of production would continue to decline.
They also redid the study using a sample of 123 firms from 1970 and found similar results.

8Nerlove inadvertently measured economies of scale from this function as 1/ (Bg + 8log Q), where B, and
8 are the coefficients on log Q and log? Q. The correct expression would have been 1/[3 log C/dlog O] =
1/[B4 + 28 log Q]. This slip was periodically rediscovered in several later papers.
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TABLE 6.5 Log-Quadratic Cost Function (standard errors in parentheses)

log O log’ Q log P — log Pr log Px — log Pr R
All firms 0.152 0.051 0.481 0.074 0.96
(0.062) (0.0054) (0.161) (0.150)

In the latter sample, however, it appeared that many firms had expanded rapidly enough
to exhaust the available economies of scale. We will revisit the 1970 data set in a study of
production costs in Section 10.5.1.

The preceding example illustrates three useful tools in identifying and dealing with
unspecified nonlinearity: analysis of residuals, the use of piecewise linear regression,
and the use of polynomials to approximate the unknown regression function.

6.3.5 INTRINSICALLY LINEAR MODELS

The loglinear model illustrates an intermediate case of a nonlinear regression model.
The equation is intrinsically linear, however. By taking logs of Y] = aXiﬂ *e®, we obtain

InY,=lna+pInX +¢
or
Yi = B1 + Boxi + €.

Although this equation is linear in most respects, something has changed in that it is no
longer linear in . Written in terms of $;, we obtain a fully linear model. But that may
not be the form of interest. Nothing is lost, of course, since f; is just In«. If 81 can be
estimated, then an obvious estimator of « is suggested, @ = exp(by).

This fact leads us to a useful aspect of intrinsically linear models; they have an
“invariance property.” Using the nonlinear least squares procedure described in the
next chapter, we could estimate « and B, directly by minimizing the sum of squares
function:

Minimize with respect to («, B2) : S(«, f2) = Z (InY, —Ina — Bz In X)?.  (6-8)
i=1

This is a complicated mathematical problem because of the appearance the term Ina.
However, the equivalent linear least squares problem,

Minimize with respect to (81, 82) : S(B1, B2) = Z (yi — B1 — ,Bin)z, (6-9)
i=1

is simple to solve with the least squares estimator we have used up to this point. The
invariance feature that applies is that the two sets of results will be numerically identical,;
we will get the identical result from estimating « using (6-8) and from using exp(8;) from
(6-9). By exploiting this result, we can broaden the definition of linearity and include
some additional cases that might otherwise be quite complex.
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TABLE 6.6 Estimates of the Regression in a Gamma Model: Least Squares
versus Maximum Likelihood

B P
Estimate Standard Error Estimate Standard Error
Least squares —1.708 8.689 2.426 1.592
Maximum likelihood —4.719 2.345 3.151 0.794

DEFINITION 6.1 Intrinsic Linearity

In the classical linear regression model, if the K parameters B, f2, ..., Bx can
be written as K one-to-one, possibly nonlinear functions of a set of K underlying
parameters 61, 0,, ..., 0k, then the model is intrinsically linear in 6.

Example 6.7 Intrinsically Linear Regression
In Section 14.6.4, we will estimate by maximum likelihood the parameters of the model

(16,0 = LI yrgmioen,

In this model, E[y | x] = (Bp) + px, which suggests another way that we might estimate the
two parameters. This function is an intrinsically linear regression model, E [y | x] = 1+ B2X, in
which 81 = Bp and 8, = p. We can estimate the parameters by least squares and then retrieve
the estimate of B using by /b.. Because this value is a nonlinear function of the estimated
parameters, we use the delta method to estimate the standard error. Using the data from that
example,® the least squares estimates of 81 and g, (with standard errors in parentheses) are
—4.1431 (23.734) and 2.4261 (1.5915). The estimated covariance is —36.979. The estimate
of Bis —4.1431/2.4261 = —1.7077. We estimate the sampling variance of 8 with

~ 2 ~ 2 Py ~
Est. Var[4] = (%) Var[bi] + (%) \7a\r[b2]+2(%> (%)6&[@,@]

= 8.68892.

Table 6.6 compares the least squares and maximum likelihood estimates of the parameters.
The lower standard errors for the maximum likelihood estimates result from the inefficient
(equal) weighting given to the observations by the least squares procedure. The gamma
distribution is highly skewed. In addition, we know from our results in Appendix C that this
distribution is an exponential family. We found for the gamma distribution that the sufficient
statistics for this density were X;y; and %; In y;. The least squares estimator does not use the
second of these, whereas an efficient estimator will.

The emphasis in intrinsic linearity is on “one to one.” If the conditions are met, then
the model can be estimated in terms of the functions i, ..., Bk, and the underlying
parameters derived after these are estimated. The one-to-one correspondence is an
identification condition. If the condition is met, then the underlying parameters of the

9The data are given in Appendix Table FC.1.
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regression (@) are said to be exactly identified in terms of the parameters of the linear
model B. An excellent example is provided by Kmenta (1986, p. 515, and 1967).

Example 6.8 CES Production Function
The constant elasticity of substitution production function may be written

Iny=Iny — 2InBK " 4+ (1 — 8)L "] +e. (6-10)
P

A Taylor series approximation to this function around the point p = 0 is

Iny =Iny +vsInK +v(1 = 8)InL + pvs(1 = 8){—3[InK —InLPP} + ¢
= B1X1 + BoXo + BaXs + BaXs + &/, (6-11)

where x; =1, xo =InK, x3=InL, x4 = —% InQ(K/L), and the transformations are

Bi=Iny, Ba=vs Ps=v(1-5), Bs=pvs(1-95),

6-12
y=el, §=p/(Ba+Bs), v=P2+Bs, p=Pa(B2+ B3)/(B2Pa). ©-12)
Estimates of g1, B2, B3, and B4 can be computed by least squares. The estimates of y, §, v,
and p obtained by the second row of (6-12) are the same as those we would obtain had we
found the nonlinear least squares estimates of (6-11) directly. (As Kmenta shows, however,
they are not the same as the nonlinear least squares estimates of (6-10) due to the use of the
Taylor series approximation to get to (6-11)). We would use the delta method to construct the
estimated asymptotic covariance matrix for the estimates of 8’ = [y, §, v, p]. The derivatives
matrix is

eh 0 0 0
o _ |0 P/t pe)® —Pof(ot pa)? 0
T |0 1 1 0

0  —BsBa/(B2Bs) —B2Ba/(B2B3) (Bo+ Ba)/(B2Po)

The estimated covariance matrix for 4 is € [s2(X'X)~"]€’.

Not all models of the form
Vi = B1(@)xi1 + B2(@)xin + - - - + Br(@)xik + & (6-13)

are intrinsically linear. Recall that the condition that the functions be one to one (i.e.,
that the parameters be exactly identified) was required. For example,

yi=a+ Bxi+ yxip+ Byxiz + &

is nonlinear. The reason is that if we write it in the form of (6-13), we fail to account
for the condition that 84 equals 8,83, which is a nonlinear restriction. In this model,
the three parameters «, 8, and y are overidentified in terms of the four parameters
B1, B2, B3, and B4. Unrestricted least squares estimates of 8, B3, and B4 can be used to
obtain two estimates of each of the underlying parameters, and there is no assurance that
these will be the same. Models that are not intrinsically linear are treated in Chapter 7.
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FIGURE 6.5 Gasoline Price and Per Capita Consumption,
1953-2004.

6.4 MODELING AND TESTING
FOR A STRUCTURAL BREAK

One of the more common applications of the F test is in tests of structural change.'” In
specifying a regression model, we assume that its assumptions apply to all the obser-
vations in our sample. It is straightforward, however, to test the hypothesis that some
or all of the regression coefficients are different in different subsets of the data. To
analyze a number of examples, we will revisit the data on the U.S. gasoline market that
we examined in Examples 2.3, 4.2, 4.4, 4.8, and 4.9. As Figure 6.5 suggests, this market
behaved in predictable, unremarkable fashion prior to the oil shock of 1973 and was
quite volatile thereafter. The large jumps in price in 1973 and 1980 are clearly visible,
as is the much greater variability in consumption.'' It seems unlikely that the same
regression model would apply to both periods.

6.4.1 DIFFERENT PARAMETER VECTORS

The gasoline consumption data span two very different periods. Up to 1973, fuel was
plentiful and world prices for gasoline had been stable or falling for at least two decades.
The embargo of 1973 marked a transition in this market, marked by shortages, rising
prices, and intermittent turmoil. It is possible that the entire relationship described by
our regression model changed in 1974. To test this as a hypothesis, we could proceed as
follows: Denote the first 21 years of the data in y and X as y; and X; and the remaining

10This test is often labeled a Chow test, in reference to Chow (1960).

'The observed data will doubtless reveal similar disruption in 2006.
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years as y, and X,. An unrestricted regression that allows the coefficients to be different

in the two periods is
i Xi 0|8 €1
= . 6-14
M [0 X2] {ﬂz} i [82] (19

Denoting the data matrices as y and X, we find that the unrestricted least squares
estimator is

-1
XX 0 X b
— (XX IWy — |1 1yr| _ |01 :
b= XY= [ 0 X'zxz] {X'zyj B {bz] ’ 19

which is least squares applied to the two equations separately. Therefore, the total sum
of squared residuals from this regression will be the sum of the two residual sums of
squares from the two separate regressions:

e =eje| + ee;.

The restricted coefficient vector can be obtained in two ways. Formally, the restriction
B =B, is RB = q, where R = [I: —I] and q = 0. The general result given earlier can
be applied directly. An easier way to proceed is to build the restriction directly into the
model. If the two coefficient vectors are the same, then (6-14) may be written

)= e 2]

and the restricted estimator can be obtained simply by stacking the data and estimating
a single regression. The residual sum of squares from this restricted regression, ee,,
then forms the basis for the test. The test statistic is then given in (5-29), where J, the
number of restrictions, is the number of columns in X; and the denominator degrees of
freedom is ny + n, — 2k.

6.4.2 INSUFFICIENT OBSERVATIONS

In some circumstances, the data series are not long enough to estimate one or the
other of the separate regressions for a test of structural change. For example, one might
surmise that consumers took a year or two to adjust to the turmoil of the two oil price
shocks in 1973 and 1979, but that the market never actually fundamentally changed or
that it only changed temporarily. We might consider the same test as before, but now
only single out the four years 1974, 1975, 1980, and 1981 for special treatment. Because
there are six coefficients to estimate but only four observations, it is not possible to fit
the two separate models. Fisher (1970) has shown that in such a circumstance, a valid
way to proceed is as follows:

1. Estimate the regression, using the full data set, and compute the restricted sum of
squared residuals, €’ e,.

2. Use the longer (adequate) subperiod (n; observations) to estimate the regression,
and compute the unrestricted sum of squares, €| e;. This latter computation is done
assuming that with only n, < K observations, we could obtain a perfect fit for y,
and thus contribute zero to the sum of squares.
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3. The F statistic is then computed, using

(ele, —eje))/m

F — K] = .
o = Kl = = o — K)

(6-16)
Note that the numerator degrees of freedom is 7, not K.!?> This test has been labeled
the Chow predictive test because it is equivalent to extending the restricted model to
the shorter subperiod and basing the test on the prediction errors of the model in this
latter period.

6.4.3 CHANGE IN A SUBSET OF COEFFICIENTS

The general formulation previously suggested lends itself to many variations that allow
a wide range of possible tests. Some important particular cases are suggested by our
gasoline market data. One possible description of the market is that after the oil shock
of 1973, Americans simply reduced their consumption of gasoline by a fixed proportion,
but other relationships in the market, such as the income elasticity, remained unchanged.
This case would translate to a simple shift downward of the loglinear regression model
or a reduction only in the constant term. Thus, the unrestricted equation has separate
coefficients in the two periods, while the restricted equation is a pooled regression with
separate constant terms. The regressor matrices for these two cases would be of the

form
i 0 W 0
(unrestricted) Xy = ' . prer
0 i 0 Wpost73
and
i 0 W
(restricted) Xg = ' . e
0 i Wpost73

The first two columns of X are dummy variables that indicate the subperiod in which
the observation falls.

Another possibility is that the constant and one or more of the slope coefficients
changed, but the remaining parameters remained the same. The results in Example 6.9
suggest that the constant term and the price and income elasticities changed much
more than the cross-price elasticities and the time trend. The Chow test for this type
of restriction looks very much like the one for the change in the constant term alone.
Let Z denote the variables whose coefficients are believed to have changed, and let W
denote the variables whose coefficients are thought to have remained constant. Then,
the regressor matrix in the constrained regression would appear as

e Zpre 0 0 Wp
0 0 ipost Zpost Wpost

X = (6-17)

As before, the unrestricted coefficient vector is the combination of the two separate
regressions.

120ne way to view this is that only 7, < K coefficients are needed to obtain this perfect fit.
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6.4.4 TESTS OF STRUCTURAL BREAK WITH
UNEQUAL VARIANCES

An important assumption made in using the Chow test is that the disturbance variance
is the same in both (or all) regressions. In the restricted model, if this is not true, the first
ny elements of e have variance 012, whereas the next n, have variance 022, and so on. The
restricted model is, therefore, heteroscedastic, and our results for the classical regression
model no longer apply. As analyzed by Schmidt and Sickles (1977), Ohtani and Toyoda
(1985), and Toyoda and Ohtani (1986), it is quite likely that the actual probability of
a type I error will be larger than the significance level we have chosen. (That is, we
shall regard as large an F statistic that is actually less than the appropriate but unknown
critical value.) Precisely how severe this effect is going to be will depend on the data
and the extent to which the variances differ, in ways that are not likely to be obvious.

If the sample size is reasonably large, then we have a test that is valid whether or
not the disturbance variances are the same. Suppose that 8, and 8, are two consistent
and asymptotically normally distributed estimators of a parameter based on indepen-
dent samples,'? with asymptotic covariance matrices Vi and V,. Then, under the null
hypothesis that the true parameters are the same,

6, — 6, has mean 0 and asymptotic covariance matrix Vi + V.
Under the null hypothesis, the Wald statistic,
W= (00, (Vi + Vo) '(61 — 6)). (6-18)

has a limiting chi-squared distribution with K degrees of freedom. A test that the differ-
ence between the parameters is zero can be based on this statistic.! It is straightforward
to apply this to our test of common parameter vectors in our regressions. Large values
of the statistic lead us to reject the hypothesis.

In a small or moderately sized sample, the Wald test has the unfortunate property
that the probability of a type I error is persistently larger than the critical level we
use to carry it out. (That is, we shall too frequently reject the null hypothesis that the
parameters are the same in the subsamples.) We should be using a larger critical value.
Ohtani and Kobayashi (1986) have devised a “bounds” test that gives a partial remedy
for the problem. '

It has been observed that the size of the Wald test may differ from what we have
assumed, and that the deviation would be a function of the alternative hypothesis. There
are two general settings in which a test of this sort might be of interest. For comparing
two possibly different populations—such as the labor supply equations for men versus
women—not much more can be said about the suggested statistic in the absence of
specific information about the alternative hypothesis. But a great deal of work on this
type of statistic has been done in the time-series context. In this instance, the nature of
the alternative is rather more clearly defined.

I3Without the required independence, this test and several similar ones will fail completely. The problem
becomes a variant of the famous Behrens—Fisher problem.

14See Andrews and Fair (1988). The true size of this suggested test is uncertain. It depends on the nature of the
alternative. If the variances are radically different, the assumed critical values might be somewhat unreliable.

15See also Kobayashi (1986). An alternative, somewhat more cumbersome test is proposed by Jayatissa (1977).
Further discussion is given in Thursby (1982).
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Example 6.9 Structural Break in the Gasoline Market
Figure 6.5 shows a plot of prices and quantities in the U.S. gasoline market from 1953 to
2004. The first 21 points are the layer at the bottom of the figure and suggest an orderly
market. The remainder clearly reflect the subsequent turmoil in this market.
We will use the Chow tests described to examine this market. The model we will examine
is the one suggested in Example 2.3, with the addition of a time trend:

In(G/Pop): = B1 + B2 In(Income/Pop); + Bz In PGt + B4 In PNC; + S5 In PUC; + Bst + &;.

The three prices in the equation are for G, new cars and used cars. Income/Pop is per capita
Income, and G/Pop is per capita gasoline consumption. The time trend is computed as t =
Year —1952, so in the first period t = 1. Regression results for four functional forms are shown
in Table 6.7. Using the data for the entire sample, 1953 to 2004, and for the two subperiods,
1953 to 1973 and 1974 to 2004, we obtain the three estimated regressions in the first and
last two columns. The F statistic for testing the restriction that the coefficients in the two
equations are the same is

(0.101997 — (0.00202244 + 0.007127899)) /6
(0.00202244 + 0.007127899) /(21 + 31 — 12)

The tabled critical value is 2.336, so, consistent with our expectations, we would reject the
hypothesis that the coefficient vectors are the same in the two periods. Using the full set of
52 observations to fit the model, the sum of squares is e’e* = 0.101997. When the n, = 4
observations for 1974, 1975, 1980, and 1981 are removed from the sample, the sum of
squares falls to e¢’e = 0.0973936. The F statistic is 0.496. Because the tabled critical value
for F[4, 48 —6] is 2.594, we would not reject the hypothesis of stability. The conclusion to this
point would be that although something has surely changed in the market, the hypothesis of
a temporary disequilibrium seems not to be an adequate explanation.

An alternative way to compute this statistic might be more convenient. Consider the
original arrangement, with all 52 observations. We now add to this regression four binary
variables, Y1974, Y1975, Y1980, and Y1981. Each of these takes the value one in the single
year indicated and zero in all 51 remaining years. We then compute the regression with
the original six variables and these four additional dummy variables. The sum of squared
residuals in this regression is 0.0973936 (precisely the same as when the four observations
are deleted from the sample—see Exercise 7 in Chapter 3), so the F statistic for testing the
joint hypothesis that the four coefficients are zero is

(0.101997 — 0.0973936) /4

F6,40] = = 67.645.

F[4,42] = = 0.496
[ ] 0.0973936/(52 — 6 — 4)

once again. (See Section 6.4.2 for discussion of this test.)
TABLE 6.7 Gasoline Consumption Functions
Coefficients 1953-2004 Pooled Preshock Postshock
Constant —26.6787 —24.9009 —22.1647
Constant —24.8167 —15.3283
In Income/Pop 1.6250 1.4562 0.8482 0.3739
In PG —0.05392 —-0.1132 —0.03227 —0.1240
In PNC —0.08343 —0.1044 0.6988 —0.001146
In PUC —0.08467 —0.08646 —0.2905 —0.02167
Year —0.01393 —0.009232 0.01006 0.004492
R? 0.9649 0.9683 0.9975 0.9529
Standard error 0.04709 0.04524 0.01161 0.01689

Sum of squares 0.101997 0.092082 0.00202244 0.007127899
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The F statistic for testing the restriction that the coefficients in the two equations are the
same apart from the constant term is based on the last three sets of results in the table:

(0.092082 — (0.00202244 + 0.007127899)) /5
(0.00202244 + 0.007127899) /(21 + 31 — 12)

The tabled critical value is 2.449, so this hypothesis is rejected as well. The data suggest
that the models for the two periods are systematically different, beyond a simple shift in the
constant term.

The F ratio that results from estimating the model subject to the restriction that the two
automobile price elasticities and the coefficient on the time trend are unchanged is

(0.01441975 — (0.00202244 + 0.007127899)) /3
(0.00202244 + 0.007127899) /(52 — 6 — 6)

(The restricted regression is not shown.) The critical value from the F table is 2.839, so this
hypothesis is rejected as well. Note, however, that this value is far smaller than those we
obtained previously. This fact suggests that the bulk of the difference in the models across
the two periods is, indeed, explained by the changes in the constant and the price and income
elasticities.

The test statistic in (6-18) for the regression results in Table 6.7 gives a value of 502.34.
The 5 percent critical value from the chi-squared table for six degrees of freedom is 12.59.
So, on the basis of the Wald test, we would once again reject the hypothesis that the same
coefficient vector applies in the two subperiods 1953 to 1973 and 1974 to 2004. We should
note that the Wald statistic is valid only in large samples, and our samples of 21 and 31
observations hardly meet that standard. We have tested the hypothesis that the regression
model for the gasoline market changed in 1973, and on the basis of the F test (Chow test)
we strongly rejected the hypothesis of model stability.

F[5,40] = = 72.506.

F[3, 40] — = 7.678.

Example 6.10 The World Health Report

The 2000 version of the World Health Organization’s (WHO) World Health Report contained a
major country-by-country inventory of the world’s health care systems. [World Health Organi-
zation (2000). See also http://www.who.int/whr/en/.] The book documented years of research
and has thousands of pages of material. Among the most controversial and most publicly
debated parts of the report was a single chapter that described a comparison of the delivery
of health care by 191 countries—nearly all of the world’s population. [Evans et al. (2000a,b).
See, e.g., Hilts (2000) for reporting in the popular press.] The study examined the efficiency
of health care delivery on two measures: the standard one that is widely studied, (disability
adjusted) life expectancy (DALE), and an innovative new measure created by the authors
that was a composite of five outcomes (COMP) and that accounted for efficiency and fair-
ness in delivery. The regression-style modeling, which was done in the setting of a frontier
model (see Section 19.2.4), related health care attainment to two major inputs, education
and (per capita) health care expenditure. The residuals were analyzed to obtain the country
comparisons.

The data in Appendix Table F6.3 were used by the researchers at the WHO for the study.
(They used a panel of data for the years 1993 to 1997. We have extracted the 1997 data for
this example.) The WHO data have been used by many researchers in subsequent analyses.
[See, e.g., Hollingsworth and Wildman (2002), Gravelle et al. (2002), and Greene (2004).]
The regression model used by the WHO contained DALE or COMP on the left-hand side
and health care expenditure, education, and education squared on the right. Greene (2004)
added a number of additional variables such as per capita GDP, a measure of the distribution
of income, and World Bank measures of government effectiveness and democratization of
the political structure.

Among the controversial aspects of the study was the fact that the model aggregated
countries of vastly different characteristics. A second striking aspect of the results, suggested
in Hilts (2000) and documented in Greene (2004), was that, in fact, the “efficient” countries in
the study were the 30 relatively wealthy OECD members, while the rest of the world on average
fared much more poorly. We will pursue that aspect here with respect to DALE. Analysis
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TABLE 6.8 Regression Results for Life Expectancy

All Countries OECD Non-OECD
Constant 25.237 38.734 42.728 49.328 26.812 41.408
Health exp 0.00629 —0.00180 0.00268 0.00114 0.00955 —0.00178
Education 7.931 7.178 6.177 5.156 7.0433 6.499
Education?  —0.439 —0.426 —0.385 —0.329 —0.374 —0.372
Gini coeff —17.333 —5.762 —21.329
Tropic —3.200 —3.298 —3.144
Pop. Dens. —0.255¢e—4 0.000167 —0.425¢e—4
Public exp —0.0137 —0.00993 —0.00939
PC GDP 0.000483 0.000108 0.000600
Democracy 1.629 —0.546 1.909
Govt. Eff. 0.748 1.224 0.786
R? 0.6824 0.7299 0.6483 0.7340 0.6133 0.6651
Std. Err. 6.984 6.565 1.883 1.916 7.366 7.014
Sum of sq.  9121.795 7757.002 92.21064 69.74428  8518.750 7378.598
N 191 30 161
GDP/Pop 6609.37 18199.07 4449.79
F test 4.524 0.874 3.311

of COMP is left as an exercise. Table 6.8 presents estimates of the regression models for
DALE for the pooled sample, the OECD countries, and the non-OECD countries, respectively.
Superficially, there do not appear to be very large differences across the two subgroups. We
first tested the joint significance of the additional variables, income distribution (GINI), per
capita GDP, and so on. For each group, the F statistic is [(e*e* —e’e) /7]/[e’e/(n —11)]. These
F statistics are shown in the last row of the table. The critical values for F[7,180] (all), F[7,19]
(OECD), and F[7,150] (non-OECD) are 2.061, 2.543, and 2.071, respectively. We conclude
that the additional explanatory variables are significant contributors to the fit for the non-
OECD countries (and for all countries), but not for the OECD countries. Finally, to conduct
the structural change test of OECD vs. non-OECD, we computed

[7757.007 — (69.74428 + 7378.598)]/11
(69.74428 + 7378.598) /(191 — 11 — 11)

The 95 percent critical value for F[11,169] is 1.846. So, we do not reject the hypothesis
that the regression model is the same for the two groups of countries. The Wald statistic
in (6-18) tells a different story. The statistic is 35.221. The 95 percent critical value from the
chi-squared table with 11 degrees of freedom is 19.675. On this basis, we would reject the
hypothesis that the two coefficient vectors are the same.

F[11,169] = = 0.637.

6.4.5 PREDICTIVE TEST OF MODEL STABILITY

The hypothesis test defined in (6-16) in Section 6.4.2 is equivalent to Hy: 8, = 8, in the
“model”

yIZX;ﬂl-i-é‘,, [21,...,71
yv=xpy+e, t=T+1.. T+

(Note that the disturbance variance is assumed to be the same in both subperiods.) An
alternative formulation of the model (the one used in the example) is

=B G-
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This formulation states that
Vi =xXp+ ¢, t=1,.... T

vw=xXB+yvi+e, t=T+1,...,1+71D.

Because each y, is unrestricted, this alternative formulation states that the regression
model of the first 7; periods ceases to operate in the second subperiod (and, in fact, no
systematic model operates in the second subperiod). A test of the hypothesis y = 0 in
this framework would thus be a test of model stability. The least squares coefficients for
this regression can be found by using the formula for the partitioned inverse matrix

-1
(b) lxaxwxaxz X;] [X'ly1+X'zyzl
C

X, I Yy
[ oxxp — (X X)X {X’lyﬁXéw}
T XXX T+ XX X)X, Y2

b,

(Cz>

where by is the least squares slopes based on the first 7; observations and ¢; is y, — Xob.
The covariance matrix for the full set of estimates is s> times the bracketed matrix. The
two subvectors of residuals in this regression are e; = y; — X;b; and e; =y, — (Xpby +
Ic;) = 0, so the sum of squared residuals in this least squares regression is just e/ e;.
This is the same sum of squares as appears in (6-16). The degrees of freedom for the
denominatoris [T} + T, — (K + T5)] = T1 — K as well, and the degrees of freedom for
the numerator is the number of elements in y which is 7;. The restricted regression with
y = 01is the pooled model, which is likewise the same as appears in (6-16). This implies
that the F statistic for testing the null hypothesis in this model is precisely that which
appeared earlier in (6-16), which suggests why the test is labeled the “predictive test.”

6.5 SUMMARY AND CONCLUSIONS

This chapter has discussed the functional form of the regression model. We examined
the use of dummy variables and other transformations to build nonlinearity into the
model. We then considered other nonlinear models in which the parameters of the
nonlinear model could be recovered from estimates obtained for a linear regression.
The final sections of the chapter described hypothesis tests designed to reveal whether
the assumed model had changed during the sample period, or was different for different
groups of observations.

Key Terms and Concepts

e Binary variable e Dummy variable e Intrinsically linear
e Chow test e Dummy variable trap ¢ Knots

¢ Control group ¢ Exactly identified ¢ Loglinear model

e Control observations e Identification condition e Marginal effect

¢ Difference in differences e Interaction terms ¢ Natural experiment
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e Nonlinear restriction ¢ Qualification indices e Threshold effects

¢ Overidentified * Response ¢ Time profile

e Piecewise continuous ¢ Semilog equation e Treatment

e Placebo effect ¢ Spline e Treatment group

e Predictive test o Structural change e Wald test
Exercises

1. A regression model with K = 16 independent variables is fit using a panel of
seven years of data. The sums of squares for the seven separate regressions and
the pooled regression are shown below. The model with the pooled data allows a
separate constant for each year. Test the hypothesis that the same coefficients apply
in every year.

1954 1955 1956 1957 1958 1959 1960 All

Observations 65 55 87 95 103 87 78 570
ee 104 88 206 144 199 308 211 1425

2. Reverse regression. A common method of analyzing statistical data to detect dis-
crimination in the workplace is to fit the regression

y=a+xXB+yd+e, @

where y is the wage rate and d is a dummy variable indicating either membership
(d = 1) or nonmembership (d = 0) in the class toward which it is suggested the
discrimination is directed. The regressors x include factors specific to the particular
type of job as well as indicators of the qualifications of the individual. The hypoth-
esis of interest is Hy:y >0 versus H; :y <0. The regression seeks to answer the
question, “In a given job, are individuals in the class (d = 1) paid less than equally
qualified individuals not in the class (d = 0)?” Consider an alternative approach.
Do individuals in the class in the same job as others, and receiving the same wage,
uniformly have higher qualifications? If so, this might also be viewed as a form of
discrimination. To analyze this question, Conway and Roberts (1983) suggested the
following procedure:

1. Fit (1) by ordinary least squares. Denote the estimates a, b, and c.

2. Compute the set of qualification indices,

q = ai + Xb. 2)
Note the omission of cd from the fitted value.
3. Regress q on a constant, y and d. The equation is
q =+ B.y+ yud + &.. 3)

The analysis suggests thatif y <0, y, > 0.
a. Prove that the theory notwithstanding, the least squares estimates ¢ and c, are
related by

_ i =-»ad-R)

Cx = m c, (4)
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where
1 = mean of y for observations with d = 1,
y = mean of y for all observations,
P = mean of d,
R? = coefficient of determination for (1),
rgd = squared correlation between y and d.
[Hint: The model contains a constant term]. Thus, to simplify the algebra, assume
that all variables are measured as deviations from the overall sample means and
use a partitioned regression to compute the coefficients in (3). Second, in (2),
use the result that based on the least squares results y = ai + Xb + cd + e, so
q =y — cd — e. From here on, we drop the constant term. Thus, in the regression
in (3) you are regressing [y — cd — e] on y and d.
b. Will the sample evidence necessarily be consistent with the theory? [Hint: Sup-
pose that ¢ = 0.]
A symposium on the Conway and Roberts paper appeared in the Journal of Business
and Economic Statistics in April 1983.
. Reverse regression continued. This and the next exercise continue the analysis of
Exercise 2. In Exercise 2, interest centered on a particular dummy variable in which
the regressors were accurately measured. Here we consider the case in which the
crucial regressor in the model is measured with error. The paper by Kamlich and
Polachek (1982) is directed toward this issue.
Consider the simple errors in the variables model,

y=a+pBx"+e, x=x"+u,

where 1 and ¢ are uncorrelated and x is the erroneously measured, observed coun-

terpart to x*.

a. Assume that x*, u, and ¢ are all normally distributed with means u*, 0, and 0,

variances o2, 02, and o2, and zero covariances. Obtain the probability limits of
the least squares estimators of & and .

b. As an alternative, consider regressing x on a constant and y, and then computing
the reciprocal of the estimate. Obtain the probability limit of this estimator.

c. Do the “direct” and “reverse” estimators bound the true coefficient?

. Reverse regression continued. Suppose that the model in Exercise 3 is extended to

y = Bx*+yd+e, x = x*+u. For convenience, we drop the constant term. Assume

that x*, e, and u are independent normally distributed with zero means. Suppose

that d is a random variable that takes the values one and zero with probabilities 7

and 1 — 7 in the population and is independent of all other variables in the model.

To put this formulation in context, the preceding model (and variants of it) have

appeared in the literature on discrimination. We view y as a “wage” variable, x* as

“qualifications,” and x as some imperfect measure such as education. The dummy

variable d is membership (d = 1) or nonmembership (d = 0) in some protected class.

The hypothesis of discrimination turns on y < 0 versus y > 0.

a. What is the probability limit of ¢, the least squares estimator of y, in the least
squares regression of y on x and d? [Hints: The independence of x* and d is
important. Also, plim d’d/n = Var[d] + E*[d] = (1 — ) + 7> = 7. This minor
modification does not affect the model substantively, but it greatly simplifies the
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algebra.] Now suppose that x* and d are not independent. In particular, suppose
that E[x*|d = 1] = u! and E[x* |d = 0] = u°. Repeat the derivation with this
assumption.

b. Consider, instead, a regression of x on y and d. What is the probability limit of
the coefficient on d in this regression? Assume that x* and d are independent.

c. Suppose that x* and d are not independent, but y is, in fact, less than zero. As-
suming that both preceding equations still hold, what is estimated by (y |d =1) —
(¥ | d = 0)? What does this quantity estimate if y does equal zero?

Applications

1.

In Application 1 in Chapter 3 and Application 1 in Chapter 5, we examined Koop
and Tobias’s data on wages, education, ability, and so on. We continue the analysis
here. (The source, location and configuration of the data are given in the earlier
application.) We consider the model

In Wage = 1 + B2 Educ + B3 Ability + B4 Experience
+ Bs Mother’s education + B¢ Father’s education + ; Broken home
+ Bs Siblings + e.

a. Compute the full regression by least squares and report your results. Based on
your results, what is the estimate of the marginal value, in $/hour, of an additional
year of education, for someone who has 12 years of education when all other
variables are at their means and Broken home = 0?7

b. We are interested in possible nonlinearities in the effect of education on In Wage.
(Koop and Tobias focused on experience. As before, we are not attempting to
replicate their results.) A histogram of the education variable shows values from 9
to 20, a huge spike at 12 years (high school graduation) and, perhaps surprisingly,
a second at 15—intuition would have anticipated it at 16. Consider aggregating
the education variable into a set of dummy variables:

HS = 1if Educ < 12, 0 otherwise
Col = 11if Educ > 12 and Educ < 16, 0 otherwise
Grad = 1if Educ > 16, 0 otherwise.

Replace Educ in the model with (Col, Grad), making high school (HS) the
base category, and recompute the model. Report all results. How do the re-
sults change? Based on your results, what is the marginal value of a college
degree? (This is actually the marginal value of having 16 years of education—
in recent years, college graduation has tended to require somewhat more than
four years on average.) What is the marginal impact on In Wage of a graduate
degree?

c. The aggregation in part b actually loses quite a bit of information. Another way
to introduce nonlinearity in education is through the function itself. Add Educ?
to the equation in part a and recompute the model. Again, report all results.
What changes are suggested? Test the hypothesis that the quadratic term in the
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equation is not needed —that is, that its coefficient is zero. Based on your results,
sketch a profile of log wages as a function of education.

d. One might suspect that the value of education is enhanced by greater ability. We
could examine this effect by introducing an interaction of the two variables in
the equation. Add the variable

Educ_Ability = Educ x Ability

to the base model in part a. Now, what is the marginal value of an additional
year of education? The sample mean value of ability is 0.052374. Compute a
confidence interval for the marginal impact on In Wage of an additional year of
education for a person of average ability.

e. Combine the models in ¢ and d. Add both Educ? and Educ_Ability to the base
model in part a and reestimate. As before, report all results and describe your
findings. If we define “low ability” as less than the mean and “high ability” as
greater than the mean, the sample averages are —0.798563 for the 7,864 low-
ability individuals in the sample and +0.717891 for the 10,055 high-ability indi-
viduals in the sample. Using the formulation in part c, with this new functional
form, sketch, describe, and compare the log wage profiles for low- and high-
ability individuals.

(An extension of Application 1.) Here we consider whether different models as

specified in Application 1 would apply for individuals who reside in “Broken

homes.” Using the results in Sections 6.4.1 and 6.4.4, test the hypothesis that the
same model (not including the Broken home dummy variable) applies to both

groups of individuals, those with Broken home = 0 and with Broken home = 1.

In Solow’s classic (1957) study of technical change in the U.S. economy, he suggests

the following aggregate production function: g(t) = A(t) f[k(t)], where ¢(t) is ag-

gregate output per work hour, k(¢) is the aggregate capital labor ratio, and A(¢) is
the technology index. Solow considered four static models, g/ A= a+B1Ink, q/ A=
a—B/k,In(qg/A) = o+ Blnk, and In(q/ A) = o + B/ k. Solow’s data for the years

1909 to 1949 are listed in Appendix Table F6.4.

a. Use these data to estimate the « and B of the four functions listed above. (Note:
Your results will not quite match Solow’s. See the next exercise for resolution of
the discrepancy.)

b. In the aforementioned study, Solow states:

A scatter of g/ A against k is shown in Chart 4. Considering the amount
of a priori doctoring which the raw figures have undergone, the fit is
remarkably tight. Except, that is, for the layer of points which are ob-
viously too high. These maverick observations relate to the seven last
years of the period, 1943-1949. From the way they lie almost exactly
parallel to the main scatter, one is tempted to conclude that in 1943 the
aggregate production function simply shifted.

Compute a scatter diagram of g/ Aagainst k and verify the result he notes above.

c. Estimate the four models you estimated in the previous problem including a
dummy variable for the years 1943 to 1949. How do your results change? (Note:
These results match those reported by Solow, although he did not report the
coefficient on the dummy variable.)
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d. Solow went on to surmise that, in fact, the data were fundamentally different
in the years before 1943 than during and after. Use a Chow test to examine
the difference in the two subperiods using your four functional forms. Note that
with the dummy variable, you can do the test by introducing an interaction term
between the dummy and whichever function of k appears in the regression. Use
an F test to test the hypothesis.

4. Data on the number of incidents of wave damage to a sample of ships, with the
type of ship and the period when it was constructed, are given in Table 6.9. There
are five types of ships and four different periods of construction. Use F tests and
dummy variable regressions to test the hypothesis that there is no significant “ship
type effect” in the expected number of incidents. Now, use the same procedure to
test whether there is a significant “period effect.”

TABLE 6.9 Ship Damage Incidents

Period Constructed

Ship Type 1960-1964 1965-1969 1970-1974 1975-1979
A 0 4 18 11
B 29 53 44 18
C 1 1 2 1
D 0 0 11 4
E 0 7 12 1

Source: Data from McCullagh and Nelder (1983, p. 137).
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NONLINEAR,
SEMIPARAMETRIC, AND
NONPARAMETRIC
REGRESSION MODEL.S!

—VV =

INTRODUCTION

Up to this point, the focus has been on a linear regression model
y=xipi+xp+---+e. (7-1)

Chapters 2 to 5 developed the least squares method of estimating the parameters and
obtained the statistical properties of the estimator that provided the tools we used
for point and interval estimation, hypothesis testing, and prediction. The modifications
suggested in Chapter 6 provided a somewhat more general form of the linear regres-
sion model,

y=hH®pBi+ LX)+ +e. (7-2)

By the definition we want to use in this chapter, this model is still “linear,” because
the parameters appear in a linear form. Section 7.2 of this chapter will examine the
nonlinear regression model (which includes (7-1) and (7-2) as special cases),

y=hxi,x,...,xp; b1, B2, - ... Bk) + &, (7-3)

where the conditional mean function involves P variables and K parameters. This form
of the model changes the conditional mean function from E[y|x, 8] = x'B to E[y|x] =
h(x, B) for more general functions. This allows a much wider range of functional forms
than the linear model can accommodate.? This change in the model form will require
us to develop an alternative method of estimation, nonlinear least squares. We will
also examine more closely the interpretation of parameters in nonlinear models. In
particular, since d E[y|x]/0x is no longer equal to 8, we will want to examine how
should be interpreted.

Linear and nonlinear least squares are used to estimate the parameters of the con-
ditional mean function, E[y|x]. As we saw in Example 4.5, other relationships between
y and x, such as the conditional median, might be of interest. Section 7.3 revisits this
idea with an examination of the conditional median function and the least absolute

I This chapter covers some fairly advanced features of regression modeling and numerical analysis. It may be
bypassed in a first course without loss of continuity.

2A complete discussion of this subject can be found in Amemiya (1985). Other important references are
Jennrich (1969), Malinvaud (1970), and especially Goldfeld and Quandt (1971, 1972). A very lengthy author-
itative treatment is the text by Davidson and MacKinnon (1993).
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deviations estimator. This section will also relax the restriction that the model coeffi-
cients are always the same in the different parts of the distribution of y (given x). The
LAD estimator estimates the parameters of the conditional median, that is, 50th per-
centile function. The quantile regression model allows the parameters of the regression
to change as we analyze different parts of the conditional distribution.

The model forms considered thus far are semiparametric in nature, and less para-
metric as we move from Section 7.2 to 7.3. The partially linear regression examined in
Section 7.4 extends (7-1) such that y = f(x) +2'B + ¢. The endpoint of this progression
is a model in which the relationship between y and x is not forced to conform to a
particular parameterized function. Using largely graphical and kernel density methods,
we consider in Section 7.5 how to analyze a nonparametric regression relationship that
essentially imposes little more than E[y|x] = A(x).

7.2 NONLINEAR REGRESSION MODELS

The general form of the nonlinear regression model is
yi = h(xi, B) + &i. 7-4

The linear model is obviously a special case. Moreover, some models that appear to be
nonlinear, such as

B B3 e
1 %€,

y =ePxx

become linear after a transformation, in this case after taking logarithms. In this chapter,
we are interested in models for which there is no such transformation, such as the one
in the following example.

Example 7.1 CES Production Function
In Example 6.8, we examined a constant elasticity of substitution production function model:

Iny=lIny — =In[sK=+(1 -8 L] +e. (7-5)
0

No transformation reduces this equation to one that is linear in the parameters. In Example 6.5,
a linear Taylor series approximation to this function around the point o = Ois used to produce
an intrinsically linear equation that can be fit by least squares. Nonetheless, the underlying
model in (7.5) is nonlinear in the sense that interests us in this chapter.

This and the next section will extend the assumptions of the linear regression model
to accommodate nonlinear functional forms such as the one in Example 7.1. We will
then develop the nonlinear least squares estimator, establish its statistical properties,
and then consider how to use the estimator for hypothesis testing and analysis of the
model predictions.

7.2.1 ASSUMPTIONS OF THE NONLINEAR REGRESSION MODEL

We shall require a somewhat more formal definition of a nonlinear regression model.
Sufficient for our purposes will be the following, which include the linear model as the
special case noted earlier. We assume that there is an underlying probability distribution,
or data generating process (DGP) for the observable y; and a true parameter vector, 3,
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which is a characteristic of that DGP. The following are the assumptions of the nonlinear
regression model:

1.

Functional form: The conditional mean function for y; given x; is
ElyiIx]=hx;,B), i=1,...n,

where h(x;, B) is a continuously differentiable function of S.

Identifiability of the model parameters: The parameter vector in the model is
identified (estimable) if there is no nonzero parameter B’ such that
h(x;, B°) = h(x;, B) for all x;. In the linear model, this was the full rank assump-
tion, but the simple absence of “multicollinearity” among the variables in x is not
sufficient to produce this condition in the nonlinear regression model. Example 7.2
illustrates the problem.

Zero mean of the disturbance: It follows from Assumption 1 that we may write

yi =h(x;, B) +e&i,

where E[e; | h(x;, B)] = 0. This states that the disturbance at observation i is uncor-
related with the conditional mean function for all observations in the sample. This
is not quite the same as assuming that the disturbances and the exogenous variables
are uncorrelated, which is the familiar assumption, however.

Homoscedasticity and nonautocorrelation: As in the linear model, we assume con-
ditional homoscedasticity,

Elsf |hx;. B), j=1,....n] = o?, afinite constant, (7-6)
and nonautocorrelation
Eleiej | h(x;, B), h(x;, B), j=1,...,n] =0 forall j #i.

Data generating process: The data generating process for x; is assumed to be a
well-behaved population such that first and second moments of the data can be as-
sumed to converge to fixed, finite population counterparts. The crucial assumption
is that the process generating x; is strictly exogenous to that generating ¢;. The data
on x; are assumed to be “well behaved.”

Underlying probability model: There is a well-defined probability distribution gen-
erating ¢;. At this point, we assume only that this process produces a sample of
uncorrelated, identically (marginally) distributed random variables ¢; with mean
zero and variance o> conditioned on A(x;, 8). Thus, at this point, our statement
of the model is semiparametric. (See Section 12.3.) We will not be assuming any
particular distribution for ¢;. The conditional moment assumptions in 3 and 4 will
be sufficient for the results in this chapter. In Chapter 14, we will fully parameterize
the model by assuming that the disturbances are normally distributed. This will
allow us to be more specific about certain test statistics and, in addition, allow some
generalizations of the regression model. The assumption is not necessary here.

Example 7.2 Identification in a Translog Demand System
Christensen, Jorgenson, and Lau (1975), proposed the translog indirect utility function for
a consumer allocating a budget among K commodities:

K K
K
InV = B+ g Bk In(px/M) + E g Y In(jpox/M) In(p; /M),
k=1 =1
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where V is indirect utility, py is the price for the kth commodity, and M is income. Utility, direct
or indirect, is unobservable, so the utility function is not usable as an empirical model. Roy’s
identity applied to this logarithmic function produces a budget share equation for the kth
commodity that is of the form

K
+ Ky In(p; /M
s —_dnVialnpe P 21 1% In(p; /M) tek=1,..,K,

AINV/AINM gy + Sy In(p; /M)

where By = Z¢ Bk and yu; = Zyk . No transformation of the budget share equation produces
a linear model. This is an intrinsically nonlinear regression model. (It is also one among a
system of equations, an aspect we will ignore for the present.) Although the share equation is
stated in terms of observable variables, it remains unusable as an emprical model because of
an identification problem. If every parameter in the budget share is multiplied by the same
constant, then the constant appearing in both numerator and denominator cancels out, and
the same value of the function in the equation remains. The indeterminacy is resolved by
imposing the normalization 8y = 1. Note that this sort of identification problem does not
arise in the linear model.

7.2.2 THE NONLINEAR LEAST SQUARES ESTIMATOR

The nonlinear least squares estimator is defined as the minimizer of the sum of squares,

SB) = Zs = —Z — h(x;, B (7-7)
i=1
The first order conditions for the minimization are
EN - oh(x;,
T = Yo 1P o, 8)

i=1
In the linear model, the vector of partial derivatives will equal the regressors, x;. In what
follows, we will identify the derivatives of the conditional mean function with respect to
the parameters as the “pseudoregressors,” x?(,B) = x?. We find that the nonlinear least
squares estimator is found as the solutions to

aS(m Z 7.9

=1

This is the nonlinear regression counterpart to the least squares normal equations in
(3-5). Computation requires an iterative solution. (See Example 7.3.) The method is
presented in Section 7.2.6.

Assumptions 1 and 3 imply that E[e;|h(x;, B] = 0. In the linear model, it follows,
because of the linearity of the conditional mean, that ¢; and x;, itself, are uncorrelated.
However, uncorrelatedness of ¢; with a particular nonlinear function of x; (the regres-
sion function) does not necessarily imply uncorrelatedness with x;, itself, nor, for that
matter, with other nonlinear functions of x;. On the other hand, the results we will
obtain for the behavior of the estimator in this model are couched not in terms of x;
but in terms of certain functions of x; (the derivatives of the regression function), so, in
point of fact, E[¢|X] = 0 is not even the assumption we need.

The foregoing is not a theoretical fine point. Dynamic models, which are very com-
mon in the contemporary literature, would greatly complicate this analysis. If it can
be assumed that ¢; is strictly uncorrelated with any prior information in the model,
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including previous disturbances, then perhaps a treatment analogous to that for the
linear model would apply. But the convergence results needed to obtain the asymptotic
properties of the estimator still have to be strengthened. The dynamic nonlinear regres-
sion model is beyond the reach of our treatment here. Strict independence of &; and
x; would be sufficient for uncorrelatedness of ¢; and every function of x;, but, again,
in a dynamic model, this assumption might be questionable. Some commentary on this
aspect of the nonlinear regression model may be found in Davidson and MacKinnon
(1993, 2004).

If the disturbances in the nonlinear model are normally distributed, then the log of
the normal density for the ith observation will be

In f(yilxi, B, 0%) = —(1/2){In27 +Ino? + [y; — h(x;, B))* /o). (7-10)

For this special case, we have from item D.2 in Theorem 14.2 (on maximum likelihood
estimation), that the derivatives of the log density with respect to the parameters have
mean zero. That is,

dnfylxi, B0 [1 (9hxiB) T
(] (e o

so, in the normal case, the derivatives and the disturbances are uncorrelated. Whether
this can be assumed to hold in other cases is going to be model specific, but under
reasonable conditions, we would assume so. [See Ruud (2000, p. 540).]

In the context of the linear model, the orthogonality condition E [x;¢;] = 0 produces
least squares as a GMM estimator for the model. (See Chapter 13.) The orthogonality
condition is that the regressors and the disturbance in the model are uncorrelated.
In this setting, the same condition applies to the first derivatives of the conditional
mean function. The result in (7-11) produces a moment condition which will define the
nonlinear least squares estimator as a GMM estimator.

Example 7.3 First-Order Conditions for a Nonlinear Model
The first-order conditions for estimating the parameters of the nonlinear regression model,

Yi =B+ B2€" + i,

by nonlinear least squares [see (7-13)] are

n

= _Z [y — b1 — b &™) =0,

i=1

3S(b)
ab1

n

35(b) oo
s :—Z[y,-—m—bgeb3 e =0,

i=1
n

3;3;?) - _Z Vi — by — b €% | box; e = 0.

i=1
These equations do not have an explicit solution.

Conceding the potential for ambiguity, we define a nonlinear regression model at
this point as follows.
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DEFINITION 7.1 Nonlinear Regression Model
A nonlinear regression model is one for which the first-order conditions for least
squares estimation of the parameters are nonlinear functions of the parameters.

Thus, nonlinearity is defined in terms of the techniques needed to estimate the param-
eters, not the shape of the regression function. Later we shall broaden our definition to
include other techniques besides least squares.

7.2.3 LARGE SAMPLE PROPERTIES OF THE NONLINEAR
LEAST SQUARES ESTIMATOR

Numerous analytical results have been obtained for the nonlinear least squares esti-
mator, such as consistency and asymptotic normality. We cannot be sure that nonlinear
least squares is the most efficient estimator, except in the case of normally distributed
disturbances. (This conclusion is the same one we drew for the linear model.) But, in
the semiparametric setting of this chapter, we can ask whether this estimator is optimal
in some sense given the information that we do have; the answer turns out to be yes.
Some examples that follow will illustrate the points.

Itis necessary to make some assumptions about the regressors. The precise require-
ments are discussed in some detail in Judge et al. (1985), Amemiya (1985), and Davidson
and MacKinnon (2004). In the linear regression model, to obtain our asymptotic results,
we assume that the sample moment matrix (1/7)X’X converges to a positive definite
matrix Q. By analogy, we impose the same condition on the derivatives of the regres-
sion function, which are called the pseudoregressors in the linearized model (defined in
(7-29)) when they are computed at the true parameter values. Therefore, for the nonlinear
regression model, the analog to (4-20) is

1 00 e L (90, B0 [(0h(Xi B))\ (o ]
phmnXX_phmn;( 9B, >< 9B )—Q, (7-12)

where QU is a positive definite matrix. To establish consistency of b in the linear model,
we required plim(1/n)X'e = 0. We will use the counterpart to this for the pseudo-
regressors:

L1
plim p Z X'g; = 0.
i=1
This is the orthogonality condition noted earlier in (4-24). In particular, note that orthog-

onality of the disturbances and the data is not the same condition. Finally, asymptotic
normality can be established under general conditions if

1 n
ﬁ ZX?&‘Z‘ —d> N[O, O'2QO].
i=1

With these in hand, the asymptotic properties of the nonlinear least squares estimator
have been derived. They are, in fact, essentially those we have already seen for the
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linear model, except that in this case we place the derivatives of the linearized function
evaluated at 8, X" in the role of the regressors. [See Amemiya (1985).]
The nonlinear least squares criterion function is

1< M
Stb) = 5 ;[y,- —hexi, D) = 5 ; e, (7-13)
where we have inserted what will be the solution value, b. The values of the parameters
that minimize (one half of) the sum of squared deviations are the nonlinear least squares
estimators. The first-order conditions for a minimum are

- dh(x;, b
gb) = _Z[Yi _h(xi,b)]% =

i=1

0. (7-14)

In the linear model of Chapter 3, this produces a set of linear equations, the normal
equations (3-4). But in this more general case, (7-14) is a set of nonlinear equations that
do not have an explicit solution. Note that o2 is not relevant to the solution [nor was it
in (3-4)]. At the solution,

gb) = —X"e =0,

which is the same as (3-12) for the linear model.
Given our assumptions, we have the following general results:

THEOREM 7.1 Consistency of the Nonlinear Least
Squares Estimator
If the following assumptions hold;

a. The parameter space containing B is compact (has no gaps or nonconcave
regions),

b. For any vector B° in that parameter space, plim 1/n)SB°) = q(ﬂo), a con-
tinuous and differentiable function,

c.  q(B°) has a unique minimum at the true parameter vector, p,

then, the nonlinear least squares estimator defined by (7-13) and (7-14) is consis-
tent. We will sketch the proof, then consider why the theorem and the proof differ
asthey do from the apparently simpler counterpart for the linear model. The proof,
notwithstanding the underlying subtleties of the assumptions, is straightforward.
The estimator, say, b’, minimizes (1/n)S(/30). If(l/n)S(ﬂO) is minimized for every
n, then it is minimized by b as n increases without bound. We also assumed that
the minimizer of q(B°) is uniquely B. If the minimum value of plim (1/n)S(8°)
equals the probability limit of the minimized value of the sum of squares, the
theorem is proved. This equality is produced by the continuity in assumption b.

In the linear model, consistency of the least squares estimator could be established
based on plim(1/7)X’X = Q and plim(1/n)X’e = 0. To follow that approach here,
we would use the linearized model and take essentially the same result. The loose
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end in that argument would be that the linearized model is not the true model, and
there remains an approximation. For this line of reasoning to be valid, it must also be
either assumed or shown that plim(1/n)X”8 = 0 where §; = h(x;, ) minus the Taylor
series approximation. An argument to this effect appears in Mittelhammer et al. (2000,
pp- 190-191).

Note that no mention has been made of unbiasedness. The linear least squares
estimator in the linear regression model is essentially alone in the estimators considered
in this book. Itis generally not possible to establish unbiasedness for any other estimator.
As we saw earlier, unbiasedness is of fairly limited virtue in any event—we found, for
example, that the property would not differentiate an estimator based on a sample of
10 observations from one based on 10,000. Outside the linear case, consistency is the
primary requirement of an estimator. Once this is established, we consider questions
of efficiency and, in most cases, whether we can rely on asymptotic normality as a basis
for statistical inference.

THEOREM 7.2 Asymptotic Normality of the Nonlinear Least
Squares Estimator
If the pseudoregressors defined in (7-12) are “well behaved,” then

a O'2
b 5.7 @),
n
where
1
Q° = plim—X"X°,
n
The sample estimator of the asymptotic covariance matrix is

Est. Asy. Var[b] = 62(X”X%) 1, (7-15)

Asymptotic efficiency of the nonlinear least squares estimator is difficult to establish
without a distributional assumption. There is an indirect approach that is one possibility.
The assumption of the orthogonality of the pseudoregressors and the true disturbances
implies that the nonlinear least squares estimator is a GMM estimator in this context.
With the assumptions of homoscedasticity and nonautocorrelation, the optimal weight-
ing matrix is the one that we used, which is to say that in the class of GMM estimators
for this model, nonlinear least squares uses the optimal weighting matrix. As such, it is
asymptotically efficient in the class of GMM estimators.

The requirement that the matrix in (7-12) converges to a positive definite matrix
implies that the columns of the regressor matrix X" must be linearly independent. This
identification condition is analogous to the requirement that the independent variables
in the linear model be linearly independent. Nonlinear regression models usually involve
several independent variables, and at first blush, it might seem sufficient to examine the
data directly if one is concerned with multicollinearity. However, this situation is not
the case. Example 7.4 gives an application.
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A consistent estimator of o2 is based on the residuals:
. 1<
6% = - [y —hexi, D). (7-16)
i=1

A degrees of freedom correction, 1/(n — K), where K is the number of elements in S, is
not strictly necessary here, because all results are asymptotic in any event. Davidson and
MacKinnon (2004) argue that on average, (7-16) will underestimate o, and one should
use the degrees of freedom correction. Most software in current use for this model does,
but analysts will want to verify which is the case for the program they are using. With
this in hand, the estimator of the asymptotic covariance matrix for the nonlinear least
squares estimator is given in (7-15).

Once the nonlinear least squares estimates are in hand, inference and hypothesis
tests can proceed in the same fashion as prescribed in Chapter 5. A minor problem can
arise in evaluating the fit of the regression in that the familiar measure,

)
Dio1€
Z?;l(yi -y)?
is no longer guaranteed to be in the range of 0 to 1. It does, however, provide a useful

descriptive measure.

R=1- (7-17)

7.2.4 HYPOTHESIS TESTING AND PARAMETRIC RESTRICTIONS

In most cases, the sorts of hypotheses one would test in this context will involve fairly
simple linear restrictions. The tests can be carried out using the familiar formulas dis-
cussed in Chapter 5 and the asymptotic covariance matrix presented earlier. For more
involved hypotheses and for nonlinear restrictions, the procedures are a bit less clear-
cut. Two principal testing procedures were discussed in Section 5.4: the Wald test, which
relies on the consistency and asymptotic normality of the estimator, and the F test, which
is appropriate in finite (all) samples, that relies on normally distributed disturbances.
In the nonlinear case, we rely on large-sample results, so the Wald statistic will be the
primary inference tool. An analog to the F statistic based on the fit of the regression
will also be developed later. Finally, Lagrange multiplier tests for the general case can
be constructed. Since we have not assumed normality of the disturbances (yet), we
will postpone treatment of the likelihood ratio statistic until we revisit this model in
Chapter 14.
The hypothesis to be tested is

Hy:x(B) =q, (7-18)

where r(f) is a column vector of J continuous functions of the elements of 8. These
restrictions may be linear or nonlinear. It is necessary, however, that they be overiden-
tifying restrictions. Thus, in formal terms, if the original parameter v