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Preface

This book has resulted from my extensive work with talented students in Macedo-
nia, as well as my engagement in the preparation of Macedonian national teams for
international competitions. The book is designed and intended for all students who
wish to expand their knowledge related to the theory of inequalities and those fas-
cinated by this field. The book could be of great benefit to all regular high school
teachers and trainers involved in preparing students for national and international
mathematical competitions as well. But first and foremost it is written for students—
participants of all kinds of mathematical contests.

The material is written in such a way that it starts from elementary and basic in-
equalities through their application, up to mathematical inequalities requiring much
more sophisticated knowledge. The book deals with almost all the important in-
equalities used as apparatus for proving more complicated inequalities, as well as
several methods and techniques that are part of the apparatus for proving inequalities
most commonly encountered in international mathematics competitions of higher
rank. Most of the theorems and corollaries are proved, but some of them are not
proved since they are easy and they are left to the reader, or they are too compli-
cated for high school students.

As an integral part of the book, following the development of the theory in
each section, solved examples have been included—a total of 175 in number—
all intended for the student to acquire skills for practical application of previously
adopted theory. Also should emphasize that as a final part of the book an exten-
sive collection of 310 “high quality” solved problems has been included, in which
various types of inequalities are developed. Some of them are mine, while the oth-
ers represent inequalities assigned as tasks in national competitions and national
olympiads as well as problems given in team selection tests for international com-
petitions from different countries.

I have made every effort to acknowledge the authors of certain problems; there-
fore at the end of the book an index of the authors of some problems has been
included, and I sincerely apologize to anyone who is missing from the list, since
any omission is unintentional.

My great honour and duty is to express my deep gratitude to my colleagues Mirko
Petrushevski and Dorde Barali¢ for proofreading and checking the manuscript, so
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viii Preface

that with their remarks and suggestions, the book is in its present form. Also I want
to thank my wife Maja and my lovely son Gjorgji for all their love, encouragement
and support during the writing of this book.

There are many great books about inequalities. But I truly hope and believe that
this book will contribute to the development of our talented students—future na-
tional team members of our countries at international competitions in mathematics,
as well as to upgrade their knowledge.

Despite my efforts there may remain some errors and mistakes for which I take
full responsibility. There is always the possibility for improvement in the presen-
tation of the material and removing flaws that surely exist. Therefore I should be
grateful for any well-intentioned remarks and criticisms in order to improve this
book.

Skopje Zdravko Cvetkovski
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Chapter 1
Basic (Elementary) Inequalities
and Their Application

There are many trivial facts which are the basis for proving inequalities. Some of
them are as follows:

If x> yandy>zthen x >z, forany x, y,z € R.

Ifx>yanda>bthenx +a>y+b,forany x,y,a,b eR.
Ifx>ythenx+z>y+z forany x,y,zeR.

If x > y and a > b then xa > yb, forany x,y € R ora, b ¢ RT.

If x € R then x? > 0, with equality if and only if x = 0. More generally, for
AieR"andx; e R,i=1,2,...,nholds Ajx] + Apxj + -+ + A,x7 > 0, with
equality ifand only if x; =xp =--- =x, =0.

NS

These properties are obvious and simple, but are a powerful tool in proving inequal-
ities, particularly Property 5, which can be used in many cases.

We’ll give a few examples that will illustrate the strength of Property 5.

Firstly we’ll prove few “elementary” inequalities that are necessary for a com-
plete and thorough upgrade of each student who is interested in this area.

To prove these inequalities it is sufficient to know elementary inequalities that
can be used in a certain part of the proof of a given inequality, but in the early
stages, just basic operations are used.

The following examples, although very simple, are the basis for what follows
later. Therefore I recommend the reader pay particular attention to these examples,
which are necessary for further upgrading.

Exercise 1.1 Prove that for any real number x > 0, the following inequality holds

1
X+ —>2.
X

Solution From the obvious inequality (x — 1)> > 0 we have
X=2x+120 & x*4+1>2x,

and since x > 0 if we divide by x we get the desired inequality. Equality occurs if
andonlyifx — 1 =0,ie.x=1.

Z. Cvetkovski, Inequalities, 1
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2 1 Basic (Elementary) Inequalities and Their Application

Exercise 1.2 Let a, b € R™. Prove the inequality

a b
-+ —>2.
a

S

Solution From the obvious inequality (a — b)? > 0 we have

a? + b?
ab

v
N

SIS

a’>—2ab+b*>0 & a*+b*>2ab & >2 &

S Q

Equality occurs if and only if a — b =0, i.e. a = b.

Exercise 1.3 (Nesbitt’s inequality) Let a, b, ¢ be positive real numbers. Prove the
inequality
a n b n c 3
b+c c+a a+b 2

Solution According to Exercise 1.2 it is clear that
a+b b+4+c a+c c+b b+a a+c

+ + + + +
b+c a+b c+b a+c a+c b+a

Let us rewrite inequality (1.1) as follows
a+b a+c c+b b+a b+c a+c
+ + + + + >0,
b+c c+b at+c a+c a+b b+a

2a 2b 2c
+14+ +14+——+1>6
b+c c+a a+b

>2+4242=6. (1.1

i.e.

or
a n b n c
b+c c+a a+b

3
>_7
-2

a s required.
Equality occurs if and only i
easily we deduce a =b =c.

atb __ b+c atc _ c+b bta _ a+tc
f b+c — a+b’ c+b T a+c’ at+c ~ b+a’ from where

The following inequality is very simple but it has a very important role, as we
will see later.

Exercise 1.4 Let a, b, c € R. Prove the inequality

a2+b2+022ab+bc+ca.

Solution Since (a — b)% 4+ (b — ¢)® + (¢ — a)* > 0 we deduce
2(a2+b2+02) >2(ab+bc+ca) <& a’> +b>+c* > ab+ be + ca.

Equality occurs if and only if a = b =c.



1 Basic (Elementary) Inequalities and Their Application
As a consequence of the previous inequality we get following problem.
Exercise 1.5 Let a, b, ¢ € R. Prove the inequalities
3(ab+bc+ca) < (a+b+c)* <3(@+b*+c?).
Solution We have

3(ab + bc 4 ca) =ab + bc + ca + 2(ab + bc + ca)
§a2+b2+c2+2(ab+bc+ca)=(a+b+c)2
=a’® +b>+c? +2(ab + bc + ca)
<a?+ b+ +2@>+ b2+ =3@>+ b2+ ).
Equality occurs if and only if a = b = c.

Exercise 1.6 Let x, y, z > 0 be real numbers such that x + y 4+ z = 1. Prove that

Vox +1+/6y+1++/6z+1<3V3.

Solution Let V6x +1=a, /6y +1=b,/6z+1=c.
Then

a4+ +r=6(x+y+2)+3=0.

Therefore
(@+b+0)?<3@+b*+c*=27, ie. a+b+c=<3V3.
Exercise 1.7 Let a, b, c € R. Prove the inequality
a*+ b+ >abc(a+b+c).
Solution By Exercise 1.4 we have that: If x, y, z € R then
x2+y2+zzzxy~|—yz+zx.
Therefore
a* +b* 4+ c* > a’b? + b2 + c*a® = (ab)* + (bc)* + (ca)®
> (ab)(bc) + (be)(ca) + (ca)(ab) = abc(a + b+ ¢).
Exercise 1.8 Leta, b, c € R such that a + b + ¢ > abc. Prove the inequality

a4+ b* + 2 > V3abe.
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Solution We have

(@ +b>+ A =a* + b* + * +24%0 + 2% +2%a

=a* + b+ a0 + )+ D (P +aP) + P+ D).

By Exercise 1.7, it follows that
a*t+ b+ >abc(a+b+c).

Also
bz-l—c2 > 2bc, c2+a2 > 2ca, ct2+b2 > 2ab.
Now by (1.2), (1.3) and (1.4) we deduce

(a2 +b*+ 02)2 >abcla+b+c)+ 2a%bc + 2b%ac + 2c*ab

=abc(a+ b+ c)+2abc(a + b+ c¢) =3abc(a + b+ ¢).

Since a + b + ¢ > abc in (1.5) we have

(a2 +b%+ 02)2 >3abc(a+b+c) > 3(abc)?,

a? +b*+ 2 > V3abe.
Equality occurs if and only if a = b = ¢ = /3.

Exercise 1.9 Let a, b, c > 1 be real numbers. Prove the inequality
1 1 1 1

abc+-+-+->a+b+c+—.

a b ¢ abc

1
a?

)

After multiplying we get the required inequality.

Solution Since a, b, c > 1 we have a > %, b > %, c> -, ie.

(1.2)

(1.3)

(1.4)

(1.5)

Exercise 1.10 Leta, b, ¢, d be real numbers such that a* +b* +¢* +d* = 16. Prove

the inequality
a’+b +c +d° <32

Solution We have a* < a* + b* + ¢* + d* = 16, i.e. a < 2 from which it follows

that a4(a —2)<0,ie. a® <2a*.
Similarly we obtain b < 2b*, ¢® < 2¢* and d° < 2d*.
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Hence
PHV++d <2+ b+ F +dh) =32

Equality occurs iff a =2, b = ¢ =d = 0 (up to permutation).

Exercise 1.11 Prove that for any real number x the following inequality holds

xlz—x9+x4—x+l>0.

Solution We consider two cases: x < 1 and x > 1.
(1) Let x < 1. We have

xlz—x9+x4—x+l=x12+(x4—x9)+(1 —X).

9 4

Since x < 1 we have I — x > 0 and x* > x?, i.e. x* — x? > 0, so in this case

xlz—x9+x4—x+l>0,

i.e. the desired inequality holds.
(2) For x > 1 we have

xlz—x9+x4—x+1=x8(x4—x)+(x4—x)+1
=0+ D+1=xE -+ + 1.
Since x > 1 we have x3 > 1,i.e.x3 — 1> 0.

Therefore
12

X —x9+x4—x+1>0,
and the problem is solved.
Exercise 1.12 Prove that for any real number x the following inequality holds
2x* +1 > 2x3 + x2.
Solution We have
201 —2 — =17 230 -0 =1 —x0) (1 +x) —2x°(1 —x)
=1-0@+1-2)=0-x)x1=x)+1-x%
= =0 (x(1 =D+ + 1 =00 +x +27))
=1 =0 (1 =DE1+0+1+x +27)
=1 -x)*((x+ 1D +x)>0.

Equality occurs if and only if x = 1.



6 1 Basic (Elementary) Inequalities and Their Application

Exercise 1.13 Let x, y € R. Prove the inequality
4 4
xXT+y'+4xy+2=0.
Solution We have
x4+ y4 +4xy+2= (x* = 2)c2y2 + y4) + (2)c2y2 +4xy+2)
=@’ =y + 20y +D* 20,

as desired.
Equality occurs ifand only if x =1, y=—lorx=—-1,y=1.

Exercise 1.14 Prove that for any real numbers x, y, z the following inequality holds
Ay 22200 —x 24+ D).
Solution We have
Ay 2l =2y —x+z+1)
= x4 - 2)62)72 +xh + @ =2z 4+ + P =204 1)
=@ =)+ -2+ (=D’ 20,

from which we get the desired inequality.
Equality occurs ifandonlyif x =y=z=1lorx=z=1,y=—1.

Exercise 1.15 Let x, y, z be positive real numbers such that x + y + z = 1. Prove
the inequality

xy+yz+2zx <

| =

Solution We will prove that
2xy +2yz+4zx < (x +y+2)2,

from which, since x + y + z = 1 we’ll obtain the required inequality.
The last inequality is equivalent to

24y 422 —2zx>0, ie. (x—22+y2>0,

which is true.
Equality occurs if and only if x =zand y =0,ie. x =z = %, y=0.

Exercise 1.16 Leta, b € RT. Prove the inequality

AL+ 1>aVb2+1+bvVa?+1.
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Solution From the obvious inequality

(@— Vb2 + 12+ b —va2+1)*>0, (1.6)

we get the desired result.
Equality occurs if and only if

a=Vp*+1 and b=vVa>+1, ie. a*=b*+1 and b*=d>+1,
which is impossible, so in (1.6) we have strictly inequality.
Exercise 1.17 Let x, y, z € RT such that x + y + z = 3. Prove the inequality
VX 4+ Y+ Vz=xy+yz+zx.
Solution We have
3ax+y+2)=(+y+t=x2+y2+ 22+ 2y +yz+zx).

Hence it follows that

1
xy+yztar=Gr—x? 43y -y +32 2%,

Then
VX 4y + V7= (xy +yz+zx)
1
=ﬁ+ﬁ+ﬁ+§(x2—3x+y2—3y+zz—3z)
1
= 5((x2 —3x 4 2Vx) + (02 =3y + 29 + (22 — 32 +2V2)
1
= Eu/a?(ﬁ— D2V +2) + /(Y = DAY +2)
+ V27— D (7 +2)) >0,
ie.

VXY V2= xy+yz+zx.



Chapter 2
Inequalities Between Means (with Two and
Three Variables)

In this section, we’ll first mention and give a proof of inequalities between means,
which are of particular importance for a full upgrade of the student in solving tasks
in this area. It ought to be mentioned that in this section we will discuss the case
that treats two or three variables, while the general case will be considered later in
Chap. 5.

Theorem 2.1 Leta, b € RT | and let us denote

a’+b? _a+tb

OM = B AM 7 GM =+/ab and HM =

+

So|—

1
a
Then

OM > AM > GM > HM. 2.1

Equalities occur if and only if a = b.

Proof Firstly we’ll show that QM > AM.
For a,b € Rt we have

(@a—b?>>0
& d>4+b*>2ab & 2a*+bY) >da>+b*+2ab

2 2 2
b b
& 2P+ > (a+b)? o a; z(“i)

a?+b%> a+b
> .

2 2

Equality holds if and only if a — b =0, i.e. a =b.

Z. Cvetkovski, Inequalities, 9
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10 2 Inequalities Between Means (with Two and Three Variables)

Furthermore, for a, b € Rt we have

b
Wa-vB220 & a+b-2Vab>0 & 27> Jab.

2
So AM > GM, with equality if and only if
Ja—b=0, ie a=b.
Finally we’ll show that
) 2
GM > HM, i.e. ~ab> 1 T
ath
We have
2+/ab 2ab
Wa—VD)?P=0 & a+b>2Vab o 1>YY o Jab> 2
a+b a+b
2
& Vab > T
= + -
a b
Equality holds if and only if \/a — v/b =0, 1i.e. a = b. g

Remark The numbers OM, AM, GM and HM are called the quadratic, arithmetic,
geometric and harmonic mean for the numbers a and b, respectively; the inequalities
(2.1) are called mean inequalities.

These inequalities usually well be use in the case when a, b € R™.

Also similarly we can define the quadratic, arithmetic, geometric and harmonic
mean for three variables as follows:

a2 £ b2 4 2 b
OM = %, AM:#, GM = ¥abc and

3
HM = —— .
1 1 1
1441

Analogous to Theorem 2.1, with three variables we have the following theorem.

Theorem 2.2 Let a, b, c € RT, and let us denote

la2 £ p2 1 2 b
oM = %, AM=¥, GM = abc and

HM =

+i4

Q=
S—=| W
o=
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Then
OM > AM > GM > HM.

Equalities occur if and only ifa =b = c.

Over the next few exercises we will see how these inequalities can be put in use.
Exercise 2.1 Let x, y, z € RT such that x + y + z = 1. Prove the inequality

1.

< X

X Z X
AN

When does equality occur?

Solution We have

X z zx  1(x z 1(yz =zx 1/zx «x
DpE T (2 ) (ZE2E) (242 e
z X y 2\ z x 2\ x y 2\ y Z

Since AM > GM we have

1/x z Xy yz

_<_y+y_)z [y _

2\ z X z X
Analogously we get

1/yz zx 1/zx x
(Z+Z)>z and - [Z+22 ) >x.
2\ x y 2\ y Z

Adding these three inequalities we obtain

X Z X
—y+y—+—2x+y+z=1.
z X y
X

Equality holds if and only if %> = & = =,
get that equality holds iff x =y =z =1/3.

ie.x=y=zSincex+y+z=1we

Exercise 2.2 Let x, y, z > 0 be real numbers. Prove the inequality

2

2 2 2
X< —z yo—x
+

2 .2
CTY s
y+z Z+x xX+Yy

When does equality occur?

Solution Leta=x+y,b=y+z,c=z+x.
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Then clearly a, b, ¢ > 0, and it follows that

2 2 2 2 2 2
X — — — _b b_ - b
C Yo e y _(a )C+( C)a+(c a)
y+z  z+x  x+y b ¢ a
ac ba c¢b
=—+4+—+4+——(a+b+o). (2.3)
b c a

Similarly as in Exercise 2.1, we can prove that for any a, b,c > 0

ac ba ¢b
—+—+4+—>a+b+c. 2.4)
b c a
By (2.3) and (2.4) we get
22 o2 P2y

y+z z+x x+y

ac ba c¢b
:?+7+;—(a+b+c)z(a+b+6)—(a+b+6)=0-

Equality occurs iff we have equality in (2.4), i.e. a = b = ¢, from which we deduce
that x =y =2z.

Exercise 2.3 Let a, b, c € RT. Prove the inequality
1 1 1
a+-)|b+—-)|c+—-)=8.
b c a
When does equality occur?

Solution Applying AM > GM we get

1 1 1
at->2/2 b+—z2\/§, c+—22,/£.
b b c c a a
Therefore
1 1 1 a b Jc
at+-|[b+=){c+=-)=8/--/=/==8.
b c a b cVa

Equality occurs if and only if a = %, b= % c= Ll—l ie.a= % =c= %, from which
we deduce thata =b=c=1.

Exercise 2.4 Let a, b, ¢ be positive real numbers. Prove the inequality

ab bc ca a+b+c
+ + =< .
a+b+2c b+c+2a c+a+2b 4
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Solution Since AM > HM we have

ab _ ab <ab 1 n 1
a+b+2¢ (@+c)+b+ce)” 4 \a+c b+c)

Similarly we get

bc bc 1 1 ca ca 1 1
T = — + and ———<—| ——+ .
b+c+2a~ 4\a+b a+c c+a+2b~ 4\a+b b+c

By adding these three inequalities we obtain the required inequality.

Exercise 2.5 Let x, y, z be positive real numbers such that x + y + z = 1. Prove the
inequality

Xy +yz+zx > 9xyz.
Solution Applying AM > GM we get
xy+yz+zx =@y +yz+zx0)x +y+2) =37 @xy)(v2)(zx) - 3Yxyz =9xyz.
Equality occurifand only if x =y =z = %

Exercise 2.6 Let a, b, c € RT such that a® + b% + ¢2 = 3. Prove the inequality

1 1 1 3

>,
1+ab+1+bc+1+ca_2

Solution Applying AM > HM and the inequality a> + b* + c> > ab + bc + ca, we
get
1 1 1 9 9 3
l+ab 14+bc 14+ca~ 3+ab+bc+ca  3+a>+b24+c2 2

Exercise 2.7 Let a, b, ¢ be positive real numbers. Prove the inequality

b b
\/a—i— +\/ +c+\/c+a23\/§.
c a b
Solution We have

\/a+b+\/b+c+\/c+aA§G33 (a+b><b+c><c+a>
c a b - c a b
_3\ﬁ/(a+b)(b+c)(c+a)
- abc

A§G3\(/23\/ab -/be - Jea _3v3

abc



14 2 Inequalities Between Means (with Two and Three Variables)
Equality occurs if and only if a = b = c.

Exercise 2.8 Let x, y, z be positive real numbers such that % + )1 + % = 1. Prove
the inequality

=Dl -Di-1=8.

Solution The given inequality is equivalent to
()=
X y 2 xyz
1 1 1 8
I—=)(1-=){1=-=)>—. 2.5
X y Z xyz

From the initial condition and AM > GM we have

or

1 1 1 11 2

x vy z \yz Sz

: 1 2 1 2
Analogously we obtain 1 — = W and 1 — - > Wik
If we multiply the last three inequalities we get inequality (2.5), as required.

Equality holds if and only if x = y =z =3.

Exercise 2.9 Let x, v,z € RT such that x + y + z = 1. Prove the inequality

> 2.

2 2 2 2 2 2
X<+ +z “+x
Y +y +
Z X y
Solution We have
2 2 2 2 2 2
X<+ +z “+x
Y +y +
Z X y

zzﬂu&ﬂzz(%&ﬁ)
Z X y Z X y

1/x 1 1
=2 — _y+E 4+ — x_y+ﬁ + — y_Z_l’_ﬁ
2\ z by 2\ z y 2\ x y

22<\/;+\/;+\/z_2>=2(x+y+z)=2~

Exercise 2.10 Let x, y, z € R such that xyz = 1. Prove the inequality

x2+y2+z2+xy+yz+zx .
N VAT V£ T
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Solution We have

x4y P+ +xy+yz+ax _x2+yz+y2+zx+z2+xy
X+ v+ 4z VX4 v+ 4z

_ 2Vxyz 4+ 2vxy? + 2/xy2?
B VEF VR

_ A STHVD
N R/ A

Equality occurs ifand only if x =y =z = 1.

Exercise 2.11 Let a, b, c € R™. Prove the inequalities

9abc ab? bc? ca? a4+ b%+ 2
< + + <
2(a+b+c) "a+b b+c cH+a” 2

Solution Since AM > HM and from the well-known inequality
ab+bc+ca§a2+b2+c2,
we get

ab? bc? ca? 1 1 1

a+b +b—|—c+c+a - 1/b*+1/ab + 1/62+1/bc+ 1/a?+1/ca
b>+ab *+bc a*+ca
< + +

- 4 4 4
a’>+b%+c?+ab+be+ca

- 4

- 2@+ b+ ) =a2+b2+c2

- 4 2 ’

It remains to show the left inequality.
Since AM > GM we have

ab? bc? ca? 3abc
+ + Z 3 .
a+b b+c c+a” JSla+b)(b+c)(c+a)

Therefore it suffices to show that

3abc - 9abc
Ja@a+b)yb+o)c+a) 2a+b+c)’

i.e.

2a+b+c)=3y(@+b)b+c)c+a),



16 2 Inequalities Between Means (with Two and Three Variables)

which is true, since

2a+b+c)=(@+b)+ (b +c)+(c+a)=3v(a+b)b+c)c+a).

The following exercises shows how we can use mean inequalities in a different,
non-trivial way.

Exercise 2.12 Prove that for every positive real number a, b, ¢ we have

az bpr ?
— 4+ —4+—>a+b+c.
b c a

Solution 1 From AM > GM we have
2 2
a a
—+b>2,]— - -b=2a.
TP a4

b? c?
—4+c¢>2b and — +a>2c.
c a

Analogously we get

After adding these three inequalities we obtain

ar bpr 2
—+—+—+@+b+c)=2(a+b+o),
b c a

i.e.

ar pr 2
—+—+—>a+b+tc.
b c a

Equality occurs if and only if a = b = c.

Solution 2 Observe that

a? b2 A —ab+b? PP—bc+c? P —ca+a?
= + + . (2.6)
b c a b c a

Since for any x, y € R, we have xZ— xy + y2 > xy, by (2.6) we get

a? b2 2 ab bc ca
-t —4+—>—4+ —+ —=a+b+c.
b c a b c a

Exercise 2.13 Let x, y, z be positive real numbers. Prove the inequality

33 3
—+t—+—=2x+y+z
ya x Xy
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Solution Since AM > GM we have

x3 3x3
—+y+z>3]— -y -z=3x.
vz vz

3 3

y—+z+x23y and Z—~|—x+y23z.
X Xy

Similarly we have

After adding these inequalities we get the required result.
Equality holds if and only if x =y = z.
Exercise 2.14 Leta, b, c € RT . Prove the inequality

abc _ i
(I+a)@a+b)(b+c)(c+16) ~ 81°

Solution We have

(I+a)@a+b)(b+c)(c+16)

(144 (a2 D) (b4 4 )48 +8)
- YA 2 72)%¢

2 2
2 b2 b2 o4
>34 39 332 3327 < R1abe.
4 4 4 Vg

abc - i
(I+a)a+b)b+c)(c+16) — 81"

Thus

Exercise 2.15 Let x, y € R™ such that x + y = 2. Prove the inequality
Byt +yh) <2,
Solution Since AM > GM we have . /xy < % =1l,ie.xy <1.

Hence 0 <xy <1.
Furthermore

Oy 4y = @)+ ) = xy 4 %) =20xy) ((x + y)* — 3xy)
=2(xy)* (4 — 3xy).
It’s enough to show that
() @ =3xy) < 1.

Let xy =zthen 0 <z <1 and clearly 4 — 3z > 0.
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Then using AM > GM we obtain

z+z+z+4—3z)4_1
4 - E)

z3(4—3z)=z-z-z(4—3z)§<

as required.
Equality occurs if and only if z =4 —3z,i.e. z=1,1e. x =y =1. (Why?)

Exercise 2.16 Let a, b, ¢, d be positive real numbers such that a + b + ¢ + d = 4.
Prove the inequality

1 1 1 1
>2
a2+1+b2+1+c2+1+d2+1—

Solution We have

1 a® a? a
- —_1=-=
a?+1 a?+1 2a 2
Similarly we get
1 b 1 1 d
—zl——,—zl—E and >1—=.
b?+1 2 c2+1 2 d’>+1 2
After adding these inequalities we obtain
1 1 1 1 a+b+c+d
>4 — =4-2=2.
a2+1+b2+1+02+1+d2+1_ 2

Equality occurs if and only if a =b=c = 1.



Chapter 3
Geometric (Triangle) Inequalities

These inequalities in most cases have as variables the lengths of the sides of a given
triangle; there are also inequalities in which appear other elements of the triangle,
such as lengths of heights, lengths of medians, lengths of the bisectors, angles, etc.

First we will introduce some standard notation which will be used in this section:

hg, hp, h—lengths of the altitudes drawn to the sides a, b, c, respectively.
tq, tp, t.—Ilengths of the medians drawn to the sides a, b, c, respectively.
lo, 1, l,,—lengths of the bisectors of the angles «, B, y, respectively.
P—area, s—semi-perimeter, R—circumradius, r—inradius.

Furthermore we will give relations between the lengths of medians and lengths of
the bisectors of the angles with the sides of a given triangle.
Namely we have
, b+t a? , a*+ct b? , a*+bp
= = o=

- —, t —_—, N
a 2 4 b 2 4 ¢ 2 4

and

2 pelt ) —a? 2 lat ©)? —b?)
* b+co)? p (a+c)?

2 (a+b?—c?)
b=

We can rewrite the last three identities in the following form

224 s(s —a) 2 _4 s(s — b) 12=4abs(s—c)

o0 BTG (a+b)?

Also we note that the following properties are true, and we’ll present them with-
out proof. (The first inequality follows by using geometric formulas and mean in-
equalities, and the second inequality immediately follows, for instance, according
to Leibniz’s theorem.)
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Proposition 3.1 For an arbitrary triangle the following inequalities hold

R>2r and a2+b2+c2§9R2.

Basic inequalities which concern the lengths of the sides of a given triangle are
well-known inequalities: a +b > c,a+c>b,b+c > a.
But also useful and frequent substitutions are:

a=x+y, b=y+z, c=z+x, wherex,y,z>0. 3.1

The question is whether there are always positive real numbers x, y, z, such that the
above identities (3.1) hold and a, b, ¢ are the sides of the triangle.

The answer is positive.

Namely x, y, z are tangent segments dropped from the vertices to the inscribed
circle of the given triangle.

From (3.1) we easily get that

_a+c—b _a+b—c _c+b—a
Ty YR T R

and then clearly x, y, z > 0.
Remark The substitutions (3.1) are called Ravi’s substitutions.

Exercise 3.1 Let a, b, ¢ be the lengths of the sides of given triangle. Prove the
inequalities

a n b n c
<
b+c c+a a+b

> < 2.
5=
Solution Let’s prove the right-hand inequality.
Sincea +b >cwehave2(a+b)>a+b—+c,ie.a+b>s.
Similarly we get b+ c > s and a + ¢ > s.
Therefore

a b c a b c
+ + <—-—+-+-=2
b+c a+c b+a s s s
Let’s consider the left-hand inequality.

If we denote b+ c=x,a + ¢ =y, a + b = z then we have

Z+y—x Z+x—y X+y—z
a=——, b= —7"—, c=——.
2 2 2
Hence
a b c z+y—x z4x-— xX+y—z
_ y i y+ y ’

b+c+a+c+b+a_ 2x 2y 2z
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ie.

a b c 1z y z x x 'y 1 3
=—\-4+=4+—-4+-+—-+=-3|>-2+242-3)=_—,

b+c+a+c+b+a 2<x+x+y+y+z+x >_2(++ ) 2

as required.

Remark The left-hand inequality is known as Nesbitt’s inequality, and is true for
any positive real numbers a, b and ¢ (Exercise 1.3).

Exercise 3.2 Let a, b, c be the side lengths of a given triangle. Prove the inequality

1 1 1 9
+ + > -
s—a s—b s—c” s

Solution Since AM > HM we have
1 1 1 9 9

> =-.
s—a+s—b+s—c_(s—a)+(s—b)+(s—c) K

Equality occurs if and only if a = b = c.

Exercise 3.3 Let s and r be the semi-perimeter and inradius, respectively, in an
arbitrary triangle. Prove the inequality

s> 3rv/3.
Solution I We have
25 =a+b+c>3Vabe=3VAPR =3V4srR = 3v/8sr2,
ie.
s> 3\7@
or

s> 3ry/3.

Equality occurs if and only if a = b = c.

Solution 2 We have

3 3
Also

s _ (s—a)+(—=b)+(s—c) AMEGMG/(S “a)s —b)(s —o). (3.2)

p2 2.2
(s—a)(s—b)(s—c):Tz—zsr . (3.3)



2 3 Geometric (Triangle) Inequalities
By (3.2) and (3.3) we obtain
s> 3\3/37, ie. s> 3/3r.
Equality occurs if and only if a = b = c.
Exercise 3.4 Let a, b, ¢ be the side lengths of a given triangle. Prove the inequality
(a+b—c)b+c—a)(c+a—Db) <abc.

Solution I 'We have

azZaz—(b—c)2=(a+b—c)(a+c—b).
Analogously

P*>(b+a—c)b+c—a) and *>(c+a—b)c+b—a).
If we multiply these inequalities we obtain
a’b*c? > @ +b—c)b+c—a)*(c+a—b)?
& abc>(a+b—-c)b+c—a)(c+a-—D>b).

Equality holds if and only if a = b = ¢, i.e. the triangle is equilateral.

Solution 2 After setting a =x + y,b =y + z,¢c =z + x, where x, y, z > 0, the
given inequality becomes

x+yQ+2)(z+x)=8xyz.

Since AM > GM we have
(x+»O+)(E+x)=2/xy-2/yz-2y/zx =8xyz,

as required. Equality occurs if and only if x = y=zie.a=b=c.
Remark This inequality holds for any a, b, c € R* (Problem 47).
Exercise 3.5 Let a, b, c be the side lengths of a given triangle. Prove the inequality

2,42, .2

a“+b“+c“ <2(ab + bc + ca).

Solution Leta=x+y,b=y+z,c=z+x,x,y,z>0.
Then we have

X+ + G422+ +x)?
<2(x+»0+20+0+2)@+x)+E@Z+x)(x+y)
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or
xy+yz+zx >0,

which is clearly true.
Exercise 3.6 Let a, b, c be the side lengths of a given triangle. Prove the inequality
8a+b—c)b+c—a)lc+a—b)<(a+b)(b+c)(c+a).
Solution Since AM > GM we have
(a+b)(b+c)(c+a) > 2vab2y/be2 /ca = 8abe.
So, it suffices to show that
8abc>8(a+b—c)(b+c—a)(c+a—D>),
ie.

abc>(@+b—-c)(b+c—a)(c+a—D>),

which is true by Exercise 3.4.
Equality occurs if and only if a = b = c.

Exercise 3.7 Leta, b, c be the lengths of the sides of a triangle. Prove the inequality
1 1 1

1
— — —_ << .
+ +c_a+b—c+b+c—a+c+a—b

Solution Since AM > HM we have

1 1 n 1 - 2 _1
2\a+b—c b+c—a) " a+b—c+b+c—a b

Similarly we deduce

1 1 1 1 1 1 1 1
— + >— and - + > —.
2\a+b—c c+a—0>b a 2\b+c—a c+a-—b>b c

Adding these inequalities we get the required inequality.
Equality occurs if and only if a = b = c.

Exercise 3.8 Let ABC be a triangle with side lengths a, b, c and AA|B1C; with
side lengths a + %, b+ %, c+ % Prove that P; > %P, where P is the area of AABC,
and P; is the area of AA1B1C.

Solution By Heron’s formula for AABC and AA|B1C we have

16P2=(a+b+c)(a—I—b—c)(b+c—a)(a—|—c—b)
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and
2 3
16P; = E(a +b+c)(—a+b+3c)(—b+c+3a)(—c+a+3b).

Since a, b and c are the side lengths of triangle there exist positive real numbers
p.q,rsuchthata=qg+r,b=r+p,c=p+gq.
Now we easily get that

P? _ 16pgr
P2 3Q2p+q)Q2q+r)Q2r+p)

34)

So it suffices to show that
2p+q)(2q +r)2r + p) = 27 pqr.
Applying AM > QM we obtain
Cp+)Q2q+r2r+p=pP+p+elg+qg+r+r+p)
>3 p2q -3 q% - 3/r2p =21pgr. (3.5)
By (3.4) and (3.5) we get the desired result.

Exercise 3.9 Let a, b, ¢ be the lengths of the sides of a triangle. Prove that: if
2(ab® + bc? + ca®) = a’b + b?c + c*a + 3abc then the triangle is equilateral.

Solution 'We’ll show that
a’b + b*c + 2a + 3abc > 2(ab2 + bc? + caz),
with equality if and only if @ = b = ¢, i.e. the triangle is equilateral.
Let us use Ravi’s substitutions, i.e.a =x + y,b =y + z,¢c = z + x. Then the

given inequality becomes

B4y 2 %y ¥+ P > 2% 2+ i+ 2y).
Since AM > GM we have

O+ 2 2%z, y) + 1%y = 2970, 2 4+ 7 > 227y,

After adding these inequalities we obtain

By 2%y 492+ P > 2% 2 + v e+ 2y).

Equality holds if and only if x =y =z, i.e. a = b = ¢, as required.
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Exercise 3.10 Let a, b, ¢ be the side lengths, and «, 8, y be the respective angles
(in radians) of a given triangle. Prove the inequalities

<aot+b,3+cy

b1
37 a+b+c

T
< —.

2
Solution First let’s prove the left inequality.

We can assume that a > b > ¢ and then clearly o > 8 > y.
So we have

(a=b)a=p)+b-0)B-y)+(c—a)y —a)=0
& 2aae+bB+cy)=b+c)a+(c+a)p+ (a+b)y,

i.e.
3(aa+bB+cy)>(a+b+c)a+B+y).

Hence
ao +bB +cy >ot+/3+y i

at+tb+c ~ 3 3’
Equality occurs if and only if a = b =c.
Let’s consider the right inequality.
Since a, b and c are side lengths of a triangle we have a+b+c¢ > 2a,a+b+c >
2banda+ b+ c > 2c.
If we multiply these inequalities by «, 8 and y, respectively, we obtain

(@+b+c)a+B+y)>2ax+bf+cy),

ie.
ao +bB +cy <a+ﬂ+y _
a+b+c 2 B

T
>



Chapter 4

Bernoulli’s Inequality, the Cauchy—Schwarz
Inequality, Chebishev’s Inequality, Suranyi’s
Inequality

These inequalities fill that part of the knowledge of students necessary for prov-
ing more complicated, characteristic inequalities such as mathematical inequalities
containing more variables, and inequalities which are difficult to prove with already
adopted elementary inequalities. These inequalities are often used for proving dif-
ferent inequalities for mathematical competitions.

Theorem 4.1 (Bernoulli’s inequality) Letx;,i =1,2,...,n, be real numbers
with the same sign, greater then —1. Then we have
A+xD)d+x2)- - (T+xp) =T +x1+x2+ -+ xp. 4.1)

Proof We’ll prove the given inequality by induction.

Forn=1wehave 1 +x; > 1+ xy.

Suppose that for n = k, and arbitrary real numbers x; > —1,i =1,2,...,k, with
the same signs, inequality (4.1) holds i.e.

A4+x)A+x)---T4+x)>14+x1 +x204+ - 4 xk. 4.2)

Letn=k+1,and x; > —1,i = 1,2, ...,k + 1, be arbitrary real numbers with
the same signs.
Then, since x1, x2, ..., Xk4+1 have the same signs, we have

(x1+x24+ -+ xp)xk41 =>0. 4.3)

Hence

(I +x)d +x2) - (1 + xp41)
4

2)
=z (I+xi+xo+-+x)d +xp) =1+x1 +x2+ -+ X + X1
4.3)
+ O txo+ A x)x = THx x4+ 4 xgr,
i.e. inequality (4.1) holds for n = k + 1, and we are done. O
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Corollary 4.1 (Bernoulli’s inequality) Let n € N and x > —1. Then
1+x)">1+nx.

Proof According to Theorem 4.1, for x; = x5 = --+- = x, = x, we obtain the re-
quired result. g
Definition 4.1 We’ll say that the function f(x1,x2,...,x,) is homogenous

with coefficient of homogeneity k, if for arbitrary t € R, ¢ # 1, we have
flxy,txy, ... tx,) = tkf(xl, X2, ey Xp).
2 2
Example 4.1 The function f(x, y) = );;yy is homogenous with coefficient 1, since
2.2, 2.2 2 2
t°x"+17y x“+y
tx,ty) = =t =t f(x,y).
a Y) 2tx +ty 2x +y Foey)
The function f(x,y, z) = x> 4 xy + 3z is not homogenous.
If we consider the inequality f(x1, x2,...,x,) > g(x1, X2, ..., X,) then for this

inequality we’ll say that it is homogenous if the function
h(xi,x2,...,x,) = f(x1,x2,...,x,) — g(x1, X2, ..., X,) is homogenous.

In other words, a given inequality is homogenous if all its summands have equal
degree.

Example 4.2 The inequality x> + y? + 2xy > z> + yz is homogenous, since all
monomials have degree 2.

The inequality a?b + b%a < a’ + b> is also homogenous, but the inequality a> +
b> + 1 > 5ab(1 — ab) is not homogenous.

In the case of a homogenous inequality, without loss of generality we may as-
sume additional conditions, which can reduce the given inequality to a much sim-
pler form. In this way we can always reduce the number of variables of the given
inequality. This procedure of assigning additional conditions is called normaliza-
tion. An inequality with variables a, b, ¢ can be normalized in many different ways;
for example we can assume a + b+ c =1, orabc =1 or ab+ bc + ca = 1, etc. The
choice of normalization depends on the problem and the available substitutions.

Example 4.3 Let us consider the homogenous inequality a® + b*> 4+ ¢*> > ab +
bc + ca. We may use the additional condition abc = 1. The reason is explained
below.

Suppose that abc = k3.

Let a = kx, b = ky and ¢ = kz; then clearly xyz = 1 and the given inequality
becomes x% + y2 + z2 > xy + yz + zx, which is the same as before. Therefore the
restriction xyz = 1 doesn’t change anything in the inequality.
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Alternatively, we can assume a + b + ¢ = 1 or we can assume ab + bc +ac =1,
etc.

In general if we have a homogenous inequality then without loss of generality
we may assign an additional condition such as: abc,a + b + ¢, ab + bc + ca, etc.
to be whatever non-zero constant (not necessarily 1) that we choose.

In the case of a conditional inequality, there is a procedure somewhat opposite
to normalization. With this procedure (known as homogenization) the given condi-
tion can be used to homogenize the whole inequality. After that, the newly acquired
homogenous inequality can be normalized with some additional condition. For suc-
cessful homogenization many obvious substitutions can be helpful.

For example, if we have abc = 1 then we can take a = ;—‘,, b=

b=

)

Ze=1%,if we

and if

_ _ X y z
have a + b + ¢ = 1 then we can take a = PR i ¢ T e

X b= ) c= z
a2l ryia?’ N2yt 2yl

a?+b%+c?=1wecantake a =

Example 4.4 Consider the following conditional inequality
xXy+yz+zx>9xyz, whenx+y+z=1.
Obviously, the given inequality is not homogenous.

We can homogenize it as follows: since x + y + z = 1 by taking
a b c

X = _—, =, =),
a+b+c Y a+b+c ¢ a+b+c
the inequality becomes
ab bc ca - 9abc

(a+b+c)? + (a+b+c)2+ (@a+b+0c)? " (a+b+0c)

ie.
(a+b+c)(ab+ bc+ ca) >9abc.
Now it is homogenous and can be further normalized with abc = 1, which reduces
it to the inequality
(ab+ bc+ca)(a+b+c)>09.
The last inequality is true since
(ab+bc+ca)la+b+c)= a’b + a’c + b%a + b*c + *b + c*a + 3abc

a a b b ¢ ¢
=—4+-+-4+-+-4+-4+3
c b ¢ a a b
= C+a+b+b+c+3

b a ¢ b

¢ a
>24+24243=09.

Theorem 4.2 (Cauchy-Schwarz inequality) Let ay,a,...,a, and by, b,
..., by be real numbers. Then we have

(5)(#)= ().
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i.e.

@ +a3+ - +a2) B} + b3+ +b2) > (a1by + azby + - - + anby)>.

Equality occurs if and only if the sequences (ar,ay,...,a,) and (by, by,
. . a a a,
., by) are proportional, i.e. bl = i R ﬁ.

Proof 1 The given inequality is equivalent to

Ja 4@+t az B kB = b adby+ - aubyl. (44)

LetA=\/a} +a}+ - +a2, B=\/b} + B3+ - + 2.

If A=0thenclearly a; =ay =--- = a, =0, and inequality (4.4) is true.
So let us assume that A, B > 0.

Inequality (4.4) is homogenous, so we may normalize with

Ad+ai+-Fal=1=b+b3+--+b2, 4.5)
i.e. we need to prove that
laiby + axby + - - - + ayb,| < 1, with conditions (4.5).
Since QM > GM we have

la1by + azby + - - - + apby| < larby| + |azba| + - - - + |apby|
2 2 2 2 2 2
_ 4 +b] +a2+b2 +m+an+bn

- 2 2 2
@ +ay+-+a)+ B +bi+ -+ by) _
> ,
as required.
Equality occurs if and only if Z—i = Z—i =...= Z—: (Why?) O

Proof 2. Consider the quadratic trinomial

n

Z(a,-x—b,-)z—Z(a X 2a,bx+b2)—x22a —ZxZa,b +Zb2

i=1 i=1

This trinomial is non-negative for all x € R, so its discriminant is not positive, i.e.

4@%@)24(2&)(2#)
o (Som) =(S)(£9),

as required.
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Equality holds if and only if a;x — b; =0,i = 1,2,...,n, ie. Z—i = Z—Z =
pp—' O
bll

Now we’ll give several consequences of the Cauchy—Schwarz inequality which
have broad use in proving other inequalities.

Corollary 4.2 Let a, b, x, y be real numbers and x, y > 0. Then we have
2 2 2 2 2 2
a b a+b a b 2 a+b+c
@ s SRy O (e
X y xX+y y z X+y+z

Proof (1) The given inequality is equivalent to

yx +y)a? +x(x + b =xy@+b)?, ie (ay—bx)* >0,
which is clearly true.
Equality occurs iff ay = bx ie. T = g.
(2) If we apply inequality from the first part twice, we get

a? br 2 (a+b)? (@a+b+c)?
—+ —+— _74- > —.
X y Z xX+Yy Z X+y—+z
Equality occurs iff ¢ = % = O

Also as you can imagine there must be some generalization of the previous corol-
laries. Namely the following result is true.

Corollary 4.3 Let a1, as,...,a,; b1, b, ..., b, be real numbers such that
b1,by, ..., b, >0.Then

a4 LG atat+a)’

by b bn‘ bi+by+-+b,

with equality if and only zf

@|_
Il
SIS
Il
Il
sl

Proof The proof is a direct consequence of the Cauchy—Schwarz inequality. g

Corollary 4.4 Letay,ay,...,ay; b1, by, ..., b, be real numbers. Then

\/af+bf+ aj +b3+ -+ /a2 + b2

>Va +ar+-+a)?+ (b1 +by+ -+ by)2.
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Proof By induction by n.
For n = 1 we have equality.
For n =2 we have

\/a%+b%+\/a%+b2 > V(a1 + a2)2 + (by + b2)?

& a%—l—b%-\/a%—i—b%Z(GIQZ‘Fblbz)

& @+ (@2 +b3) = (@ay +bib)?,

which is the Cauchy—Schwarz inequality.
For n =k, let the given inequality hold, i.e.

\/af+b%+\/a§+b§+--~+,/a,§+b,§

>Va+ar+-+ap)2+ by +by+ -+ bp)2.

For n =k + 1 we have

\/af+b%+\/a§+b§+~-~+,/a,§+l+b,§+1

=\Jal +b}+Jas+b3+ -+ a,§+b,%+\/a,f+1+b,§+l

2\/(611+612+"'+ak)2+(b1+b2+"'+bk)2+\/a1%+lJ’_bl%Jrl

Z\/(m +ay+---+arr)?+ (b1 + by + -+ b))

So the given inequality holds for every positive integer 7. d
The next result is due to Walter Janous, and is considered by the author to be a

very important result, which has broad use in proving inequalities.

Corollary 4.5 Leta, b, c and x,y, z be positive real numbers. Then

L b+ L (cta)+ ——(a+b)=+/3(ab+ bc +ca).
y+z Z+x X+y

Proof The given inequality is homogenous, in the variables a, b and ¢, so we can
normalize witha + b+ c = 1.
And we can rewrite the inequality as

X y z
— {1 —-a)+——A—-b)+ (1 —=c¢)=+/3(@ab+ bc + ca).
Z+x

y+z x+y

Hence

X y z ax by cz

+ + > /3(ab+ bc+ca) + + + . (4.6)
y+z z4+x x+vy y+z z+4+x x+vy
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By the Cauchy-Schwarz inequality we have

CcZ
++/3(ab + bc + ca)

+ +
y+z z+x x+Yy

2 2 2
G ) () v
y+z Z+x xX+Yy

3 3
+\/;\/ab + bc + ca +\/;\/ab+bc+ca,

and after one more usage of the Cauchy—Schwarz inequality we get

e ) o) e

y+z Z+x xX+y

ax by

3 3
—G—\/;\/ab—l—bc%—ca—i—\/;\/ab—i—bc—l—ca

2 2 2
X y Z 3
\/ y+z Z+x x+y 2

x Va2 + b2 + 2+ 2(ab + bc + ac)
 \2 v \2 - \% 3
= + + +2
y+z Z+x x+y 2

ax by

So we have

L /3(ab+bec+ca)

+ +
y+z z+x x+Yy

2 2 2
X y z 3
\/ y+z Z+x x4y 2

It suffices to show that

() () + (55) =l )
+ + +5= + + ;
y+z z+x x+y 2 y+z z+x x+y

which is equivalent to

yz n Xz n Xy
x+yax+2  OG+00+2  G@+0GE+y

After clearing the denominators inequality (4.7) becomes

>3 4.7
= 4.7

X%y + v x4+ y? 24+ 2%y + 22 + 1%z > bxyz,

which is a direct consequence of AM > GM. O
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Theorem 4.3 (Chebishev’s inequality) Leta; <ar <---<a, andb; <by <
- -« < by, be real numbers. Then we have

n n n
(Zai) (Zb,) Snzaibz‘,
i=1 i=1 i=1
i.e.
(@1 +ax+---+ay)(by +by+---+b,) <n(arby +axbr + - - - +auby).

Equality occurs if and only ifay =ay =---=a, orby =by=---=b,.

Proof Foralli,je({l,2,...,n} we have
(@i —aj)(bi —bj) =0, (4.8)
ie.
ajb; +ajb; > ajbj+ajb;. 4.9)
By (4.9) we get

n n
(Zai) (Zh) =a1by +aiby+aibz+---+aib,
i=1

i=1
+axby + axby + azbz + - - - + azxb,
+asby +a3by +azbz +-- -+ azb,

+anb1 +anby + anbsz + -+ - +anby
<aib

+a1by +axby + axb;

+a1b1 + azbsz + axbr + azbz + azbs

n
+aiby + apby, +axby + apby + - - +apb, =n Zaibi-

i=1
Equality holds iff we have equality in (4.8), i.e. aj =ay=---=a, or by = by =
R— O

Note Chebishev’s inequality is also true in the case when a; > a; > --- > a, and
by >by>--->b,.Butifa; <ar, <---<ayu,by > by >---> b, (or the reverse)
then we have
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Let us note that the inequality from Corollary 4.1 is true not just in case when n € N,
but it is also true in the cases n > 1,n € Qand n € [1, 00),n € R.

We prove this statement bellow in the case when n > 1,n € Q, and the second
case will be left to the reader.

Corollary 4.6 Let x > —1 andr > 1,r € Q. Then
A+x)">1+rx.

Proof Letr = g Gcd(p,q) =1. Then clearly p > q.
Letay=ay=---=a;=1+rxandag41 =ag42=---=ap=1.
If 1 +rx <0, then we are done.
So let us suppose that 1 + rx > 0.
Since AM > GM we have

_px+p q+rgx+p—q q+rx)+p—gq

1+x
p p
ai+ay+---+ag+agi +--+ap
= . > yaaa,
= YA+r07 = +r0)7 =1 +rx)7,
and we easily obtain (1 + x)" > 1+ rx. O

Corollary 4.7 Let x > —1 and @ € [1,00), @ € R. Then
A+x)*>1+ax.

Theorem 4.4 (Surdnyi’s inequality) Let aj, ay, ..., a, be non-negative real
numbers, and let n be a positive integer. Then
(n—N@ +ay+---+ay) +naraz---ay,
>(ar+a+-+a)a)  +a T 4+ +arh.

Proof We will use induction.
Due to the symmetry and homogeneity of the inequality we may assume that

ap>ay>--->apy1 and ay+ax+---+ap =1

For n = 1 equality occurs.
Let us assume that for n = k the inequality holds, i.e.

(k—1)(a]f+a]2‘—|—~~—|—a,]§)+kala2~~ak2alf71—i—alz‘*l+~~+a,’§71.
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We need to prove that:

k k k k
kY aft +kagt| + kg [ Jai +ar [ Jai - (1 +ak+1)<2a§( +a]/§+1) > 0.

i=1 i=1 i=1 i=1
But from the inductive hypothesis we have
(k — l)(alf+a12‘+-~-+a,1§)+ka1a2-~-ak za]f_l —i—a]z‘_l +~--+a,]§_l.

Hence

k k k
k-1 k
kag1 | |ai > ag+1 E a;  — (k—Dag E a; .

i=1 i=1 i=1
Using this last inequality, it remains to prove that:

k k k k
<kZaf+l — Zalk) — Qg1 <kX:afC — Zaf_l)

i=1 i=1 i=1 i=1

k
+ Qg1 <]_[ ai + (k — Dag_, — a,’j;ll> > 0.

i=1

We prove that

k
A+1 (Hai + (k — 1)a,]§+1 —a,l:Hl) >0,

i=1
and

k k k k
<kZal{‘+1 _ Zalk) — dk+1 <kZalk — Zalk—l) > 0.

i=1 i=1 i=1 i=1
We have
k k
Hai + (k — l)a,l;H — a,]z;]l = 1_[ (ai — ax+1 + ak+1) + (k — 1)all§+1 — a,’j;ll

i=1 i=1

k
k k—1 k k—1
= ai F iy )@ —ar) + k= Dag — a3

i=1

=0.
The second inequality is equivalent to
k k k k
k+1 k k k—1
3 - ek (1 - )
i=1 i=1 i=1 i=1

By Chebishev’s inequality we have

k k k k x
kY oaf =) a) g =) all de kY af-) af =0,

i=1 i=1 i=1 i=1 i=1 i=1
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and since a; +az + - - - + ax+1 = 1, by the assumptation that a; > ar > - - - > ap41,

we deduce that

< —
ak+ .
! k

So it is enough to prove that

k k 1 k k
AR WS E(kZaf‘ —Zaf“l),

i=1

i=1 i=1

which is equivalent to

k k k
RS STy 3
i=1

i=1

i=1

Since AM > GM inequality we have that

1
ka¥ ™ 4 —akt > 24F  forall i.

Adding this inequalities for i = 1,2, ..., k we obtain the required inequality.

Exercise 4.1 Let x, y be positive real numbers. Prove the inequality

xY+y > 1.

Solution We’ll show that for every real number a, b € (0, 1) we have
.
“a+b—ab

By Bernoulli’s inequality we have
abP=0+a-D"t<14+@-1DA=b)=a+b—ab,
i.e.
a
>
“a+b-—ab
If x > 1 or y > 1 then the given inequality clearly holds.

Solet0O <x,y < 1.
By the previous inequality we have

S)
>

X X X
X4y = RN A e A
X+y—xy x+y—xy x+y—xy x+y

Exercise 4.2 Let a, b, ¢ > 0. Prove Nesbitt’s inequality

a n b n c >3
b+c c4+a a+b 2

Solution 1 Applying the Cauchy-Schwarz inequality for

O
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ar=~b+c, a =+/c+a, a3 =+/a—+ b;

1 1 1
"=Tre " me BT
gives us
((b+c)+(c+a)+(a+b))< NI )z(1+1+1)2=9,
b+c c+a a+b
ie.

1 1 1
2 b >9
@+ +c)<b+c+c+a+a+b)_

a+b+c a+b+c a+b+c
+ + >

9
b+c c+a a+b =2

O

a b c

>——3:
b+c+c+a+a+b_2

<

3
>
Equality occurs iff (b +¢)? = (c +a)?> = (a + b)?, ie.iffa=b=c.

Solution 2 We’ll use Chebishev’s inequality.

. 1 1 1
Assume that a > b > c; then e > a2 avp

Now by Chebishev’s inequality we get

1 1 1 a b c
b <3 . (410
(@+ +C)(b+c+c+a+a+b)_ (b+c+c+a+a+b) (4.10)

Note that

1 1 1 1
(a+b+0)<b+c+c+a +a+b>=§((b+0)+(c+a)+(a+b))

1 n 1 n 1
X .
b+c c+a a+b

Since AM > HM (the same thing in this case with Cauchy—Schwarz) we have

1 n 1 n 1 ~9
b+c c¢4+a a+b) "

((b+c)+(c+a)+(a+b))(

Therefore

1 1 1 9
b >, 4.11
@+ +C)<b+c+c+a+a+b)_2 1D

By (4.10) and (4.11) we obtain

=

3 a n b + c >9 . a n b + c 3
-, le. —.
b+c c¢c+a a+b) 2 b+c c+a a+b” 2

Equality occurs iffa =b =c.
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Exercise 4.3 Let a, b, c, d be positive real numbers. Prove the inequality
1 1 4 16 64

b+ T d _a+b+c+d

Solution By Corollary 4.3 we obtain
1 1 4 16 _ (1+1+2+4)7? 64
+—= =

b ¢ d~ a+b+c+d  a+b+c+d’

as required.

Exercise 4.4 Leta, b, c € RT . Prove the inequality

a?  b? (a +b+ c)2
+ — + —_-
EERMVERE 63
Solution Note that 33 + 4% + 53 = 6>,
Taking
a b c
al) = —, a) = ——, a3z = —,;

. /33 . /43 . /53

bi=v33,  bh=V8, b=V,

by the Cauchy-Schwarz inequality we obtain
2 b2
(33 +=+ >(33+43 +5) > (a+b+0),
as required.
Exercise 4.5 Let a, b, ¢ be positive real numbers. Determine the minimal value of

3a 4b 5¢
+ + .
b+c c+a a+b

Solution By the Cauchy—Schwarz inequality we have

3a 4b 5¢
+ + +(3B+4+5)
b+c c+a a+b

=@a+b+c + +
b+c c+a a+b

1 3 4 5
=5((b+C)+(c+a)+(a+b))<b+c+C+a +a+b>

z%(x/?+«/1+ﬁ)2.

Hence

S —(f+f+f)—12

b+c c+a a+b_
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So the minimal value of the expression is %(ﬁ +/4+ \/5)2 — 12, and it is reached

; if btc — cta _ atb
1fandonly1fﬁ— T =

Exercise 4.6 Let a, b, ¢ be positive real numbers. Prove the inequality

a2+ b2+ P44l

+ + >a+b+ec.
a+b b+c c+a

Solution By the Cauchy—Schwarz inequality (Corollary 4.3) we have

a2+b% b2+ P44l
a+b b+c c+a

2 b2 c2 b2 c2 a2

a
_a+b+b+c+c+a+a+b+b+c+c+a
>Qm+b+@ﬂ_

= b+ec.
da+b+c) atbte

Exercise 4.7 Let a, b, c € R* . Prove the inequality

a n b n c -1
b+2c c+2a a+2b~

Solution Applying the Cauchy—Schwarz inequality we get

a b ¢
<b+2C+C+2a+a+2b)(a( +2¢) + b(c + 2a) + c(a + 2b))

> (a+b+c)?,

hence

a b c (a+b+c)?
+ + = .
b+2c c¢c+4+2a a+2b~ 3(ab+ bc+ ca)

So it suffices to show that

(a+b+c)? . ,
—>1, .e. b >3(ab+b ’
3(ab + bc + ca) ~ ie. (a+b+c)”=3(ab+bc+ca)

which is equivalent to a%+b*+c?>ab + bc + ca, and clearly holds.
Equality occurs iffa =b =c.

Exercise 4.8 Let a, b, ¢ be positive real numbers. Prove the inequality

a b c 3(a+b+c)
+ + > .
b+1 c¢c+1 a+17"34a+b+c



4 Bernoulli’s Inequality, the Cauchy—Schwarz Inequality 41

Solution By the Cauchy—Schwarz inequality (Corollary 4.3) we have

a n b n c a? n b? n 2
b+1 c+1 a+1 ab+1) blc+l) cla+1)
- (a+b+c)?
“ab+1)+bc+)+cla+1)
b 2
= @tb+o . (4.12)
ab+bc+cat+a+b+c
Also we have
b 2
ab+hﬂwa§gd%gjl. (4.13)
By (4.12) and (4.13) we get
a b c (a+b+c)? 3(a+b+c)
+ > =

b+l et Taric <a+b3+c>2+a+b+c_3+a+b+c'

Equality occurs iffa =b =c.

Exercise 4.9 Let a, b, ¢ > 0 be real numbers such that ab + bc + ca = 1. Prove the
inequality
a? b2 2 V3

> =
b+c+c+a+a+b_ 2

Solution By the Cauchy—Schwarz inequality we have

@B N ottt @b > @b o)
b+c C+a a+b C C a a = \a c),

ie.
a? b? c? a+b+c
l?—i-C‘_|_c—}-cl+a+bZ +2+ 19
Furthermore
(a+b+c)2:a2+b2+c2+2(ab+bc+ca)z3(ab+bc+ca):3,
ie.
a+b+c=>3. (4.15)

Using (4.14) and (4.15) we obtain the required inequality.
Equality occurs iff a = b =c = 1//3.

Exercise 4.10 Let a, b, ¢ be positive real numbers such that abc = 1. Prove the
inequality
a n b n c <1
a+b*+ct b+ct4at c+at+bpt T
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Solution By the Cauchy—Schwarz inequality we have
a _ a(a’+2) - a(a’+2)
at+bt+ct (@bt HeH@+14+1) T (@ b2 B2
Similarly we get
b b(b® +2) ¢ c(c®+2)
< an = .
b+c*+a* ~ (a2 + b2 +c2)? c+a*+b* (a4 b*+ c?)?

Hence

a n b n c <a4—|—b4—|—c4+2(a+b+c)
a+b*+c*t b+ct+a*t  c+at+bt T (@% + b2 + c2)2

’

and we need to prove that
@42+ za* +b*+ 4200+ b+o0),
which is equivalent to
a?b? + b*c? + 2a? >a+b+c.

By the well-known inequality a?b® + b*c? + c¢?a® > abc(a + b + ¢) and abc = 1,
we have

a2b2+b202+c2a22abc(a+b+c)=a+b+c,

as required.

Exercise 4.11 Let a, b, c be positive real numbers such that a + b + ¢ = 1. Prove
the inequality

(a+b)>(1+2¢)(2a + 3¢)(2b + 3¢) > 54abe.
Solution The given inequality can be rewritten as follows
’ c c
(a+b)*(14+2c)2+3- 2—}—35 > 54c.
a
By the Cauchy—Schwarz inequality and AM > GM we have
213V (21036 > (24 3¢ . 2y 6 > (2(a+b)+60)
a b)— Jab) ~ a+b) (a +b)?

20— +60)?  4(1420)?
(@ +b)? @+ b)?

Then we have

4(1 4 2¢)?

2 ¢ ¢ 2
(a+D) (1+26)(2+3a><2+3b> > (a+b)"(1+2c) @+ D)2

=4(1+2¢)%,
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and it remains to prove that
3 . 3 27¢
4(1+2¢)” = 54c, 1ie. (142c) > -

By the AM > GM inequality we have
(14200 = (24142 3>271 L g2
C — — —_ cl|) =>2/-—+-—- C:_,

2 2 - 2

as required.
Equality occurs iff a =b = %, c= %.

Exercise 4.12 Leta, b, c,d, e, f be positive real numbers. Prove the inequality
@ 4 by 4 e LT oy
b+c c+d dHe e+ f f+a a+b

Solution By the Cauchy—-Schwarz inequality we have

a n b n c n d . e . f
b+c c+d d+e e+ f f+a a+b
a2 b2 c2 d2 62 f2
:ab+ad+bc+bd+cd+ce+de—|—df+ef+ea+fa+fb
(a+b+c+d+e+ f)?

> . 4.16
“ab+ac+bc+bd+cd+ce+de+df +ef +ea+ fa+ fb ( )

Let
S=ab+ac+bc+bd+cd+ce+de+df +ef +ea+ fa+ fb.
Then

2S=(a+b+c+d+e+ f)?
— @+ b+ +d?+ e+ [P+ 2ad +2bd +2¢f).  (4.17)

Also we have

A+ b*+ P+ d*+ e+ £+ 2ad + 2be + 2cf

=(@+d)?+bB+e)’+c+f)>
OM>AM 1
> —
= 3

Using (4.17) and (4.18) we get

(a+b+c+d+e+ f)> (4.18)

2S=(a+b+c+d+e+ f)?
— @+ b+ +d>+ e+ f2+2ad + 2bd + 2¢f)

1
S(a+b+c+d+e+f)2—§(a+b+c+d+e+f)2

2
=3@+btctdtet )
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i.e.
(@a+b+c+d+e+ f)? .
S >

Finally from (4.16) and (4.19) we obtain the required inequality.
Equality occurs iffa=b=c=d=e= f.

3. 4.19)

Exercise 4.13 Let a, b, c € Rt such that
inequality

1 1 1
a1 T 55T T crag1 = |- Prove the

a+b+c>ab+ bc+ca.

Solution We’ll use the Cauchy—Schwarz inequality.
We have

1 - a+b+c?
a+b+1~ (a+b+c)?

(@a+b+Da+b+c*)>@+b+c)? e

Analogously

1 b+ c+a? 1 c+a+b?
< and < .
b+c+1~" (@a+b+0c)? c+a+1~" (@a+b+c)?

By the given condition we have

1 1 1 a+b+cE+b+c+al+c+a+b?
1< + + <
a+b+1 b4+c+1 c+a+1 (a+b+c)?

i.e.

3

2Qa+b+c)=@+b+c)>—@+b*+c?
& a+b+cec>ab+be+ca.

Exercise 4.14 Leta, b, ¢ be positive real numbers such that ab + bc +ca = 3. Prove
the inequality

a?+c2) b2 +a?)  ca®+a?) 3
a’ + be b2+ ca c4+ab — 7

Solution Let x = a(b® + ¢2), y= b(c? 4 a?) and 7 = c(a? + b?).
Then we have

X a(b* + )b +c) a(b* +c?)
bt+o)=——5"" 20 2 :
y+z b(c* 4+ a*) + c(a* + b?) a*+ bc
Analogously we get
y b(c2 +a2) c(a2 +a2)
z+x(c+a) P2tca O x+y(a+ ) c2+ab

By Corollary 4.5 and the previous identities we have
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aB*+cd  b(r+dd  c@®+dd
a? + be b2 + ca 2 +ab

= b4+ —2—(c+a)+ ——(a+b) > /3ab+ be+ ca) =3.
y+z Z+x x—+Yy

Exercise 4.15 Let x, y, z > 0 be real numbers. Prove the inequality
V24142 +1+V2+ 1= /6(x+y+2).

Solution According to Corollary 4.4 we have

V24142 +14+V224+ 12/ (x+y+2)2+9. (4.20)

Applying AM > GM we deduce

4y +22+9>2,/90x +y+2)2=6(x+y+2). (4.21)

From (4.20) and (4.21) we get the required inequality.
Equality occurs ifand only if x =y =z =1.

Exercise 4.16 Let a, b, c € R* . Prove the inequalities

(1) 2(a®+b%) = (@ + b (@ + b);
(2) 3@+ 6%+ %) = (@ + b + )@ + b7+ ).

Solution (1) Leta > b. Then a® > b> and a® > b°.
Due to Chebishev’s inequality we have
(@ +b%) (@ +b°) <2(a® +b°).
(2) Similarly to (1).

Exercise 4.17 Let a, b and ¢ be the lengths of the sides of a triangle, and «, 8, v
be its angles (in radians), respectively. Let s be the semi-perimeter of the triangle.
Prove the inequality

b+c c+a a+b 12s
+ + >

o B y —r

Solution Without loss of generality we may assume that a < b < c. Then clearly
Otfﬁfl/,a-i-bfa—i-cfb—i-cand%fl <1

B —ar
Now by Chebishev’s inequality we have

((a—l—b)—l-(b—i-c)—i-(c—i-a))(é+é+%>

S3((b+c)é+(c+a)%+(a+b)%>,
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i.e.
b+c c+a a+b 4s(1 1 1
>—|—-+-=-4+—). 4.22
+ 5 + Z3 (a+ﬁ ) ( )
Using (4.22) and AM > HM we obtain
b+c c+a a+b 4s<1 1 1) 45 9 12s
+ + >=—\-+=t+-)z2 —=—
B y 3\ B vy 3 a+pB+y T

Equality occurs iffa =b =c.

Exercise 4.18 Leta, b, c,d € RT . Prove the inequality
ad+b+3 +a3+b3+d3 +a3+c3+d3 +b3+c3+d3
a+b+c a+b+d at+c+d b+c+d
>a® +b* 4+ +d%

Solution Without loss of generality we may assume that a > b > ¢ > d. Then
clearly a’>b*>c? > d2.
We’ll use Chebishev’s inequality, i.e. we have

(a+b+o)a@®+b>+c?)<3@®+b+c%)
aA+b+3 - a2+ b% 4 2

at+b+c — 3
Similarly we get
A A e e P+ d A+ +d
a+b+d ~ 3 ’ at+c+d ~ 3 ’
b+ +d? . b* 4 ¢* 4 d?
b+c+d — 3

After adding these inequalities we get the required inequality.

Exercise 4.19 Letag, as,...,a, € R such that a; +a» + - - - + a, = 1. Prove the
inequality
ay a ay n

> .
2—a1+2—a2+ +2—an_2n—1

Solution Without loss of generality we may assume that a; > ay > --- > a,.
Then
1 1 1

> == .
2—a; " 2—ap 2—ay,

Now by Chebishev’s inequality we have

1 1 1
(al+a2+”.+a")(2—a1 +2—a2+”.+2—an)

a a dn
<n + +---+ )
- <2—a1 2—ap 2—an>
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hence
ap n a T a, >l 1 n 1 T 1
2—a; 2—a 2—a, n\2—a; 2—a 2—ay,
1 n? n
> — . = .
“n 2n—(a+ar+---+a,) 2n-—1
Equality occurs if and only if a1 =ay =--- =a, = 1/n.

Exercise 4.20 Let a, b, ¢, d be positive real numbers such that a + b + ¢ + d = 4.
Prove the inequality
1 n 1 n 1 . 1 - 1
I1+a?2 11452 11+c2 1144273

Solution Rewrite the given inequality as follows
1 1 1 1 1 1 1 1

—_ = -t —+ ——— — — <0,
11 +a? 12+11—i—b2 12+11—i—c2 12+11—i—d2 12 —

ie.
a2—1+b2—1+c2—1+d2—1>0
11+a%2 11462 114¢2 1144?77
i.e.
a+1 b+1 c+1 d+1
)t b-1)—— —)———+d—1 > 0.
@Dzt t =Dy raté-bym=

(4.23)
Without loss of generality we may assume thata > b > ¢ >d.
Then we have
a—+1 b+1 c+1 d+1
> > > .
114+a2 114562~ 1142~ 11+ 4d?

Now inequality (4.23) is a direct consequences of Chebishev’s inequality.
Equality occurs if and only ifa =b=c=d = 1.

a—1>b—1>c—1>d—-1 and




Chapter 5
Inequalities Between Means (General Case)

In Chap. 2 we discussed mean inequalities of two and three variables. In this section
we will develop their generalization, i.e. we’ll present an analogous theorem for an
arbitrary number of variables.

These inequalities are of particular importance because they are part of the basic
apparatus for proving more complicated inequalities.

Theorem 5.1 (Mean inequalities) Letay, ay, ..., a, be positive real numbers.
The numbers

’

2. 2
QM:\/a1+a2+~--+a% Ao Bt azt e tan

n n
n
GM = Yayay---a, and HM_1 1 i
atogt ot

are called the quadratic, arithmetic, geometric and harmonic mean for the
numbers ay, ay, ..., an, respectively, and we have

OM > AM > GM > HM.

Equalities occur if and only ifay = ap = - - - = ay,.

Proof Firstly, we’ll show that AM > GM, i.e.

aj+a+---+an

> Yajaz---ay. (5.1

n
Let

Xj=——— fori=12....n. (5.2)
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Then x; > 0 foreachi =1,2,...,n and we have
X1x2 - x, = 1.

Inequality (5.1) is equivalent to

ai az An >

+ tod —————>n,
Jaray---ap, - Yaray---ap Haray - --an

i.e. to
Xt+x24+---+x,>n, whenxixy---x,=1, (5.3)

with equality if and only if x; =xo =--- =x, = 1.

We’ll prove inequality (5.3) by induction.

For n =1, inequality (5.3) is true; it becomes equality.

If n =2 then x1x2 = 1 and since x1 4+ x2 > 2,/x1x2 we get x1 + xp > 2.

Hence (5.3) is true, and equality occurs iff x; = xp = 1.

Let assume that for n = k, and arbitrary positive real numbers xy, x3, ..., x; such
that x1x7 ---xx = 1, we have x1 + x2 + - -- + x; > k, with equality if and only if
Xp=xp=---=x; = 1.

Letn =k+ 1 and x1, x3, ..., xr41 be arbitrary positive real numbers such that

X1X2 + - Xfg4+1 = 1.

If x; = x2 =--- = xx41 = 1 then inequality (5.3) clearly holds.

Therefore, let us assume that there are numbers smaller then 1. Then clearly,
there are also numbers which are greater then 1.

Without loss of generality we may assume that x; < 1 and x; > 1.

Then, for the sequences xix2,x3,...,Xxr+1 Which contain k terms we have
(x1x2)x3---xg41 = 1, and according to the induction hypothesis we have that
X1X2 +x3 + -+ + xg41 > k, and equality occurs iff xjxp =x3=--- = x4 = 1.

Now we have

X1+x2+ -+ Xppr = x1x2+ X3+ -+ X1+ 1+ (2 — DA —x1)
>k+14+@—-D0—x)=k+1,

with equality if and only if x;xp =x3 =--- =x;4+1 =1 and (xp — 1)(1 —x1) =0,
i.e. iffxl =X) = =Xk+1 = 1.
So, due to the principle of mathematical induction, we conclude that (5.3) is
proved.
a a An 1
Thus by (5.2) we have ’J/alalz‘..a,, = ,\,/ula;“an =T aaa e
aj=ax=---=4ay.

Hence we have proved (5.1), and we are done.
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We’ll show that GM > HM, i.e.

n
Jayaz---ap > i ] T
ata Tt
By AM > GM it follows that
1 n 1 I 1 o 11 1 n
J— JE— . —>n —_—— =
a az n aia ap, Jaraz---ay
i.e. we have
n
Jaraz-an = —— ;
ottty
and clearly equality holds if and only if%=%=m=%,i.e.a1=a2=~~~=an.

It is left to be shown that OM > AM, i.e.

\/a%+a§+~~+a3, _atatta

n n
We’ll use the Cauchy-Schwarz inequality for the sequences (aj,az,...,a,) and
1,1,...,1).

So we have

(a%+a%+"'+ar21)(12+12+"-+12)2(a1+a2+~--+an)2
& n@i+a+--+a) =@ +at-+a)’

al+al+---+a? - (a1+a2+~~-+an>2

n n

\/a%—i—a%—i—-'-—i-a,% >a1+a2+~'+an
n - n '

Equality holds if and only if =% =--. =% ie.aj=ay=---=a,. O
Exercise 5.1 Let a, b, c,d € Rt such that abcd = 1. Prove the inequality

a? +b*+c+d*+ab+ac+ad + be + bd + cd > 10.
Solution Since AM > GM we have

A4+ 2+ d? +ab+ac+ad+be+bd +cd > 10 Va5h3c5d5 = 10.

Equality holds if and only ifa =b=c=d = 1.
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Exercise 5.2 Leta, b, c € R™. Prove the inequality
(a+b+c)>da®+b>+ +24abe.
Solution We have
(a+b+ c)3 =a + b+ + 6abe + 3(a2h +a%c+b*a+b*c+cta+ czb)
> a® +b> + ¢ + 6abe + 3 - 6v/aSb6c6 = a® + b* + ¢ + 24abe.
Equality holds if and only ifa =b =c.

Exercise 5.3 Let k € N, and a1, as, .. ., a, be positive real numbers such that a; +
az + - - -+ a, = 1. Prove the inequality

a¥+ar*+ - at > nk

Solution Since AM > GM we have
alta+---+ap 1

Jajaz - -ap < =-
n n
or
n<r ili
T Narax  ay
Hence
9
i.e.

as required.

Exercise 5.4 Leta, b, c,d € R*. Prove the inequality
a® 4+ b° + ¢ + d% > abed(ab + be + cd + da).

Solution We have
1
a®+ b0+ 0 +db = 6((2a6 +2b% 4+ ® +d%) + 2% +2¢° + d° + ab)

+ (2¢° 4 2d® + a® 4 b®) + (2d° + 2a°® + b® + ).
Since AM > GM we have

6 6 6 6 6 6 6 6 6 6
2a +2b6+c +d _a +a®+b —gb +c®+d zm=a2bzcd.
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Similarly we get
260 +2¢% + d® + a®
6
2¢® +2d5 + a® + b8
6

> bzc2ad,

> Ad*ab
and
2d% +2a° + b° + ¢
6

> d*a*be.

Adding the last four inequalities we obtain the required inequality.

Equality holds if and only if a =b =c=d.

Exercise 5.5 Let x, y, z > 2 be real numbers. Prove the inequality

O+ 0@+ y) (x4 2) > 125xyz.

Solution We have

YVAx=dytx=y+y+y+y+x=57yh

Analogously

2+y>5Jz4y and x> +7z>5Vx%z

Multiplying the last three inequalities gives us the required inequality.

53
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In this subsection we will consider characteristic examples in which we can use
incorrectly the inequality AM > GM. Namely, a possible major route for the proper
use of this inequality (the means inequalities) will be the fact that equality in these
inequalities is achieved when all variables are equal. These points at which equality
(all their coordinates are equal) of a given inequality is satisfied are called points
of incidence. It is also important to note that symmetrical expressions achieve a

minimum or maximum at a point of incidence.

Exercise 5.6 Let x > 0 be a real number. Find the minimum value of the expression

1
X+ —.
X

Solution Since AM > GM we have

1 1
x+-—>2./x-—=2,
X X

with equality iff x = 1, i.e. x = 1.
Thus min{x + %} =2.
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Exercise 5.7 Let x > 3 be a real number. Find the minimum value of the expression

1
X+ —.
X

Solution In this case we cannot directly use the inequality AM > GM since the point
x = 1 doesn’t belongs to the domain [3, +00).
We can easily show that the function f(x) =x + )]7 is an increasing function on

[3, +00), so it follows that min{x + %} =3+ % = %.

Now we will show how we can use AM > GM.

Since we have equality in AM > GM if and only if all variables are equal, we
deduce that we cannot use this inequality for the numbers x and % at the point of
incidence x = 3 since 3 # %

Assume that AM > GM is used for the couple (g, %) such that at the point of
incidence x = 3, equality occurs, i.e. fy—‘ = %

So it follows that @ = x? = 3% =9.
According to this we transform x + }C as follows

A +1 x+1+8 >2/x 1+8 2+83 10
=x+-==—4+—-4+-x — -+ —x==+4+--3=—.
x 9 x 9 = 9 x 9 39 3

Exercise 5.8 Let a, b > 0 be real numbers such that a + b < 1. Find the minimum
value of the expression

1
A=ab+ —.
a +ab

Solution If we use AM > GM we get

1 1
A=ab+ —>2,/ab- — =2,
a +ab_ a ab

and equality occurs if and only if ab = %, ie.ab=1.

But then we have a + b > 24/ ab = 2, contradicting a + b < 1.

If we take x = a]—b,thenwehavex= a]—b > (Mi;b)z > 14—2=4

Thus we may consider an equivalent problem of the given problem:
Find the minimum of the function A = x + %, with x > 4.

Point of incidence is x = 4.

So we have £ = 1, from which it follows that o = x> = 16.

Then we transform as follows

A +1 x+1+15 >2/x l+15 >21_'_154 17
=x+-=—+-4+—=x — =4+ —x -t — 4= —.
x 16 x 16 — 16 x 16 — 4 16 4

Equality holds if and only if x =4,i.e.a=b=1/2.
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Exercise 5.9 Let a, b, c > 0 be real numbers such that a +b + ¢ < % Find the
minimum value of the expression

I 1 1
A=a+bt+c+—+-+-.
a b ¢

Solution If we use AM > GM we get

1 1 1 1
A=a+b+c+—+—+->6]abc- — =6,
a b ¢ abc

with equality if and only ifa =b=c=1.

Butthena+b+c¢c=3> % a contradiction.

Since A is a symmetrical expression on a, b and ¢ we estimate that min A occurs
ata=b=c,ic.ata=b=c=1/2.

Therefore for a point of incidence we have % = ﬁ = % =a=b=c=1/2,
and it follows that o« = a% =4,

Now we have

A +b+ +1+1+1 +b++l+1+l +3 1+1+1
=da C —_ - —=\|a C —_— — —_ —| — — —
a b ¢ da  4b  4c 4\a b ¢

> 6.9abc ;jﬁ l+£+l _3+§ l+1+1
- (4a)@db)(4c) 4\a b ¢) T 4\a b ¢

>3+3 9 >3+27 115
~7 4 a+btc” 4 372 2°

SominA = %,fora:b:c:l/Z.
Exercise 5.10 Let a, b, ¢ be positive real numbers such that a + b + ¢ = 1. Find the
minimum value of the expression

1 1 1
abc+—+ -+ -.
a b ¢

Solution By the inequality AM > GM we get

with equality if and only if abc = % = % = %, from which we easily deduce that

a=b=c=1andthen a + b + ¢ =3, a contradiction sincea + b +c = 1.

Since abc + al + % + % is symmetrical with respect to a, b and ¢ we estimate that
the minimal value occurs whena =b=c,i.c.a=b=c=1/3,sincea+b+c=1.
1 _ 1 1 1

Let abc = v = ah = aee from which we obtain o = e = 81.
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Therefore let us rewrite the given expression as follows

1 1 1 1 1
abc+ + - +——ab +— 4+ —

80
b

1 1
— 5.4
8la 81b+81c+81( +b+ ) 4
By AM > GM and AM > HM we have

b+1+1+1 \/b 1 1 1 4
aoc+ —+ —+ — > aoc
8la  81b 8lc —

— (5.5)
8la 8lb 8lc 27
and
l+1 l L=9. (5.6)
a b “a+b+c
By (5.4), (5.5) and (5.6) we have

) +1+1+1> 4+80_244
e Ty T T 9 T
with equality if and only ifa =b=c = §.

Exercise 5.11 Let a, b, ¢, d > 0 be real numbers. Find the minimum value of the
expression

a n b n c n d b+c+d c+d+a
b+c+d c+d+a d+a+b a+b+c a b
a+b+d a+b+c
+ .
c d
Solution Let us denote
_ a . b n c n d b+c+d+c+d+a
" b+c+d c+d+a d+a+b a+b+c a b
a+b+d a+b+c
+ +
c d
If we use AM > GM we get A > 8, with equality iff
a _ b . c d b+c+d c+d+a
btct+td c+d+a dtatb atbtc  a b
_a+b+d_a+b+c
- c - d ’
i.e.
a=b+c+d, b=c+d+a,

c=d+a+b and d=a+b+c

After adding the last identities we deduce a + b+ c+d =3(@+b+c+d), ie
3 =1, a contradiction.

Inequalities Between Means (General Case)
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Since A is a symmetrical expression with variables a, b, ¢, d, it follows that the
minimum (maximum) will occur at the point of incidencea =b=c=d > 0.
Supposea=b=c=d > 0.

‘We have
a . b . c . d _1
b+c+d c+d+a d+a+b a+b+c 3
and
b+c+d_c+d+a _a+b+d_a+b+c_ 3
oa ab ac ad &
ie. 1 =32 andit follows that o« =9.
Therefore
a b c d b+c+d

A=
b+c+d+c+d+a+d+a+b+a+b+c+ 9a

c+d+a a+b+d a+b+c
+ + +

9b 9¢ 9d
8/b+c+d c+d+a a+b+d a+b+c
= + + +
9 a b c d
8 8 40
Z§+§(2+2+2+2+2+2)=?.

Exercise 5.12 Let a, b, c > 0 be real numbers such that a + b 4+ ¢ = 1. Find the
maximum value of the expression A = Va + b+ /b +c + Jc+a.

Solution Since AM > GM we have

a+b+1+1 a+b+2
3 3 7

Jatb=Ja+b)-1-1<

Similarly
b 2 2
v3b+c§ % and Je+a< #.
Thus it follows that

a+b+2 b+c+2 c+a+2 2a+b+c)
< 3 + 3 + 3 = 3 +2

8

3

A

withequality iffa+b=b+c=c+a=1,ie.a=b=c=1/2.
Butthen a + b 4 ¢ =3/2 # 1, a contradiction.
Since A is symmetrical expression in a, b, ¢, we estimate that the minimum
(maximum) will occur at the point of incidence a =b=c,i.e.a=b=c=1/3.
Clearlya+b=b+c=c+a=2/3.
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Since AM > GM we have

s 2 2 \73 \3/5 a+b+3+32 \3/5 3(a+b)+4
= b ..... - << A _
@t @+b-3-3y3=V3 3 4 9

Similarly we get

9 3 4 9 3 4

Adding the last three inequalities gives us

AS\3@<3<a+9b)+4+3(b+9c)+4+3(c+9a)+4>

4 9

f9 Gatbto+12_ o

Somax A = v/18,and itoccurs iffa+b=b+c=c+a=2/3,ie.a=b=c=1/3.

Exercise 5.13 Let a, b, ¢ be positive real numbers such that a + b 4 ¢ = 6. Prove
the inequality

Q/ab—i—bc—i—f/bc—i-ca—i—f/ca—l—abfﬁ

Solution 1 Since we have a symmetrical expression we estimate that the maximum
value of /ab + bc + /bc + ca + ~/ca + ab will occur at the point of incidence
a = b = c =2 and then clearly we have ab 4 bc = 8.

By the inequality AM > GM we get

3 . .
Yab T he = «/(ab—i-él:c) 8-8 Si((ab—i—bc;—i-S—FS).

Similarly we obtain

1/ 8+8 1 b 8+8
h)c—l—casé—t(( c—l—cai—l— + ) and 3,7€a+ab51<(ca+a;+ + )

Adding the last three inequalities gives us

1
\3/ab+bc+\3/bc+ca+\3/ca+ab§—(

2(ab + bc + ca) +48>
1 )

3 (5.7)

Since ab + bc + ca < M =12 by (5.7) we get

1/24+4+48
«S/ab+bc+\3/bc+ca+«3/ca+ab§£—1< ;— ):6_

Equality occurs if and only if ab +bc =bc+ca=ca+ab=38,ie.a=b=c=2.
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Solution 2 The given inequality is equivalent to

Vb(a+c)+eb+a)+Jalc+b) <6

i.e.

Jb(6 —b) + (6 —¢) + Va6 —a) <6. (5.8)
Since at the point of incidence a = b = ¢ =2 we have 2a =6 —a =4 by AM > GM
we deduce

3/7_ —
mz 2(1 (6 [l) 45211—}—6 a+4=a+10
2 6 6

Analogously we obtain

b+ 10 10
3/b(6-b)5+T and3c(6—c)§c+6 .

After adding the last three inequalities we get

y —b)+c6—c)+a6—a E—a+b+c+30=ﬁ=6-
Ib(6 —b) + /(6 —c) + Va6 —a) g G

Equality occurs if and only if a =b=c = 2.

Exercise 5.14 Let a, b, c be positive real numbers such that a’+b%+c? =3. Prove
the inequality

Va2 +be+ Vb2 +ca+ Vet +ab <332,

Solution Since we have a symmetrical expression we estimate that the maximum
value will occur at the point of incidence @ = b = ¢ = 1. Then we have a* + bc = 2.
By the inequality AM > GM we get

Similarly we obtain
\3/l72—+——ccz§ %4(192—'—27014_4) and mf %(%)
Adding the last three inequalities gives us
1
374
! 2,2, .2 18 3
3ﬁ(2(a +0+cH+12)= WA =3V2.

Equality occurs if and only ifa =b=c=1.

Va2 +bc+ Vb2 +ca+/c2+ab <

(a2+b2+cz+ab+bc+ca+12)

=




60 5 Inequalities Between Means (General Case)

Exercise 5.15 Let a, b, ¢ be positive real numbers such that a? +b%+¢* = 3. Prove
the inequality

V502 +4(b+c¢)+3+ 562 +4(c+a) +3+ /52 +4(a+b)+3<6.

Solution At the point of incidence a = b = ¢ = 1 we have 562+ 4(b+c)+3=16.
By the inequality AM > GM we get

V(a2 44 +c)+3) - 163
8

V502 +4(b+c)+3=

1
§§(5a2+4(b+0)+3+3-16)

_ 5a> +4(b+¢) +51
= = :

Similarly we obtain

5b% 4+ 4(c +a) + 51
32

V5b2+4(c+a)+3<

and

5¢2 +4(a+b)+51

V5214 a+b)+3< )

Adding the last three inequalities gives us

V502 +4(b+¢) +3+ V52 +4(c+a) + 3+ /52 +4(a + b) + 3

- 5@+ b2+ +8a+b+c)+ 153
- 32 ‘

Since a® 4+ b*> + ¢> =3 we have a + b + ¢ < v/3(a? + b2 + ¢2) = 3, and by the last
inequality we obtain

V5a2+4(b+¢) +3+ V52 +4(c+a) + 3+ /52 +4(a + b) + 3
5.34+8-3+153 192
< = =6.
= 32 32

Equality occurs ifand only ifa =b=c = 1.



Chapter 6
The Rearrangement Inequality

In this section we will introduce one really useful inequality called the rearrange-
ment inequality. This inequality has a very broad and easy use in proving other
inequalities.

Theorem 6.1 (Rearrangement inequality) Let a; <ap <--- < a, and b) <
by < --- < b, be real numbers. For any permutation (x1,x2,...,X,) of
(ar,az, ..., a,) we have the following inequalities:

aiby +axby + -+ - + anby > x1b1 + x2b2 + - - - + xby
>apby +an_1by + - - +aib,.

In case when a; <ay <--- <a, and by < by < --- < b, there is a simple nec-
essary and sufficient condition for equality in either of the inequalities. The left in-

equality becomes equality only if (x1, x3, ..., x,,) matches (ay, az, ..., a,), and the
right inequality becomes equality only if (x, x2, ..., x,) matches (a,, a,—1, ..., ar).
Corollary 6.1 Let ay,ay, ..., a, be real numbers and let (x1, x2, ..., Xx,) be
a permutation of (a1, a, ..., an). Then

a%—l—a%—i—'-o—i—aﬁza]xl+a2x2+--~+anxn.

Exercise 6.1 Let a, b and c be positive real numbers. Prove Nesbitt’s inequality

a b c 3

> _

b+c+c+a+a+b_2
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Solution Without loss of generality we may assume that @ > b > c¢. Then clearly
1 1 1
> > )
b+c c4+a " a+b

By the rearrangement inequality we deduce

a n b n c b n c n a
b+c c¢c+a a+b " b+c c+a a+b

and

a n b n c _ ¢ n a n b
b+c c4+a a+b b+c c+a a+b
Adding the last two inequalities gives us

) a n b n c >3 a n b n c >3
or —.
b+c c+a a+b) ™ b+c¢c c+a a+b~ 2

Exercise 6.2 Leta; <ay <---<a, and b1 < by <--- < b, be two sequences of
real numbers and let (¢, ¢3, ..., ¢y) be a permutation of (b1, by, ..., b,). Prove that

(a1—b1)? 4+ (@ —b2)* +- -+ (@ —bp)* < (a1 —c1)* (a2 —c2)* +- - -+ (an —cn)>.

Solution Note that b} + b3+ -+ b2 =c?+ 3+ - +c2.
So it suffices to prove that

ajci +axcr + - +apcy, <arby +axby + - +apby,

which is true due to the rearrangement inequality.

Exercise 6.3 Letay,as, ..., a, be different positive integers. Prove the inequality
D syl g ]
22 n? — 2 n
Solution Let (x1,x2,...,x,) be a permutation of (aj,az,...,a,) such that x; <
X2 < S Xp.
Then clearly x; > i foreachi =1,2,...,n and 5 1z 212 > > lz

By the rearrangement inequality and the previous conclusmn we obtain

2 1 1
— —_ — _>1 _—1 —
+22+ +2_12+22+ + ozt FoHt

Exercise 6.4 Leta, b, c be the lengths of the sides of a triangle. Prove the inequality

a’(b+c—a)+b*(c+a—b)+c*(a+b—c)<3abc.
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Solution Without loss of generality we may assume that a > b > c. Then very easily
we can verify that

cla+b—c)=b(c+a—>b)>=alb+c—a).
Applying the rearrangement inequality we obtain the following inequalities
a2(b+c—a)+b2(c+a —b)+c2(a+b—c)
<ba(b+c—a)+cb(c+a—b)+ac(a+b—c)
and
a*(b+c—a)+b*(c+a—b)+c*a+b—rc)
<calb+c—a)+ab(c+a—>b)+bcla+b—rc).

Adding the last two inequalities gives us the required result.

Exercise 6.5 Let a, b, ¢ be real numbers. Prove the inequality
a’ +b0 4+ > a*b + b+ ta.

Solution 1 Without loss of generality we may assume that a > b > ¢, and then
clearly a* > b* > ¢* (since the given inequality is cyclic we also need to consider
the case when ¢ > b > a, which is analogous).

Now by the rearrangement inequality we get the required inequality. Equality
occurs iffa =b=c.

Solution 2 Since AM > GM we obtain the following inequalities:
P+ +a+ad+ b 25a4b,
B>+ b7 +b° +b° +° > 5b'c,
c+A+P++ad 2504(1,
and adding the previous three inequalities yields required inequality. Equality occurs

iffa=b=c.

Exercise 6.6 Let a, b, c be positive real numbers such that abc = 1. Prove the in-
equality

1 n 1 n 1 -

adb+c) b3c+a) Sa+b) — 2

W

Solution Without loss of generality we may assume thata > b > c.

Let x = %,y = %, 7= % Then clearly xyz = 1.
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We have
1 1 1 x3 y3 23
3 + -3 + = + +
adb+c) b(c+a) A@+bdb) y+1/z 1/z+1/x  1/x+1/y
2 2 2

X y z
= + + .
y+z z+x x+Yy

Since c <b <awehavex <y <z.

Soclearlyx+y§z+x§y+zandﬁ5%5#},.

Now by the rearrangement inequality we get the following inequalities

2 2 2
by z X Z zZXx
+ 4 > Y + Y + ;
y+z z+x x+y y+z z+x x+y
2 2 2

X y z XZ yx zy
+ > + + .
y+z z+x x4y y+z z4+x x+Yy

So we obtain

1 1 1
2<a3(b—i-c) + b3(c+a) * C3(a+b)>

2 2 2
X Z
=2< + 24 >
y+z z+x x+Yy
oy yz zx Xz yx 2y

z + + + + +
y+z z4+x x+y y+z z+x x+y
=x+y+z=3Jxyz=3,

as required.

Exercise 6.7 Let a, b, ¢ be positive real numbers. Prove the inequality

a2+C2 b2+a2 C2+b2
+ +

>2(a+b+c).
b c

Solution Since the given inequality is symmetric, without loss of generality we may
assume that @ > b > c. Then clearly

1 1 1

a?>b*>c* and ->->-—.

c~ b a

By the rearrangement inequality we have
2 2 2
b 1 1 1 1 1 1
o g s b P —=atbte  (6.1)

b ¢ a b c a a b c
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and

2 2 2
b 1 1 1 1 1 1
a—+—+c—:a2~—+b2~—+c2-z zaz-—+b2-5+c2~— =a+b+c. (6.2)
a C

b c a

Adding (6.1) and (6.2) yields the required inequality.
Equality occurs if and only ifa =b = c.

Exercise 6.8 Let x, y, z > 0 be real numbers. Prove the inequality

2_ .2 2_ 2 2_\2
r s A S > 0.
y+z Z+x x+y

2
2~ L.
Solution We need to prove that *— y+z + == z+x +tin 2 >+z + 5t x+y

Without loss of generality we may assume that x > y > z(since the given in-
equality is cyclic we also Will consider the case z > y > x).
1 1
Then clearlyx > y >z%2and L +Z > x2S Pt
By the rearrangement znequaltty we have
2 2 2 2 2 2
X X
y < . < y

+ + = + + )
y+z z+x x+y y+z z4+x x4y

as required.
1 1
If we assume that 7 > y > x, then 72 >y > x2 and - x+y o pel
By the rearrangement inequality we obtain

2 2 2
X b4 1 1 1
+-2 =z +x? +y*
y+z z+4+x x4y xX+y y+z Z+x
1 1 1
>z%- +x%. ¥
y+z Z+x X+y
2 22 y2

= + + .
y+z z+x x+Yy
Equality occurs if and only if x =y = z.

Exercise 6.9 Let x, y, z be positive real numbers. Prove the inequality

By P
—+t—+—=2x+y+z
Yz zx Xy

Solution Since the given inequality is symmetric we may assume that x > y > z.

Then

1 1
B>y > ad —>—>—.
vz~ zx T xy
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By the rearrangement inequality we have

3 3 3
X Z 1 1 1
Tl o gy R —
Yz  zx Xy vz zx Xy
1 1 1 x2 2
Z_x3.—+y3.—+z3.—_ y—+—. (6.3)
Xy yz X y Z X
We will prove that
2 2 2
X <
e e LT ©.4)
y z x

Letx>y>z.
Then x2 > y2 > z2 and % >
to consider the case z > y > x).
By the rearrangement inequality we obtain

|—

> % (since inequality (6.4) is cyclic we also need

[}

ZZ x2 y2 Z2
+> =+ =xty+z
X x y Z

x2 y2
y Z

v

The case when z > y > x is analogous to the previous case.
Now by (6.3) and (6.4) we obtain

X33 3
—+t—+—=2x+y+z
yz  zx Xy

Equality occurs if and only if x =y = z.

Exercise 6.10 Let a, b, ¢, d be positive real numbers such that a + b + ¢ +d = 4.
Prove the inequality

a’bc + b*cd + c*da + d*ab < 4.

Solution Let (x,y,z,t) be a permutation of (a, b, c,d) such that x >y >z > 1.
Then clearly xyz > xyt > xzt > yzt.
By the rearrangement inequality we obtain
X -Xyz+y-xyt+z-xzt+t-yzt> a’bc + b*cd + c*da + d*ab. (6.5)
Since AM > GM we deduce

(xy +xz+ yt +z2t)?

xX-xyz+y-xyt+z-xzt+t-yzt =xy+zt)(xz+yt) <
(6.6)

Since

x+y+z+ t)2 _

— =

xy+xz+yt+zt=x+2)(y+1) < 4



6 The Rearrangement Inequality 67
by (6.6) we deduce that
X-xyz+y-xyt+z-xzt+t-yzt <4.
Finally by (6.5) we obtain
a’bc + b*ed + c*da + d*ab < 4,
and we are done.

Equality holds iffa =b=c=d=10ora=2,b=c=1,d =0 (up to permuta-
tion).



Chapter 7
Convexity, Jensen’s Inequality

The main purpose of this section is to acquaint the reader with one of the most
important theorems, that is widely used in proving inequalities, Jensen’s inequality.
This is an inequality regarding so-called convex functions, so firstly we will give
some definitions and theorems whose proofs are subject to mathematical analysis,
and therefore we’ll present them here without proof.

Also we will consider that the reader has an elementary knowledge of differential
calculus.

Definition 7.1 For the function f : [a, b] — R we’ll say that it is convex on
the interval [a, b] if for any x, y € [a, b] and any « € (0, 1) we have

flax+ (1 —a)y) <af(x)+ (1 —a)f(y). (7.1)

If in (7.1) we have strict inequality then we’ll say that f is strictly convex.

For the function f we’ll say that it is concave if — f is a convex function.

If the function f is defined on R, it can happen that on some interval this function
is a convex function, but on another interval it is a concave function. For this reason,
we will consider functions defined on intervals.

Example 7.1 The function f(x) = x2 is convex on R, moreover f(x)=x"1is con-
vex on R for even n. Also f(x) = x" is convex on R for n odd, and it is concave
onR™.

The function f(x) =sinx on (7, 277) is convex, but on (0, 77) it is concave.

Now we will state a theorem that will give a criterion for determining whether
and when a function is convex, respectively concave.

Z. Cvetkovski, Inequalities, 69
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Theorem 7.1 Let f : (a,b) — R and for any x € (a, b) suppose there exists
a second derivative f"(x). The function f(x) is convex on (a, b) if and only if
for each x € (a, b) we have " (x) >0.If f”(x) > 0 for each x € (a, b), then
f is strictly convex on (a, b).

Clearly, according to Definition 7.1 and Theorem 7.1 we have that the function
f(x) is concave on (a, b) if and only if f”(x) <O, for all x € (a, b).

Example 7.2 Consider the power function f : RT™ — R™ defined as f(x) = x“. For
the second derivative we have f”(x) = a(a¢ — 1)x*~2, and clearly f”(x) > 0 for
a>lora<O0and f/(x) <0for0 <o < 1.So f is (strictly) convex for « > 1 or
a <0 and f is (strictly) concave for 0 < o < 1.

Example 7.3 For the function f : R — R, f(x) = In(1 +¢*) we have f/'(x) =
and f"(x) =

eX
T+er>
ﬁ > ( for x € R, and therefore f is convex on R.
Example 7.4 For the function f :RT — R*, f(x) =1+ x“)é for o # 0 we have

F(x) = (@ — Dx*2(1 + x"‘)é , from where it follows that for & < 1 the function
f is strictly concave and for « > 1 the function f is strictly convex.

Theorem 7.2 Let f1, f2, ..., fu be convex functions on (a, b). Then the func-
tioncy fi+cafo+---+cnfnisalso convex on (a, b), forany c1,ca,...,cn €
0, 0).

Theorem 7.3 (Jensen’s inequality) Let f : (a,b) — R be a convex function
on the interval (a,b). Let n e N and a1, oy, ..., a, € (0, 1) be real numbers
such that o1 + oy + - - -+ oy = 1. Then for any x1, x2, . .., X, € (a, b) we have

f(Z(WQ) < Zaif(xi),
=1l i=1
i.e.

flaixy +ooxp + -+ apxy) <oy f(x)) Fa f(x2) +- -+ oy f(x). (7.2)

Proof We’ll prove inequality (7.2) by mathematical induction.
For n =1 we have o1 = 1 and since f(x1) = f(x1) we get f(a1x1) = a1 f(x1),
so (7.2) is true.
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Let n = 2. Then (7.2) holds due to Definition 7.1.

Suppose that for n = k, and any real numbers a1, a2, ..., o € [0, 1] such that
o1 +a2+ -+ o =1and any x1, x2, ..., x¢ € (a, b), we have
flarxr + - Fogxp) <oaq fon) + -+ o f(xp). (7.3)

Let n =k + 1, and let a1, a9, ..., k41 € [0, 1] such that oy + op + -+ +
ap+1=1.
Let x1,x2, ..., Xkt1 € (a, b).
Then we have
o1X] + 02X + - Q1 Xk

= (a1x1 + -+ -+ QpXp) + Qg1 Xk 11

aq [2%) 0774
=1 —ag+1) x)+ X2+t Xk | + 1 Xk
1 — oy 1 — a1 1 — a4
(7.4)
Let
o1 a2 (073
X1+ X4t Xk = Yk+1-
I —apy1 I — ot I — ot
Then since x1, x3, ..., xx € (a, b) we deduce
o1 [0%) (073
Vi1 = xXp+ Xotet X
I — a1 I — o4 I — ot
o o a
< ! b+ 2 b4+ _ %k
1 —ogpqt 1 — gy 1 — gy
b
< (@ +op+- o) =——1—opy1)=b
1 — a4 I —apq

Similarly we deduce that y;41 > a.
Thus yi+1 € (a, b).
According to Definition 7.1 and by (7.4) we obtain
flaxy+ -+ oxg + agrixk+1) = f((1— k1) Vet 1 + k1 Xk41)
< (I = ag41) f k1) + Q1 f (k1) (7.5)
By inequality (7.3) and since

oy o2 (973

+ 4o — =
I—ape1 11—t 1 — a4

we obtain

o] 2%) ok
f()’kJrl):f( X1+ x2+"'+—xk)

I — gy I — a1 I —apy1

<— f(X1)+ f(X2)+ B e E—

= — /@, (16

1-—
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Finally according to (7.5) and (7.6) we deduce

flaixy+ - Fakprxis) <o foen) + -+ g f k1)

So by the principle of mathematical induction inequality, (7.2) holds for any
positive integer n, any o1, &2, ..., o, € [0, 1] such that o) + a2 +--- + @, = 1, and
arbitrary x1, x2,...,x, € (a, b). O

Remark If f is strictly convex then equality in Jensen’s inequality occurs only for
X] =X =" =Xy.

If the function f(x) is concave then in Jensen’s inequality we have the reverse
inequality, i.e.

flaxy + - Fapxy) = a1 f(x) + -+ o fxg).

It is important to note that Jensen’s inequality can also be written in the equivalent
form:

If f:1— Risconvexon I,x1,x2,...,%, €I and my,mo,...,m, >0 are real
numbers such that m; +my + --- +m, > 0. Then

f<M1x1+mzx2+-~+mnxn) _mifo) A maf(xo) + - A maf ()
my+my -+ my - my+my+ -+ my '

Example 7.5 Consider the function f(x) = —Inx, on the interval (0, 4+00). For
the second derivative we have f”(x) = é > (0, which means that f(x) is a strictly
convex on x € (0, +00).

By Jensen’s inequality for ¢ =y = -+ = o, = %, and x; € (0,400),i =
1,2,...,n, we obtain
<x1+xz+-~+xn) <lnx1+lnxz~|—---+lnxn>
_ln S_
n n

n

Inx; +1Inx; +---+1Inx, <x1+xz+~--+xn>
<In
n

< 1H(X1X2...xn)1/nSlﬂ(Xl‘i‘xz—i—..._i_x”)’

n

i.e.
xl+xZ+...+xn
XXXy < s

n

which is the well-known inequality AM > GM.

Example 7.6 Let us consider the function f(x) = x2. Since f”(x) =2 > 0 it fol-
lows that f is convex on R. Then by Jensen’s inequality

’

(mm +m2Xz+~--+mnxn> _mifa) Amaf(xo) + - A maf ()
my+my+ -+ my - my+my+ -+ my
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we obtain

<m1x1+m2x2+~~+m”xn>2< m1x12+m2x%+--~+m,,x,%
my+my+---+my my+mp+---+my

ie.

(m1xy+maxa+ - -+ mpxn)* < (m1x7+mox3 +- -+ maxp)(my +mo+- -+ my).

By taking m; = bl.z, X; = ‘b’—;f fori =1, 2,...,n in the last inequality, we obtain
@by +aby + -+ aphy)? < (@} +ai + - +ad)(b + b3+ -+ b,

which is the well-known Cauchy-Schwarz inequality.

On this occasion we will present Popoviciu’s inequality, which will be used in the
same manner as Jensen’s inequality. But we must note that this inequality is stronger
then Jensen’s inequality, i.e. in some cases this inequality can be a powerful tool for
proving other inequalities, where Jensen’s inequality does not work.

Theorem 7.4 (Popoviciu’s inequality) Let f : [a,b] — R be a convex func-
tion on the interval [a, b]. Then for any x, y, z € [a, b] we have

f<x+y+z)+f(x)+f(y)+f(z)

3 3

=3((5) o (25) 4 (55)

Proof Without loss of generality we assume that x <y < z.
+y+ +y+z + +y+ +
Ify <=5 Zthen.x < <zand THE < SE <z
Therefore there exist s, ¢ € [0, 1] such that

x+z=(x+y+z)s+z(l—s) and (1.7)
2 3
yzzz(x+§+z>t+z(1—t). (7.8)

Summing (7.7) and (7.8) gives

x+y—2z x+y—2z
2 B 3

(s+1),

from which we obtain s + ¢t = %
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Because the function f is convex, we have

f(i”) <s- f(#) + (=9 [ ()

f<y—2|—z> sr~f<x+3ﬂ)+<1—r>f<z>

and

+ 1 1
f(x : y) < SFO+ 50,

After adding together the last three inequalities we obtain the required inequality.

The case when H%—H < y is considered similarly, bearing in mind that x <
Xtz - X+y+z and x < y+z o x+y+z 0
2 =73 =77 =73 -

Note If f is a concave function on [a, b] then in Popoviciu’s inequality for all
X, ¥,z € [a, b] we have the reverse inequality, i.e. we have

f<x+;1+z>+ f(x)+f;y)+f(z)

() (55) ()

Theorem 7.5 (Generalized Popoviciu’s inequality) Let f : [a,b] — R be a
convex function on the interval [a, b] and a1, ay, ..., ay, € [a, b]. Then

fla) + fla) +---+ flan) +n(n —2) f(a)
= (n—=D(fb)+ fb2)+---+ [ (b)),

__ ajtaxt--+an R | X .
where a = AL and by = —— Zi# aj foralli.

Theorem 7.6 (Weighted AM—GM inequality) Leta; € (0,00),i =1,2,...,n,
and o; €[0,1],i =1,2,...,n, be such that oy +ar + -+ + o, = 1.
Then

ai'ay? ---ad" <ajay +axn + -+ apay. (7.9)
Proof For the function f(x) = —Inx we have f'(x) = —1 and f"(x) = xl—z ie.

f"(x) >0, for x € (0, 00).
So due to Theorem 7.1 we conclude that the function f is convex on (0, 00).
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Leta; € (0,00),i =1,2,...,n,and o; € [0, 1],i = 1,2,...,n, be arbitrary real
numbers such that ¢y + oo + -+ o, = 1.
By Jensen’s inequality we deduce

- 1H(Zai06i> = f(ZaiOéi) < Zaif(ai) =— Zai Ina;
i=1 i=1 i=1

i=1

< —In(aio) + oy + -+ apay) < —aylna; —azlnay —--- — o, Ina,

< orlnar+opylnary +---+aylna, <In(ajay +axar + - - - + apay)

& Ina{'ad? - ay <In(aioq + aray + - + apaty)

& al'ay?--ay <aja) +axon + -+ apay,
as required. g
Note By inequality (7.9) for o1 = o = - - =0y = %, we obtain the inequality
AM > GM.

Exercise 7.1 Let «, 8, y be the angles of a triangle. Prove the inequality

33

sinasin8siny < I

Solution Since «, B, y € (0, m) it follows that sinc, sin 8, siny > 0.
Therefore since AM > GM we obtain

si sin sin
Jsina sin Bsiny < ino + sinf + si y. (7.10)

3

Since f(x) =sinx is concave on (0, ), by Jensen’s inequality we deduce

sinoe+sir;,3+sinySsinot-l-éH-V:?. (7.11)

Due to (7.10) and (7.11) we get

o V3 o 3V3
\/*SHWSIH,BSIHVST & smocsm,BsmyfT.

Equality occurs iff « = B = y, i.e. the triangle is equilateral.

Exercise 7.2 Let a, b, c € RT. Prove the inequalities:

(1) 4@ +b% > (a+b)*;
Q) 9@+ +=@+b+c).
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Solution (1) The function f(x) = x3 is convex on (0, +00), thus from Jensen’s
inequality it follows that

b 3 3 b3
(a;r ) << ”ZL & M +bY) > @@+b)’.

(2) Similarly as in (1) we deduce that

<a+b+c>3< aA+b+3

3 3 & 9P+ +)=(@+b+0)’.

Exercise 7.3 Leto; > 0,i =1,2, ..., n, be real numbers such that o] + o +--- +
a, = 1. Prove the inequality

ay o2 oy
ap oyt >

Slv—

Solution If we take a; = ail_,i =1,2,...,n, by the Weighted AM—GM inequality
we get

1 1 1 1 1
& gy S —oar+ —oa+--+ —ay=n,
1 % oy 1 o Op
i.e.
1< (o Ie5) oy
— <o o, o,
n

Exercise 7.4 Find the minimum value of k such that for arbitrary a, b > 0 we have
Ja+ b <kJa+b.

Solution Consider the function f(x) = J/x.

We have f'(x) = %x*% and f"(x) = —%x*%
f(x) is concave on the interval (0, 00).

By Jensen’s inequality we deduce

< 0, for any x € (0, 00). Thus

1 1 a+b
Ef(a)+§f(b)§f( > )

3/E+3/E< sJa+b
2 - 2

s I+JE<7J— NI

Therefore kmin = v/4, and for instance we reach this value for a = b.
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Exercise 7.5 Let x, y, z > 0 be real numbers. Prove the inequality

V2 14+ 2+ 1+ V22 + 12 6(x 4y +2).

Solution Consider the function f (1) =+/t2+ 1,1 >0.
Since (1) = 1 > 0, f is convex on [0, 00).

(Wr241)3

Therefore by Jensen’s inequality we have

VAl T4y + 1+ V22 + 1 >\/<x+y+z>2+l
3 - 3 ’

i.e.
V2 H 1+ 2+ 1+V2+ 12/ (x+y+2)2+9.
From the obvious inequality ((x +y +z) — 3)2 > 0 it follows that
+y+22+9>6(x+y+2).

By (7.12) and (7.13) we obtain

7

(7.12)

(7.13)

V24142 +14+ V241> (x+y+22+9>/6(x +y+2).

Equality occurs if and only if x = y =z = 1.

Exercise 7.6 Let x, y, z be positive real numbers. Prove the inequality

X+ +z z+x Z X
Yyrre, z4< 2 )
4 X y x+y y+z z+x

Solution Consider the function f(x) =x + )17
1 2

Since f'(x) =1— - and f”(x) = 5 > 0 for any x > 0 it follows that f is

convex on RT.

Now by Popoviciu’s inequality we can easily obtain the required inequality.



Chapter 8
Trigonometric Substitutions and Their
Application for Proving Algebraic Inequalities

Very often, for proving a given algebraic inequality we can use trigonometric sub-
stitutions that work amazingly well, and can almost always lead the solver to a
solution.

Using such substitutions, a given inequality may simplify to the point, where
the final part of the proof will be only routine, and will need previous results (usu-
ally Jensen’s inequality and elements of trigonometry). Therefore it is necessary to
possess a knowledge of trigonometry.

We will give some basic facts that must be known and which are of benefit when
Jensen’s inequality is being used. Namely, the function sinx is concave on (0, ),
the function cos x is concave on (—m /2, w/2), hence also on (0, 7 /2), tanx is con-
vex on (0, /2), while the function cotx is convex on (0, 77/2).

Furthermore, without proof (the proofs are “pure” trigonometry, and some of
them can be found in standard collections of problems in mathematics at secondary
level) we will give several trigonometric identities relating the angles of a triangle,
which the reader should certainly know.

Proposition 8.1 Ler «, B, y be the angles of a given triangle. Then we have
the following identities:

. _ 3 B anY
Iy: cosa+cosf +cosy =1+4sin7 -sin5 -sin b

bI: sina+sin/3+siny=4cos%-cos§~cos%

I3: sin2a +sin2p +sin2y =4sina - sin B - siny

I4: sin®a +sin® B +sin? y =2+ 2cosa - cos B - cos ¥
1 sin2%+sin2§+sin2%+2sin%osing-sin%=1
Is: tan%-tan§+tang-tan%+sin%-sin%=1

Is: tana +tanB +tany =tanco -tan g - tany

I7: cot%—kcot%—kcot%:cot%~cot§-cot%.

Z. Cvetkovski, Inequalities, 79
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Proposition 8.2 Let «, B, y be arbitrary real numbers. Then we have:

+8 ﬂ+y vt
I3: s1na+sm,3+s1ny—s1n(a+,3+y)_4s1n“ - sin == - sin 5~

a+p ,8+y yta
Iy: cosa +cosf +cosy +cos(a + B+ y) =4cos = - cos == - cos <.

Now we will give several inequalities concerning the angles of a given triangle,
which will be used in proving inequalities by using trigonometric substitutions, and
which are of great importance. The method of introducing certain substitutions and
knowledge of these inequalities are the essence of this way of proving algebraic
inequalities.

Proposition 8.3 Let «, 8, y be the angles of a given triangle. Then we have
the following inequalities:

. 3f C G : : 3v3
Np: sino +sinf +siny < Np: sine-sinf-siny < =¢=

N3: sin & +sm’3+sm”§g Ny: sin%-sing-sin%<%
Ns: cosoz+cos,3+cosy§% Neg: cosozw:osﬂ-cosyf%

. Y <33 . a . B Y — 33
N7: cosz+cos2+co ) Ng: cos5 -cos5 -cos5 < 5
No: sin @ + sin ,3+s12y ?T Nlo:sin22+s1n2ﬂ+s 2%

w

N11:cosza+cos2ﬁ+cos Y= N12:cos ——|—cos2’3 + cos?
Nmtan%—i—tan%—i—tan%z«/g N14:cot%+cotg+cot%>
Nis: cota +cot B + coty > V3.

Proof Nj: The function sinx is concave on the interval (0, ), thus from Jensen’s
inequality we obtain

3 3 3 2

sina +sinfB +siny | (0[—0—,3—}—)/) .7 3
<sin[ ———= ) =si
343
& sina—i—sin,B—}—sinyS—;/_.

N;: Since sinx > 0 for any x € (0, w) we can apply the inequality AM > GM,
and we obtain

sina+sin,8+siny)3iil <\/§>z B 33

G B i1 <
sina - sin 8 smy_( 3 > g

N3: Similarly as in the proof of N1 we have

sin% +sin 2 +sinZ o T
2 32 2§sin<7+'§+y)=sin—=

1
6 2
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or

N W

.o . B .Y
s = !’ <
sin 4+ sin 4+ sin

since the function sinx is concave on (0, 77/2).
N4: Similarly as in proof of N, and since AM > GM we have

L a . ﬂ Y
i oo . Sin 5 + sin 5 4+ sin 5 Ny 1
\/sm—-smé-smy 2 2 z <

—_ << s
2~ 3 -2
ie.
a By 1
sin — - sin = - sin = < —.
2 2 278
Ns: Since a + = — y it follows that
cosy = —cos(a + ) = —cosacos B + sina sin .

Thus
3 —2(cosa+cosf+cosy)=3—2(cosa +cosf —cosacos B + sinw sin )
=sina +sin’ B — 2sina sin B + 1 + cos® &
+ 0052,3 —2cosa —2cosB +2cosacos B
= (sina — sin B)% + (1 — cosa — cos B)> > 0,
which is equivalent to
cosa +cos B +cosy < %

Ns: Since cos(a + ) = —cos y, we have

1
cosacosfBcosy = E(cos(a + B) 4+ cos(ox — B)) cosy

2

1 1 cos” y
= E(cos(a —pB) —cosy)cosy = 3 cos(w — B)cosy —
1 ( cos(o — ﬁ)>2 cos? (o — fB)
=—=|cosy — ) + 3

20 —
- cos“ (o — B) - l
- 8 — 8
N7: Since «, B, y € (0, ) it follows that «/2, /2,y /2 € (0, /2).
The function cos x is concave on the interval (0, 7 /2).
Thus by Jensen’s inequality we get

cos%+cos§+cos% a+pB+y T /3
3 ST T T
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i.e.

B y 33

_ _ < —,
cos > + cos 5 + cos <3
Ng: Since «, 8, y € (0, ) it follows that «/2, 8/2,v /2 € (0,7/2), i.e.
cos«, cos B,cosy >0,

so we can apply AM > GM to conclude that

COS — COS — COS —
2 2

2~ 3

A

\3/ a B y<cos%+cosg+cos%N7£
5

from which it follows that

3«/—

a B 14
COS — - COS — - COS — < ——
2 2 2~
Ny: By identity I4 and inequality Ng we obtain

1 9
sin2a+sin2,3+sin2y:2+2005a-cos,3-cosy §2+2-§:Z.

Nio: By I; we have that

sin2%+sin2§+sin2g+2sin%~sin§~sin%:1,

i.e.
o .
n2 E + sm2 + s1n

2 Y
According to Ny: sin 5 - sin 5 - sin 5

Ni1: We have

N 9
cosza—l—coszﬂ—i-coszy =3—(sin2a+sin2ﬁ+sin2y) 293— 1=

W

Ni2: We have

N 3 9
0052%+0032§+cos 5_3—( %+sin2'§+sm2§> _103—Z=Z.

N13: Since tanx is convex on the interval (0, w/2), by Jensen’s inequality we
deduce
B Y
tan%+tan§+tan7>tana+ﬁ+y T 1

>tan ——— =tan — = —,
3 6 6 3
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i.e.
B

o 14
tan — + tan — + tan — > /3.
an2+an2+an2_x/_

N14: Due to the convexity of cotx on (0, /2) by Jensen’s inequality we obtain

4

cot%—i—coté—i—cota z3cotw=3«/§.

6
Nis: Firstly we have

cosa cosf cosasinB +sinacosf  sin(a + B)

cota +cotf = + =

: : = : : - —. (8.1
sinae  sinf sin sin 8 sina sin 8 (

Also

1 > cos(a — B) =cosa cos B + sina sin 8, (8.2)

cosy = —cos(a + B) = —cosa cos B + sina sin . (8.3)
Adding (8.2) and (8.3) gives us

2sinasinf <1+ cosy
& 2sinasinBsin(o + B) < (1 +cosy)sin(a + B)
& 2sinasinBsiny < (14 cosy)sin(a + B)

2sina sin 8 sin y - (14 cosy)sin(a + B)
sinasin (1 +cosy) — sinasinB(l 4+ cosy)

2siny - sin(a + B)

<—. (8.4)
1+cosy — sinasinf

Therefore

@.nsin(e +p) | cosy (8;0 2siny n cos y
~ sinasinf siny = 1l4cosy siny
1 4sin’y 4+ 2cos?y +2cosy

2 (14cosy)siny

1 <SSin2 y + (1 +cosy)2)

2 (14 cosy)siny

1 /24/3sin® y (1 +cosy)? 2./3
25( \/ >= [26,

cota + cot B + coty

(1 +cosy)siny

as required. O
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Proposition 8.4 Let «, B, v be the angles of an acute triangle. Then

Nie: tano +tan 8 +tany > 34/3.

Proof Since the triangle is acute it follows that «, B, y € (0, 7/2). The function
f(x) =tanx is convex on (0, 7 /2), so by Jensen’s inequality we obtain

tana 4 tan 8 +tany z3tana+"% :3tan% =343.

Furthermore, we’ll give two theorems that will be the basis for the introduction of
trigonometric substitutions. U

Theorem 8.1 Let o, B,y € (0, ). Then o, B and y are the angles of a trian-
gle if and only if

tangtanﬁ+tanétanz+tangtanz:1.
2 2 2 2 2 2

Proof Let «, B, y be the angles of an arbitrary triangle. Then ¢« + 8 + y = 7, i.e.
Y _m _ atp

2532 7 -
Therefore
tanzztan<£_a+,3>:Cot<g+é>=cot%cot§—l:1—tan%tan§
2 2 2 22 cot%—l—cotg tan%—l—tang
a p B, v oy
tan — tan — + tan — tan — +tan —tan — = 1.
< arlzanz—i-anzanz—i—anzan2

Conversely, let us suppose that for some «, 8, y € (0, ) we have

a P B. v o Y
tan —tan — 4 tan —tan — +tan —tan — = 1. 8.5
2 2 + 2 2 + 2 2 ®-5)

If « = B = y then 3 tan? 5 =1, and since tan 5§ > 0 we get tan 5 = %,i.e.a =B=
y = 60°, from which it follows that « + 8 + y =7, i.e. @, f and y are the angles
of a triangle.

Without loss of generality let us assume that o % 3.

Since 0 < @ + B < 2 it follows that there exists y; € (—m, ) such that o + 8 +
Yi=m.

Then by the previous part of this proof we must have

tan%tang +tan§tan% +tan%tan% =1. (8.6)
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We’ll show that y = y1, from which it will follow that« + 8 + y =7, i.e. «, 8 and
y are the angles of a triangle.
If we subtract (8.5) and (8.6) we get

tan 4 =tan ﬂ, i.e.
2 2

Yy —n
2

=km, forsomek>0keZ.

But |%| < % + % < % + % =m, so it follows that k =0, i.e. y = y1, and the
proof is finished. g

Theorem 8.2 Let o, B,y € (0, ). Then o, B and y are the angles of a trian-
gle if and only if

B

2%+Sin25+sin2g+2sin%-sing-singzl.

sin

Proof Let «, B, y be the angles of a triangle. Then we have

sinzz—l—Zsingsiné'sinZ
2 2 2 2
=cosza+'3+2sing~siné~cosa+ﬂ
2 2 2 2
a+pB a+p .o B
= oS cos + 2sin — - sin —
2 2 2 2
o+ pB o+ B a—p oa+p
= COS cos + cos — COS
2 2 2 2
— 1
=cosa—;'3ocosazﬁzi(cosa-l-cosﬁ)
1—2sin?%4+1—sin2f
= 2+ 2 =1—sin2g—sinzé,
2 2 2
i.e.
sin2%+sin2§+sin2%+23in%osin§~sin%:1.
Conversely, let o, 8, ¥ € (0, ) be such that
sinZ%+sin2§+sin2%+2sin%-sin§~sin%:1. (8.7)

We’ll show thata + 8+ y = .
Since 0 < o + B < 2 it follows that there exists y; € (—m, ) such that o« + 8 +
Yi=rm.
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Then clearly
sin? % + sin? g + sin? );1 + 2sm R s1n§ sin % =1. (8.8)
By subtracting (8.7) and (8.8) we obtain
<smg — sin %) (sin% +sin% +2sin% -siné) =0. (8.9)
But
smE —l—sm? +2s1n§ smg —sm% +sm% +c0sa;ﬂ —cosa;'g
—sm% +sm%+cosa_ﬂ —sin%
_in? a—p
=Ssin 3 —+ cos R
Since € (0,7/2) and —*~ a b e (—=m/2,m/2) it follows that
sing +cosa ;ﬁ >0, ie. smg +sm% +2sm% smg > 0.
From the last inequality and (8.9) we have
smzzsmﬂ ie. y=y
> 5 e .
Thus o + B + y = 7, as required. O

Now, based on these two theorems we will give basic cases, how a given algebraic
inequality can be transformed by trigonometric substitutions. These substitutions,
with the inequalities of Propositions 8.3 and 8.4 will be a powerful apparatus for
proving algebraic inequalities.

8.1 The Most Usual Forms of Trigonometric Substitutions

Case 1. Let a B and y be the angles of an arbitrary triangle.
LetA=77% B=""F and C =77~
Then A + B + C = m; moreover 0 < A, B, C < m/2, i.e. this substitution allows
us to transfer angles of an arbitrary triangle to angles of an acute triangle. (This is
especially important when we use Jensen’s inequality, since “Jensen” could not be
used for the function cos x on the interval (0, ), but only on the interval (0, 7 /2).)
Observe that we have:

sing=cosA, siné=cosB, sinZ=cosC.
2 2 2

Note: There are similar identities for the functions cos x, tanx and cotx.
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Case 2. Let x,y and z be positive real numbers. Then there exist triangle with
length-sidesa=x+y,b=y+z,c =27+ x.

Clearly (x,y,z):(s—b,s—c,s—a),wheres:%b“=x+y+z.

Case 3. Let a, b, c be positive real numbers such that ab + bc + ca = 1.

Since tanx € (0, oo) for x € (0, 7/2), and due to Theorem 8.1 we can use the
substitutions

o
a =tan —, b:tané, c:tanZ,
2 2 2

where o, 8 and y are the angles of a triangle, ie. «, 8,y € (0,7) and
a+pf+y=m.

Case 4. Let a, b, ¢ be positive real numbers such that ab + bc 4 ca = 1.
Then according to Case 3 and Case I we can use the following substitutions

a=cota, b =cot B, c=coty,

where o, 8 and y are the angles of an acute triangle, i.e. o, 8,y € (0, 7r/2) and
a+B+y=m.

Case 5. Let a, b and c be positive real numbers such that

1 1 1
a+b+c=abc, ie. —+—+—=1.
bc ca ab

Then according to Case 3 we can take

1 o 1 1 y
_:tan_’ —:tan—’ —:tan_,
a 2 b 2 c 2
o
i.e. a=cot—, b:coté, c=cotZ,
2 2

where o, § and y are the angles of an arbitrary triangle.

Case 6. Let a, b, ¢ be positive real numbers such that a + b + ¢ = abc.
Then according to Case 5 and Case 1 we can use the following substitutions

a=tanco, b =tan g, c=tany,

where o, 8 and y are the angles of an acute triangle, i.e. o, 8,y € (0, 7/2) and
a+B+y=m.

Case 7. Leta, b, ¢ be positive real numbers such that
a2+b2+cz+2abc= 1.

Note that since the numbers a, b, ¢ are positive we must have a, b, ¢ < 1. Therefore
due to Theorem 8.2 we can use the substitutions

Lo . B .Y
a =sin —, b =sin —, ¢ =sin —,
2 2

2
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where o, § and y are the angles of an arbitrary triangle, i.e. «, 8, ¥ € (0, w/2) and

a+B+y=m.
Case 8. Let a, b, ¢ be positive real numbers such that

a*>+b* + c? 4+ 2abc =1.
Then according to Case 7 and Case 1 we can make the following substitutions
a=cosu, b =cos B, c=cosy,

where «, 8 and y are the angles of an acute triangle.

Case 9. Let x, y, z be positive real numbers.
Then the expressions:

\/ yz \/ X \/ Xy
x+NE+2)VO+20+x)" YV @+x)E+y)

with the substitutions from Case 2 become

\/(s —b)(s —¢) \/(s —o)(s —a) \/(s —a)(s —b)
bc ’ ca ’ ab ’

where a, b, ¢ are the length-sides of a triangle.
But let us notice that

.o (s —b)(s—c) . B = —a)
sin— =,/ ———— sin— =,/ ———~,
2 bc 2 ca
.Y [—=a)s—Db)
sin - =,/ —————~.
2 ab

Therefore for the given expressions we can simply make the substitutions:
sin 5, sin %, sin % (respectively), where «, B8 and y are the angles of a triangle.

Case 10. Similarly as in Case 9, for the expressions:

x(x+y+72) yx+y+2) zx+y+2)
C+NE+2) NV O+ +x)"V @+x0)E+y)’

we can make the substitutions cos % cos % cos % (respectively), where «, 8 and y
are the angles of a triangle.

Now we will give practical applications of this material, through exercises that
will demonstrate how it works, and how useful is this apparatus, which is based on
the aforementioned substitutions in certain cases.
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8.2 Characteristic Examples Using Trigonometric Substitutions

Exercise 8.1 Let x, y, z > 0 be real numbers. Prove the inequality

x+»O+2)@+x)
X+y+z '

VX +2) +Vy@+x) +V/z(x +y) 22\/

Solution The given inequality is equivalent to

\/x(x+y+z) +\/y(x+y+z) +\'/z(x+y+z)

x+y)(x+2z) O+ +x) Z+x)z+y)

According to Case 10, it suffices to show that
cos% +cos§ +cos% >2,

where o, B and y are the angles of a triangle, i.e.a, 8,y € (0, 7) anda+B+y = .
Due to Case 1, it remains to prove that

sing + sin 8 +siny > 2,

where «, B and y are the angles of an acute triangle, i.e. o, 8,y € (0, 7/2) and
a+p+y=m.

Since o € (0, /2] it follows that 0 < sina < 1, i.e. sina > sin
occurs if and only if o =7 /2.

Similarly for 8, y € (0, 7 /2] we conclude that

% &, and equality

sin 8 > sin? B and siny > sin’ .
Thus we have
sino 4+ sin 8 + siny
> sin’ & + sin’ B+ sin’ y

_l—cos2a 1—cos2p
B 2 2

1
+ sin? y=1-— 5(00520[ +cos2p) + sinzy

1
=1- EZcos(oe 4+ pB)cos(e —B)+1— cos? y

=2 —cos(mr — y)cos(e — B) — cos? y =24cosycos(e — f8) — cos? y
=2+ cosy(cos(e — B) —cosy) =2+ cosy[cos(o — B) — cos(m — (@ + B))]
=24 cosy(cos(e — B) +cos(e+ B)) =2+ 2cosycosacosf > 2.
Exercise 8.2 Let a, b and ¢ be positive real numbers such that a + b + ¢ = 1. Prove
the inequality
a? +b* + ? +2+/3abc < 1.
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Solution After taking a = xy, b = yz, ¢ = zx, inequality becomes
x2y2 + y212 +22x% + 2«/§xyz <1, (8.10)
where x, y, z are positive real numbers such that
xy+yz+zx=1. (8.11)
Inequality (8.10) is equivalent to
(xy + yz4+2x)> +2v3xyz < 1+ 2xyz(x + y 4+ 2)
or
V3<x+y+z (8.12)
By (8.11) and according to Case 3, we can take
x=tang, y=tan —, z=tanZ,
2 2 2

where o, B,y € (0O, m) ando + B+ y =m.
Then inequality (8.12) is equivalent to tan 5 + tan g + tan % > /3, whichis Ny3.

Exercise 8.3 Let a, b, c € (0, 1) be positive real numbers such that ab + bc + ca =
1. Prove the inequality

a b c >3 1—512_i_1—l)2_+_1—c2
1—c27 4 ’

1—a2+1—b2+ a b c

Solution Since ab 4 bc + ca =1 and by Case 3, we use the following substitutions

a:tang, b:tané, c=tanZ,
2 2 2
where «, 8 and y are the angles of a triangle.
Since a, b, c € (0, 1), it follows that tan %, tan %, tan % € (0, 1), i.e. it follows that
a, B and y are the angles of an acute triangle.
Also we have

a tan § sin§ - cos § sino tan o
l—az_l—tanz%_ cosa¢  2cosa 2
Similarly
b tan g8 c tany
— —=—"and = )
1—-p2 2 1—¢2 2

Therefore the given inequality becomes

tana+tanﬁ+tany>3 2 n 2 2
2 “4\tane tanf tany




8.2 Characteristic Examples Using Trigonometric Substitutions 91

or

1 1 1
tano +tan f +tany >3 + + . (8.13)
tane  tanf tany

By I we have that tano 4 tan 8 4+ tany = tano - tan 8 - tan y. Thus it suffices to
show that

(tanw 4+ tan B + tan y)2 > 3(tanwtan 8 + tan Stany + tan y tanw)
1
& E((tana — tan 5)2 + (tan 8 — tan y)2 + (tany — tanc)?) > 0.
We are done.

Exercise 8.4 Let x, y, z be positive real numbers. Prove the inequality
Z

x y
+ + <1
xX+Jx+y)x+2) y+HJO+FDO+x) 2+ +HEX)(E+y)

Solution Rewrite the given inequality as follows

1 1 1
+ (+)(+)+ e )Sl. (8.14)
x +x)(z+y
Y =T ST R [T
Since this is homogenous we may take xy + yz 4+ zx = 1.
Therefore by Case 3, we can take
o 14
a =tan —, b =tan —, c=tan —,

2 2 2

where o, 8 and y are the angles of a triangle.
We have
x+y)(x+2) _ (tan § + tan g)(tan% + tan §) _ 1
x2 tan? % sin? % '
Similarly
O+ +x) 1 and (z+x)z+y) 1
y? sin? g z2 sin® 1.
Thus inequality (8.14) becomes
sin § sin g sin & -
1+sin§ 1+sing 1+sink =7
i.e.
1 1 1
>2. (8.15)

: + + : =
1+sin§ 1+sin§ 1+sin%



92 8 Trigonometric Substitutions and Their Application

Since AM > HM we obtain
! + ! + ! > ? (8.16)
I+sing * 14sinf  L+sind ~34sin% +sinf +sink .

According to N3, we have that sin% + sing + sin % < %
Finally, by the previous inequality and (8.16) we obtain
1 n 1 n 1 - 9 5
1 +sin % 1~|—sing 1+sin%_3+%

as required.

Exercise 8.5 Let a, b, ¢ (a, b, ¢ # 1) be non-negative real numbers such that ab +
bc + ca = 1. Prove the inequality

a b c 343
+ + > f
1—a? 1 — b2 1—c2 2

Solution Since ab + bc + ca =1 (Case 3) we take:

a:tano—[, b:tané and c:tanz,
2 2 2

where o, B,y € O, m) anda + B+ y =m.
Using the well-known identity m:;n—fl =tana, we get that the given inequality
Z_

is equivalent to tan« + tan 8 + tany > 34/3, which is Nig.
Equality occurs if and only if a =b =c = 1/+/3.

Exercise 8.6 Let a, b, ¢ be positive real numbers. Prove the inequality
(@® +2)(b> +2)(c? +2) > 9(ab + bc + ac).

Solution Let a = ﬁtana,b = \/Etanﬂ,c = «/Etany where «, 8,y € (0,7/2).
Then using the well-known identity 1+ tan® x = the given inequality becomes

cos2 x

8 2 2 2
>9 + + )
cos?a - cos? B - cos? y tanotanf tanBtany  tany tano
ie.
o . . L 4
cosa cos Bcosy(cosasinBsiny + sinacosfsiny + sinasinfBcosy) < 9
(8.17)
Also since
cos(e¢ + B+ y)=cosacosfcosy —cosasinfBsiny — sine cos §siny

— sinw sin S cos y



8.2 Characteristic Examples Using Trigonometric Substitutions 93
inequality (8.17) is equivalent to
4
cosa cos B cosy (cosacosBcosy —cos(a + B+ y)) < X (8.18)
Let § = “H5+7

Since cos «, cos B, cos y > 0, and since the function cos x is concave on (0, 7/2)
by the inequality AM > GM and Jensen’s inequality, we obtain

3
coso + cos p + cos
ad 3 p 14 ) < cos’ 6.

cosacosBcosy < (
Therefore according to (8.18) we need to prove that
3 3 4
cos” 6(cos” 6 —cos30) < 5 (8.19)

Using the trigonometric identity
c0s30 =4cos> 6 — 3cosf, ie. c0s> 0 — cos30 =3cosh — 3cos> 6

inequality (8.19) becomes
4 2 4
cos"O(1 —cos“0) < —,
27

which follows by the inequality AM > GM:

(0032 0 cos?0

1/cos?0 cos26
2 2

3
-(1=cos?0) | <
( cos )) > + >

= + (1 — cos®6) _1
~3 -3

Equality occurs iff tane =tan 8 =tany = ie.iffa=b=c=1.

1
ﬁ 9
Exercise 8.7 Let a, b, ¢ be positive real numbers such that a + b + ¢ = 1. Prove the
inequality

b b 343
a n " ac§1+ \/—
a+bc b+ca c+ab 4

Solution Since a+b+c = 1 we use the following substitutions a = xy, b = yz,c =
zx, where x, y, z > 0 and the given inequality becomes

343
s + e + 1% <l+ —f,
xy+2)zx)  yz+ (zx)(xy)  zx+ (xy)(yz) 4
i.e.
1 1 y 3V3
<1 8.20
1+zz+1+x2+1+y2_ T (820

where xy + yz + zx = 1.
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Since xy +yz+zx = 1 according to Case 3 we may set x = tan 5, y = tan g’ 7=
tan % where o, B,y € (0, ), and o + B +y =m.
Then inequality (8.20) becomes

B
1 1 tan %5 343
— + —+ 2ﬁ51+i,
l+tan* 5  1+tan” 5 1+ tan2 5 4
i.e.
2V sm,B 3«/§
¥ 5 oo’ 2+ 2 = T

Using the trigonometric identity cos x = 2 cos? 5 — | the last inequality becomes

cosy+1+cosa+1+sinﬁ<1+3«/§
2 2 2 - 4’

343
cosy +cosa +sinff < T\/_ (8.21)

‘We have

cosa +cosy +sin 8 =cosa + cosy + sin(wr — (@ + y))

2 (ﬁ V3 )
=—| —cosau+ —cosy

V3\ 2 2
1
+—(«/§sinacos ++/3cosasin )
V3 Y v
<1 3+0052 +3+0052
Y a4+
=34 4 Y
1
+—0@3 sin®« + cos? y + cos” & + 3 sin’ )
24/3 Y Y
V3

3 3
=5 + %(cosza +sin’ &) + \/7_(0052 y + sin’ Y)

33
===



Chapter 9
Holder’s Inequality, Minkowski’s Inequality

and Their Variants

In this chapter we’ll introduce two very useful inequalities with broad practical us-
age: Holder’s inequality and Minkowski’s inequality. We’ll also present few variants
of these inequalities. For that purpose we will firstly introduce the following theo-

rem.

Theorem 9.1 (Young’s inequality) Leta,b > 0and p,q > 1 be real numbers
such that 1/p + 1/q = 1. Then ab < % + bq—q. Equality occurs if and only if

aP =b1.

Proof For f(x) =¢e* we have f'(x) = f"(x) =e* > 0, for any x € R.

Thus f(x) is convex on (0, 00).
If we put x = plna and y = g Inb then due to Jensen’s inequality we obtain

1 1
f(f + X) <)+ —f()
q p q

p
x_, ) X y
& erti<i 4L
p q
1 Inb
N elna+lnb < ebma el
p q
Ina? elan
N elnab < +
p q
al bl
& ab< — 4 —.
4 q
Equality occurs iff x = y, i.e. iff a? = b9. O
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Theorem 9.2 (Holder’s inequality) Let aj, az, ...,an; by, ba, ..., b, be pos-
itive real numbers and p,q > 1 be such that 1/p+1/q = 1.

Then
1 1
n n p [/ n q
i=1 i=1 i=1

4
_(l_2 an

4
Equality occurs if and only if‘;—}, === 5
1 2 n

Proof 1 By Young’s inequality for

a; b b;

Tt (i

i=1,2,...,n

)

Q

we obtain
aip 1 b?
— ©.1)

aib,- 1
= - P + n q-
pYioia; 42 b

n P 1 n q 1
(Zi:l a; )P (Zi:l bi )4

Adding the inequalities (9.1), fori =1, 2, ..., n, we obtain
2 i—1 4ibi <12?=laip 127:117;1_1_’_1_1’

1 = 13 q
i lap)” Qo 1bq a pZ?:lai gy b; P q

Zalb - (Za )’l’(fba);.

P
Obviously equality occurs if and only if = b,, = Z—%, =...= Z—',I}) g
) n

Proof 2 The function f : RT — R, f(x) = x? for p > 1 and p < 0 is strictly con-
vex, and for 0 < p < 1, f is strictly concave (Example 7.2).

Let p > 1, then by Jensen’s inequality we obtain

3

my+mp+---+my my+my+---+nmy

(B =(5m) - (5)

(m1x1 +m2x2+--~+mnxn>p - mle"‘mﬂg o myxy

i.e.
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i.e.

n n
>om = (om
i=1

i=1

Since L + L = | we obtain 2=L
P q P

n
2 _mi
i=1

n
E mix; =
i=1

1—q
i

By taking m; = b? and x; = a;b

n
Zaibi <

i=1

iry.

p—1
) Iz

é and the last inequality becomes

K

,fori=1,2,...,n we obtain

()

Remark For p =g =2 by Holder’s inequality we get the Cauchy—Schwarz inequal-

]

n
Z 4
ml-xil

i=1

n
E m,-xip

i=1

1
)p

n
P
Z“z‘

i=1

(£)

We’ll introduce, without proof, two generalizations of Holder’s inequality.

Theorem 9.3 (Weighted Holder’s inequality) Let aj, ay, ..
., my, be three sequences of positive real numbers and p, q > 1

bn; mlvm27 ©o
be such that 1/p +1/q = 1.
Then

n n
Zaibimi < Zaipmi
i=1 i=1

P
i

q

1

N

a
b

an

bl

b

Equality occurs iff

Q)

-7an; b17b27"'7

1
q

5/ n
i=1

Theorem 9.4 (Generalized Holder’s inequality) Let a;j,i =1,2,...,m; j =

1,2,...,n, be positive real numbers, and o1, a2, ..

bers such that ay + oy + -+ -+, = 1.
Then

., 0ty be positive real num-

97

O

A very useful and frequently used form of Holder’s inequality is given in the next

corollary.
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Corollary 9.1 Let a1, ay, az; b1, ba, b3; c1, c2, c3 be positive real numbers.
Then we have

(a% —i—a; 4= a;)(bf 4= bg 4= bg)(c? + cg + cg) > (a1bicy + axbycy + a3b303)3.

Theorem 9.5 (First Minkowski’s inequality) Letay,as, ..., an;b1,b2,...,b,
be positive real numbers and p > 1. Then

1 1 1
(Z(ai +bi)p> ’ < (Zaf’) p = (Zb?)p.
i=1 i=1 i=1

Equality occurs if and only if Z—: = Z—;

F@

_P_

Proof For p > 1, we choose ¢ > 1 such that % + é =1l,ie.q= T

By Holder’s inequality we have

D (@i +b)P = (ai +bi)ai +b)"!

i=1 i=1

n n
= Zai(ai +b,')p_1 + Zbi(d,’ +b,')p_1
i=1 i=1

< (Zd!’ ) p <Z<(a,~ +b,~>'”>‘1) q
i=1

i=1

+ (ibf’) ' (Zn:((di + b»”‘)”) E

i=1

1 1 1
- Z((a,»eri)"‘l)q) ((Zaf’) +<be) )
= i=1 i=1
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i.e. we obtain
n n el n 1 n L
> (ai+b)? < (Z(ai +bz»)") ((Zaf’) + (Zbﬁ) )
i=1 i=1 | i=1

& (g(aieri)”) ”71§<2n:a> (Zb”)
. (éwf“);f(iaf’>"+(ébf>”

Equality occurs if and only if 4 b = Z—i =...= Z—:. (Why?) g

Theorem 9.6 (Second Minkowski’s inequality) Letay,as,...,a,;b1,ba, ..., by

be positive real numbers and p > 1. Then

n P n P 1 n
(Ze) +(22) ) = @+
i=1 i=1 i=1

NS

Equality occurs if and only if 3+ = 72

Proof The function f :RT — RT, f(x) = (1 x5, # 0 for a > 1 is a strictly
convex and for « < 1 is a strictly concave (Example 7.4).
By Jensen’s inequality for p > 1 we obtain

<1+(mlxl+m2XZ+~--+mnxn)p>l/”

my+my+ -+ my
- mi(1+xDVYP +my(1+x)HVP 4 b my (14 xHVP
B my+my+ - +my

’

i.e.

i=1

n p n p\ 1/p n
((Zﬂh) + <Zmixi> ) <>l + mixp)P)P.
i=1 i=1 i

If we take m; = a; and x; = % fori =1,2,...,n, by the last inequality we obtain

n p n p % n
() e
i=1 i=1 [

i=1
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Theorem 9.7 (Third Minkowski’s inequality) Let ai,aa, ..., a, and by, bs,
..., by be positive real numbers. Then

Yaray-an + /biby---by < V(a1 +b1)(az + ba) - - (@y + by).

Equality occurs if and only if Z—: = Z—;

F@

Proof The proof is a direct consequence of Jensen’s inequality for the convex func-
tion f(x) =In(1 + €*) (Example 7.3), with x; =In 2, i =1,2,...,n. O

Theorem 9.8 (Weighted Minkowski’s inequality) Let aj,az, ..., ay; by, ba,
veoyby; my,my, ..., my, be three sequences of positive real numbers and
let p > 1. Then

1 1 1
n 7 n 7 n 7
(Z(ai +bi)pmi) < (Zaipmi) I (Zblpmi> o
i=1 i=1

i=1

Equality occurs if and only if Z—; = Z—;

@

Remark 1f 0 < p < 1 then in Theorem 9.5, Theorem 9.6 and Theorem 9.8 the in-
equality is reversed.

Exercise 9.1 Let a, b, ¢ be positive real numbers. Prove the inequality
3@+ b3+ > @+ b+ 2.
Solution By Corollary 9.1 (or simply Holder’s inequality) we obtain
@+ +N@E+PP+AHA+1+1) > @+ >+ )3,
ie.
3@ + b+ = @+ b2+ D

Exercise 9.2 Leta, b, c,x, v,z € RT. Prove the inequality

a b c3>(a—}—b+c)3
X y 7z 3x+y+z)

Solution By the generalized Holder’s inequality (or simply Holder’s inequality) we
have

a b A3 5 1 1

;4’;4‘? I+1+D3(x+y+2)3=a+b+c,

and the conclusion follows.
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Exercise 9.3 Let a, b, ¢ be positive real numbers such that a + b + ¢ = 1. Prove the
inequality

@ +b* + ) @” + b + )@ + b + ) = (Ja+ b+ Je).

Solution By Hélder’s inequality we obtain

(@ + b+ 3@ + 5+ )@ + 5+ )5 =a" T 4 pTT 4T
Since a + b + ¢ = 1, the conclusion follows.
Exercise 9.4 Let a, b, ¢ be positive real numbers. Prove the inequality
3(a2b +b%c+ cza)(ab2 +bc* + caz) > (ab + bc + ca)3.
Solution By Hélder’s inequality for the triples:
(@.a2,a) = (1,11, (b1.ba,by) = (Va2b, Vb2, Veka ),
(c1,¢2,03) = (\3/% m m> ,
we obtain the given inequality.

Exercise 9.5 Let a, b, c € RT. Prove the inequality

abc _ i
(I+a)@a+b)(b+c)c+16) ~ 81°

Solution By Holder’s inequality we have

A+a)a+b)b+o)c+16)>1-a-b-c+~a-b-c-16)*
= (3vabc)* = 8labc.

Equality occurs if and only if é =7= ? =g le.a=2,b=4c=8.
Exercise 9.6 Let x, y, z be positive real numbers such that xy + yz + zx +xyz = 4.
Prove the inequality

VI+2+y+24+Vz+2=3V3.

Solution Let us denote x +2 =a,y + 2 =>, and z + 2 = c. Then the condition
Xy + yz + zx + xyz = 4 becomes

abc =ab + bc + ca,

i.e.
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By Holder’s inequality we have
1 1 1
(ﬁ+¢5+ﬁ)2(—+—+—> >33,
a b ¢
andsince%—i—%—i—%:lweget
(Wa+~b+ o) =3,
ie.
Va+ b+ c=3V3,

as required.

Exercise 9.7 Let a, b, ¢ be positive real numbers such that abc = 1. Prove the in-
equality

a b c
+ + >1
VI+b+c JT+c+a JT+a+b

Solution Let us denote

a b c
A= + +
Vi¥b+c JT+c+a JT+a+b

and
B=a(l+b+c)+b(T+c+a)+c(T+a+Db).
By Holder’s inequality we obtain
A’B>(a+b+c).
It remains to prove that
(@a+b+c¢)=B="7a+b+c)+2(ab+bc+ca).
Since AM > GM we deduce that
a+b+c>3vabc=3,

so it follows that

7 2
(a+b+c)3Z3(a+b+c)2=g(a+b+c)2+§(a~l—b~l-c)2

7
2§~3(a+b+c)+2(ab+bc+ca)

=T+ b+ c)+2@ab+ bc+ ca).
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Exercise 9.8 Let a, b, ¢ be positive real numbers such that a + b + ¢ = 1. Prove the
inequality

a b c
> 1.

+ + =
Ja+2b Yb+2c Je+2a

Solution Let us denote

a b c

A= + +
Ja+2b Ib+2¢c Je+2a

and
B=a(@+2b)+bb+2c)+cc+2a)=(@a+b+c)>=1.
By Holder’s inequality we have
A3B>(a+b+0t, ie AP>@+b+o’=1,
from which it follows that A > 1.

Equality occurs iffa =b=c=1/3.

Exercise 9.9 Let p > 1 be an arbitrary real number. Prove that for any positive
integer n we have

1 P
1P’+2”+~~-+n”zn~('1_2F >

Solution If p =1 then the given inequality is true, i.e. it becomes equality.

Solet p > 1.

Wetake x; =1,x0=2,...,x,=nand y;=n,y»=n—1,...,y, = 1.

By Minkowski’s inequality we have

1 1
A+m)P + A4+ +-- -+ A +n)P)r <2(17 42P + ... 4-nP)?,
i.e.
n(l+n)? <2P(1P 427 +...4+n?)

or

1\?
11’+2”+-~+n1’2n~<n—£ )

as required.
Equality occurs iff n = 1. (Why?)
Exercise 9.10 Let x, y, z be positive real numbers. Prove the inequality

Z

X y
1
VO INGTD YA /OO0 T Ve TETD
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Solution By Hélder’s inequality for n =2 and p = g =2, we obtain

VoG +o = (0 + ) (WD + WD)
> VXY V= Vx4 Xy,

ie.
1 - 1 B 1
VEFNG+2) - VY ST+ VD

So it follows that

x x B Jx
x+/G+ ) +2) §x+ﬁ(ﬁ+ﬁ)_ﬁ+ﬁ+ﬁ'

Similarly

Y < il and
YyHNOFIO+1) T S+ Sy +HVz
NG

z
2+ V(z+y)(z+x) fﬁﬁ-ﬁ—i-ﬁ'

Adding the last three inequalities yields

<

x y
+ +
x+J/x+x+z2) y+HEJO+)O+Hx) 2+ /(z+Hy)(z+x)

VARV
R R RVAR VA

as required. Equality occurs iff x =y = z.

Exercise 9.11 Let x, y, z > 0 be real numbers. Prove the inequality

\/xz~|—xy—|—y2~|-\/y2+yz+z2+VZ2+zx+x2
>3xy +yz+zx.

Solution By Holder’s inequality we have

xy+yz+zx =) P o)+ M PR3
+ (22)1/3(2)6)1/3()62)1/3
<@ 4+xy+ )P0+ yz+ DV 4+ e + D15,
i.e.

(xy +yz +zx)3 < (x2 +xy+ y2)(y2 +yz+ zz)(z2 + zx +x2).

9.2)



9 Holder’s Inequality, Minkowski’s Inequality and Their Variants 105

Since AM > GM and by (9.2) we obtain

{ 3
<—(\/x2+xy+y2+\/y2+yz+z2+VZ2+zx +x2)>

3

z\/x2+xy+y2-\/y2+yz+z2\/zz+zx+x22\/(xy+yz+ZX)3,

i.e. we have

\/x2+xy+y2+\/y2+yz+Z2+\/z2+zx+x223 Xy +yz+zx,

as required. Equality occurs iff x =y = z.



Chapter 10

Generalizations of the Cauchy-Schwarz
Inequality, Chebishev’s Inequality and the Mean
Inequalities

In Chap. 4 we presented the Cauchy—-Schwarz inequality, Chebishev’s inequality and
the mean inequalities. In this section we will give their generalizations. The proof of
first theorem is left to the reader, since it is similar to the proof of Cauchy—-Schwarz
inequality.

Theorem 10.1 (Weighted Cauchy—Schwarz inequality) Let a;, b; € R,i =
1,2, ...,n, be real numbers and let m; e R, i =1,2,...,n. Then we have
the inequality

n 2 n n
2 2
Zaibimi < Zai m; Zbimi .
1 4 — 2
Equality occurs lﬁ‘bl =5 = b
Theorem 10.2 Letay,as, ..., a, and by, by, ..., b, be two sequences of non-
negative real numbers and ¢; > 0,i = 1,2, ...,n, such that % > % >0 >

an bisbs  sba & b j
o and S ELEEL (the sequences (Ci) and (Ci) have the same orien-

tation). Then

" a:b; (‘ A .
Zal_bl > Zl:] aln Zl:l bl (101)
i € D i1 Ci
ie.

arb arb a,b art+a+---+ay,))(bi+br+---+b

11+22+m+nn2(1 2 ) (b1 + by n)'

ci 2 Cn c1tcat 4y
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Proof In the proof we shall use the following lemma which can be easily proved

using the principle of mathematical induction.

., ay be non-negative real numbers, and c; > 0,

Lemma 10.1 Let ay, an, ..
i=1,2,....n,suchthat &4 > 2 > ... > % Thep
cl c @

a1+a2+...+ak>a_n For ar =1 25 e 1is

El

Cl+eC+ -+ Cp

We shall prove inequality (10.1) by mathematical induction.
For n = 1, we have equality in (10.1).

For n =2 we need to prove that

arby _ (a1 +a2) (b + )

a1b1
+
c1+oc

C1 2

which is equivalent to (ajc; — axcy)(bic2 — bacy) > 0.
b S b

The last inequality holds since we have 2L > % and 2L > 2
c1 1o c1 e
Let us assume that for non-negative real numbers ai, as, ..., ax; b1, ba, ..., bi
and ¢; > 0,i = 1,2, ..., k, such that % > Z—; > > “—I‘( and f—; > }Z—; > > lc’—’k‘
inequality (10.1) holds for n =&, i.e.
arby  axb agby _ (a1 +ax+---+a)br +br+---+by)
LS 4+t > . (10.2)
€1 € Ck crtet- ok
For n =k + 1, for non-negative real numbers ay, az, ..., ak+1; b1, b, ..., by and
¢i>0,i=1,2,...,k+ 1 such that
a a a b b b
_12_222 k+1 and _12_222 k+1’
0 Ck+1 0 Ck+1
we have
arby  axb axby  apy1bryy
—_ == 44—+ Gkt 1%k+1
Ck Ck+1

c1 c
102 (a1 +ax +---+a)(br + by +--- + bi) n Ag+1bk+1

crte+- Ck+1
Jatat- - tarta)br b+ by
B cr+cat -+ Cr ’

where the last inequality is true according to the case n =2 and Lemma 10.1. [

aibi Siiaiyi i bi
a =TS

Remark 10.1 1f the sequences (‘;—j) and (lc’—f) have opposite orientation then in The-

orem 10.1 we have the reverse inequality, i.e., we have Y _,
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Remark 10.2 Fora; >ay>--->a,>0,b1 >by>--->b,>0and0<c); <cp <
-+ - < ¢, the required condition from Theorem 10.2 is satisfied, so we also have that
Xn: aibi 3oy ai- )iy bi

n
o ¢ DG

If in Theorem 10.2 we put a; = ¢;x;, b; = ¢;y; and m; = Z,,‘—’C, i=1,2,...,n,
i=1%

then clearly )/, m; = 1 and the following theorem is obtained:

Theorem 10.3 (Weighted Chebishev’s inequality) Let a; < ap < --- < ap;

by < by < --- < by, be real numbers and let m|, m», ...,m, be non-negative
real numbers such that mi +mo + ---+m,, = 1.
Then

n n n
(Za,m,-) (Zbimi) < Zaibimi.
i=1 i=1 i=1

Equality occurs iffay =ap=---=ay, orby =by = --- = b,.

Note If in the above Theorem 10.1 (Theorem 10.3) we choose m| =my =--- =
my(m=my=---=m, = %), we get the Cauchy—-Schwarz inequality, and Chebi-
shev’s inequality, respectively.

Exercise 10.1 Letay, ay, ..., a, be the lengths of the sides of a given n-gon (n > 3)
and let s = a; + a» + - - - 4+ a,. Prove the inequality
ai ap an n

> .
s—2a1+s—2a2+ +s—2an_n—2

Solution Without loss of generality we may assume that a; > a> > --- > a,. Then
clearly O <s —2a; <s —2a; <---<s —2ay.
According to Theorem 10.2 we obtain

aj ar a, ap -1 a -1 a, -1

s—2a1+s—2a2+”.+s—2an s—2a; §s-—2a “'+s—2an
(a1 +ay+---+ay)n
“ns—=2a +ax+---+ay)
ns n
sn—2 n-2

Exercise 10.2 Let M be the centroid of the triangle ABC, and let k be its circum-
scribed circle. Let MANk={A}, MBNk={B1} and MC Nk = {Cy}. Prove the
inequality

MA+MB+MC<MA|+MB| +MC,.
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Solution Denote BC =a, AC =band AB =c. Let A’, B’ and C’ be the midpoints
of the sides BC, AC and A B, respectively.

Without loss of generality we may assume that a < b < ¢, and then we may easily
conclude that MC < MB < MA.

Also by the power of a point we have %m CAA = %az from which it follows
that

a? — 1— 1— a?
AAl=——, le. MAI=-MA+AA =-MA+ —.
6MA 2 2 6MA
Analogously we obtain
— 1l — 1l 2
MBi=-MB+ — and MCi =-MC+ ——.
2 6MB 2 6MC
So it suffices to prove the inequality
a® b? c? S —
—+—+—>MA+MB+MC
3MA 3MB 3MC
According to Theorem 10.2 we have
a? b2 2 a’-1 b1 21 . 3(a® 4 b* +c?)

— e ——— = — "

3MA 3MB 3MC 3MA 3MB 3MC 3(MA+MB-+MC)
24+ >3(W2+W2+WZ)
- MA+MB+MC~ MA+MB+MC
>MA+ MB+ MC,

as required.

Before introducing the power mean inequality we’ll give following definition.

Definition 10.1 Let a = (a1, a2, ..., a,) be a sequence of positive real num-
bers and r # 0 be real number. Then the power mean M, (a), of order r, is

defined as follows: M, (a) = (w)%.

Forr =1,r =2,r = —1 we get Mi(a), Ma(a), M_1(a), which represent the
arithmetic, quadratic and harmonic means of the numbers ay, as, ..., a,, respec-
tively.

If r tends to O then it may be shown that M, (a) tends to the geometric mean of
the numbers ai, a2, . .., a, i.e. Mo(a) = {/araz - a,.

Also if r - —oo then M,(a) — min{ay,ay,...,a,}, and if r — oo then
M, (a) — max{ay, ay, ..., a,}.
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Theorem 10.4 (Power mean inequality) Let a = (a1, aa, ..., a,) be a se-
quence of positive real numbers and r # 0 be real number. Then M, (a) <
M; (a), for any real numbers r <s.
Exercise 10.3 Let a, b, ¢ be positive real numbers. Prove the inequality
(@ +b*>+cH? <3+ + )2
Solution By the power mean inequality we have that

M>(a,b,c) < Ms3(a,b,c)

\/a2+b2+c2 <\3/a3 + b3 4¢3
3 - 3

& @+ +P<3@+b+ 32

Definition 10.2 Let m = (m,my, ..., m,) be a sequence of non-negative
real numbers such that m| + my + - -- + m, = 1. Then the weighted power
mean M"(a), of order r (r # 0), for the sequence a = (ay,az, ..., ay) is

defined as M (a) = (ajmy + ajmy + -+ + a,r,mn)%-

Example 10.1 fmi=mpy=---=m, = rll then M" (x) = M, (x).

Example 10.2 Ifn=3,r =4, m| = %,mz = %,m3 = é, then

1 1 1 4
Mf(x,y,z)=(—~x4~|——~y4—|——~z4) .

2 3 6
Theorem 10.5 (Weighted power mean inequality) Let a = (ay,az, ..., ay)
be a sequence of positive real numbers, and let m = (m1, ma, ..., my) also be

a sequence of positive real numbers such that m; +my + --- +m, = 1.
Then for each r < s we have

M (a) < M{"(a),
ie.

1 1
(myay +maay + - +myuay)r < (maj +maay + - +myay)s.
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Proof We shall use the fact that the power function f(x) =x“ is convex for @ > 1
or o <0, and it is concave for 0 <o < 1.

First we prove the inequality in the case r < s where both s and r are different
from 0.

Three sub-cases may to be considered: 1° 0 <r <s,2°r <0 <s and 3° r <
s < 0.

1°0 <r < s. Since } > 1 we conclude that f(x) = X7 is convex, so according
to Jensen’s inequality:

Slmixy +moxy + - +mpxy) <myf(x)) +mof(x2) +- - +my f(x),
where m; +my + --- +m, = 1 we have

s/

(mix1 +maxa + - +muxa)*" <mixy’" +m2x;/

s/r

r + P + mn_xn
For x; = ai’ ,i=1,2,...,n, from the last inequality we obtain

(mya} +mody + - - +mual)*’" <myaj +maas + - +mya,

(miaj +moal + -+ muap) " < (miaj +moay + -+ +mpay)'l”,

so inequality holds in this case.

2° r <0 < s. Then since % < 0 we have that f(x) = x7 is a convex function.

The rest of the proof in this case is the same as in case 1°.
3°r < s <0.Thensince 0 < f < 1 we have that f(x) = x7 is a concave function
and according to Jensen’s inequality for concave functions we obtain

(m1x1 4+ maxy + -4 mux,)*" > mlx‘;/r +m2x;/r oot max”
For x; = ai’, i=1,2,...,n, from the last inequality we obtain
(miaj +maay + - - +mna,rl)s/r >miay +maas + - - +mpa;,
and since r < s < 0 we obtain
(miaj +moas + - +mna;)l/r <(miaj + maay+ - -- +mnafl)]/x.

The cases when some values of s and » equal O are covered by the fact that the
function t — M/" (a) is a continuous function. O

Exercise 10.4 Let a, b, c € RT. Prove the inequality

(a+2b+3c)? -
a?+2b%2 432~ 7
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Solution Form| = %, my = %, ms3 = %, n = 3 by the inequality
M{"(a,b,c) < M3'(a,b,c),

which is true due to the weighted power mean inequality, we obtain

a+2b+3c a?+2b% 43¢ (a +2b+3c)?
< , lLe. ————=——= <6.
6 6 a? +2b% + 3¢2

Exercise 10.5 Let a, b, c be positive real numbers such that a + b + ¢ = 6. Prove
the inequality

3/ab+bc+\3/bc+ca+\3/ca+ab§6.

Solution By the power mean inequality we have

Jab + bc + J/bc + ca + Jca + ab <\3/(ab+bc)+(bc+ca)+(ca+ab)
3 - 3 ’

i.e.

3/ab+bc+\3/bc+ca+\3/ca+ab§\3/18(ab+bc+ca). (10.3)

Since ab + bc + ca < M = 12 by (10.3) we obtain

Jab + bc + /bc + ca + Vea +ab < J18-12=6.
Equality occurs if and only if a =b=c = 2.

Exercise 10.6 Let a, b, c be positive real numbers such that a? +b%+¢* =3. Prove
the inequality

\3/a2+bc+\3/b2+ca+\3/cz+ab§3«3/§.

Solution By the power mean inequality and the well-known inequality ab + bc +
ca < a®+ b? + ¢* we have

\3/a2+bc+\3/b2+ca—|—\3/c2+ab§\3/9(a2+b2+02+ab+bc+ca)

< JV18(a2 + b2 +¢2) =18 -3 =3/2.
Equality occurs if and only ifa =b=c = 1.

Exercise 10.7 Let a, b, c be positive real numbers such that a%+b?%+c% =3. Prove
the inequality

V5a2 +4(b+c) +3+/5h2 +d(c+a)+3+ /52 +4a+b)+3<6.
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Solution By the power mean inequality we have

V5a2 +4(b+¢) +3+V5b2+4(c+a) + 3+ /52 +4(a +b) + 3

< J27(5@? + b2 + ) +8(a+b+0)+9).

Since a? + b% + ¢ =3 we have a + b + ¢ < /3(a? + b2 + ¢2) = 3 and therefore

V5a2+4(b+0) +3+ V52 +4(c+a) + 3+ /52 +4(a +b) + 3

<V27(5-3+8-3+9) =6.
Equality occurs ifand only ifa =b=c=1.
Exercise 10.8 Let x, y, z be non-negative real numbers. Prove the inequality
8(x* + 32 + 292 > 92 4+ y2) (v + x2) (2% + xy).

Solution If one of the numbers x, y, z is zero, let us say z = 0, then the above
inequality is equivalent to

8(x> + y3)2 > 9)c3y3 or 8(x%+ y6) + 7x3y3 >0,
which clearly holds.

Equality occurs iff x =y =0.
So let us assume that x, y, z > 0.

Then
2., .2 2 2., .2
+z 2x 4y +z
x4 yz= x4 Y = ) .

2 2

Similarly
212 2,2 2,2 2 2
yzmim and Z2+xy§$.

Hence

92+ y2) (v + x2) (2% + x)

9
< §(2x2 + y2 + Zz)(2y2 +x% 4 Zz)(2z2 +x*+ y2)

(@Y D)+ @+ D)+ 2+ D)
) 3

9 4x2 4+ y2 +22) 3_9~43 24y 422\

"8 3 T8 3 '

(10.4)
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By the power mean inequality we have

\/x2+y2+z2 <\3/x3+y3+z3
3 - 3 '

2 2 2\ 3 3 3 3\ 2
(x +y3 +z> S(x +y3 +z ) (10.5)

Finally, by (10.4) and (10.5) it follows that

9.43 <x2+y2+12)3

i.e.

92+ y2) 02 +x2) (2% +xy) < . :

-8 3

2
) =8+’ +27)°.
Exercise 10.9 Let a, b, ¢ be positive real numbers. Prove the inequality

+b+c
abb"c“ < (%ﬂ)a L'

Solution By the weighted power mean inequality we have

ba+cb+ac - (a+b+c)2
a+b+c T 3@+b+o)

1 b c a
(gbbcca)a+b+r = qatbte . hatbtc . catbic <

_a+b+c
= 3 .

Exercise 10.10 Let a, b, c be the lengths of the sides of a triangle. Prove the in-
equality

(a+b—0)"(b+c—a)’(c+a—b)F <a’blc.

Solution By the weighted power mean inequality we have

wivrd (a+b—c\(b+c—a\l[fc+a—b\°
a b c

1 ( a+b—rc b+c—a c+a—b>
a- +b- +c-

< :1,
“a+b+c a b

i.e.
(a+b—0)"b+c—a)’(c+a—b)F° <a®blc.

Equality occurs iffa =b =c.



116 10  Generalizations of the Cauchy—Schwarz Inequality, Chebishev’s Inequality
Exercise 10.11 Let a, b € RT and n € N. Prove the inequality
(Cl +b)rz(an +bn) S 2n(a2n +b2n)

Solution By the power mean inequality, for any x, y € R*,n e N, we have

x+y "<x"+y"
2 - 2 )

T'herefore
+b\"
(a+b)" (@ +b")= 2"<—a > ) (a"+b")

n n n ny2
§2n<a -;b )(an—}—bn)zzn%

2(612" + b2n)

< n
- 2

— Zn(a2n +b2n)

Exercise 10.12 Let a, b, c € RT, n € N. Prove the inequality

n n n
a"+b"+c"z(a—;2b> +<b—;2c> +<c—i—32a>.

Solution By the power mean inequality for any a, b, c € R* and n € N, we have

a4+ b+ " - (a—i—b—i—c)"
3 - 3 ’

So it follows that

a”+b”+b"> at+b+b ”_ a+2b\"
3 - 3 B 3 '

Similarly we obtain

b+ "+ " b+2c\" A" +a" +a" c+2a\"
3 =\ 3 and 3 {737 )-

After adding these we get the required inequality.



Chapter 11
Newton’s Inequality, Maclaurin’s Inequality

Letay,ay, ..., a, be arbitrary real numbers.
Consider the polynomial

Px)=(x+a)x+az) - (x+a,) = cox" + Clxn_1 + -+ Cp—1X +Cn.

Then the coefficients cg, c1, ..., ¢, can be expressed as functions of ay, as, ..., ay,
i.e. we have

co=1,
cr=a1+ay+---+ap,
c=aiay+ajaz+---+ap—1an,

c3=aiaaz +aiazas + - -+ ap—2an—1ay,

Cp=aiay---ay.

e kl(n—k)!

Foreachk =1,2,...,n we define p; = ="
m !
Theorem 11.1 (Newton’s inequality) Let ay, as, ..., a, > 0 be arbitrary real
numbers. Then for eachk =1,2,...,n — 1, we have

Pk—1Pk+1 = P;%~

Equality occurs if and only if ay = ap = - - - = ay.
Proof By induction. O
Z. Cvetkovski, Inequalities, 117
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Example 11.1 For n =3 we have

2 2
2 cl €3 Cy c1c3 c5
P1P3=p; A=, ¥ T =35
3 3 9
©G G
& 3ciez < c%,
ie.
3abc(a+b+c) < (ab+ac+ bc)z.
Equality occurs iffa = b =c.
Theorem 11.2 (Maclaurin’s inequality) Letaj,ay,...,a, > 0. Then
1 1 1
PLZp; 2 Zpf = 2Py
Equality occurs if and only ifay = ap = - - - = ay.
Proof By Newton’s inequality. O

Exercise 11.1 Let a, b, ¢,d > 0 be real numbers. Let u = ab + ac + ad + bc +
bd + cd and v = abc + abd + acd + bcd. Prove the inequality

2u3 > 2702,

Solution We have pp = 4 =% and p3 = % =7
3

G

By Maclaurin’s inequality we have

3 2
1 1 u v
pizp; & p=p; & <—> > (Z) & 2l =2

Equality occurs iffa=b=c =d.

Exercise 11.2 Leta, b, c,d > 0 be real numbers. Prove the inequality

1+1+1+1+1+1 <31+1+1+12
ab ac ad bc bd cd) " 8\a b ¢ d)

Solution If we multiply both sides by (abcd)? the above inequality becomes

3
abcd(cd + bd + bec + ad + ac + ab) < g(bcd +acd + abd + abc)2
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cd+bd+bc+ad+ac+ab) - <bcd+acd +abd+abc>2

bed
@ ave ( 6 4
& papr<p3.

The last inequality is true, due to Newton'’s inequality.
Equality occurs iffa =b=c =d.



Chapter 12
Schur’s Inequality, Muirhead’s Inequality
and Karamata’s Inequality

In this chapter we will present three very important theorems, which have broad
usage in solving symmetric inequalities. In that way we’ll start with following defi-
nition.

Definition 12.1 Let x1, x2, ..., x, be a sequence of positive real numbers and
let oy, a2, ..., o, be arbitrary real numbers.

Let us denote F(x1,x2,...,%,) =x]" -x5%---x,", and by T[ay, a2, ..., dyl
we’ll denote the sum of all possible products F(x1, x2, ..., X,), over all per-
mutations of oy, a, ..., ay,.

Example 12.1

T[1,0,...,0l=(n—D! (x1 +x2+ - +x3),
Tla,a,...,al=n!x{x5 - x T[1,2]=x2y+xy2,

n°
TI1,2, 11 =2x2yz + 2y%xz +22%yx,  T[3,0,0]1 =2(x> +y° + %),
T[2,1,0] = x>y 4+ x%2 + y2x + y?z + 22x + 2°y.

Theorem 12.1 (Schur’s inequality) Let o € R and B > 0. Then we have
Tle+2B,0,0]+ T[e, B, Bl = 2T [ + B, B, 0].

Proof Let (x, y, z) be the sequence of variables.
By Definition 12.1, and with elementary algebraic transformations we have

%T[a+2ﬁ,0,o]+%T[a,ﬁ,ﬂ] —T[a+8.8,0]
=xYxP —yP) (P — 2P+ y* P —xP) (3P — 2P) + 22 (P — xP) (P — yP).

Z. Cvetkovski, Inequalities, 121
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Thus the given inequality is equivalent to
20 =y P =P 4y (6P —xP) 6P = 2P+ @ —aP) P - yP) =0,

Without loss of generality we may assume that x > y > z.
Then clearly only the second term can be negative.
If o > 0 then we have

B O [ I e C L O [Nl
=y (P =y P 2P
= 0P =P =P,
ie.
2@ = PP = 2P+ 30 (6P = 2H P =) =0,

and since z%(z# — x#)(z# — y#) > 0 we get the required result.
Similarly we consider the case when o < 0. U

Let us notice that for 8 = 1 we get a special form of Schur’s inequality, which is
very useful. Therefore we have the next theorem.

Theorem 12.2 Let x, y, z > 0 be real numbers and let t € R. Then we have
XE—NE-D+yY -0 -2+@—x)z—y) =0,

with equality if and only if x =y =z or x =y, z = 0 (up to permutation).

Proof Without loss of generality let us assume that x > y > z.
Suppose that ¢ > 0.
Then we have

(z—x)(z—y) =0, ie Z'(z—x)(z—y)=0 (12.1)

and
Ma= =y -2 =0 =y 4z —y) =0
ie.
M=y =2 +y (-0 -2 =0. (12.2)
By (12.1) and (12.2) clearly we have
M =NE =) +Y -0 -2+ E@-x)E-y =0.

Let r <0. Then we have

x—x—-—2>0 ie. xX'x—y)(x—2)=>0 (12.3)
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and

da—2) =y @—-—Nzd@—-»—yx-y=C-y)x-y =0,
ie.

Y —x)y—2)+7'(z—x)(z—y)>0. (12.4)
By adding (12.3) and (12.4) we get

HE=E =2 +Y -0 -2+ E@-0)(—y) =0.
Equality occurs if and only if x =y =z or x =y, z = 0 (up to permutation). O

Corollary 12.1 Let x, y, z and a, b, ¢ be positive real numbers such that a >
b>cora<b<c.Then we have

alx —y)(x —2)+b(y—x)(y —2)+clz—x)(z—y) =0.

Proof Similar to the proof of Theorem 12.1. O

Example 12.2 1f we take « = B =1 in Schur’s inequality we get
T(3,0,0]+T[1,1,1]>=2T[2,1,0],

ie.

203 + ¥+ 2 Foxyz = 2%y + X224+ yix + Yz + Px + 22y),

Py 2 3ayz =ty F x4+ y i+ y e+ P+ 2Py

Note that this inequality is a direct consequence of Surdnyi’s inequality for n = 3.

Corollary 12.2 Let x,y,z > 0. Then 3xyz + x> + y3 + 23 > 2((xy)3/? +
2)*% + (z2x)*/?).
Proof By Schur’s inequality and AM > GM we obtain

49+ 2+ 3xyz > (2y + 20 + (22y + y22) + (22 + 22x)
> 2((xy)>? + (v2)*% + (zx)¥/?). O
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Corollary 12.3 Let k € (0, 3]. Then for any a, b, c € R™ we have

(3 — k) + k(abo)** + a*> + b*> + ¢* > 2(ab + be + ca).

Proof After setting x = a?/3, y = b*/3, z = ¢?/3, the given inequality becomes
B = k) +ky)  +7 + 7 + 2 2 260 + )Y + 20,
and due to Corollary 12.1, it suffices to show that
B —k) +k(xy2)* = 3xyz.

By the weighted power mean inequality we have

3—k k
T T 5 Y = 107 Gy M =y,

(3 — k) + k(xyz)/* > 3xyz,

as required. g

Definition 12.2 We’ll say that the sequence (f;);_, is majorized by (e;);_,
denoted (f5;) < (;), if we can rearrange the terms of the sequences («;) and
(Bi) in such a way as to satisfy the following conditions:

M Bi+B+-tBu=a1+ar+ -ty
2) B1=Br=->Ppanda; > oy > >ay
B i1+t +Bs<ajt+ar+ - +oasforany 1 <s <n.

Without proofs we’ll give the following two very important theorems.

Theorem 12.3 (Muirhead’s theorem) Let xi,x3,...,Xx, be a sequence of
non-negative real numbers and let («;) and (B;) be sequences of positive real
numbers such that (B;) < («;). Then

T[B8i] < T[o].

Equality occurs iff () = (Bi) or x1 =x3 = -+ = Xp.
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Example 12.3 Let (x, y, z) be the sequence of variables.
Consider the sequences (2,2, 1), (3, 1, 1). Then clearly (2,2,1) < (3,1, 1).
So by Muirhead’s theorem we obtain

T(2,2,11=<TI[3,1,1],

ie.
2(x2y%z + 2?2y 4+ y222x) < 2(%yz + yizx + 2 yx),
ie.
x2y2z + xzzzy + yzzzx =< x3yz + y3zx + ZSyx,
i.e.
Xy+yz+zx §x2+y2+zz,
which clearly holds.

Theorem 12.4 (Karamata’s inequality) Let f : I — R be a convex func-
tion on the interval 1 C R and let (a;);_,, (bi))7_,, where a;,b; € I,i =
1,2,...,n, are two sequences, such that (a;) > (b;). Then

fla) + fla)+---+ flan) = f(b1) + fb2) +-- -+ f(by).

Remark If f : I — R is strictly convex on the interval I C R, and (a;) # (b;) are
such that (a;) > (b;) then in Karamata’s inequality we have strict inequality, i.e.

fla) + fla) +---+ flan) > f(b1) + f(b2) + -+ f(bn).

Also if f: I — R is concave (strictly concave) in Karamata's inequality we have
the reverse inequalities.

Exercise 12.1 Leta, b, c be the lengths of the sides of a triangle. Prove the inequal-
ity
a3(s —a)+ b3(s —b)+ c3(s —c¢) <abcs.

Solution The given inequality is equivalent to
a*(a—b)a—c)+b*b—c)b—a)+c*(c—a)c—b)>0,
which clearly holds by Schur’s inequality.

Exercise 12.2 Let a, b, ¢ be positive real numbers. Prove the inequality

a? b? c? 1 1 1
2T+ 124+ — )2+ — {2+ )=6a+b+c)| —+—-+— ).
bc ca ab a b ¢
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Solution The given inequality is equivalent to
2abc(a® + b + & + 3abe — a*b — a*c — b*a — b*c — c*a — czb)
+ (a3b3 + 533 +3a +3a%%c* — ab3c* — ab?*P — bl — a3blc2) >0,
which is true due to Schur’s inequality, for variables a, b, ¢ and ab, bc, ca.
Exercise 12.3 Let a, b, ¢ be positive real numbers. Prove the inequality

a n b n c a® + be b*+ca 2 +ab
b+c c+a a+b  (a@a+ba+c) GB+a)b+c) (c+a)c+b)

Solution The given inequality is equivalent to

a’ + b3 + 3 4+ 3abc — ab(a + b) — be(b + ¢) — calc + a) -0
(a+b)(b+c)c+a) -

)

ala—b)a—c)+bb—a)b—c)+clc—a)lc—b)=>0,
which is Schur’s inequality.

Exercise 12.4 Let a, b, ¢ be non-negative real numbers. Prove the inequality

a b c 1
> .
4b% + be + 4¢? +4C2+ca+4a2 +4a2+ab+4b2 T“a+b+c

Solution By the Cauchy—Schwarz inequality we have

a b c
4b? + bc + 4c? +462+ca+4a2 +4cﬂ+ab+4b2
(a+b+c)?

> )
T 4a(b? + ) +4b(c? + a?) +4c(a? + b?) + 3abc

So we need to prove that

(a+b+c)? - 1
4a(b? + ) +4b(c? +a?) + 4c(a? +b%) +3abc " a+b+c’

which is equivalent to
(a+b+c)>4a® +c*) +4b(? + a%) + 4c(a* + b*) + 3abe,
ie.
a* + b+ + 3abe > a(b® + ) + b(c* +a?) + c(a® + b?),

which is Schur’s inequality.



12 Schur’s Inequality, Muirhead’s Inequality and Karamata’s Inequality 127
Exercise 12.5 Let a, b, ¢ be positive real numbers. Prove the inequality
a’? +b% + ¢ + 2abc + 1 > 2(ab + bc + ac).

Solution By Schur’s inequality we deduce

9abc

2(ab+b — @+ +H<——
(ab+bc+ac) — (a” + +C)_a+b+c

So it remains to prove that

9abc

—— <2abc+1.
a+b+c

Since AM > GM we have
2abc + 1 = abc + abe + 1 > 3v/(abc)?.

Therefore we only need to prove that 3y/(abc)? > ai"bbic, which is equivalent to
a+ b+ ¢ > 3</abc, and clearly holds.

Exercise 12.6 Let a, b, ¢ be positive real numbers. Prove the inequality

a’+be b2 + ca cz+ab>3
b+0)?  (c+a)? (a+b)? 2

Solution To begin we’ll show that

a’4+bec b +ca c2+ab> a N b n c
b+c)? (c+a)? (@+b? b+c c+a a+b

(12.5)

We have
a?+ be a (a—b)a—c)
b+c)2 b+c  (b+o)?

similarly we get

Btca b _(b-ob-a  4ab ¢ _(c-a)(c—b)
(c+a)? c+a  (c+a)? (@a+b? a+b  (a+Db)?
Let
1 1
xzi’ =
(b+0)2 YT ctar

Then we can rewrite inequality (12.5) as follows

sz.

x(a—b)a—c)+yb—c)b—a)+z(c—a)ic—b)=>0. (12.6)
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Without loss of generality we may assume that @ > b > ¢ from which it follows

that x > y > z, and now inequality (12.6) i.e. inequality (12.5), will follow due to
Corollary 12.1 from Schur’s inequality. Equality occurs iff a = b = c.

Exercise 12.7 Let a, b, c € R Prove the inequality

(@® +2)(b> +2)(c? +2) > 9(ab + ac + be).
Solution The given inequality is equivalent to

8+ (abc)? +2(a*b* + b + c*a®) + 4(a* + b* + ¢*) > 9(ab +ac + be). (12.7)
From the obvious inequality
(@b —1)*+ (be = )? + (ca—1)* >0

we deduce that

6 + 2(a’b? + b*c* + ?a®) > 4(ab + ac + be) (12.8)

and clearly
3(a® + b* + ) > 3(ab + ac + be). (12.9)

For k = 1 by Corollary 12.2, we obtain
2+ (abe)? 4+ a* + b* + ¢* > 2(ab + ac + bc). (12.10)
By adding (12.8), (12.9) and (12.10) we obtain inequality (12.7), as required.
Exercise 12.8 Let a, b, c € RT. Prove the inequality
at+ b+t >abca+b+ o).
Solution We have
a*+b*+c* >abca+b+ o)

& at4+ptt > abc + b2ac + c2ab

T(4,0,0] _ TI2,1,1]
2 - 2 ’

i.e.
T[4,0,01>T[2,1,1],

which is true according to Muirhead’s theorem.
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Exercise 12.9 Let a, b, ¢ be positive real numbers. Prove the inequality

1 1 1 1
3 3 + 3 3 + 3 3 ==
a’>+b>+abc b’ +c’+abc ¢ +a’+abc T abc

Solution After multiplying both sides by
abc(a3 +b + abc) (b3 +3+ abc) (c3 +ad+ abc),

above inequality becomes
3 1 1
5”4’ 4,11+2T(5,2,2] + ETU’ L 1]+ ETB’ 3,3]

=

3 1

N =

ie.
T[5,2,2] <TI6,3,01,
which is true according to Muirhead’s theorem.

Equality occurs iffa =b =c.

Exercise 12.10 Let a, b, ¢ be positive real numbers such that a + b 4+ ¢ = 1. Prove
the inequality

7
0<ab+bc+ca—2abc < T

Solution The left-hand inequality follows from the identity

ab+ bc +ca —2abc = (a+ b+ c)(ab + bc + ca) — 2abc
= a®b + a®c + b*a + b*c + c*a + b + abe

1
= T[zs 190]+ ET[]3 17 1]7
since T[2,1,0]+ §T[1,1,1]>0.
We have

7 7 , 7 /(1
—=_ =—(=T T[2,1,01+ T[1,1,11).
77 27(X+y+Z) 27<2 [3,0,0]+3T[2,1,0] + T[1, 1, ])

Therefore the given inequality is equivalent to

1 7 (1
T[2,1,0]+ ET[L 1,11 < ﬁ(ET[S’O’ 0]+37(2,1,014+T1[1,1, 1]),

i.e.

12T7(2,1,0] <7T[3,0,0] + 571, 1, 1]. (12.11)
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Muirhead’s theorem we have
2T[2,1,0] <2T]3,0,0], (12.12)
and by Schur’s inequality for o« = B =1 (third degree) we get
107T[2,1,0] <5T[3,0,0] +5T[1, 1, 1]. (12.13)
Adding (12.12) and (12.13) gives us inequality (12.11), as required.

Exercise 12.11 Let a, b, c € RT such that abc = 1. Prove the inequality

1 1 1
a3(b+c) + b3(c+a) + Ala+b

3
> —.
) T2

Solution If we divide both sides by (abc)*/? = 1, and after clearing the denomina-
tors, the given inequality will be equivalent to

16 13 7 16 16 4 13 13 10
T| =, =, 2 |+7T| =, =, 2 |+T| =, =, = | >37(5,4,31+ T[4, 4,4].
[333}+[333}+[333] 54,31+ T4, 4.4]

Now according to Muirhead’s inequality we have

T 16 137 >2T1I5, 4, 3] T 16 16 4 >TI[5,4,3]
3 ) 3 ) 3= s Ty Iy 3 s 3 s 3= s Ty Il
13 13 10
5 A A ET[47454]~
3 3°3

If we add the last three inequalities we obtain the required result.
Equality occurs iffa=b=c=1.

Exercise 12.12 (Schur’s inequality) Let a, b, ¢ be positive real numbers. Prove the
inequality

a’ + b+ 3+ 3abe > ab + a*c + b*a + b*c + c2a + 3b.

Solution Since the given inequality is symmetric, without loss of generality we can
assume that a > b > c.
After taking x =Ina, y =Inb and z = In ¢ the given inequality becomes

e3x +63y +e3z +ex+y+z _|_ex+y+z +ex+y+z
2er-&-y +62x+z+e2y+x +e2y+z+82z+x +e2z+y_
The function f(x) = e* is convex on R, so by Karamata’s inequality it suffices to

prove that the sequence a = (3x,3y,3z,x +y+z,x +y +z,x + y + z) majorizes
the sequence b = 2x + y,2x + 7,2y + x,2y + 2,2z + x, 2z + y).
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Since a > b > c it follows that x > y > z and clearly 3x > x + y + z > 3z.
If x +y + z > 3y (the case when 3y > x 4+ y + z is analogous) then we obtain

the following inequalities

3x>x+y+z>3y>3z,
2x+y=>22x+z=>2y4+x>272+x>2y+z7>2z+y,

which means that a > b, and we are done.

Exercise 12.13 Let ay, as, ..., a, be positive real numbers. Prove the inequality
3 3 3
a a a
L+ 24+ L aitar 4+ +a.
a as ai

Solution Let x; =Ina;. Then the given inequality becomes
e3x1 —Xx2 +e3x2—x3 I +e3xn—x1 > eZ)q +e2xz 4. _'_eZXn.

Let us consider the sequences a : 3x; — x2,3x2 — x3,...,3x, — x1 and b :
2x1, 2x2, ey an.

Since f(x) =¢e* is a convex function on R by Karamata’s inequality it suffices
to prove that a (ordered in some way) majorizes the sequences b (ordered in some
way).

For that purpose, let us assume that

3xm1 — Xm+1 = 3xm2 —Xmyt1 =0 2 3)Cm,, — Xm,+1 and

2Xpy = 2xpy = - > 2,

for some indexes m;, k; € {1,2,...,n}.
Clearly

3Xmy — Xmy+1 = 3%k — X 41 = 2X,

and
(3xm1 _-xm1+l) + (3-xm2 _xm2+l) = (3xk1 _xkl-l—l) + (3-xk2 _xk2+l) = 2xk1 +2xk2'

Analogously the sum of the first s terms of (a) is not less than the sum of an arbitrary

s terms of (a), hence it is not less than (3xx, — Xk, +1) + 3xk, — Xppt1) + -+ +

(3xk, — Xk,+1), which, on the other hand, is not less than 2xy, + 2xg, + - - - + 2xg, .
So a = b, and we are done.

Exercise 12.14 (Turkevicius inequality) Let a, b, c,d be positive real numbers.
Prove the inequality

a* +b* +c* +d* +2abed > a?b? + a%c* + aPd?* + bEc* + brd? + 2d>.
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Solution Because of symmetry without loss of generality we can assume a > b >
c>d.

Let x =Ina,y =1Inb,z =Inc,t = Ind; then clearly x > y > z > ¢ and given
inequality becomes

e4x +e4y +e4z +e4z +ex+y+z+t +ex+y+z+z

S Q20 | 204D | 204 | 2040 | 20+ 4 2

The function f(x) = e* is a convex on R, so according to Karamata’s inequality
it suffices to prove that (4x,4y,4z,4t,x +y+z+1t,x +y + z+t) (ordered in
some way) majorizes the sequences (2(x +y), 2(x +2),2(x +1),2(y+2), 2(y + 1),
2(z 4 t)) (ordered in some way).

Clearly 4x >4y >4zand4x >x +y+z+1t >4r.

We need to consider four cases:

If4z > x + y + z + t then we can easily show that

20+ )220 +2) =220 +2) =22+ 1) = 2(y +1) 2 2(z + 1)

and we can check that the sequence (4x,4y,4z,x +y+z+t,x +y+z+1t,4t)
majorize the sequence (2(x + y),2(x +2),2(y +2),2(x +1),2(y +1),2(z + 1)).

The cases when x +y+z+t >4z, 4y >x+y+z+torx+y+z+t>4y
are analogous as the first case and therefore are left to the reader.



Chapter 13
Two Theorems from Differential Calculus, and
Their Applications for Proving Inequalities

In this section we’ll give two theorems (without proof), whose origins are part of
differential calculus, and which are widely used in proving certain inequalities. We
assume that the reader has basic knowledge of differential calculus.

Definition 13.1 For the function f : (a, b) — R we’ll say that it is a mono-
tone increasing function on the interval (a, b) if for all x, y € (a, b) such that
x >y we have f(x) = f(y).

If we have strict inequalities, i.e. if for all x, y € (a, b) such that x > y we
have f(x) > f(y) then we’ll say that f is strictly increasing on (a, b).

Similarly we define a monotone decreasing function and a strictly decreasing
function. Therefore we have the following definition.

Definition 13.2 For the function f : (a, b) — R we’ll say that it is a mono-
tone decreasing function on the interval (a, b) if for all x, y € (a, b) such that
x >y we have f(x) < f(y).

If we have strict inequalities, i.e. if for all x, y € (a, b) such that x > y we
have f(x) < f(y) then we’ll say that f is strictly increasing on (a, b).

Theorem 13.1 (Characterization of monotonic functions) Let f : (a,b) — R
be a differentiable function on (a, b).

If, for all x € (a,b), f'(x) >0, then f is a monotone increasing function on
the interval (a, b).
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If, for all x € (a,b), we have f'(x) <0, then f is a monotone decreasing
function on the interval (a, b).

If we have strict inequalities then f is a strictly increasing, respectively,
strictly decreasing function on (a, ).

Theorem 13.2 Let f : [a,b] — Rand g : [a, b] — R be functions such that:

(1) f and g are continuous on [a, b] and f(a) = g(a);
(ii) f and g are differentiable on (a, b);
(iii) f'(x) > g'(x), for all x € (a, b).

Then, for all x € (a, b), we have f(x) > g(x).

Exercise 13.1 Let x, y > 0 be real numbers such that x + y = 2. Prove the inequal-
ity

Xy (% +yh) <2,
Solution We homogenize as follows

6
X+
xzyz(x2+y2>52(Ty> & 4+t =32xy 2 +yH. (13.0)

If xy = 0 then the given inequality clearly holds.
Therefore let us assume that xy # 0.
Since (13.1) is homogenous, we may normalize with xy = 1.
Soy= %, and inequality (13.1) becomes

(1) =2+ )
x+—) =32(x+ ). (13.2)
X X

Letr=(x+ xl)z, then clearly x24+ x% =t—-2.
Therefore (13.2) is equivalent to

3>32(t—2).

Clearly t = (x + %)2 >22 =4,

Let us consider the function f (1) = 13 — 32(t — 2) on the interval [4, 00).

Since f’(t) = 3t> — 32 we have that f/(r) > 0 for all 1 > \/T% > 4, i.e. it follows
that f is increasing on [4, 0o), which implies that

fO=f4=0
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& 1-320-2>0

& £>32(—2), forallte[4,0),

as required.
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Exercise 13.2 Let x, y, z be non-negative real numbers such that x +y +z = 1.

Prove the inequality

7
O§xy+yz+zx—2xyz§ﬁ.

Solution Let f(x,y,z) =xy+ yz+zx —2xyz.

Without loss of generality we may assume that ) <x <y <z <1.
Since x + y + z = 1 we have

3Ax<x4+y+z=1, ie. x<

W | =

Furthermore we have

@
f,y,2) =0 —=3x)yz+xy+zx +xyz >0,
and we are done with the left inequality.

It remains to prove the right inequality.
Since AM > GM we obtain

<y+zz_ 1—x\2
Y=\") =\ )

Since 1 — 2x > 0 we get

_ 2
Sy, ) =x(y+2)+yz(1 —2x) <x(1—x)+ <ITX> (1—-2x)

x4
= 1 )
We’ll show that
) 3 2 1 1
f(x)=$§—, forallx e |0, = |.
4 27 3

We have

/()_—6x2+2x_3x1 0. forallxclo. ]
f(x)= 7 _23x_,0rax€ 3|

(13.3)
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Thus f is an increasing function on [0, %], so it follows that

1 7 1
5= 55 Os_ )
f(x)sf(3> 77 xe[ 3]
as required.

Exercise 13.3 Let x > 0 be a real number. Prove that x — % <In(x +1).

Solution Let us consider the functions

2
fx)=In(x+1) and gkx)=x— % on the interval [0, @), where o € R.

We have

1
f(0)=0=g(0) and f’(x):l—, g =1—x.
+x

For x € (0, ) it follows that ﬁ >1—ux,li.e.
f(x)>g'(x), forall x e (0,a).

According to Theorem 13.2 we have f(x) > g(x), forall x € (0, @) i.e.

%2
In(x + 1) >x—?, x € (0,a).

Since « is arbitrary we conclude that In(x + 1) > x — %, for all x € (0, 00).
Exercise 13.4 Prove that, for all 0 < x < Z, we have tanx > x.

Solution Let f(x) =tanx, g(x) = x where x € (0, 7).
We have

f0)=0=g0) and f'(x)=

b4
5= > 1=g¢(x), forallxe <0, —).
COS“ X 2
According to Theorem 13.2, we have f(x) > g(x), i.e. tanx > x for all x € (0, %).

3
Exercise 13.5 Prove that, forall 0 < x < % we have tanx > x + %

Solution Let f(x) =tanx, g(x) =x + %,x €(0,7%).
Then f(0) =0 = g(0) and we have

)=

2 2 / s
3 =l+tan"x > 1+x"=g(x), forallxe(O,—).
COS* X 2

Thus, due to Theorem 13.2, we get f(x) > g(x), i.e. tanx > x + % for all x €
©, %).



Chapter 14
One Method of Proving Symmetric Inequalities
with Three Variables

In this section we’ll give a wonderful method that will be used in proving sym-
metrical inequalities with three variables. I must emphasize that this method is a
powerful instrument which can be used for proving inequalities of varying difficulty
which can’t be proved with previous methods and techniques. Also I must say that
I respect this method so much, because it can be very valuable and workable for all
symmetric inequalities.

Letx,y,zeR",and p=x+y+2z,g=xy+ yz+zx,r =xyz. Clearly p,q,
reRT.

Using these notations we can easily prove the following identities:

I: x2+y2+z2=p2—2q

L: X +y34+23=p(p?>—3¢)+3r

L x2y2 4+ 22+ 22xr =q% —2pr

Lz x* 4y 424 = (p? —29)* — 2(¢> —2pr)

Is: x+y)(y+2)(@z+x)=pqg—r

I X+ +2)+0+20D@+)+G@+0)x+y)=p*+gq

I G+ 0+ + 0 +2*C+ 07+ @+ 0+ )= +9)* -
4p(pq —r)

Ig: xy(x+y)+yz(y+2)+zx(z+x)=pg —3r

Iy: A+x)A1+y)A+2)=1+p+qg-+r

Lo A4+x)A+y)+0+y)A+2)+A+200+x)=3+2p+gq

Li: A4+x02A+ )+ 0+ »?0+22+ 1 +20*A+x)?*=C+2p+9)* —
23+ p)d+p+qg+7r)

I X2(y+2) + Y2 (2 +x) +22(x +y) = pg — 3r

I3 33 4383 4+ 22%3 =¢% — 3pgr — 32

Ig: xy(x2 4+ y5) + yz(y? + 2%) + 2x (2% +x%) = p*q — 24 — pr

Lis: (14+x)(+y)A+22)=p>+¢>+r>—2pr—2q +1

Lie: (1+x)A+y)A+23)=p3+¢>+r3 —3pgr —3pg —3r> +3r + 1.

The proofs, as mentioned, are quite simple, and are therefore left to the reader. Also,

we will give some inequalities which will be used later, and which should be well-
known.
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Some of them follow by the mean inequalities but some of them are direct con-
sequences of Schur’s and Muirhead’s inequalities.
We will prove some of them, and some are left to the reader.

Theorem 14.1 Letx,y,z>0and p=x+y+2z,9 =xy+yz+2zx,r = xyz2.
Then we have:

Ni:p>—4pg+9r=0, Ny p*—5p>q+4¢%+6pr>0.

Proof According to Schur’s inequality we have: For any real numbers x,y,
>0, eRwehave x'(x —y)(x —2) + ' (y =)y —x) + ' (z = x)(z = y) = 0.

For t =1 and t = 2, we obtain the required inequalities Ni and N, respec-
tively. g

Theorem 14.2 Letx,y,z>0,and p=x+y+z,9 =xy+yz+zx,r = xyZ2.
Then we have the following inequalities:

N3: pg —9r >0, No: p*+3q¢* > 4p?q,
Ny: p* > 3q, Nio: 2p3 +9r2 > Tpgr,
Ns: p> > 27r, Nii: p*q +3pr > 442,
Ne: ¢° > 27r2, Ni2: ¢ +9r2 > 4pgr,
N7: q223pr, Ni3: pq222p2r+3qr.

Ng: 2p3 +9r > Tpq,

Proof We have

N3: pg = (x +y +2)(xy + yz + 2x) = 3Yxyz - 3/ x2y222 =9r
< pq—9r=0,
Ny: p?>>3q & (x+y+2)7°>30xy+yz+2x)
& x2+y2+122xy+yz+zx,
which clearly holds.
Ns:p=x+y+z>3Jxyz=3Jr & p>=27r
N6:q=xy+yz+zx23\7m=3\3/72 & ¢ =27,
N7 g? = (xy +yz+20)> =x2y2 + y2 22 + 2252 + 2xyz(x + y + 2)

> (xy)(yz) + (y2)(zx) + (zx) (xy) + 2xyz(x +y +2)
=3xyz(x +y+2z) =3pr,
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Ng: 2p3 +9r >Tpg
& 2 +y+2° +9%xyz>T(x +y +2)(xy + yz +2x)
o 203+ + D) =ty + 2+ y e+ v x + P+ 22y
< T[3,0,01>T[2,1,0],

which is true due to Muirhead’s theorem. [l

Exercise 14.1 Let x, y, z > 0 such that x 4+ y 4+ z = 1. Prove the inequality

o))

Solution Let p=x+y+z=1,g=xy+yz+zx,r =xyz.
Then the given inequality becomes

(1 4+x)(1+ y)(1 +2) > 64xyz. (14.1)
Using Io: (1 +x)(1 +y)(1 +z) =1+ p +q +r we deduce
A+0)A+y)(1+2)=24g+r
So (14.1) is equivalent to
24+q+r>=64r ie. 24q>063r (14.2)
By Ns: p3 > 27r we get

r=

1
—. 14.3
77 (14.3)
By N3: pg —9r > 0 we get

pg >9r, ie. q=>09r (14.4)

Now using (14.4) we deduce that 2 4 g > 2 4 9r.

So it suffices to show that 2 + 97 > 63r, which is 2 > 54r & r < %, which
clearly holds, by (14.3).

We have proved (14.2), and we are done.

Exercise 14.2 Let x, y, z > 0 be real numbers. Prove the inequality

1 1 1 9
(””””)((Hyﬂ TorR (z+x)2) s
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Solution The given inequality is equivalent to

4y +yz+ 2@+ 0’0 +2)* + @+ 2@+ 0>+ @+ )2+ 2D
>9(x + )2y + 22 + 1) (14.5)

Letusdenote p=x+y+2z,9g=xy+yz+2zx,r =xyz.
By I5 and I7 we have

@+ +2 @ +0=(pg — 1)’
and
@+ 92+ + G+ @+ + @+ 02+ )7 = (P + )7 —4p(pg — 7).
So we can rewrite inequality (14.5) as follows
49((p* +9)* —4p(pq — 1)) =9(pg —r)*

s 4p4q — 17pzq2 + 4q3 + 34pgr — 972 >0

& 3pa(p’ —4pq+9r)+q(p* —5p°q +49> +6pr) +r(pg —9r) = 0.
The last inequality follows from N1, N and N3, and the fact that p, g, r > 0. Equal-

ity occurs if and only if x = y = z.

Exercise 14.3 Let x, y, z € RT such that x + y 4+ z = 1. Prove the inequality
1 1 1 27

+ + <=
l—xy 1—yz 1—2zx— 8

Solution Let p=x+y+z=1,g=xy+yz+zx,r =xyz.
It can easily be shown that

(1=x)( =y —z)=1—q+pr—r
and
I—xyd—y2)+ A —-y2)(d —zx) + (1 —zx)(1 —xy) =3 —2g + pr.
So the given inequality becomes
8(3—2q + pr) <27(1 —q + pr —r?)
& 3—11g+19pr —27r* > 0.
Since p =1, we need to show that

3—11g +19r — 2772 > 0.

By Ns: p> > 27r we have 1 > 27r,ie.r > 27r2.
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Therefore
3—11g4+19r —27r2 >3 —11g+19r —r =3 — 11g + 18r.
So it suffices to prove that
3—11g+18r > 0.
We have
3—11g+18r >0

& 3—-11(xy+yz+zx)+18xyz>0

& 1l(xy+yz+zx) —18xyz <3.
Applying AM > GM we deduce

11(xy +yz+zx) — 18xyz=xy(11 — 182) + 11z(x + y)

Gty

(11 =18z) + 11z(x + y)

N2
_d 4Z) (11 —182) + 11z(1 — 2)

(1 =2)((1 —2)(11 — 18z7) 4 442)
B 4

Az 43z2— 1823 + 11

— - .

So it remains to show that

47 4+3z2 - 1822 + 11
<3
2 <
& 474372-187° <1
& 1877 =372 —4z4+1>0

& (Bz—D*Q2z+1)>0,

which is obvious.

1
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Exercise 14.4 Leta, b, c € RT such that . b—}rl t+o7= 2. Prove the inequality

a+1

1 1 1
>1
8ab+1+8bc+1+80a+1 -

Solution Let p=a+b+c,q=ab+ bc+ ca,r =abc.

(14.6)
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. 1 1 1 _
Slncem+b—+l+m_2wehave

@+ DB+ +bB+De+D+e+D@a+1)=2@a+ Db+ De+1). (14.7)

Using the identities Iy and Iy, identity (14.7) becomes 3 +2p +qg =21+ p +

q + r), from which it follows that
qg+2r=1.

It can easily be shown that

(14.8)

(8ab + 1)(8bc + 1) + (8bc + 1)(8ca + 1) + (8ca + 1)(8ab + 1) = 64pr + 16g + 3

and

(8ab + 1)(8bc + 1)(8ca + 1) =512r + 64 pr + 8¢ + 1.

We need to prove that

64pr +16q 4+ 3 > 512r> + 64pr +8q + 1,

which is equivalent to
8g +2>512r%
By g3 > 27r? and since ¢ = 1 — 2r we obtain
(1 —2r)3 > 27,7
& 84157 +6r—1<0
& @Br—D@E*+2r+1)<0.
Thus

8r—1<0, ie r<

0ol —

Now since g + 2r = 1, inequality (14.9) becomes
8(1 —2r)+2>512r>
& 51277+ 16r—10<0
< (8r— 1)(64r +10) <0,

which follows due to (14.10).

(14.9)

(14.10)

Exercise 14.5 Let x, y, z be positive real numbers such that x + y 4+ z = 1. Prove

the inequality

Z— XYy y—2zx xX—yz

2 2+ 2 2+ 2 7=
xX“+xy+y x4+ xz4+z2 Ve +yz+2z
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Solution Let p=x+y+z=1,g=xy+yz+zx,r =xyz.
We have

Arxy+ =+ —ay=>1-2—xy=1-2z+2"—xy
=l—-z—-z(01—-2)—xy=1—-z—z(x+y)—xy=1—2z—q.
Similarly we deduce that
x2+xz+z2=1—y—q and y2+yz+z2:1—x—q.

According to the previous identities, I3 and /12, by using elementary algebraic trans-
formations the given inequality becomes

@ +q*—4q+3qr +4r +1>0,

i.e.

27¢% 4+ 27¢% — 108q 4 27r(3q +4) +27 > 0. (14.11)
By Ni: p° —4pg +9r > 0, since p = 1 we get

9r >4q —1. (14.12)
According to inequality (14.12) we obtain
2747 +279% — 108q + 27r3q + 4) + 27
>27¢q° 4+ 27¢% — 108 + 3(4g — 1)(3q +4) +27
= (3¢ — 1)(9¢° + 24q — 15). (14.13)

Since p =1 due to Np: p2 > 3q it follows that

. (14.14)

W =

q<
Finally by (14.13) and (14.14) we obtain
27q% +27¢% — 108q 4+ 27r(3q +4) +27 > (3q — 1)(9¢° + 24q — 15) > 0,
since 3 —1 <0and 92 +24g —15<9-§ +24 -1 — 15 = —6, as required.

Exercise 14.6 Let a, b, c be non-negative real numbers such that a + b + ¢ = 1.
Prove the inequality

7(ab + bc + ca) <2+ 9abc.

Solution Let p=a+b+c=1,9=ab+ bc+ca,r =abc.
Then according to Ng: 2p> + 9r > 7pg we have

249r>7q ie. 2+9abc>7T(ab+ bc+ ca),

as required.
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Exercise 14.7 Let x, y, z > 0 be real numbers such that x + y + z = 1. Prove the

inequality

123y? + y? 22 + 23 (P 4y +2°) <xy + yz +zx.

Solution Letp=x+y+z=1,9g=xy+yz+zx,r =xyz.

By I and I3 we have

P+ =p(p?—3¢)+3r=1-3q+3r

and

xzy2 + y2Z2 o =q2 —2pr= q2 —2r.

Clearly g < %
So the given inequality becomes

12(1 = 3g +3r)(¢> —2r) <q.

Suppose that g > i.
By N3: pg — 9r > 0 it follows that r < £, i.e.

O<rc<

Nel BN

Since g < % we have

(1—-3¢g+3r)r=0.
We’ll prove that
9\ 2
12<1—3q+3§>q =<q,

from which, together with (14.16) and (14.17), we’ll have

(14.15)

(14.16)

(14.17)

(14.18)

12(1 = 3¢ +3r)(q% — 2r) < 12(1 = 3¢ + 3r)g> < 12(1 —3g+ 3%>q2 <q.

Hence
g> 12(1 —3g+ 3g>q2

s 1212(1—3q+%>q
& 1>12q — 324>

Let f(q) = 12q — 32¢>. Then f'(q) = 12 — 64q.

(14.19)
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Since g > } we deduce that f'(q) = 12— 64g < 12— % = —4 < 0, so it follows

that f decreases on the interval [1/4, 1/3], i.e. we have

1 1 1
f(q)§f<1>=121—3zﬁ=3—2=1,

and inequality (14.18) follows.
Now let us suppose that 0 < g < 41_1'
Let’s rewrite inequality (14.15) as follows

q > 12¢*(1 = 3q) + 12r(3¢> + 69 — 2) — 721, (14.20)

Since

3q+(1—3q))2=1

12q(1—3q)=4-3q(1—3q)54< 5

it follows that

12¢%(1 —3¢) <gq. (14.21)
Since 0 <g < % we get
5 1 1
3q +6q—2§3E+6Z—2<0. (14.22)

By (14.21) and (14.22) we obtain
12¢%(1 — 3q) + 12r(3¢% 4+ 6q — 2) — 72r> < 12¢*(1 — 3¢q) <q,

as required.



Chapter 15

Method for Proving Symmetric Inequalities
with Three Variables Defined on the Set of Real
Numbers

This section will consider one method that is similar to the previous method of
Chap. 14, for proving symmetrical inequalities with three variables that will be
solvable only by elementary transformations and without major knowledge of in-
equalities (in the sense that for some of them the student has no need to know the
powerful Cauchy—Schwarz, Chebishev, Minkowski and Holder inequalities).

‘We must note that this method is suitable for proving inequalities that are defined
on the set of real numbers, not just on the set of positive real numbers. For this
purpose we will first state (without proof) two theorems from differential calculus.

Theorem Let f : 1 — R be a differentiable function on I. Then f is an
increasing function on I if and only if f'(x) >0 for all x € I, and f is a
decreasing function on I if and only if f'(x) <0 forall x € 1.

Theorem Let f(x) be a continuous function and twice differentiable on some
interval that contains the point x.
Suppose that f'(xg) = 0. Then:

1) If f"(x0) <O, then f has a local maximum at x.
) If " (x0) > 0, then f has a local minimum at x.

Let a, b, ¢ be real numbers such thata +b +c¢c =1.
According to the obvious inequality a® +b% +¢* > ab + bc + ca (equality occurs
iff a = b = ¢) it follows that

l=(a+b+c)=a*>+b*+c>+2@ab+ bc+ ca) > 3(ab + bc + ca),

W | =

ab+bc+ca <
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Letab+ bc+ca = I—qu’ (g = 0). We will find the maximum and minimum values
of abc in terms of g.
Ifg=0thenab+ bc+ca= %,i.e.a:b:c: %

Thus
abc=—.
27
If g # 0 then
1—¢g> 1 b+ c)?
ab+ bc+ca= a <—=M & a?+b*+c>ab+bc+ca

3 3
& @—-b*+b-0’+Cc—a)’>0,

i.e. at least two of the numbers a, b, ¢ are different.
Consider the function

f(x):(x—a)(x—b)(x—c)=x3—x2+ x —abc.

We have

1—q2 1 1—
fl(x)=3x%—2x + 3q, withzerosx1=¥ and xzqu.

Hence f'(x) <0 forx; <x < xp,and f'(x) > 0 for x < xp or x > xj.
For f”(x) we have

1
') =6x—2, ie f'(x)= 6<¥> —2=6g >0,

so it follows that f(x) at xq has a local minimum.
Similarly f”(x1) = 6(1_Tq) —2=—6g <0,i.e. f(x) at xp has a local maximum.
Furthermore f(x) has three zeros: a, b, c.
Then it follows that
f(l +q> _(+¢9)*(0-29)

—abc <0 and

3 27
_ _ 2

f(l q>:(1 q) (1+2q)_abczo'
3 27

Hence

2 2
(I+9 (1_2Q)§abc§(l q) (1+2q)'
27 27

Therefore we have the following theorem.
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Theorem 15.1 Let a, b, ¢ be real numbers such that a + b + ¢ = 1 and let

l—q2

ab + bc + ca = (g=0).

Then we have the following inequalities

(I+9°0-2g) _ , _(1-q?*1+29)
27 - - 27 ;

Theorem 15.2 (Generalized) Let a, b, ¢ be real numbers such that a + b +

c=np.
2 2
Let ab + bc+ca =2 gq ,(@>0)and abc=r.
Then
P+ =29) _ _(P-9*(p+29
r < .
27 - = 27

Equality occurs if and only if (a — b)(b — ¢)(c —a) =0.

Ifa+b+c=pandab+bc+ca= ngqz then we can easily show the following

identities.

o
5
30
40
50
6
2o

2 2 2 _ P24
ac+b+c _%
a®+ b+ =pg*+3r

) _ p(P*=g?
ab(a + b) 4 be(b +¢) + ca(c + a) = B54= —3r

_ p(P*—g»
(@a+b)b+c)ct+a)="5"——r

2 32

a2+ P22 422 =2 961) —2pr o
ab(a? + b2) + be(b? + ¢2) + ca(c? + a?) = LF2)w =47 ;(" =47 _ pr

_ 4 2.2 4
a4+b4+c4:W+4pr.

Exercise 15.1 Let a, b, ¢ be real numbers. Prove the inequality

a4+b4—|—c4zabc(a+b+c).

Solution Since the given inequality is homogenous, we may assume that a + b +
c=1.

Then it becomes

—1+8¢%+2¢*

: tdr>r & —148¢>+2¢*+27r>0.
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According to Theorem 15.1, it follows that it suffices to show that

(I+9°0-29) _

—148¢% +2¢* +27 -

‘We have

(1+¢)*(1 —29)
27

=—148¢>+2¢*+ 1 +¢)*(1 —29)

— 14 8¢% 4+ 2¢* +27

=—148¢>+2¢* + (1 +29 +¢»H (1 —29)
=—148¢2+2¢* + (1 —3¢*> —2¢°)
=2¢" +5¢% — 2¢° = ¢*(2¢* — 2q +5)

2 12
B RSV R AL

0,
as required. Equality occurs iff a = b =c.

Exercise 15.2 Let a, b, ¢ € R. Prove the inequality
4 4 a4 4,4 4
@+b)*+bB+o) +(c+a) > 7(a +b" + ).

Solution Since
@+b)*+ o+ +(c+a?
= 2(a4 +br+chH+ 4(a3b +bha+bc+lb+la+die)
+ 6(azb2 + b3 + 62612),
the given inequality becomes
5(a4 +b* + 04) + 14(a3b +bha+bc+lb+cla+ a3c)
+ 21 (azb2 + b2+ czaz) > 0.

After setting a +b + ¢ = p,ab + bc + ca = ngqz ,r = abc, due to 5°, 6° and 7°
we deduce that the previous inequality is equivalent to

4 2.2 4 2 23012 2
+8 +2 +2
5( p 1796] q 4pr> 14<(p q°)(p° —q°) pr>

9
2 23\2
+21<%—2pr> >0,
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ie.
5(=p* +8p%¢ +2¢* +36pr) + 14((p% + 241 (P* — ¢%) — 9pr)
+21((p* — ¢*)* — 18pr) > 0.

If p =0 then 10g* — 284* 4 21¢* > 0, i.e. 3¢* > 0, which is obvious.
Let p #0.
Without loss of generality we may assume that p = 1.
So we need to prove that

5(—148¢% +2¢* +36r) + 14((1 +2¢* (1 — ¢*) —9r) +21((1 — ¢*)* — 18r) > 0,
i.e.
3¢g* +4¢% +10—108r > 0.

Using Theorem 15.1, we obtain

2
08(1 —q)"(1+2q)
27

=3¢*+4¢> +10—4(1 — ¢)* (1 +29)

3g* +4¢% + 10 — 108r > 3¢* +4¢> + 10— 1

=¢*(q—-4*+2¢* +6>0,

which clearly holds.
Equality occurs if and only if a =b =c =0.

Exercise 15.3 Let a, b, ¢ be real numbers such that a + b? + ¢ = 9. Prove the
inequality

2(a@a4+b+c)—abc <10.

2
Solution Leta+b+c=p,ab+bc—+ca= 17Tq,abc=r.
Then using identity 1°, the condition can be rewritten as

2 2
2
9=a2+b2+62=¥’

ie.
PP +24>=27. (15.1)
By Theorem 15.2 we deduce
(p+9°(p—29)
27
_ 54p — p® +3pg* +24°
B 27

2@+b+c)—abc=2p—r<2p-—
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_ 54p — p(p* +297) +5pq* +24°

27
(15.1) 54p — 27p + 5pg* +24°

- 27
_ 27p+5pg* +24°  p(27+5¢%) +24°
B 27 - 27 '

So it remains to prove that

P27+ 5¢%) +24°

- <10 or p(2745¢%) <270 —24°.

‘We have
(270 — 2¢%)* = (p(27 + 5¢7))*
& 27(qg — 3)22q* + 1243 + 49¢% + 146¢ + 219) > 0

as required.
Equality occurs if and only if (a, b, ¢) = (2,2, —1) (up to permutation).

Exercise 15.4 Let a, b, c be positive real numbers. Prove the inequality
a’+b*+c* +2abc + 1 >2(ab + bc + ca).

Solution The given inequality is equivalent to

p2+2q2 1—6]2

3 +2r+1>2

i.e.
6r +3+4g> — p>>0.

If 2¢g > p then we are done.
Therefore suppose that p > 2g.
By Theorem 15.2, it suffices to prove that

25 6P +9)%(p —29)

3449 — p* >0,
77 +3+49g"—p =

6r +3+4g% —p
ie.

2(p+)*p —29)
9

& (p=322p+3)>2¢*2q +3p —13). (15.2)

+34+4¢>—p*>0

If 2p <9 it follows that 2g + 3p <4p < 18, and we are done.
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If 2p > 9 we have
2q*(2q +3p — 18) <2¢*(p +3p — 18) =4¢*(2p — 9)
<p’Cp-9=(p—-32Q2p+3)—27<(p—-3C2p+3),

so inequality (15.2) is true, as required.
Equality occurs ifand only ifa =b=c = 1.

Exercise 15.5 (Schur’s inequality) Prove that for any non-negative real numbers
a, b, c we have

a>+ b+ +3abe > ab(a+b) + bc(b+c)+calc+a).

Solution Since the above inequality is homogenous, we may assume that a + b +
c=1.
Then clearly g € [0, 1] and the given inequality becomes

27r +4¢* —1>0.

Ifg> %, then we are done.
Ifg < %, by Theorem 15.1, we have

201 —
(I+49)°d 2‘1)+4

2 2
—1= 1—-2g9) >0,
77 q q-( q) >

27r +4¢%> —1>27
as required.
Equality occurs iff (a,b,c) = (¢,t,t) or (a,b,c) = (t,t,0), where ¢ > 0 is an
arbitrary real number (up to permutation).



Chapter 16
Abstract Concreteness Method (ABC Method)

In this section we will present three theorems without proofs (the proofs can be
found in [27]) which are the basis of a very useful method, the Abstract Concrete-
ness Method (ABC method).

For this purpose we’ll consider the function f(abc,ab + bc+ca,a+b+c), as
a one-variable function with variable abc on R, i.e. on R™T.

16.1 ABC Theorem

Theorem 16.1 If the function f(abc,ab + bc + ca,a + b + ¢) is mono-
tonic then f achieves it’s maximum and minimum values on R when
(@a—b)(b—c)(c—a)=0, and on R when (a — b)(b — c)(c —a) =0 or
abc =0.

Theorem 16.2 If the function f(abc,ab + bc + ca,a + b + ¢) is a con-
vex function then it achieves it’s maximum and minimum values on R when
(@a—b)(b—c)(c—a)=0, and on R when (a — b)(b — c)(c —a) =0 or
abc =0.

Theorem 16.3 If the function f(abc,ab + bc + ca,a + b + ¢) is a con-
cave function then it achieves it’s maximum and minimum values on R when
(@a—b)(b—c)(c—a)=0, and on R when (a — b)(b — c)(c —a) =0 or
abc =0.
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Consequence 16.1 Ler f(abc,ab + bc + ca,a + b + ¢) be a linear func-
tion with variable abc. Then f achieves it’s maximum and minimum values
on R if and only if (a — b)(b — c)(c — a) =0, and on RT if and only if
(a—b)(b—c)(c—a)=0o0rabc=0.

Consequence 16.2 Let f(abc,ab + bc + ca,a + b + c) be a quadratic tri-
nomial with variable abc, then f achieves it’s maximum on R if and only if
(@a—b)(b—c)(c —a) =0, and on R ifand only if (a — b)(b —c)(c —a) =0
or abc = 0.

Consequence 16.3 All symmetric three-variable polynomials of degree
less than or equal to 5 achieves their maximum and minimum values on
R if and only if (a — b)(b — ¢)(c — a) = 0, and on RT if and only if
(a—b)(b—c)(c—a)=0o0rabc=0.

Consequence 16.4 All symmetric three-variables polynomials of degree less
than or equal to 8 with non-negative coefficient of (abc)? in the represen-
tation form f(abc,ab + bc + ca,a + b + ¢), achieves their maximum on
R if and only if (a — b)(b — c)(c — a) =0, and on R if and only if
(@a—b)(b—c)(c—a)=0orabc=0.

Also we’ll introduce some additional identities which will be very useful for the
correct presentation of this method.
For that purpose, leta =x + y +z,b=xy + yz + zx, c = xyz. Then we have.

I: x>+y?+722=a*>-2b

Ir: x3—i-y3+z3=a3 —3ab + 3c

L x* 4+ y* 4 =a* —4a’h + 207 + dac

Iy: x>+ + 27 =a’ — 5a°b + 5ab> 4 5a*c — 5bc

Is: x% 4+ y0 4+ 20 = 4% — 6a*b + 6a3c + 9a%b? — 12abc + 3¢ — 2b3

Ie: (x)? + (y2)* + (zx)? = b — 2ac

I (xy)? + (v2)? + (zx)3 =b* — 3abc + 3¢2

Is: on* + (v2)* + (@x0)* = b* — dab?c + 2a2c2 + 4bc?

Io: (xy)’ + (y2)? + (zx)° = b — 5ab3c + 5a%bc? + 5b*c? — Sac®

Lo: xy(x +y)+yz(y +2) +zx(z +x) =ab —3c

I xy(x2 +32) + yz(y* + 22 + 2x (22 + 1) = a?b — 2b* — ac

Io: xy(3+ 93 +yz20° +23) + 20 (@ + x3) = b — 3ab? — aPc + Sbe
Li3: x2y2(x + ) + y?22(y + 2) + 22x2(z + x) = ab?® — 2a*c — be

st X33+ )+ 32 (v +2) + 2253 (2 + x) =ab® — 3a%be + 5ac* — b2c
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Lis: 22y + y2z + 220) (xy? + yz2 4 2x2) = 9¢2 + (a® — 6ab)c + b°
Lie: (By+y3z+200y3 + y22 +203) =742 + (@ — 5a3b + ab®)c + b*.

Exercise 16.1 Let a, b, ¢ > 0 be real numbers. Prove the inequality

ab+bc+ ca
a4+ b2+

abc
ad+b3+3

v

n 2

3
Solution The given inequality is equivalent to the following one

232 2 23 3 B2 2y 2
F =abc(a”+b” +c )—l—g(a + b’ +c’)(a” 4+ b”+c”)
— (@ + b+ ) (ab +be+ ca) > 0.
The polynomial F is of third degree so it will achieves it’s minimum when
(a—b)(b—c)(c—a)=0 orabc=0.

If (@ — b)(b — ¢)(c — a) =0, then without loss of generality we may assume that
a = ¢ and the given inequality becomes

a’b 2 _a®+2ab 5 1 2a+b
S5t 55 o (a—b) - >
2a3+b3 37 242+ b2 2a2 + b2 3Q2a° +b3)

& (a—b*a+b) >0,

which is obvious.
If abc = 0 then without loss of generality we may assume that ¢ = 0 and the
given inequality becomes

ab

e © a’>+b>+3@—b)?*>0,

2

>

3=
which is true. And we are done.

Exercise 16.2 Let a, b, ¢ > 0 be real numbers. Prove the inequality

a3+b3+c3+1> a? + b2+ \?
4abc 4 - \ab+bc+ca)

Solution Observe that by applying the previous identities the given inequality can
be rewritten as a seventh-degree symmetric polynomial with variables a, b, ¢, but
it’s only a first-degree polynomial with variable abc.

Therefore by Consequence 16.1, we need to consider only the following two
cases.
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First case: If (a — b)(b — c¢)(c — a) =0, then without lose of generality we may
assume that @ = ¢ and the given inequality becomes

283 +6 1 <2a2+b2>2 2a3 + b3 3><2a2+b2>2 |

- - > = - I - -
4a2b +4_ a? +2ab 4a2b 4~ \a?2+2ab

(a —b)*Q2a +b) _ (a— b)2(3a% + b2 + 2ab)
4a2b - (a2 + 2ab)?

& (a—Db)*((2b—a)* +a*) >0,

which is obvious.
Second case: If abc = 0 then the given inequality is trivially correct.

Exercise 16.3 Let a, b, ¢ > 0 be real numbers. Prove the inequality

1 1 1 9
(ab+bc+ca)< )> .

+ + -
(@a+b)?? (b+c)? (c+a)?) 4
Solution We can rewrite the given inequality in the following form

fla+b+c,ab+ bc+ ca,abc)
=9((a +b)(b +c)(c +a))?
—d(ab +be +ca)((a+b) b +0)? + (b +0)(c+a)? + (c+a)(a+b)d)
= k(abc)? + mabe +n,

where k > 0 and k,m,n are quantities containing constants or a + b + c,ab +
bc + ca, abc, which we also consider as constants, i.e. in the form as a sixth-degree
symmetric polynomial with variables a, b, ¢ and a second-degree polynomial with
variable abc and positive coefficients.

Let us explain this:

The expression (a + b)(b + c¢)(c + a) has the form kabc + m so it follows that
9((a + b)(b + ¢)(c + a))? has the form k%(abc)? + mabc + n.

Furthermore

4(ab + be 4 ca)((a+b)>(b+¢)* + (b + ) (c +a)> + (¢ + a)*(a + b)) = 4kA,

where k = ab + bc + ca, and A is a fourth-degree polynomial and also has the form
kabc +m.

Therefore the expression of the left side of f(a + b + ¢, ab + bc + ca, abc) has
the form k(abc)? + mabc + n.

Then the function achieves it’s minimum value when (a — b)(b — ¢)(c —a) =0
or when abc = 0.
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If (a — b)(b — ¢)(c — a) =0, then without loss of generality we may assume that
a = ¢, and the given inequality is equivalent to

(a* + 2ab) L—F# >2
42 a+b?) "4

2a +b 1 -
2a(a+b)? (a+b?)~

& (a—b)2<

& bla—b)? >0,

as required.
If abc = 0, we may assume that ¢ = 0 and the given inequality becomes

p(— L )22 s wwp( - ! >0
ab| ——+ =+ —= - a— R
(@a+b)? a2 b2) 4 ab 4(a+b)? )~
& (a—Db)’(4a® +4b> +Tab) > 0,
and the problem is solved.
Exercise 16.4 Leta, b, ¢ > 0 be real numbers such that a? + b% + ¢? = 1. Prove the
inequality

a b c

> 3.
a3+bc+b3+ca +C3+ab -

Solution If we transform the given inequality as a symmetric polynomial we ob-
tain a ninth-degree polynomial with variables a, b, ¢, and a third-degree polynomial
with variable abc. But, as we know, this case is not in the previously mentioned
consequences, so the problem cannot be solved with ABC (for now).

Therefore we’ll make some algebraic transformations.

If we take

then clearly xy 4 yz 4+ zx = a® + b?> 4 ¢?> = 1, and the given inequality becomes

1 1 1
+ + >3. (16.1)
xy+z yz+x x4y

If we transform the inequality (16.1) we’ll get a second-degree polynomial with
variable xyz, with a non-negative coefficient in front of (xyz)2.

So we need to consider just the following cases:

If x = z then inequality (16.1) becomes

2 1
—— t= >3.
xXy+x x<+Yy
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. . 2 . .
Since 2xy + x2 =1 it follows that y= 12;‘ , and after using these, the previous
inequality easily follows.
If z = 0 then inequality (16.1) becomes

1 1 1 .
—+ -4+ —->3, withxy=1.
Xy x y

We have % + % + % >1+ =3, as required.

2
Xy
Exercise 16.5 Leta, b, ¢ be positive real numbers such that ab+bc +ca +abc = 4.
Prove the inequality

1

1 1
- +-+->a+b+ec.
a b ¢

Solution Since ab + bc + ca + abc = 4 there exist real numbers x, y, z such that

2x 2y 2z
a= , b: ) c= )
y+z Z+x x+y

and the given inequality becomes

x+y+Z+X+y+ZZ4( X y K4 > (162)

+ +
z y X y+z z+x x+Yy

Inequality (16.2) is homogenous, so we may assume thatx +y+z=1,xy + yz +
X =u,Xxyz =v.

After some algebraic transformations we find that inequality (16.2) can be rewrit-
ten as follows

902 +4(1 — u)v — v*> > 0.

So, according to the ABC theorem, we need to consider just two cases:

If z = 0 then inequality (16.2) is trivially correct.

If y=2z=1 (we can do this because of the homogenous property) inequality
(16.2) becomes

2t 4 2oa(Ep 2 ie. 2(x—1)?%>0
X P i ie. X >0,

which is obvious.



Chapter 17
Sum of Squares (SOS Method)

One of the basic procedures for proving inequalities is to rewrite them as a sum of
squares (SOS) and then, according to the most elementary property that the square
of a real number is non-negative, to prove a certain inequality. This property is the
basis of the SOS method.
The advantage of the method of squares is that it requires knowledge only of
basic inequalities, which we met earlier, and basic skills in elementary operations.
Let’s start with one well-known inequality.

Example 17.1 Let a, b, c > 0. Prove the inequality

A+ +3 > 3abc.

Solution We have

a+b+c

@+ b3+ —3abe = ((@=b*+®B—-0c)?+(c—a)?) >0,

which is obviously true.

The whole idea is to rewrite the given inequality in the form
Sa(b = ¢)* + Sp(a — ) + Sc(a — b)?,

where S,, Sp, S. are functions of a, b, c.

We must mention that this method works well for proving symmetrical inequali-
ties where we can assume that a > b > ¢, while if we work with cyclic inequalities
we need to consider the additional case ¢ > b > a.

We will discuss symmetrical inequalities with three variables, and for that pur-
pose firstly we’ll give three properties that we will use for the proof of the main
theorem.

Proposition 17.1 Let a, b, ¢ € R. Then (a — ¢)*> < 2(a — b)*> +2(b — ¢)>.
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Proof We have
(a—c)*<2a—b)?+2(b—c)?
& a?—2ac+c* <2(a® = 2ab+ b*) +2(b* — 2bc + ¢?)
& a*+4b* + ¢* —4ab — 4bc + 2ac > 0
& (@a+c—2b)?2>0,

which clearly holds.

Proposition 17.2 Leta > b > c. Then (a — ¢)* > (a — b)> + (b — ¢).

Proof We have
(@—c)*=(a—by’+(b—c)
& a?—2ac+ct> (a% —2ab +b*) + (b* = 2bc + ¢?)
& b2+ac—ab—bc§0
& (b—a)b——c) <0,

which is true since a > b > c.

Proposition 17.3 Leta > b > c. Then % > %.
Proof We have

a—c
=

a
b—c ™ b

& bla—c)=alb—c) & ac>=bc & a>b.

Theorem 17.1 (SOS method) Consider the expression S = Sy(b — ¢)? +

Sp(a — c)2 + Se(a — b)z, where S;, Sp, S¢ are functions of a, b, c.

1° If Su, Sp, Sc > 0 then S > 0.
2° Ifa>=b>cora<b<candSp, Sp+ Sa,Sp+ Sc >0 then S > 0.

3° Ifa>b>cora<b<cand Sy, S¢, Sa +2Sp, Sc +2S, > 0 then S > 0.

4° Ifa>b>cand Sy, Se,a*Sy + b>S, > 0 then S > 0.

5°IfSa+Sp=00rSp+Sc=>00r Sc+Sa>0(Sq+Sp +S. >0) and

SaSp + SpSe + S¢Sy =0 then S > 0.

Proof 1°1f S,, Sp, S¢ > 0 then clearly S > 0.
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2° Let us assume that a > b > c and Sp, Sp + Sq, Sp + Sc > 0.
By Proposition 17.2, it follows that (a — )2 >(a— b)2 + (b — ¢)?, so we have

S=S8,b—c)*+ Spla —c)* + S.(a — b)?
> Su(b—)? 4 Sp((a@ — b)* + (b — ¢)*) + Sc(a — b)?
=(b—0)*(Sa+ Sp) + (@ —b)*(Sp+ S).

Now since Sp + Sy, Sp + S¢ = 0 it follows that S > 0.
3°Leta>b>cand S,, S., S; +2Sp, S. + 2S5, > 0.
Then if S;, > 0 clearly S > 0.
Suppose that S; < 0.
By Proposition 17.1, we have that (a — ¢)? < 2(a — b)? +2(b — ¢)*.
Therefore

S=S,(b—c)*+ Sp(a —c)* + Sc(a — b)?
> Sa(b —©)* + Sp(2(a — b)* +2(b — ¢)*) + Sc(a — b)
= (b —¢)*(Sa +28p) + (a — b)*(Sc +2S),
and since S, + 2Sp, S + 2S5, > 0 it follows that S > 0.
4° Let a > b > ¢ and suppose that Sy, S, asz + b2Sa > 0.

a—c

By Proposition 17.3, it follows that $== > 7.
Therefore

S=S8.(b—)*+ Sp(a—c)* + Sc(a — b)* > Sa(b — ¢)* + Sp(a — ¢)*

2 2
=(b—C)2<Sa+Sb<E> ) > (b—c)2<Sa+Sb<g> )
b—c b

b*S, +a*s),
=(b- C)2<QT>,

since asz + sza > (0 we obtain S > 0.
5° Assume that S, + S, > 0.
We have

S=S8,b—c)*+ Sp(a—c)*+ S.(a — b)?
= Su(b—)* + Sp((c = b) + (b — @))” + Scla — b)?
= (Sp+ Sc) (@ — b)? +2Sp(c — b) (b — a) + (Sq + Sp) (b — ¢)*

Sp SaSp + SpSe + SeSa
Sb + Sc Sb + SC
> 0. U

(c —b)?

2
=(Sh+Sc)(b—a+ (c—b)) +
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The main difficulty with using the S.0.S. method is the transformation of the

given inequality into mentioned (S.0O.S.) form.

Every difference chcxllxgz~ Sxpm — chcxf‘xfz xP" where a1 + ar +

-+ oy =B1+ B2+ -+ By can be written in S.0.S. form, so almost all sym-

metrical or permutation homogeneous inequalities can be written in S.0.S. form.
In fact there is a huge class of algebraic expressions which can be written in S.0.S
form (the algorithm which helps to transform algebraic expressions into S.O.S. form
is explicitly explained for example in [27]).

Here we will introduce the reader to the simplest and most often used forms
which are as follows:

o 24 12 4 2 _ @=b+(b=0)?+(c—a)?
1° a*+b“+c*—ab—bc—ca= 22 ) ,
2° @ +b3+ 3 —3abe=(a+b+ c) (ebrtboar tlema)y)

3° a%b + b*c + c*a — ab* — bc? o h)3+(h C)3+(C a)’
4° B+ +3—ab—ble—cta= (2a+b)(a b)2+(2b+c)(b > +Qc4a)(c—a)®

5° @b+ bc+cBa—ab? — b —ca —(a+b—|—c)((b )+ (e~ b) +la— 0)3)
o 4 2 202 _ 242 — (@tbP(@=b)’+(b+c)’ (b >2+< +a)*(c—a)?
6° a* + b+t —a?bt — b22 — = S e

Exercise 17.1 Let x, y, z € R such that xyz > 1. Prove the inequality

X5 — 2 5 — 32 S22

+ + >0
X4+y2+z22 Y22 4x2 0 P24y T

Solution We’ll homogenize as follows

x> —x2 x> —x% . xyz x* —x2yz

> =
W +y2+22 T X 4xyz(0?+22)  xt+yz(y?+22)

x4—x2(y +2 ) 2t —x2(y2 + 23)

= ! 24,292 °
x4 4 (2 erz )32+ 22) 2x% 4+ (v +2z9)

Similarly we get
y5 _ y2 . 2y4 _ yZ(Z2 +)C2) . ZS _ ZZ - 2Z4 _ ZZ(X2 + y2)
VA2 Hx2 T 2y (22 +x2)2 D AHx2+y2 T 2244 (324 yH)?

So it suffices to show that

2)64 _ x2(y2 4 22) 2y4 _ y2(z2 4 x2) 2Z4 _ ZZ(XZ + y2)
>0,  (17.1)
2x4 + (y2 +ZZ)2 2y4 + (Z2 +x2)2 2Z4 + (x2 +y2)2

Let x2 =a, y2 =b, 72 =c. Then inequality (17.1) becomes

2 2 2
2a* —a(b+c) n 2b° — b(c +a) . 2¢* —c(a +b) > 0. (17.2)
202+ (b+c¢)? 202+ (c+a)*  2c2+(a+b)?
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After some algebraic operations we can rewrite inequality (17.2) as follows
5 a>+a+c)+b*—be+c?
(202 + (¢ + a)»)(2¢? + (a + b)?)
bE+bla+c)+c*—ca+a?
(2a%+ (b +¢)»)(2c? + (a + b)?)
5 2 +cla+b)+a®—ab+b? -
aZ+ (b +0)?)Q2b2+ (c+a)?) —

(b—c)

+ (¢ —a)2

4+ (a —b)

’

which is true due to the obvious inequality: if x, y € R then x> — xy + y2 > 0.

Exercise 17.2 Let a, b, ¢ be positive real numbers. Prove the inequality

a2+ b%+ 2 8abc

ab+bc+ca  (a+b)(b+c)(c+a) 22 (17.3)

Solution Observe that

a2+b2+c2—(ab+bc+ca)= %((a—b)z—i—(b—c)z—i—(c—a)z)
and

(@+b)(b+c)(c+a)—8abc =a(b —c)* + b(c —a)* +cla — b)*.
Inequality (17.3) becomes

a2 +b%+ 2 -1 8abc
ab+ bc+ ca - (a+b)(b+c)(c+a)
a2+ b2+ c2 = (ab+ be + ca) _ (a+b)(b+o)(c+a)—8abe

ab + bc + ca - (a+b)(b+c)c+a)
(@a—b)2+ (B —0c)*+ (c—a)? _ 2a(b— ¢)2 +2b(c — a)* + 2c(a — b)?
ab+ bc + ca - (a+b)(b+c)(c+a)
2 (a+b)(b+c)(c+a)_
& @ C)< ab+bc+ca 2a>
_ oflatb)y(bto)cta)
(e a)( ab+bc+ca 2b)
+(a_b)2<(a+b)(b+c)(c+a)_2c>20.
ab+bc + ca
Let
Saz(a+b)(b+0)(0+a)_2a=b+c_a_ abc

ab + bc + ca ab+bc+ca’
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b)(b b
g2 @tDeraCta L abe
ab+ bc + ca ab+ bc +ca
b)(b b
s @thotoeta o abe
ab+ bc+ ca ab+ bc+ ca

Since inequality (17.3) is symmetric, we may assume that a > b > c.
Then clearly

Sp, Se >0, ie. Sp+S.>0.

According to 2° from Theorem 17.1, it suffices to show that S, + S, > 0.
‘We have

abc _2c%a+b)

Sp+ Sy =2¢ —

2
ab+bc+ca ab+bc+ca

as required.

Exercise 17.3 Leta, b, c be positive real numbers such that ab+bc+ac = 1. Prove
the inequality

1+a?b*  1+b** 1+c%a* 5
7T 7T 725
(a +b) b+0c) (c+a) 2
Solution The given inequality is equivalent to
(ab+bc+ac)*+a’*h> _ 5
Z @1b)? > E(ab—l—bc—i—ac)
cyc
2ab(ab +b b 2
ZZ ab(ab + be + ac) + (be + ca) > 5(ab + bc + ac)
(a + b)?
cyc
ab bc ca
& 4(ab+b
(ab + C+Ca)<(a+b)2 + b1 o2 + (c+a)2)

+2(a® + b* + %) > 5(ab + be + ac)

4ab N 4bc N 4ca 3>
(@+b)? Bb+c)?  (c+a)?
+2(a2+b2+c2—ab—bc—ca) >0

(@a—b? (-0?* (c— a)z)
(@+b? (Bb+c)? (c+a)?
+(@=b2+bB-0 +Cc—a))=0

& (ab+bc+ca)<

== —(ab+bc+ca)<
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_ab+bc+ca e _ab+bc+ca N
M G LR R (R e

ab+bc+ca 5
l-—— |J(c—a)*=0.
+< cta? )(c a)y” =

Let

ab+ bc +ca ab+ bc+ ca
_— Sp=1———— and
b+c)?

(c+a)?
ab+ bc+ ca
(a + b)?

Sa=1-—

Se=1-

Without loss of generality we may assume that a > b > ¢, and then clearly S, <
Sp < Se.
We have

ab+ bc + ca _a2+(a+b)(b—c)

(a+b? (a +b)? =0

Se=1-

and it follows that S > S, > 0.
Also we have

a8y + b8, =a2<1 _ W) b2<1 _ M)

(c+a)? b+c)?

_a202+(c+a)(a—b) b2c2+(b+c)(b—a)
B (c+a)? b+c)?

2 2 2 2
) a b B a b
_cammﬂ+w+oﬂ+w “Q+a ww)

2 2
) a b _ 2ab+bc+ca
= ((c+a)2+(b+c)2>+( D e ovto

and according to 4° from Theorem 17.1 we are done.

Equality occurs iffa=b=c= A



Chapter 18
Strong Mixing Variables Method
(SMYV Theorem)

This method is very useful in proving symmetric inequalities with more than two
variables. The SMV method (strong mixing variables method) is a simple and con-
cise method that “works” in proving inequalities that have either a too complicated
or a too long proof. In order to better describe the given method, first we will give
a lemma (without proof) and then we will introduce the reader to the SMV theorem
and its applications through exercises. We should point out that this theorem is part
of a more comprehensive method, the Mixing Variable method (MV method), which
can be found in [27].

Lemma 18.1 Let (x1, x2, ..., X,) be an arbitrary real sequence.
1° Choose i,j € {1,2,...,n}, such that x; = min{xy, x2,...,X,},x; =
max{xy, xo, ..., X}

2° Replace x; and x; by it’s average e ;xj (their orders don’t change).

After infinitely many of the above transformations, each number x;,i =

1,2, ..., n, tends to the same limit x = w

Theorem 18.1 (SMV theorem) Let F : I C R” — R be a symmetric, con-
tinuous, function satisfying F(ai,az,...,a,) > F(b1,ba,...,b,), where
the sequence (by,by,...,b,) is a sequence obtained from the sequence
(ar,a2, ...,a,) by some predefined transformation (a A-transformation).
Then we have F(x1,X2,...,%x,) > F(x,x,...,x), with x = W

Lets us note that the transformation A can be different, i.e. A can be defined ac-

. . 2 2
cording to the current problem; for example it can be defined as #, vab,,/ %,
etc.
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Exercise 18.1 Let a, b, ¢ > 0 be real numbers. Prove the inequality

a+b+c 3
b+c c¢4+a a+b 2

Solution Let f(a,b,c) = h”? + % + ﬁ
‘We have
a+b a+b
7b7 - ) )
fla,b,c) f( 5 5 C)
a b c a+b a+b c
= + + — +
b+c c+a a+b a+b+2c a+b+2c a+b
_a n b 2(a +b) _a3+ca2+cb2+b3—2¢1bc—ab2—a2b
" b+c c+a a+b+2c b+c)a+c)a+b+2c)
(18.1)

Since AM > GM we obtain
ad+ad+ b N a+p+b3
3 3
+ ca® + cb* > a®b + ab* + 2abe. (18.2)

a3+ca2+cb2+b3=

From (18.1) and (18.2) it follows that

b b
f(cz,b,o—f(‘”zr %c) >0,
i.e.
a+b a+b
f(a,b,C)Zf( 2 ,T,C).

Therefore by the SMV theorem it suffices to prove that f(¢,¢,c) > %
‘We have

t 3
< =3 e 2-oz0,

3
t,t, > — < —
F( ) 2 t+c+t+c+2t

which is obviously true.
Equality occurs if and only if a = b = c.

Exercise 18.2 (Turkevicius inequality) Let a, b, ¢, d be non-negative real numbers.
Prove the inequality

a* +b* + ¢t +d* +2abed > a*b? + b2 * + A2d* + d*a® + a*c* + brdP.

Solution Without loss of generality we may assume thata > b > c > d.
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Let us denote
fla,b,c,d)=a*+b*+c* +d* + 2abed — a*b* — b>c? — *d?
—d?a® — a*c* — brd?
=a* + b+t +d* + 2abed — a** — b2 — (@® + (B +dP).
We have
fla,b,c.d)— f(ac,b,Jac,d)
=a* +b* + * +d* + 2abed — a*P — b*d* — (@® + P (V* + dP)
— (@ +b* + a’? + d* + 2abed — a** — b*d* — 2ac(b® + d?))
=a*+c* =247 - (b2 + dz)(a2 +c+ 2ac)
=@ - - +dH@a—-c)’=@a—c)’(a+c)— B> +d*) >0.
Thus
fla,b,c.d)> f(Vac,b,ac,d).

By the SMV theorem we only need to prove that f(a, b, c,d) > 0, in the case when
a=b=c=t>d.
‘We have

f@,r,t,d)>0 < 3t*4+d*+20%d >3 +31%d> o  d*+20%d > 3242,

which immediately follows from AM > GM.
Equality occurs iffa=b=c=d ora =b = c¢,d = 0 (up to permutation).

Exercise 18.3 Let a, b, ¢, d be non-negative real numbers such that a + b + ¢ +
d = 4. Prove the inequality

(143a)(14+3b)(14+3c)(14+3d) <125+ 131abcd.
Solution Let us denote
f(a,b,c,d)=(14+3a)(14+3b)(14+3c)(1+3d) — 131abcd.

Without loss of generality we may assume thata > b > ¢ > d.
We have

f(a,b,c,d)—f<“—+c,b, ““,d)

2 2
2 2
:9(1+3b)(1+3d)<ac— (“ZC) >—131bd<ac— (“";C) >

_@-¢’

(131bd — 9(1 + 3b)(1 + 3d)). (18.3)
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Note that
1
b+d < §(a+b+c+d)=2,

and clearly

b+d)?
bdg( +d) =1, (18.4)
4
therefore
131bd —9(1 +3b)(1 + 3d)
=131bd —9—-27(b+d) — 81bd
A>G

=50bd —27(b+d)—9=50bd —27(b+d)—9 < 50bd — 54~/bd

(18.4)
< 50bd — 54bd = —4bd < 0.

By (18.3) and the last inequality we deduce that

f(avbscvd)_f<aT—i_cvba aT—i_Cvd>507

i.e.

f(a,b,c,d)ff<a+c a+c,d>.

- b —
2 2

According to the SMV theorem it follows that it’s enough to prove that
f(a,b,c,d) <125,
whena=b=c=t>d,1i.e.
f(t,t,t,d) <125, when3t+d=4.

Clearly 3t <4.
We have

f(,t,t,d) <125
& (1+430)°(1+3@—=31) — 131474 —31) < 125
& 1506% — 41683 + 27012 4+ 108 — 112 <0

& (t—1)2(3r — 4)(50r +28) <0, which is true.

Equality occursiffa=b=c=d=1ora=b=c= %, d = 0 (up to permutation).
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Exercise 18.4 Let a, b, ¢, d be non-negative real numbers such that a + b + ¢ +
d = 4. Prove the inequality

16 + 2abcd > 3(ab + ac + ad + bc + bd + cd).

Solution Without loss of generality we may assume thata > b > c > d.
Let us denote

f(a,b,c,d)=3(ab+ac+ ad + bc+ bd + cd) — 2abcd.

We have
f(aT—i_cvbv ¥7d> _f(aabs cvd)

a—+c a—+c 2 a+c a+c a—+c

:3(( > )b—i—( ) ) +< > )d+( > )b—i—bd—i—( 2 )d)
a—+c 2

—2bd< > ) — (3(ab+ac +ad + bc + bd + cd) — 2abcd)

a+c 2 a+c 2
() )55

a—c\?

=( . )(3—2bd). (18.5)

Also 2/bd <b+d < %(a + b + ¢ + d) =2, from which it follows that bd < 1.
By (18.5) and the last conclusion we get

2
f<a+c,b, “—”,d) — fla,b,c,d) = (?) (3 — 2bd)

2 2
_ 2
z(“zc) (3-2)>0,

i.e. it follows that

f(“T”,b, “T”,d) > f(a,b.c,d).

By the SMV theorem it follows that we only need to prove the inequality
f(a,b,c,d) <16, in the case when a = b =c =1t > d, i.e. we need to prove that
f(t,t,t,d) <16, when 3t +d =4.

Clearly 3¢ <4.

Thus we have

f@t,t,t,d)<16
& 92 4+dt)—203d—16<0
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& 924 9r(4—31)—2(4—31)—16<0
& 2@t —4)(t — 1>t +2) <0, whichis true.

Equality occurs if and onlyifa =b=c=d=1ora=b=c=4/3,d =0 (up to
permutation).

Exercise 18.5 Let a, b, ¢, d be non-negative real numbers such that a + b + ¢ +
d = 1. Prove the inequality

1 176
b bed d dab < — + —abcd.
ac+c+ca+a_27+27ac

Solution Without loss of generality we may assume thata <b <c¢ <d.
Let f(a,b,c,d) =abc+ bcd + cda + dab — %abcd i.e.

176
fla,b,c,d)y=acb+d) +bd<a +c— 2—7aC>.
Since a < b < ¢ <d we have

1 1
a+c§§(a+b+c+d)=§,

from which it follows that

1 1 4 176
-+ > > 8

> >8> —. (18.6)
a ¢ a+c 27

‘We have

f(a,b,c,d)—f(a,b+d M)

— G,
2 2

176
=ac(b+d)+ bd a—i—c—?ac

b+d\> 176
—acb+d)— (%) (a +c— ﬁac)
176 b+d\?
:<a+c__ac><bd_<i> )
27 2

176 b —d)? (18.6)
=—|a+c— —ac ( ) < 0.
27 4

Therefore

7C?

2 2

f(a,b,c,d)sf<a,”+d b+d>.
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By the SMV theorem we have

b+c+d

f(a,b,c,d)< f(a,t,t,t), whent= 3

N()W we ]leed to I)]()Ve ()]lly tlle lllequallty
f a 1 =1.
s baly = 277

Let us note that 3t <a 4 3t = 1.
The inequality f(a,t,t,t) < 21—7 is equivalent to

1 176
3at> +13 < — + —at>. 18.7
at” +t' = -+ ——a (18.7)
After putting a = 1 — 3¢ by (18.7) we get (1 — 31) (4t — D2(11¢ + 1) > 0, which is
obviously true (since 3¢ < 1), and the problem is solved.
Equality occurs if and only ifa =b=c=d=1/4ora=b=c=1/3,d=0
(up to permutation).



Chapter 19
Method of Lagrange Multipliers

This method is intended for conditional inequalities. It requires elementary skills
of differential calculus but it is very easy to apply. We’ll give the main theorem,
without proof, and we’ll introduce some exercises to see how this method works.

Theorem 19.1 (Lagrange multipliers theorem) Let f(x1,xX2,...,Xy) be a
continuous and differentiable function on I C R™, and let g;(x1, X2, ..., Xm)
=0,i=1,2,...,k, where (k < m) are the conditions that must be satisfied.
Then the maximum or minimum values of f with the conditions g;(x1, X2, . . .,
xm) =0,i =1,2,...,k, occur at the bounds of the interval 1 or occur
at the points at which the partial derivatives (according to the variables
X1, X2, ..., Xm) of the function L = [ — Zf'{:l Aigi, are all zero.

Exercise 19.1 Let x1, x2, ..., x, be positive real numbers such that x; +xy +--- +
X, = a. Find the maximal value of the expression A = /x1x3 - xj.

Solution Let g =x1+ x>+ -+ x, — a. Then Lagrange’s function is
F=A—-g=xixp- - xp—A(x1+x2+ -+ x5, —a).
For the first partial derivatives we have
_ Y
F = e A,
_ YR
F| = T A,

;o NX1Xx2Xp
Fy = — A
from which easily we deduce that we musthave x; =xp =--- =x, =
Hence max A = &, i.e. &/xX[x2- X, < w which is the well-known in-
equality AM > GM.

I
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Exercise 19.2 Leta, b, c € RT such that a + b + ¢ = 1. Prove the inequality
T(ab + bc + ca) < 9abc + 2.
Solution Let
f(a,b,c) =T7(ab + bc + ca) —9abc — 2, gla,b,c)y=a+b+c—1
and

L=f—Xg=T7@ab+bc+ca)—9abc—2—ra+b+c—1).
We have

oL
8—:7(b+c)—9bc—k:0 = A=7(Mb+c)—9%c,
a
oL
£=7(c+a)—9ca—k=0 = A=T7(c+a)—9ca,

% =7a+b)—9%ab—-1=0 = Air=7(a+b)—9ab.
So
Tb+c)—9%c=r=T(c+a)—9%a < (b—-a)(T—-9)=0. (19.1)
In the same way we obtain

(c—b)([T—-9a)=0 (19.2)
and

(a—c)(7—-9b)=0. (19.3)

Let us consider the identity (19.1).
Ifa=bthenif b=cwegeta=>b=c=1/3, and then

21 9
f(a,b,c)=7(ab+bc+ca)—9abc—2=3—ﬁ—2=0.

If a = b and b # c then by (19.2) we must have a = % =bandthena+b = % > 1,
a contradiction, sincea +b <a+b+c=1.

If 7 —9¢ = 0 then we can’t have 7 — 9a = 0 or 7 — 9b = 0 for the same reasons
as before, so according to (19.2) and (19.3) we must have b = ¢ and a = ¢, i.e.
a=>b=c=7/9, which is impossible.

Therefore min L =0, i.e. 7(ab + bc + ca) < 9abc + 2.

Exercise 19.3 Let a, b, ¢ € R such that a® + b? + ¢ + abc = 4. Find the minimal
value of the expression a + b + c.
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Solution Let

f(a,b,c)=a+b+c,g(a,b,c)=a2+b2+c2+abc—4

and
L=f—-ig=a+b+c—r@®+b*+c*+abc—4).

‘We have

oL 1

—=1—-2a—XAbc=0 = i=——),

da 2a + bc

o | ib—rac=0 = =

b ac= = 2btac’

aL—l AM—Aab=0 = L= !

dc cTran= T 2c+ab’
So

1 1
< (a—b)2—-c)=0. (19.4)

2a + bc = 2b +ac
In the same way we obtain
b—-c)2—-a)=0 (19.5)
and
(c—a)2—-Db)=0. (19.6)

If a = b = 2 then since a2 + b + ¢2 + abc = 4 we get ¢ = —2, and therefore
a+b+c=2.
If a = b = ¢ # 2 then from the given condition we deduce that

3a°+a’=4 & (a—1(a+2)>*=0,

and thereforea =b=c=1ora=b=c=-2,ie.a+b+c=3o0ora+b+c=—6.
Thus min{a + b + ¢} = —6.

Exercise 19.4 Leta, b, c,d € RT such thata + b + ¢ +d = 1. Prove the inequality

1 176
b bed d dab < — + —abcd.
ac+c+ca+a_27+27ac

Solution Let f =abc + bcd + cda + dab — lzifabcd.
We’ll prove that
==
- 27
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Defineg=a+b+c+d—1and
176
L=f—Ag=abc+ bcd+ cda+dab — 7abcd—k(a+b+c+d— 1).

For the first partial derivatives we have

oL 176
=bc+cd+db—7bcd—)\=0,

da
oL 176
a—bzac+cd+da—7acd—)»=0,

L _ b bdtda—""Cuapd—2=0
ac ¢ a=77d =

oL 176
3d =bc+ac+ab— Wabc—)L:O.
Therefore
A=bc+cd+db— ﬁbcd:ac—i—ca’—i—da — Eacd
27 27
176 176
=ab+ bd + da — Eabd:bc—}—ac—i—ab— Eabc.
Since

bc+cd+db 176bd— +cd+d 176 d
c+c 7 bed=acte a— —-acd,

we deduce that

(b—a)(c—l—d——cd) 0.
Similarly we get
176
(b—c)(a—i—d—Ead) 0,
b—-d)a+ 176 =0
a-—r+c¢ 27 ac )=y,
176
—o|\b+d— —=bd ) =0,
(a—-o)b+ 77 >
176
(a —d)<c+b— 7019) =0,
(c—d){a+Db 176 b)=0
c a 77 =

By solving these equations we musthavea =b =c=d,andsincea+b+c+d =1
it follows thata =b=c=d = 1/4.
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Then
f/4,1/4,1/4,1/4) =1/27,
and we are done.
Exercise 19.5 Let a, b, c € R be real numbers such that a + b + ¢ > 0. Prove the
inequality

a4+ b+ <@+ 0>+ )%+ 3abe.

Solution If we define

a b c

IR o e
then the given inequality becomes

Py 42 < P4y P+ 4 3xyz, with x4+ y? 42 =1,
So it suffices to prove that

A+ b3+ <@ +b*+ 2 +3abe,  with condition a® + b% + > =1,
i.e.
A+ +3 <1+ 3abc, with a? +b* + 2 = 1.

Let us define

f=a3+b3+c3—3abc, g=a2+b2+62—1

and
L=f—-Ag=a’+b+c —3abc—ra>+b>+c*—1).
‘We obtain
IL
— =34% —3bc —2ra =0,
da
IL
— =3b*> —3ac—2Ab=0,
ab
aL
— =3¢ —3ab—2rc=0
dc
ie.
e 3(a>—bc)  3(b*—ac) 3(c* —ab)
- 2a - 2b a 2¢c
Thus

3(a? —bc)  3(b* —ac)
2a  2b

(a —b)(ab + bc + ca) =0.
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Similarly we deduce
(b—c)ab+bc+ca)=0 and (c—a)(ab+ bc+ ca)=0.

By solving these equations we deduce that we must have a = b = c or ab + bc +
ca=0.

Ifa=b=cthen f(a,a,a)=0<1.

If ab + bc 4 ca =0 then

(a+b+c)=a*+b>+c*+2(ab+bc+ca)=1,

and sincea +b+c¢>0weobtaina +b+c=1.
Therefore

f(a,b,c)=a3+b3+c3—3abc=(a+b+c)(a2+b2+c2—ab—bc—ca)=1,

and the problem is solved.



Chapter 20
Problems

1 Let n be a positive integer. Prove that

1 1 l
1+ = +32+ + <2.

2 Letan=1+%+%—i—u-—i—%.Provethatforanynerehave

U B 1
S+ttt <2

al g% Q na,
3 Let x, y, z be real numbers. Prove the inequality
)c4+y4+z4 >4xyz —1.

4 Prove that for any real number x, the following inequality holds

x20()2 _ x1999 + x1996 _ x1995 +1>0.

5 Let x, y be real numbers. Prove the inequality
3(x +y+ 1%+ 12> 3xy.
6 Leta, b, c be positive real numbers such that a + b + ¢ > abc. Prove that at least
two of the following inequalities
2 3 6 2 3 6 2 3 6
-+ -+ ->6, —+-+->6, -t +-=6
a b c b ¢ a b

are true.

7 Leta,b,c,x,y,z>0.Prove the inequality

ax n by cz <(a+b+c)(x+y+z)
a+x b+y c+z - at+bt+ct+x+y+z’
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8 Leta, b, c € R, Prove the inequality

2a 2b 2c a b c

< .
a2+bc+b2+ac+cz+ab “bc ac ab

9 Leta,b,c,x,y,z€ R suchthat a +x = b + y = ¢ + z = 1. Prove the inequal-
ity

1 1 1
(abc —i—xyz)(— +—+ —) > 3.
ay bz

10 Let ay,ay, ..., a, be positive real numbers and let by, by, ..., b, be their per-
mutation. Prove the inequality

2 2 2
G T e ta
by by by,

x2+1

11 Let x € R™. Find the minimum value of the expression -

12 Leta, b, c € R such that abc = 1. Prove the inequality

a b c
@GrDG+D T GFDetD T er D@+

3
>,
— 4

13 Let x, y > 0 be real numbers such that y(y + 1) < (x + 1)2. Prove the inequal-
ity

oy —1) <x2

14 Let x, y € RT such that x> + y3 < x — y. Prove that

15 Leta, b, x, y € R such that ay — bx = 1. Prove that
a? 4+ b+ x>+ y* +ax + by = /3.

16 Let a, b, ¢, d be non-negative real numbers such that a?+ b+ +d*=1.
Prove the inequality

1-a)1-=>b)(1—-c)(1 —d)>abcd.
17 Let x, y be non-negative real numbers. Prove the inequality

4%+ = P+ yH e+ yH et +yh.
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18 Let x,y,z € R* such that xyz = 1 and % + % + % > x + y + z. Prove that for
any natural number n the inequality

1 1 1 n n n
;‘FW‘FZ—HZX +y +z

is true.

19 Let x, y, z be real numbers different from 1, such that xyz = 1. Prove the in-

equality
3—x\2 3—y\2 3-2)\°
— 7.
(=) +(5) (=) -

20 Let x,y, z <1 be real numbers such that x + y + z = 1. Prove the inequality

1 n 1 n 1 <27
1+x2  14y2 1422710

21 Leta, b, c € R. Prove the inequality

1 1 1 3
+ + > .
a(l+b) b(d+c) c(A+a) ™~ 14+abc

22 Let x, y, z be positive real numbers. Prove the inequality
9a+b)(b+c)(c+a)=8(a+b+c)ab+ bc+ ca).
23 Let a, b, c be real numbers. Prove the inequality
@ +b*+AH?=3@b+bc+Aa).

24 Let a, b, ¢ be positive real numbers such that a? + b? + ¢ = 3. Prove the in-
equality

aAb+c)+b(c+a)+c(a+b)<6.

25 Let a, b, c be positive real numbers. Prove the inequality

a n b n c )
/ > 2.
b+c c+a a+b

26 Let a, b, ¢ be positive real numbers such that a> + b> + ¢ = 3. Prove the in-
equality

a n b n c <1
b+2 c¢c+2 a—+2~
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27 Let x, y, z be distinct nonnegative real numbers. Prove the inequality

S SRS R
x—=y?2 (-—2%2 @—x)? xy+yzt+zx’

28 Let a, b, c be non-negative real numbers. Prove the inequality
3(a* —a+ D)(b* —b+1)(c* —c+1) > 1+abc+ (abc).
29 Leta,b e R, a #0. Prove the inequality
a2+b2+i2+éz«/§.
a a
30 Leta, b,c € RT. Prove the inequality

a?+1 bP+1 2+1
+ + > 3.
b+c c+a a+b

31 Let x, y, z be positive real numbers such that xy + yz 4+ zx = 5. Prove the in-
equality

3x2 +3y% + 22 > 10.

32 Let a, b, c be positive real numbers such that ab + bc + ca > a + b + c. Prove
the inequality

a+b+c>3.
33 Let a, b be real numbers such that 9a% + 8ab + 7b% < 6. Prove that
Ta +5b+ 12ab <9.
34 Letx,y,z € RT, such that xyz > xy + yz + zx. Prove the inequality
xyz>3(x+y+2).

35 Leta, b, c € RT with a® + b% + ¢% = 3. Prove the inequality

ab bc ca
—+ —+—>3.
c a b

36 Let a, b, c be positive real numbers such that a + b + ¢ = +/abc. Prove the
inequality

ab+bc+ca>9a+b+c).



20 Problems 187

37 Leta, b, c be positive real numbers such that abc > 1. Prove the inequality

n 1 b 1 n 1 >27
a c —.
a+1 b+1 c+1/) 7 8

38 Leta,b,c,d € Rt such that a? + b2 + ¢% + d* = 4. Prove the inequality

a+b+c+d=>ab+bc+cd+da.
39 Leta,b,ce(—3,3)suchthat 3 + 51 + ;L =L 4 L4 L
Prove the inequality

1 1 1
>1
3—|—a+3+b+3+c_

40 Leta,b,c € R* such that a® + b + ¢ = 3. Prove the inequality

1 1 1
+ + =
a+bc+abc b+ca+bca ¢+ ab+ cab

41 Leta, b, c € R such that @ + b + ¢ = 3. Prove the inequality

@b +a>+b%> B2 +bP 4+ a4+ P+ a4
ab+1 bc+1 ca+1

9
> 2.
-2

42 Let a, b, ¢, d be positive real numbers such that a> + b + ¢* + d> = 4. Prove
the inequality

a2 +b°+3 PP+ +3  A+d*+3  d*+a?+3
+ + + > 10.
a+b b+c c+d d+a
43 Let a, b, c be positive real numbers. Prove the inequality

1 1 1 9
+ + > .
abla+b) beb+c) calc+a) ~ 2@3+b3+3)

44 Leta,b,c € RT such that av/bc + b./ca + c+/ab > 1. Prove the inequality
a+b+c> V3.

45 Let a, b, ¢ be positive real numbers such that abc = 1. Prove the inequality
b+c cH+a a +b
Ja b
46 Let x, y, z be positive real numbers such that x + y + z = 4. Prove the inequality
1 1 1 1

- + <—.
2xy+xz4+yz  xy+2xz+yz xy+xz42yz T xyz

>Ja++b+/c+3.
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47 Leta, b, c € RT. Prove the inequality

48

49

50

51

52

53

54

55

56

abc>=@+b—-c)b+c—a)(c+a-—-D>).

Let a, b, ¢ be positive real numbers such that a 4+ b + ¢ = 3. Prove the inequality

12

abc+ ————>5
ab+ bc +ac

Let a, b, c be positive real numbers such that abc = 1. Prove that

) el

Let a, b, c be positive real numbers such that abc = 1. Prove the inequality

1 1 1 1 1 1

< .
1+a+b+1+b+c+1+c—|—a _2+a+2—|—b+2+c

Let a, b, ¢ > 0. Prove the inequality

100abc

b)? b+4c)?> ————
(@a+b)"+(a+b+4c) Z hie

Let a, b, ¢ > 0 such that abc = 1. Prove the inequality

14ab 1+4+bc 1+4ac

>3
Tta 1456 " 1ta

Let a, b, ¢ be real numbers such that ab + bc + ca = 1. Prove the inequality

1\? 1\? 1\?
b c a

Let a, b, c be positive real numbers such that abc > 1. Prove the inequality

14a 14+b 1+c¢
a+b+c> .
1+b 14c¢ 1+a

Leta, b € RT. Prove the inequality

3 3 1 1
2 - 2 - - -
(a +b+4><b +a+4>2<2a+2)<2b+2>.

Let a, b, c € RT such that abc = 1. Prove the inequality

a n b n c <1
a?+2 b24+2 2427
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57 Let x, y, z > 0 be real numbers such that x + y + z = xyz. Prove the inequality
(=D —DE—1) <6v/3-10.

58 Leta, b, c € (1,2) be real numbers. Prove the inequality

bva cvb Loave
dbJc—cya  dcya—ab  4ab—bye

59 Leta,b,c e Rt such that a + b + ¢ = 3. Prove the inequality

Vab +c) +/b(c+a) +/c(a+b) >3+ 2abc.

60 Leta, b, c be positive real numbers such that a + b + ¢ = 1. Prove the inequality

Na+bc+~b+ca+c+ab<?2.
61 Leta, b, c be positive real numbers such that a + b + ¢ + 1 = 4abc. Prove that

b+ c? +c2+a2 +az—i-bz

> 2(ab + bc + ca).
a b

62 Let a,b,c € (—1, 1) be real numbers such that ab + bc + ac = 1. Prove the
inequality

6v (1l —a2)(1—b)(1—c2) <1+ (@a+b+c)

63 Let a, b, ¢, d be positive real numbers such that a4+ b% + % +d?>=1. Prove
the inequality

VIi—a+VT—b+V1—c+V1—d>Va+b+Jc+d.

64 Let x, y, z be positive real numbers such that xyz = 1. Prove the inequality

1 1 1
+ +
x+D2+y2+1 0+ D2+22+1 @+ D2 +x2+1

1
<-.
-2

65 Leta, b, c € RT. Prove the inequality

a’ a’ a’
> 1.
a3+(b+c)3+ a3+(b+c)3+ a*+(b+c)P ~

66 Letx,y,zeRT. Prove the inequality

x+y +z)2(xy + vz +zx)2 < 3(x2 +xy+ yz)(y2 +yz+ zz)(z2 + zx +x2).
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67 Let a, b, c be real numbers such that a 4+ b 4+ ¢ = 3. Prove the inequality
2(612[?2 + b2 + czaz) +3< 3(a2 +b%+ 2.

68 Leta, b, c,d be positive real numbers. Prove the inequality

a—b+b—c+c—d+d—a>0
b+c c+d d+a a+b

69 Leta,b,c € R' such that @ + b + ¢ = 1. Prove the inequality

a n b n c >9
(b+c)?  (c+a)? (a+b)? 4

70 Leta, b, c € Rt such that abc = 1. Prove the inequality

a’c ba b
+ + > —.
b+c)c+a) (c+a)a+b) (@+b)(b+c) 4

(O8]

71 Let a, b, ¢ > 0 be real numbers such that abc = 1. Prove that
(@a+b)yb+c)c+a)=4a+b+c—1).

72 Let a, b, ¢ be positive real numbers such that abc = 1. Prove the inequality

3 6

1+ > .
a+b+c ab+bc+ca

73 Let x, y, z be positive real numbers such that x> + y? + z? = xyz. Prove the
following inequalities:

1° xyz > 27 2°xy+yz+zx =27
x+y+z>9 4°xy+yz+zx>2x+y+2)+9.
74 Let a, b, ¢ be real numbers such that a® + b3 + ¢3 — 3abc = 1. Prove the in-
equality
a? +b* +¢* > 1.

75 Leta, b, c,d € Rt such that

+1 b4 t g T d4 = 1. Prove that

+ 4 1+L

abced > 3.

76 Let a, b, c be non-negative real numbers. Prove the inequality

\/ab+bc+ca _flatbbto(cta
3 - 8 '
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77 Leta, b, c, d be positive real numbers such that a + b + ¢ + d = 1. Prove that

16(abc + bcd + cda + dab) < 1.

78 Leta,b,c,d, e be positive real numbers such thata +b + c+d + e = 5. Prove
the inequality

abc + bed + cde + dea + eab < 5.

79 Leta, b, c > 0 be real numbers. Prove the inequality

a b ¢ a+b b+c
> +

1.
b+c a b+c c+a+

80 Leta, b, ¢ > 0 be real numbers such that abc = 1. Prove the inequality

(15) () (+5)
L+ {1+ )(1+-)=2(1+a+b+o).
b c a

81 Leta, b, ¢ be positive real numbers such thata + b + ¢ > % + % + % Prove the
inequality
+b+c> + 2
a c>—+ —.
“a+b+c abc

82 Leta, b, c, d be positive real numbers such that abcd = 1. Prove the inequality

14+ab 14+bc 14+cd 1+da>
14+a 14+b 1+¢ 1+d —

83 Leta, b, c € RT. Prove the inequality

1 1 1 27
+ + > :
ba+b) cb+c) a(c+a) ~ 2(a+b+c)?

84 Leta, b, c be positive real numbers such that a + b + ¢ = 3. Prove the inequality

a? n b? n 2
b2 —2b+3 2—2¢c+3 a’>—-2a+3

3
> —.
-2
85 Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove the in-
equality

1 1 1 1
2 + 2 + 2 =
1+a*b+c) 14+b*(c+a) 1+c*(a+b) ™ abc

86 Leta, b, c be positive real numbers such that a + b+ ¢ = 1. Prove the inequality

a&71+b—c+b€/1+c—a+af/l+a—b§l.
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87 Leta, b, c € Rt such that a + b + ¢ = 1. Prove the inequality
1—2ab 1—-2bc 1-—2ca
+ + >7

c a b

88 Let a, b, ¢ be non negative real numbers such that a? + b% + ¢? = 1. Prove the
inequality
1—ab n 1—ab n 1—ab >1
7—3ac 7—3ac 7—3ac 3

89 Letx,y,z € RT such that x + y + z = 1. Prove the inequality

| =

Xy X vz
1 * 1 * 1 =

\/3‘1‘22 \/3+y2 \/§+x2

90 Leta, b, c be positive real numbers such that a + b + ¢ = 1. Prove the inequality

a—bc+b—ca+c—ab<3
a+bc b4+ca c+ab 2

91 Leta, b, c be positive real numbers such that abc = 1. Prove the inequality

\/a—i—b \/b+c \/c—}—a
+ + >3.
a+1 c+1 a—+1

92 Let x, y, z > 0 be real numbers such that xy 4+ yz + zx = 1. Prove the inequality

X z 3V3
5+ y2+ 7 = .
14+x I+y 1+z 4

93 Let a, b, ¢ be non-negative real numbers such that ab 4+ bc 4+ ca = 1. Prove the
inequality
1 1 1 33
+ + > .
l4a 14b 14c¢c~ J/34+1

94 Let a, b, c be non-negative real numbers such that ab + bc + ca = 1. Prove the
inequality
a? b? c? V3

+ + > :
l4+a 14b 14+c J/3+1

95 Leta, b, c € RY such that (a + b)(b + ¢)(c + a) = 8. Prove the inequality

atbtc zldd+b+c
3 - 3 '
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96 Find the maximum value of where x e R, x > 1.

x2
6_;,_2 3 -1’

97 Let a, b, c be positive real numbers. Prove the inequality

a+\/ab+«3/abc<3 a+b a+b+c
e — a. - _
3 - 2 3

98 Let a, b, c be positive real numbers such that abc(a + b 4 ¢) = 3. Prove the
inequality

(a+b)(b+c)c+a)=8.

99 Let a, b, c be positive real numbers. Prove the inequality

\/251 \/Zb \/ 2c
+ + <3.
b+c c+a a+b

100 Let a, b, c € R such that ab + bc + ca = 1. Prove the inequality

1 1 1
> —.
ala+b) +b(b+c) +c(c+a) -2

e

101 Let 0 <a < b <c¢ <1 be real numbers. Prove that

108
2 2 2
b—c)+b3c—b)+c2(l—c) < —.

102 Leta, b, c € R such that a + b + ¢ = 1. Prove the inequality

256
S=a*h+b* <—
ab+ c—l—ca_3125

103 Leta, b, ¢ > 0 be real numbers. Prove the inequality

a2+b2+c2 a+b+
b2 2 2_b a

104 Prove that for all positive real numbers a, b, c we have
a b c3 b
5] + + —za+b+c.
105 Prove that for all positive real numbers a, b, ¢ we have
(13 b3 3 2 b2 2
Zta
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106 Prove that for all positive real numbers a, b, c we have

3 b3 3
a—+—+c—2ab+bc+ca.
b c a

107 Prove that for all positive real numbers a, b, ¢ we have

5 b5 CS

S+ Szl
C a

b3
108 Leta, b, c € R such that a + b + ¢ = 3. Prove the inequality

a’ b 3
+ + >1
bQ2c+a) cRa+b) alb+c)

109 Let a, b, c € RT and a? + b* + ¢ = 3. Prove the inequality

a3 n b3 n 3 -1
b+2c c+2a a+2b~

110 Let a, b, c be positive real numbers such that a® + b% + ¢ = 3. Prove the
inequality
1 n 1 n 1 -1
al+2 b+2 3A+27

111 Leta, b, c € RT such that a + b + ¢ = 1. Prove the inequality

a3 N b3 N C3
a2+b2 b2+C2 C2+a2

1
> -
-2

112 Leta, b, c be positive real numbers such that a +b + ¢ = 3. Prove the inequality

1 1 1
> 1
1+2a2b+ 1+2b26+ 1+2c2a —

113 Let a, b, c, d be positive real numbers such that a + b + ¢ + d = 4. Prove the
inequality
a n b n c . d -9
14+b2¢c 14c2d 1+4+d%a  1+4ad%b —

114 Leta, b, c, d be positive real numbers. Prove the inequality

a’ n b3 n 3 n d3 >a+b~|—c+d
a?+b2  b24cr 24d? 0 d2+4a? ™ 2 '
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115 Leta, b, c be positive real numbers such that a + b+ ¢ = 3. Prove the inequality

a? b? c?

>1
a+ 2b? +b~|—2c2+c+2a2 -

116 Leta, b, c be positive real numbers such that a +b + ¢ = 3. Prove the inequality

a? b? c?

>1
a+2b3 +b+26‘3 +c+2a3 -

117 Let a, b, ¢ be positive real numbers such that a? + b% + ¢? = 3. Find the mini-
mum value of the expression

16

a+b+c+ ——.
a+b+c

118 Let a, b, ¢ > 0 be real numbers such that a® + b* + ¢ = 1. Find the minimal
value of the expression

1
A=a+b+c+—.
abc

119 Leta, b, c be positive real numbers such that a +b + ¢ = 6. Prove the inequality

9
3/ab+bc+\3/bc+ca+\3/ca+ab+,3/Z(a2+b2—|—c2)59.

120 Let a, b, c € RT such that a + 2b + 3¢ > 20. Prove the inequality

39 4
S=a+b+c+— +E+ >13.

121 Leta, b, c € R*. Prove the inequality

, 2¢? o1 1

122 Leta, b, c € R" such that ac > 12 and bc > 8. Prove the inequality

S—atbtet2( L4ty B 12
= TN Toe Tea) Tave - 12

123 Leta, b, ¢, d > 0 be real numbers. Determine the minimal value of the expres-

sion
a=(1+2V(1+ 2V (1+2)(1+H
3b 3¢ 3d 3q)
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124 Let a, b, ¢ > 0 be real numbers such that a? + b% + ¢ = 12. Determine the
maximal value of the expression

A=avb?+ 2 +bV2+a?+cva? + b2,
125 Leta, b, c > 0 such that a 4+ b + ¢ = 3. Prove the inequality
(@® —ab + b*) (b — be + ) (¢* — ca +a®) < 12.
126 Let a, b, c be positive real numbers. Prove the inequality
@ —a*+3)B° = +3)( —*+3) = (a+b+c).

127 Let x, y, z € Rt such that x 4+ y 4+ z = 1. Prove the inequality

Xy X vz 1
+ + =< .
Vi+z22 J1+y2 V1+x27 V10

128 Leta, b, c € R™. Prove the inequality

(a+b+c)® =27+ b* + ) (ab + bc + ca)®.

129 Leta, b, c € [1, 2] be real numbers. Prove the inequality

a’ + b + A < Sabc.

130 Let a, b, ¢ be positive real numbers such that ab + bc 4+ ca = 3. Prove the
inequality

(@’ —a*+3)(b° —b* +3)(c* —c+3)>27.
131 Leta, b, c € [1, 2] be real numbers. Prove the inequality
1 1 1
a+b+o|-+-+-) <10
a b ¢
132 Leta, b, c € RT such that a + b + ¢ = 1. Prove the inequality
10@® +5° +¢%) =9 +b° + ) > 1.

133 Letn € N and xq, x2, ..., x, € (0, ). Find the maximum value of the expres-
sion

Sinx1 COS X + Sinxp COS X3 + - - - + Sinx; CoS x1.

134 Leto; € [%, ST”], fori =1,2,...,n. Prove the inequality

1\2
<sinoq +sinop + - - -+ sina,, + Z) > (cosay +cosap + -+ -+ cosay).
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135 Let ay, ay, ..., ay; ay41 = ai, a,+2 = az be positive real numbers. Prove the
inequality

n
ai — a;
Z 1 i+2 > 0

o di+1 taita

136 Letn >2,n € Nand x1, x2, ..., x, be positive real numbers such that

1 1 1 1
x1+1998+x2+1998+"'+xn+1998_ 1998

Prove the inequality
Ax1xp - x, >1998(n — 1).

137 Letay, aa, ...,a, € RT. Prove the inequality
n n n
> ko= (5)+ k.
k=1 k=1

138 Let aj, az, ..., a, be positive real numbers such that a; +ax + --- +a, =n.
Prove that for every natural number & the following inequality holds

a]f—l—alz‘—i—-n—i—a,];za{‘_1+a’2‘_l+---+a§71.

139 Leta, b, c, d be positive real numbers. Prove the inequality

a > n b 3 . c 3 . d > - 1
a+b b+c c+d d+a) — 8
140 Let xq, x2, ..., x, be positive real numbers not greater then 1. Prove the in-
equality

1 i i
(T+x)2(I+x2)% - (L+x,)% 22"

141 Let x1, x2, ..., x, be non-negative real numbers such that x; +x2 4+ - -+ x, <
%. Prove the inequality

(1—x1>(1—x2>-~-<1—xn>z%.

142 Leta, b, c € RT such that abc = 1. Prove the inequality

1 1
<1
a3+b3+1+b3+c3+1+c3+a3+1 -
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143 Let 0 <a, b, ¢ < 1. Prove the inequality

c . b n a
T+a3+b3 T4+3+a3 T+b3+3

1
<-.
-3

144 Leta, b, c € RT such that abc = 1. Prove the inequality

ab n bc n ca <1
aAd+ab+b5 b +bc+cd S+ca+ad T

145 Leta, b,c € R such that a + b + ¢ = 3. Prove the inequality

a’ b3 3
+ + >1.
al+ab+b2 b24+bc+c? c2+4ca+a?

146 Let a, b, ¢ be positive real numbers such that a? + b% + ¢2 = 3abc. Prove the
inequality

a n b n c - 9
b2¢2 ' a2 a?b? T a+b+c

147 Leta, b, c, x, y, z be positive real number, and let a + b = 3. Prove the inequal-
ity

X 4 y Z 1.
ay+bz az+bx ax+by

148 Let x, y, z > 0 be real numbers. Prove the inequality

X y Z 1
+ + E
x+2y+3z y+2z+3x  z+2x+3y " 2

149 Leta,b,c,d € R*. Prove the inequality

c n d n a n b -1
a+3b b+3¢ c+3d d+3a~

150 Leta, b, c,d, e be positive real numbers. Prove the inequality

a+b+c+d+e
b+c c¢c+d d+e e+a a—+b

5
> =,
-2

151 Prove that for all positive real numbers a, b, ¢ the following inequality holds

(13 b3 C3 a2+b2+cz
+ + =
al+ab+b%2 b 4+bc+c? c2+4ca+a? a+b+c
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152 Let a, b, ¢ be positive real numbers such that ab + bc 4+ ca = 1. Prove the
inequality
1 n 1 n 1
402 —bc+1  4b2—ca+1 42 —ab+1

3
>
-2

153 Leta, b, ¢ be positive real numbers such that

1 |
+ + >1
a?+b2+1 b2+c2+1 2+4a?2+1~

Prove the inequality

ab+ bc +ca < 3.
154 Let a, b, ¢ be positive real numbers such that ab + bc + ca = 1/3. Prove the
inequality

a " b + c - 1
a?—bc+1 b2—ca+1 c2—ab+1 " a+b+c

155 Let a, b, ¢ be positive real numbers. Prove the inequality

a3 b3 3

> 1
a3+b3+abc+b3+c3+abc+c3+a3+abc -

156 Let a, b, c be positive real numbers such that a® + b? + ¢ = 3. Prove the
inequality

a b c
a2+2b~|—3+b2+26+3+62+2a+3

1
<.
-2

157 Leta, b, c,d > 1 be real numbers. Prove the inequality

\/a—l—i-«/b—1+x/c—1~|—«/d—1§\/(ab+1)(cd+1).
158 Letay,an,...,a, € RY such that aja; - - - a, = 1. Prove the inequality
Var+Ja +-+ Jag <ai+ay+ - +ap.

159 Leta, b, c be positive real numbers such that a +b+c = 1. Prove the inequality

1
a\/l;+b«/E+C«/E§ﬁ.

160 Leta, b, c € (0, 1) be real numbers. Prove the inequality

Vabe+ /(1 —a) (1 —b)(1 —c) < 1.
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161 Leta, b, c be positive real numbers such that a + b+ ¢ = 3. Prove the inequality

ad+2 42 c3+2>3
b+2 c+?2 a+2

162 Let a, b, ¢ be positive real numbers such that a? + b? + ¢2 = 3. Prove the
inequality

163 Let a, b, ¢ be positive real numbers such that abc = 8. Prove the inequality

a—2+b—2+c—2<0
a+1 b+1 c+1~ 7

164 Leta, b, c € R such that a® 4+ b? + ¢? = 1. Prove the inequality
a+b+c—2abc§x/§.
165 Let x, y, z € R such that x2 4+ y? 4 z2 = 2. Prove the inequality
x+y+z=<2+xyz.
166 Let x, y, z > —1 be real numbers. Prove the inequality

1+ x2 1+y?2 1+
T+y+22  14+z4+x2  14+x+y2~

167 Leta, b, c, d be positive real numbers such that abcd = 1. Prove the inequality
(I +a)A+bH)(1 +H (1 +d*) > (a+b+c+d)

168 Leta, b, c,d € RT such that é + % + % + 5 = 4. Prove the inequality

34p3 b3 3 3443 d3 3
SRS ETS, KRN i o,

169 Let x, y, z € [—1, 1] be real numbers such that x 4+ y 4+ z + xyz = 0. Prove the
inequality

Vx+T4+y+1+/7+1<3.

170 Let a, b, ¢ > 0 be positive real numbers such that a + b + ¢ = abc. Prove the
inequality

ab+bctca>34+vVal+1+vVh2+14+vVc2+1.
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171 Leta, b, c, x, v, z be positive real numbers such that ax + by +cz = xyz. Prove
the inequality

Va+b+vb+c+Jeta<x+y+z.

172 Let a, b, c be non-negative real numbers such that a?+ b + ¢2 = 1. Prove the
inequality

a b c 3
> bvb 2,
b2+1+c2+1+a2+1—4(“‘/5+ Vb + /o)

173 Leta, b, ¢ be positive real numbers. Prove the inequality

a n b n c - 9
b+0)? (c+a)? (a+b?  4a+b+c)

174 Let x > y > z > 0 be real numbers. Prove the inequality

2 2 2
X 7 z°x
R T
Z X y
175 Let a, b, c be positive real numbers such that abc = 1. Prove the inequality

1 1 1
<
2+a +2+b+2+c -

176 Let a, b, c be positive real numbers such that abc > 1. Prove the inequality

1 1 1
<1.
a* + b3 +¢? +b4+c3+a2 +c4+a3 +b2 =

177 Leta, b, c, d be positive real numbers such that abcd = 1. Prove the inequality

1 1 1 1
>2
a0+h) " bi+o clt+d Tddta

178 Let a, b, c be non-negative real numbers such that a + b + ¢ = 1. Prove the
inequality
ab " bc + ca _ 1
c+1 a+1 b+1—4

179 Let a, b, c be positive real numbers such that abc = 1. Prove the inequality

1 1 1 3
(a+1%(b+c) o7 1)2(c +a) " et D2@+b) -8

180 Let x, y, z be positive real numbers. Prove the inequality

xy(x+y—2)+yz(y+z—x)+zx(z+x—y) > \/3(x3y3 +y323 + 23x3).
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181 Let a, b, ¢ be positive real numbers. Prove the inequality

ab(@ +b% b+ cal@+ad)
a2+b2 b2+(,‘2 C2+Cl2

> /3abe(ad + b3 + 3).
182 Let a, b, ¢ be positive real numbers. Prove the inequality.

b b
ab T b2 L ST S abea b+ o).

b+c cc—i—a aa—i—b

183 Leta, b, c and x, y, z be positive real numbers. Prove the inequality

a(y +2) +b(z +x) +c(x +y) > 2/ (xy + yz + zx)(ab + bc + ca).
184 Let a, b, ¢ be positive real numbers such that abc > 1. Prove the inequality
A+ +3 >ab+ bc+ca.

185 Let a, b, c > 0 be real numbers such that a/3 + b%/3 + ¢%/3 = 3. Prove the
inequality

a? + b2+ ? = a*P L b3 4 A

186 Leta, b, c be positive real numbers such that a + b + ¢ = 3. Prove the inequality

1 1 1
+ + <1
c+a+b a?+b+c b 4+c+a”

187 Leta, b, c € RT. Prove the inequality

24> 2b? 2¢?
+ + >a+b+c.
b+c c¢c+a a+b

188 Let a, b, c be positive real numbers such that abc = 2. Prove the inequality

A+ +3>avb+c+bJc+a+ca+b.

189 Letay,ay, ..., a, be positive real numbers. Prove the inequality

1 1

- =

S| =

1 1 1
Tar T ey T T3,
190 Leta,b,c,d € R" such that ab + bc + cd + da = 1. Prove the inequality

a’ n b3 n 3 n d3 >1
b+c+d a+c+d b+d+a b4+c+a 3
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191 Let o, x, y, z be positive real numbers such that xyz = 1 and « > 1. Prove the
inequality

xO{ yOl ZO[

+ +
y+z z+x x+Yy

3
> -
2

192 Let x1, x2, ..., X, be positive real numbers such that

1 1 1
+ 4+ 4
14+x1 14x 1+ x,

Prove the inequality

‘/x1+4/x2+-~-+«/x,,> 1 n 1 - 1
n—1 Xl X2 Jxn
193 Let x1, x2, ..., x, > 0 be real numbers. Prove the inequality
X1 X2 X1 +xp+-+xn

X7 > (XX Xy)
194 Let a, b, ¢ > 0 be real numbers such that a + b + ¢ = 1. Prove the inequality

a+b b 4+c P+a
+ + >
b+c c+a a+b

195 Let a, b, c > 1 be positive real numbers such that a%] + bz%l + c21—1 =1.
Prove the inequality
1 1 1

<1
a+l+b+1+c+1_

196 Let a, b, c, d be positive real numbers such that a’ + b% + ¢ + d? = 4. Prove
the inequality

197Leta,b,c,deRsuchthatﬁ—i—ﬁ—}—ﬁ—i—ﬁ—i—ﬁ:l.ﬁoveme
inequality

a n b n c n d n e <1

44a> 4+b* 4+c? 4+d> 442 T

198 Let a, b, ¢ be real numbers different from 1, such that a + b + ¢ = 1. Prove the
inequality

l+a®2 1402 1+c2> 15

1—a? 1-b2 1—-c2— 4°
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199 Let x, y, z > 0, such that xyz = 1. Prove the inequality

3 3 3
X
Y < >

3
I+9(0+0 (10040 T Ux00+y 4

200 Leta, b, c,d > 0 be real numbers. Prove the inequality

a b c d
b+2c+3d+c+2d+3a+d+2a+3b+a+2b+3c

2
> —.
-3
201 Leta, b, c be positive real numbers. Prove the inequality

a+bc b +ca AE+ab
+ +
b+c c+a a+b

>a-+b+ec.

202 Leta, b > 0,n € N. Prove the inequality

n b n
<1+ ﬁ) + (1+—) > on+,
b a

203 Leta, b, ¢ > 0 be real numbers such that a + b 4 ¢ = 1. Prove the inequality

1\?2 1\?2 1\> 100
a+—| +(b+=-) +(c+-) =—.
a b c 3

204 Let x, y, z > 0 be real numbers. Prove the inequality

x z
SR A—
2x+y+z x+2y+z x+y+2z

3
<=
— 4

205 Let a,b,c,d > 0 be real numbers such that a < 1l,a +b <5,a+b+c <
14,a + b + ¢ + d < 30. Prove that

Va+ b+ e+ +d < 10.

206 Let a, b, c,d be positive real numbers such that a + b + ¢ 4+ d = 4. Prove the
inequality

a n b n c n d - 8
b2+b 24+c d’°+d a’+a” (a+o)b+d)’

207 Letxy,x2,...,x, >0andn € N,n > 1, such that x; +x,+---+x, = 1. Prove
the inequality

N, m L w  JEREE 4SS
JT—=x1  J1—x ST —x, — Jn—1 ’
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208 Letn € N, n > 2. Determine the minimal value of

5 5 5
| X *n

+ +---+ )
X2+x3+--+x, Xp+x3+---+x, X1+x2+-+ X1

where x1, x2,...,x, € Rt suchthatxlz+x§+-~-+x,%=1.

209 Let P, L, R denote the area, perimeter and circumradius of AABC, respec-

tively. Determine the maximum value of the expression %.

210 Leta, b, c € R™ such that a + b + ¢ = abc. Prove the inequality

1 1 1
+ +
Vi+a?2 V1402 JV1i+e2

3
<z,
-2

211 Leta, b, c € R such that abc 4+ a + ¢ = b. Prove the inequality

2 2 3 10

_ + < .
a’+1 b2+1 241 3

212 Let x, y,z > 1 be real numbers such that % + % + % = 2. Prove the inequality

Vi—T+yy—1+vVz-1<x+y+z
213 Leta, b, c be positive real numbers such that a + b+ ¢ = 1. Prove the inequality

\/1 1\/1 1+\/1 1\/1 1-1—\/l 1\/1 1>6
a b b ¢ ¢ a -

214 Let a, b, c be positive real numbers such that a + b 4+ ¢ + 1 = 4abc. Prove the
inequalities

1 1 1 1 1 1
-4+ -4+-=>3> + + .
a c vJab  A/bc  A/ca

b
215 Leta, b, c be non-negative real numbers such that ab + bc + ca = 1. Prove the
inequality

a b c 34/3
+ + < ‘/—.
I+a2 1402 1+¢2 4

216 Leta, b, c be positive real numbers such that a + b+ ¢ = 1. Prove the inequality

\/ab +\/ bc n ca <3
c+ab a+bc b+ca 2
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217 Leta, b, ¢ > 0 be real numbers such that (a + b)(b + ¢)(c + a) = 1. Prove the
inequality

ab+bc+ca <

W

218 Let a, b, ¢ > 0 be real numbers such that aZ + b% + ¢ + abc = 4. Prove the
inequality

O0<ab+bc+ca—abc<2.
219 Leta, b, c be positive real numbers. Prove the inequality
a? +b* +c* +2abc+3 > (1+a)(1 +b)(1 +¢).

220 Leta, b, c be real numbers. Prove the inequality

Ja2+(1—b)2+\/b2+(1—c)2+¢c2+(1—a)2z¥.

221 Let aj,as,...,a, € RT such that Z?zla? =3 and Z?:laf = 5. Prove the
inequality

" 3
a; > —.

222 Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove the
inequality

A +aH(1+b)(A+c?) > 8.

223 Let a, b, c be positive real numbers such that ab 4+ bc + ca = 1. Prove the
inequality

(a* + ab + b*) (B> + be + ) (? + ca+a®) > 1.
224 Leta, b, c be positive real numbers such that abc = 1. Prove the inequality

b
L TR —
VI+br+32 N1+ +a? VT+ad+ D2

225 Let ay, az, ..., a, be positive real numbers such that a; +a> + --- 4+ a, = 1.
Prove the inequality

a a dn n

+ +---+ = .
«/1—611 \/l_aZ J—a, ~Vn—1
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226 Leta, b, ¢ be positive real numbers. Prove the inequality

a n b n c -
V202 4+2¢2 — a2 V22 +2a2 b2 V242 +202 -2 T

227 Let a, b, c be positive real numbers such that ab + bc + ca > 3. Prove the
inequality

a b c 3
+ + > —.
Va+b Jbt+c Je+ta T 2

228 Leta, b, c > 1 be real numbers such that a + b+ c = 2abc. Prove the inequality
J@a+b+c)2>Jab—1+bc— 1+ ca—1.

229 Let1,, tp, t. be the lengths of the medians, and a, b, ¢ be the lengths of the sides
of a given triangle. Prove the inequality

5
tatp +tpte + toty < Z(ab + bc + ca).

230 Leta,b,c and t,, 1, t. be the lengths of the sides and lengths of the medians
of an arbitrary triangle, respectively. Prove the inequality

3
at, + bty + ct. < %(a2 +b%+ cz).

231 Leta, b, c be the lengths of the sides of a triangle. Prove the inequality

Vatb—c+Ve+ta—b+~Vb+c—a<Ja+b+Je.

232 Let P be the area of the triangle with side lengths @, b and ¢, and T be the area
of the triangle with side lengths @ + b, b 4 c and ¢ 4+ a. Prove that T > 4P.

233 Let a, b, c be the lengths of the sides of a triangle, such that a + b + ¢ = 3.

Prove the inequality
4ab 13
a’ b+ + =

234 Let a, b, c be the lengths of the sides of a triangle. Prove that

slad + b3 + 3+ 3abe
> max{a, b, c}.

2

235 Leta, b, c be the lengths of the sides of a triangle. Prove the inequality

3
abc < az(s —a) +b2(s —a) +cz(s —a) < Eabc.
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236 Let a, b, c be the lengths of the sides of a triangle. Prove that

1 N 1 N 1 >3(¢E+JE+JE)
Vat+b—e Nbie—a JevJa-ybT  atbte

237 Leta, b, c be the lengths of the sides of a triangle with area P. Prove that

a’+b* +c* > 4/3P.

238 (Hadwinger—Finsler) Let a, b, c be the lengths of the sides of a triangle. Prove
the inequality

A4+ +>4V3P+@—b)>+ B -0+ (c—a)

239 Leta, b, c be the lengths of the sides of a triangle. Prove that

1 1 1 1
< .
8abc+ (a+b—c)3 +8abc+(b+c—a)3 +8abc+(c+a—b)3 ~ 3abc

240 In the triangle ABC, Rz is the arithmetic mean of ﬁz and ﬁz. Prove that

cot? B > cota - coty.

241 Let di,d, and d; be the distances from an arbitrary point to the sides
BC, CA, AB, respectively, of the triangle ABC. Prove the inequality

9 P\?
Z(d%+d§+d§)z(;) :

242 Let a, b, c be the side lengths, and A, hjp, h be the lengths of the altitudes
(respectively) of a given triangle. Prove the inequality

ha +hp +he < \/§

a+b+c — 2°

243 Let O be an arbitrary point in the interior of AABC. Let x, y and z be the dis-
tances from O to the sides BC, CA, AB, respectively, and let R be the circumradius
of the triangle AABC. Prove the inequality

ﬁ+ﬁ+ﬁs3\/§.

244 Let D, E and F be the feet of the altitudes of the triangle ABC dropped from
the vertices A, B and C, respectively. Prove the inequality

() () (%) =3
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245 Let a, b, c be the side-lengths, h,, hp, h. be the lengths of the respective alti-
tudes, and s be the semi-perimeter of a given triangle. Prove the inequality

he hp  he s
- — —_ <
a b+c_2r

246 Let a, b, c be the side lengths, h,, hp, h, be the altitudes, respectively, of a
triangle. Prove the inequality
a? n b? n 2 -9
h2+h2  h2Z4h2 " h24+h2

247 Leta, b, c be the side lengths, h,, hp, h. be the altitudes, respectively, and r be
the inradius of a triangle. Prove the inequality

1 n 1 n 1 >3
hg—2r  hy—2r he—=2r " r’

248 Leta,b,c;ly,lg, 1, be the lengths of the sides and the bisectors of respective
angles. Let s be the semi-perimeter and r denote the inradius of a given triangle.
Prove the inequality

la l B ly < N

a b c T 2r

249 Leta,b,c;ly,1g,1, be the lengths of the sides and of the bisectors of respec-
tive angles. Let R and r be the circumradius and inradius, respectively, of a given
triangle. Prove the inequality

18r2V/3 < aly + blg + cl, <9R>.
250 Let a, b, c be the lengths of the sides of a triangle, with circumradius r = 1/2.
Prove the inequality
4 pt 4

c
> 94/3.
b+c—a+a+c—b+a+b—c_ V3

a

251 Leta, b, c be the side-lengths of a triangle. Prove the inequality

a n b n c -1
3a—b+c 3b—c+a 3c—a+b™

252 Let hy, hp and k. be the lengths of the altitudes, and R and r be the circumra-
dius and inradius, respectively, of a given triangle. Prove the inequality

hg+hp+he <2R+5r.
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253 Leta, b, c be the side-lengths, and «, 8 and y be the angles of a given triangle,
respectively. Prove the inequality

1 1 1 1 1 1 a b ¢
al=-+—)+bl—+—)+c|l—F+=)=2(—+=+—).
B v Yy « a B «a By
254 Let a, b, c be the lengths of the sides of a given triangle, and «, 8, y be the
respective angles (in radians). Prove the inequalities

P l+g+o>2

y —m
o b+c a ct+a—b a+b—c 6s
20 bbed gy chab y adboc > &
o btc—a cta—b atb—c 9
3 aa + bB + cy z T

, where s = Lé’"’c

255 Let X be an arbitrary interior point of a given regular n-gon with side-length a.
Let iy, ha, ..., h, be the distances from X to the sides of the n-gon. Prove that

256 Prove that among the lengths of the sides of an arbitrary n-gon (n > 3), there
always exist two of them (let’s denote them by b and c) such that 1 < % <2.

257 Let ay, az, a3, as be the lengths of the sides, and s be the semi-perimeter of
arbitrary quadrilateral. Prove that

1

(s —ai)(s _a/)

258 Letn € N, and «, B, y be the angles of a given triangle. Prove the inequality

B nY

" — ' — t 32.
co 2+co 2—i—co

259 Leta, B, y be the angles of an arbitrary acute triangle. Prove that
2(sin + sin 8 + siny) > 3(cosa + cos S + cos ).
260 Let «, B, y be the angles of a triangle. Prove the inequality
sina 4 sin  + siny > sin2« + sin28 + sin2y.
261 Leta, B, y be the angles of a triangle. Prove the inequality

cosa + \/E(cosﬁ +cosy) <2.
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262 Let «, B, y be the angles of a triangle and let ¢t be a real number. Prove the
inequality
2
cosa +t(cosB+cosy) <1+ >
263 Let 0 <a, B,y <90° such that sinc + sin 8 + siny = 1. Prove the inequality

tan” o + tan’ B+ tan’ y >

oo W

264 Leta, b, c be positive real numbers such that a + b + ¢ = 3. Prove the inequality
A+a+a>)A+b+b>A +c+c?) =9ab + be + ca).
265 Leta, b, c > 0 such that a + b + ¢ = 1. Prove the inequality
6(a’ +b° + )+ 12> 5(a* +b* + ).
266 Let x, v,z € Rt such that x + y + z = 1. Prove the inequality
1=+ 1=+ 1= <1+ + (1 +2).

267 Let x, y, z be non-negative real numbers such that x> + y* 4+ z> = 1. Prove the
inequality

8
1— 1— 1— > —.
(I =xy)(I—=yz)(I —zx) > >
268 Leta, b, c € RT such that alﬁ + bl? + ﬁ = 2. Prove the inequalities:
1
8h2+1
4ab+1 + 4bc+1 + 4ca+1

o 1 1
>

1 8aZ+1 + 8cZ+1 —
2° >

+

269 Leta, b, c > 0be real numbers such that ab+ bc+ca = 1. Prove the inequality

1 1 1 1
— >
a+b+b+c+c+a a+b+c ™

270 Leta, b, c > 0 be real numbers. Prove the inequality

ab+4bc+ca bc+4ca+ab  ca+4ab+ be -6
a2+ bc b? +ca c2+ab

271 Leta, b, c be positive real numbers such that a + b + ¢ + 1 = 4abc. Prove the
inequality

1 1 1 3
< .
a4+b+c+b4+c+a +c4+a+b “a+b+c
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272 Let x, y, z > 0 be real numbers such that x + y 4+ z = 1. Prove the inequality

1
GNP+ DE ) < o

273 Letx,y,z € RT such that x + y + z = 1. Prove the inequalities:

1

X y z 9
< —.
“l-yz l—-zx 1-—xy 8
274 Letx,y,z € RT, such that xyz = 1. Prove the inequality

1 1 1 2
1
T+ T+ T+ T avna+na+0 -

275 Leta, b, c > 0 such that a + b + ¢ = 1. Prove the inequalities:

1° ab+ bc +ca <a’ + b3 + 3 + 6abc
2° @3+ b3+ 3+ 6abe <a?+b*+ 2
3° a2+ b2+ 2 <2+ b3+ A3) + 3abe.

276 Let x, y, z > 0 be real numbers such that xy + yz + zx 4+ xyz = 4. Prove the
inequality

3(x +y2 + 2% +xyz > 10.
277 Leta,b,c € RT. Prove the inequality
4 4 4 1 5
X+ +y @+x)+x+y) < E(x+y+z) .
278 Leta,b,c € RT such that a + b + ¢ = 1. Prove the inequality
1 1 1
—+ —+ —+4+48(ab + bc + ca) = 25.
a b ¢

279 Let a, b, ¢ be non-negative real numbers such that a + b + ¢ = 2. Prove the
inequality

at+ b+t tabe=ad + b7+
280 Let a, b, c be non-negative real numbers. Prove the inequality

2@’ +b*+ ) +abc+8>5a+b+o).
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281 Let a, b, c be non-negative real numbers. Prove the inequality
a*+ b+ +4(a+b+c)+9abe > 8(ab + be + ca).

282 Let a, b, c be non-negative real numbers. Prove the inequality

a3 b3 3
> b .
bz—bc+cz+c2—ca+a2+a2—ab—|—b2_a+ te

283 Let a, b, ¢ be non-negative real numbers such that a + b + ¢ = 2. Prove the
inequality

at+ b+ +

15abc
> 2.
T2

284 Let a, b, c be positive real numbers such that abc = 1. Prove the inequality

a’+be . b2 + ca n 2 +ab > ab+be +
a c+ca.
a?(b+c) b c+a) cZa+b) ~

285 Let a, b, ¢ be positive real numbers such that a® + b? + ¢ = 3. Prove the
inequality

ad+abc b+abc A +abe
b+c)?  (c+a)? (a+b)?

3
> =,
-2

286 Let a, b, c be positive real numbers such that a* + b* + ¢* = 3. Prove the
inequality

1 1 1
<1.
4—ab+4—bc+4—ca -

287 Let a, b, c be positive real numbers such that ab 4+ bc + ca = 3. Prove the
inequality

(@ —a+35)® —b>+5)(c" - +5) > 125.

288 Let x, y, z be positive real numbers. Prove the inequality

1 1 1 9
2 3T 3 T3 7 2 2"
x> 4+xy+y ye+yz+z Z?+zx+x x+y+2)

289 Let x, y, z be positive real numbers such that xyz = x + y + z + 2. Prove the
inequalities

1° xy+yz+zx>2(x+y+72)
2° x4 T+ s 20
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290 Let x, y, z be positive real numbers. Prove the inequality
803 +y + ) 2+ 0P+ v+  + @+,

291 Let a, b, c be non-negative real numbers. Prove the inequality
3 3 3 1 3
a’+b’+c’ +abc> 7(a+b+c) .
292 Leta, b, c be positive real numbers such that a + b+ c = 1. Prove the inequality

4
a2+b2+cz+3abcz 9"

293 Letaj,a, ..., a, be positive real numbers. Prove the inequality
at a3 a
(I+ap+a)---A+ay) <{14+—){1+—=])---|14+—7).
an as ai

294 Leta,b, c,d be positive real numbers such that abcd = 1. Prove the inequality

1 1 1 1
> 1.
(1+a)? + (14 b)? + (140)?2 + (1+d)?~

295 Let a,b,c,d > 0 be real numbers such that a + b + ¢ + d = 4. Prove the
inequality

abc + bed + cda + dab + (abe)? + (bed)? + (cda)* + (dab)? < 8.

296 Leta,b,c,d >0 suchthata 4+ b + ¢ 4+ d = 1. Prove the inequality

148 1
4 4 4 4
b d —abcd > —.
@b e tdt abed Z o0
297 Let a, b, c be positive real numbers such that a? + b* + ¢ = 3. Prove the
inequality
a?b? + b*c? + 2a? <a+b+ec.
298 Let a,b,c,d > 0 be real numbers such that a + b + ¢ + d = 4. Prove the
inequality

(1+aHA+b) A+ A1 +d*) > A +a)1+b)A +c)(1 +d).

299 Leta, b, c be positive real numbers such that abc = 1. Prove the inequality

1+1+1+ 6 >
a b ¢ a+b+c™
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300 Leta, b, c be positive real numbers such that a + b + ¢ = 3. Prove the inequality
2{-+—-4+—-|=4@ +b’ +c’)+21.
a b ¢

301 Let a, b, c,d be non-negative real numbers such that a + b+ c +d + e =5.
Prove the inequality

4(a® 4+ b> + * +d? + &%) + 5abed > 25.

302 Leta, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove the inequality

1 1 1 3
+ + <-.
24a>+b> 24D+ 2+ +a’> T 4

303 Let a, b, c be positive real numbers such that a® + b? + ¢ = 3. Prove the
inequality

ab+ bc +ca <abc+ 2.
304 Let a, b, c be positive real numbers. Prove the inequality

b+c+;_b+c+c+a+a+b'

a b c>a+b b+c a+c

305 Let a, b, c be positive real numbers. Prove the inequality

a2+b2+c2>a+b+c
2+c?2 24a?2  a?4+02 " b+c cH+a a+bdb

306 Let a, b, c be positive real numbers such that a > b > c. Prove the inequality
2 2 2
a“b(a—b)+b°c(b—c)+calc—a)=>0.
307 Let a, b, c be the lengths of the sides of a triangle. Prove the inequality

b+o?  (ct+a) (@+b)?

6.
a?+bc b +ca E+ab ~

308 Let a, b, ¢ be positive real numbers. Prove the inequality

a+b b+c c+a ab + bc + ca
+ + + =
b+c c+a a+b (a+b+c)?
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309 Leta, b, c be real numbers. Prove the inequality
3(a2 —ab+ bz)(b2 —bc+ cz)(c2 —ca+ az) > A0+ 33+ 3dd.

310 Leta,b,c,d € RT such that a + b + ¢ + d + abcd = 5. Prove the inequality



Chapter 21
Solutions

1 Let n be a positive integer. Prove that

1 1 l
I+ = +32+ + <2.

Solution For each k > 2 we have

1 1 1 1
—_—< = .
R kk—1) k—1 k

So
1+1+l++1 1+11+11++l
_ < __ Z__
22 32 2 2 3 n—1
1
=2——<2.
n

2 Letanzl+%+%—i—u-—i—%.Provethatforanynerehave

! ! + ! + -t ! 2
—_— — —_— .. —_— < .
a% 2a% 3a§ na?

Solution Note that for any k > 2 we have

1 1 ap —di—1 . 1 1

= > .
a—1 ax  agax kagar-1  ka}

Adding these inequalities for k =2, 3, ..., n we get

1 1 1 1 1 1
TSttt << —,
2a5  3a; nay; ar ap, ai
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218 21 Solutions

and since a; = 1, we obtain

1 1 n 1 T 1 2 )
aj = 2a5  3a3 na; a m

3 Let x, y, z be real numbers. Prove the inequality
x4+y4+z4 >4xyz —1.
Solution We have
x4yt 42t —dayz 41
= ()c4 —2x% + D+ (y4 — 2y2z2 + z4) + (2y2z2 —4xyz + 2x2)
=@ =12+ 0" =+ 20z — 0> =0,
so it follows that
x4+y4+z4 >4xyz —1.

When does equality occur? |

4 Prove that for any real number x, the following inequality holds

(2002 _ 1999 | (1996 _ (1995 4§ .

Solution Denote
x2002 _ x1999 +x1996 _ x1995 +1>0. (1)

‘We will consider five cases:

1° If x < 0, then all summands on the left side of the inequality (1) are positive, so
the inequality is true.

2° If x =0, inequality (1) is equivalent to 1 > 0, which is obviously true.

3° If0 < x < 1, then (1) is

x2002 +x1996(1 _x3) + (1 _x1995) > 0.
Since
1-x*=(1-x)0+x4+x?>0 and
1-x=1-x)A+x+x>+x°+xH >0,

we deduce that the required inequality is true.
4° If x =1, then (1) is equivalent to 1 > 0, which is clearly true.
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5° If x > 1, rewrite (1) in following way
B D+ —-D+1>0.

Since x > 1 we have x3 > 1.
So x93 — 1) 4+ x99 (x — 1) + 1 > 0, and we are done. |

S Let x, y be real numbers. Prove the inequality

3(x +y+ 1?4+ 1> 3xy.

Solution Observe that for any real numbers a and b we have

b\*  3p?
a*+ab+b* = <a+—) +— >0,
2 4
with equality if and only if a = b =0.
Let x, y be real numbers. Then according to the above inequality we have

+2 2+ P2 (+2)+ (v 2>0 i
X+ = X+ = — — ,  l.e.
3 3)UT3) U T3) =

3x% +3y% +3xy 4+ 6x + 6y +4>0,

which is equivalent to
3(x+y+1)2+123xy.
Equalityoccursiffx+%=y+%=0,i.e.x=y=—%. |

6 Let a, b, c be positive real numbers such that a + b 4 ¢ > abc. Prove that at least
two of the following inequalities
2 3 6 2 3 6 2 3 6

—+-+->6, —-+-+-=>6, -+—-+->=6
a b ¢ b ¢ a

are true.

Solution Set % =x, % =y, % =z.

Then x, y, z > 0 and the initial condition becomes xy 4+ yz 4+ zx > 1.

We need to prove that at least two of the following inequalities 2x + 3y + 6z >
6,2y +3z46x >6,2z+3x 4+ 6y > 6, hold.

Assume the contrary, i.e. we may assume that 2x + 3y 4 6z < 6 and 2z 4 3x +
6y < 6.

Adding these inequalities we get 5x + 9y + 8z < 12.

1—yz
But we havesxsz TR
—5yz .
Thus, 12 > Stz +9y + 8z, 1.e.

12(042)>5+9y? +82+12yz & (z—1)2+@By+2:-2?%<0,

which is impossible, and the conclusion follows. [ |
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7 Leta,b,c,x,y,z> 0. Prove the inequality

ax + by . cz <(a+b+c)(x+y+z)
at+x b+y c+z at+bt+ct+x+y+z’

Solution 'We’ll use the following lemma.
Lemma 21.1 For every p,q, o, f > 0 we have

rq__o’p+pq
p+q = (@+p)?

Proof The given inequality is equivalent to (¢p — B¢)* > 0. 0
Now leta =x +y+2z,8=a+ b+ c, and applying Lemma 21.1, we obtain

ax_ _ (x+y+z)2a—|—(a+b+c)2x
a+x~ (x+y+zt+a+b+c)?
mz<(x+y+@HH%a+b+o%
b+y~ (x+y+zt+a+b+o)?

)

and
cz__ (x+y+22c+@+b+0)’z
c+z7 (Hy+ztatbto)?
Adding these inequalities we get the required result. |

8 Leta, b, c € RT. Prove the inequality

2a 2b 2c a b c

+ + <2 .
a?+bc b 4+ac c2+4ab bc+ac+ab

Solution Notice that azszc < %(% + %), which is equivalent to
b(a — c)2 +c(a — b)2 > 0.
Also % + % < %(i—‘c‘ + % + —5), which is equivalent to

(@—b)*+(a—c)*>0.

Hence

2a <1 2a+b+c 0
a?+bc ~ 4\bc ac ab)
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Analogously, we obtain

2b <1 2b+ c n a 2)
b24+ac 4 ab  bc)’

2c <1 2c i a n b 3)

24ab~4\ab ' bc ' ac)

Adding (1), (2) and (3) we obtain the required inequality.
Equality occurs if and only if a = b =c. |

9 Leta,b,c,x,y,z € R suchthata +x =b+y = ¢ +z = 1. Prove the inequality

1 1 1
(abc—l—xyz)( +b—+ ) > 3.

Solution We have
abc+xyz=abc+ (1 —a)(1 —-b)1—-c)=0-=b)(1 —c¢)+ac+ab—a.
So
abc+xyz l—c c

= -1,
a(l -b) a +1—b

abc+xyz and abc+xyz
b(l—c) c(l—a) *

and analogously we obtain

Hence
1 1 1
(abc+xyz) + —
bz cx
_a n b n c +1—c+1—b+1—a 31>6—3-3
" 1—¢ l—a 1-—b a c b - N |
10 Let a1, ay, ..., a, be positive real numbers and let by, by, ..., b, be their per-

mutation. Prove the inequality

Q
SN

a% + a% + - 1+a+---+
by by a dn.

Solution For each x, y € RT we have % >2x —y.
Hence

NS}

-b, i=12,...,n

B*|Q
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After summing fori = 1,2, ...,n we obtain
2 2
ai 4y a _
+ =+ + =2 +a+-+a) — b1 +b2+--+by)
by b b,

—ai+ay+-+an,

and we are done.

Equality occurs if and only if a; = b;,i =1,2,...,n. [ |

11 Let x € R*. Find the minimum value of the expression );2:11 .
. _x241

Solution Denote A = ’;T

‘We have

Sl S SR Y (I ST P S
=—=(@x—- — = (x — ) —2.
x+1 x+1 x+1

For any a, b > 0 we have a 4+ b > 2+/ab (equality occurs iff a = b).
Now from (1) we get A > 2V2 —2.
Equality occurs if and only if x = /2 — 1. |

12 Leta, b, c € RT such that abc = 1. Prove the inequality

a b c
@ DGFD  GFDeLD et D@+l

3

> —.

)~ 4
Solution After expanding we get

ab+ac+bc+a+b+c>3@abc+1)

ab+ac+bc+a+b+c>6.

Since

I 1 1
ab+ac+bc+a—|—b+c=——i—z—i———i—a—i—b—i—c
c a

1 1 1
=<—+a)+<—+b)+<—+c)22+2+2=6,
a b c
we are done.

Equalityoccursifandonlyif% +a= % +b= % +c=1l,iec.a=b=c=1. 1
13 Let x, y > 0 be real numbers such that y(y + 1) < (x + 1)%. Prove the inequality

y(y—1) <x2
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Solution Tf0 <y <1, then y(y — 1) <0 < x2.
Suppose that y > 1.
If x + % <y, then

y(y—l):y(y+l)—2y§(X+1)2—2<x+%):xz.

Ifx—i—%>ythenwehavex>y—%>0,i.e.
1\? 1
2
x>|\y—5) =y0—-D+->y(y—1D. m
2 4
14 Let x, y € RT such that x3 + y3 < x — y. Prove that
Kyl
Solution From x3 + y3 < x — y we have
O<y=x

and

3

0<x’<x’4+y’<x—y<x,

i.e.

from where we deduce that x < 1.
Thus0<y<x<1.
Now we have x(x +y) <1-2=2and xy(x + y) <2y.
From x> 4 y3 < x — y we obtain

X
CHNET—xy+y)<x—y & xXoayty’<

X+y
- —y+ + —y+2 +
o 4yt iT¥ XY xy(x y)sx y+2y _x+y_
xX+Yy xX+y xX+Yy xX+Yy

15 Leta, b, x, y € R such that ay — bx = 1. Prove that
a® +b* +x% +y* +ax +by > /3.

Solution Let us denote u = a4+ b?, v = x> + y? and w = ax + by.
Then

uv = (@2 + b?) (x> —|—y2) — g252 +a2y2 + p2x2 —|—b2y2
=a’x’ + b2y2 + 2axby + a2y2 + b2 — 2axby

=(ax+by)2+(ay—bx)2=w2+ 1.



224 21 Solutions

From the obvious inequality (t\/§ + l)2 > (0 we deduce

312 41> —214/3,
42 1 4>3 23+ 12,

4 +4> (V3-1)? (1
Now we have
(n
u+v)? > duv =4w? + 1) = (V3 — w)?,
from which we get u 4+ v > V3= w, which is equivalent to u + v + w > V3. [ |

16 Let a, b, ¢, d be non-negative real numbers such that a2 +br+c2+d?=1.
Prove the inequality

(1 —a)(1 —b)(1 —c)(1 —d) > abcd.

Solution We have 2¢d <2 +d* =1—a? — b2
Hence

2(1—a)(1=b) —2cd >2(1 —a)(1 —b) — 14+ a*+b*=(1—a—b)> >0,
i.e.
(1—a)(1—b)>cd. (1)
Similarly we get
(1—¢)(1 —d) > ab. 2)

After multiplying (1) and (2) we obtain (1 —a)(1 — b)(1 — ¢)(1 — d) > abcd, as
required. Equality occurs iff a =b=c=d=1/2ora=1,b=c=d =0 (up to
permutation). |

17 Let x, y be non-negative real numbers. Prove the inequality
407+ = (@ )@+ yH et .

Solution Since the given inequality is symmetric we may assume that x >y > 0.
Let a, b € N. Then we have x* > y and x” > y".
Hence

@ =y =y =0
N xa+b + ya+b > xayb +xbya

& 2T 4 yathy > (x4 y (kP 4 D). (1)
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Fora=2,b=31in (1) we get

200 +°) = (2 + yH(P 4. )
Fora=5,b=41in (1) we get

27 +5%) = (o +y)a* + ). 3)
From (2) and (3) we get
4% +y%) =227 +)7) 2207 + Y0 3 = P+ )7 )t 4+,
and we are done. |

18 Let x, vy, z € RT such that xyz = 1 and % + % + % > x + y + z. Prove that for
any natural number n the inequality

1 1 1 n n n
x—n+W+Z—HZX +y +z

is true.

Solution After setting x = %, y= % and z = 5, the initial condition

1 1 1
—F+-+-=2x+y+z
X y Z

becomes
b e a_a b ¢
a b ¢ b ¢ a
& a?b+ b+ cta > ab® + bc? + ca?
& (a—b)b—c)(c—a)=<0.

Letn e N, and take A =a", B=b",C =".
Thena>b< A>Banda<b<& A<B,etc.
So we have

(A-=B)B-C)(C—-A)=0

>x"+y" -

19 Let x, y, z be real numbers different from 1, such that xyz = 1. Prove the in-

equality
3—x 2+ 3—y 2+ 3—z2 2>7
1 —x 11—y 11—z '
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Solution Denote A = (3=%)% + (i%i)2 + (3?2 -7

‘We have
2 \? 2 \?2 2 \?
A=(1+——) +(1+—) +|(14+——) —T.
1—x 1—y 1—1z

1
Let 1_X_a,1 = b,1 —

Then A = (1 +2a)> + (1 +2b)% + (1 +2¢)?> — 7, i.e.

=cC.

A=4a%> +4b> + 4c® + 4a + 4b + 4c — 4. (1)

Furthermore, the condition xyz = 1 is equivalent to abc = (a — 1)(b — 1)(c — 1),
i.e.

a+b+c—1=ab+ bc+ca. )
Using (1) and (2) we get
A =4a® +4b% + 4¢® + 4(ab + be + ca) =2((a + b)* + (b +¢)* + (¢ +a)?),

ie. A>0.
Equality occurs if and only if a = b = ¢ = 0, which is clearly impossible.
So we have strict inequality, i.e. A > 0, i.e.

3-x\2 3—y)\? 3-2\°
—7>0
(1—x) +<1—y) +(1—z> g

and we are done. [ |

20 Let x,y, z <1 be real numbers such that x + y 4+ z = 1. Prove the inequality

1 N 1 N 127
I+x2  1+y2 1422710

Solution We’ll prove that for every ¢ < 1 we have JizZ < 50 L2 —1).
The last inequality is equivalent to (4 — 3¢)(1 — 31)% > 0, which is clearly true.

Hence

1 N 1 1
T+x2 14?2 1+2—50

((2—X)+(2 »+Q2-2)

2 -ty =
_50 TTYTYI= 0 u

21 Leta, b, c € R. Prove the inequality

1 1 1 3
+ + > .
a(l+b) b(l+c) c(A+a)~ 1+4+abc
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Solution We can easily check the following identities
l+abc  1+a +b(1—|—c) 1 l+abc  1+b c(1+a) 1
a(l+b)  a(l+b)  1+b b+c) b(l+co)  l+c

and
1+ abc 1+c¢ a(l + b) !

ad+tb) _cl+a)  Ita

Adding these identities we obtain
1+abc 14abc

1+abc
a+b) bt Telta

_( l+a | a(l+b) 1+b b(l+0)
_<a(1+b) 1+a> (b(l+c)+ l+b>

1 1
te (A 50410323,
c(l1+a) 1+c¢
ie.
1 1 1 3
+ + > .
a(l+b) b(d+4+c) c(l+4+a) ™ 1+abc

Equality occurs ifand only if a =b=c = 1.
22 Let x, y, z be positive real numbers. Prove the inequality

YQa+b)(b+c)(c+a)=>8a+b+c)ab+ bc+ ca).

Solution The given inequality is equivalent to a(b —c¢)> +b(c —a)* +c(a —b)> > 0,
[ |

which is obviously true. Equality occurs iff a = b = c.

23 Let a, b, ¢ be real numbers. Prove the inequality

@+ b2+ A2 >3@b+ b+ Fa).

Solution By the well-known inequality (x + y + z)> > 3(xy + yz + zx) for
y=b2+ca—bc, z=c2+ab—ca,

x=a2+bc—ab,
[ |

we obtain the required inequality.

24 Let a, b, ¢ be positive real numbers such that a? + b? + ¢ = 3. Prove the in-

equality
aAb+c)+b(c+a)+c(a+b)<6.
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Solution We’ll show that

a3(b+c)+b3(c+a)+c3(a+b)s%(a2+b2+c2)2. (1)
Inequality (1) is equivalent to

2(a* + b* + M + 4(@®b* + b2 + *d?)
> 3ab(a® + b*) + 3bc(b? + ¢*) + 3ca(c* + a?). )
We have
a* +b* +4a’b* > 3ab@* +b*) &  (a—b)* +abla—b)* >0,

which is clearly true.
Analogously we get

b+ ¢t 4+ 4b*c? > 3bc(b2 +¢» and *+a*+4c%d’ > ?aca(c2 + az).
Adding the last inequalities we get (2), i.e. (1).
Finally using a® 4+ b + ¢> = 3 we obtain the required result.

Equality holds if and only if a = b =c. |

25 Leta, b, c be positive real numbers. Prove the inequality

a n b n c 5
/ A/ / > 2.
b+c c+a a+b

. s X 2x
Solution We’ll show that | /55— > =7
We have

[ x 2x x ( 2x )2
z < z
y+z x+y+z y+z xX+y+z

& (x+y+z)224x(y+z) & (y—l—z—x)zzo,

, for every x,y,z € RT.

with equality iff x =y + z.
Now we easily obtain

[ a [ b [ ¢ 2(a+b+c)
+ + > =2,
b+c c+a a+b a+b+c

with equality if and only ifa=b+c,b=a+c,c=a+b,ie.a=b=c=0,
which is impossible.

So we have strict inequality, i.e. | /9= +/ % +./ a5 > 2. asrequired. W
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26 Let a, b, ¢ be positive real numbers such that a? + b? + ¢ = 3. Prove the in-
equality
a n b n ¢ _ !
b+2 c¢c+2 a+2~

Solution The given inequality is equivalent to
ab® + bc? + ca? <2+abc.

We may assume that a > b > c (since the inequality is cyclic we must also consider
the case ¢ > b > a, which is analogous).
Then we have a(b — a)(b — ¢) < 0 from which we have a2b + abc > ab® + ca?.
Thus

ab? + bc? + ca> < a’b +abc + bc2.
We’ll show that
a*b +bc* <2.
We have

ab+bc*<2 & bB-bH<2 & (b-D*b+2)=0,

which is clearly true, and we are done.
Equality occurs iff a =b=c=1ora=0,b=1,c=+/2 (over all permuta-
tions). |

27 Let x, y, z be distinct non-negative real numbers. Prove the inequality

1 n 1 n 1 - 4
x=y?2 ((-—22 @—x)? xy+yzt+zx’

Solution 1f a, b > 0, then ¢ b)2 —|— L+ lz > &
The last inequality is true since

I e 1 L 1 4 (a®>+b*—3ab)®
(a—b)? 2 ab  a2b%(a — b)?

Without loss of generality we may assume that z = min{x, y, z}.
By the previous inequality fora =x — z and b =y — z we get

1 N 1 N L 4
x=y? -2 @—-x2" @x—-2(-2

So it suffices to show that

4 . 4
(x—=2)(y—2) " xy+yz+zx’
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i.e.
xy+yzt+zx>=x -2 -2,
i.e.
22(y +x) = 2%,
which is true since z = min{x, y, z}. [ |

28 Let a, b, c be non-negative real numbers. Prove the inequality
3@ —a+1)(b* —b+1)(c?—c+1) > 1+abc + (abe).
Solution Since
2@ —a+D)* —b+1)=1+a*b* + (a —b)* + (1 —a)*(1 — b)?
we deduce that
2@ —a+1D(B* —b+1) > 1+a%b%
It follows that
3@ —a+ DB —b+ D —c+ 1) > %(1 +a*bH) (P —c+ 1),

and it remains to prove that

3(1 4 a?b?)(c? — ¢+ 1) = 2(1 + abe + (abe)?),
which is equivalent to the following quadratic in ¢

(34 a*b?)c? — (34 2ab + 3a*h*)c + 1+ 3a°b* > 0,

and clearly the last inequality is true, since 3 +a?b> > 0 and D = —3(1 —ab)* <0.
Equality occurs iffa=b=c=1. |

29 Leta,b e R, a # 0. Prove the inequality
1 b
A+ +—+- =3
a a
Solution We have
1 b 1)*
a2+b2+—2+—=<b+—) +at+ . (1)
a a 2a

Since (b + %)2 > 0, using (1) we get

ad b+ S +-za . )
a a
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Using AM > GM we have
az—l—izZ azizx/g. 3)
From (2) and (3) we get
a2+b2+i2+éz\/§.
a a
Equality occurs iff b + ﬁ =0and a’ = &, ie.a= :i:\‘/g and b = :F%\‘yg. |

30 Leta, b, c € RT. Prove the inequality

a?+1 b2+1 2+1
+ + > 3.
b+c c+a a+b

Solution For each x € R we have x2 4+ 1 > 2x.
So we have

a?+1 b’+1 A+1_ 2a 2b 2¢
+ + > + + .
b+c c+a a+b " b+c c+a a+b

It’s enough to prove that bLJrc + c%a + ﬁ > %, which is Nesbitt’s inequality.

Equality occurs ifand only ifa =b=c = 1. |
31 Let x, y, z be positive real numbers such that xy 4+ yz 4+ zx = 5. Prove the in-
equality

3x2 + 3y2 +z2>10.
Solution Using the inequality AM > GM we obtain
4x% + 7% > 4xz, 4y2 +7%2> 4yz and 2%+ 2y2 >4xy.
Adding these inequalities and using xy + yz +zx = 5 we get the required inequality.

Equality occurs iff x =y =1,z =2. |

32 Let a, b, ¢ be positive real numbers such that ab + bc + ca > a + b + c. Prove
the inequality

a+b+c>3.
Solution We have
(a+b+c)2=a2+b2+cz+2(ab+ac+bc)
>ab +ac+ bc+ 2(ab+ ac + bc)
=3(ab+ac+bc) >3a+b+ o),

from which we geta + b + ¢ > 3. |
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33 Let a, b be real numbers such that 9a2 + 8ab + 7b* < 6. Prove that

7a+5b+ 12ab < 9.
Solution By the inequality AM > GM we have
2 1 2 1
Ta+5b+12ab <7\ a +4—1 +5(a +4—1 + 12ab

=7a% +5b%> 4+ 12ab + 3

=942 + 8ab + 7b* — 2a® + dab — 2b* + 3
=942 +8ab+7b* —2(a—b)*>+3<6+3=9,

as required. Equality holds iff a =b = 1/2.

34 Letx,y,zeRT, such that xyz > xy + yz + zx. Prove the inequality

xyz>3(x+y+2).

Solution Letting % =a,
becomes

1
y

a+b+c<l.

We need to show that

xyz>3(x+y+z) ¢ 3(ab+bc+ca)<l1.

Clearly
(a+b+c)* > 3(ab+ bc + ca).
Now from (1) and (3) we obtain (2).

35 Leta, b, c € R with a® 4 b? + ¢* = 3. Prove the inequality

ab bc ca
— 4+ —+—>3.
c a b

Solution The given inequality is equivalent to

(ab bc ca>2
—+—+—] 29
c a b

2b2 b2C2 62(12

e +b2

c? a?

+2@@> + 5%+ > 3>+ b*+ A,

Solutions

= b, % = ¢, the initial condition xyz > xy + yz + zx

(D

2

3)
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i.e.
272 2.2 2.2
ab b c cca 5 2 9
s + e + % >a”+b"+c°.
Furthermore, applying AM > GM we get
a2b? b2 5 P22 2q? ) a2 a2 )
2 T 2 Ttz Ta gy e
After adding these inequalities we obtain
a’b? b3 2a? 2 5 5
+ >a"+b"+c
c2 a? 2
and we are done. |

36 Let a, b, c be positive real numbers such that a + b + ¢ = +/abc. Prove the
inequality

ab+bc+ca>9a+b+c).
Solution By the inequality AM > GM we have

Vabc=a+b+c>3vabc,
which implies

abcz36 and a+b+c:«/%2\/3_6:33. (D
Once more, the inequality AM > GM gives us
ab+ bc +ca 23\3/@,
ie.
(ab+be + ca)® = 3 abe)* =P a+b+0)* S 3@ +b + o),

Hence

ab+bc+ca>9a+b+c),

as required.
Equality occurs if and only if a =b=c =09. |

37 Leta, b, c be positive real numbers such that abc > 1. Prove the inequality

YA Ly
T 1)\ x1) =g




234 21 Solutions
Solution By the inequality AM > GM we have

a+1 1 a+1 1 3a
+ >2 . =1 and —
4 a+1 4 a+1 4

Adding these two inequalities we get

1
- >
at +1—2f

Analogously we obtain

b and >
tprr1=2ve ™ ++1—2f

Multiplying the last three inequalities gives us
1 1 1 27 27
— | P —+~abc> —
<a+a+1>< +b+1)<c+c+1) g yae=7g"
as required.

Equality occurs iffa=b=c=1. |

38 Leta,b,c,d € Rt such that a? + b2 + ¢% + d* = 4. Prove the inequality
a+b+c+d=>=ab+ bc+ cd+da.
Solution We have
a+b+c+d=ab+bc+cd+da & a+b+c+d=@+c)b+4d),

i.e.
1 . 1 -1
at+c b+d ™~

Since AM > HM we have

1 1 4

> . 1
a+c+b+d_a+b+c+d M

Applying OM > AM we have

=1,

a+b+c+d <\/a2+b2+c2+d2
4 = 4

a+b+c+d<4
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Now by (1) we get
1 1

4

+ > >
at+c b+d  a+b+c+d

4
-=1.
4

Equality holds if and only ifa =b=c=d = 1.

39 Leta,b,c € (—3,3) such that 1 + 515 + 31= = 325 + 725

Prove the inequality

1

1

1

1

>
3+a+3+b+3+c_

Solution By the inequality AM > HM we have

((3+a)+(3~|—b)+(3+c))< ! +

and

1 1

3+a 3+b+3+c

((3—a)+(3—b)+(3—c))(3ia+ S )z

< ((3—a)+(3—b)+(3—0))<3+a+3+b+3+c>29.

After adding (1) and (2) we obtain

3—-b 3-—c¢
1 1

1
+ 5.

1

)=

1

I i i I !
18 > 18, e
<3+a+3+b+3+c)_ R P Sy

> 1.
34c¢c ™~

40 Leta, b, c € R such that a® + b* + ¢ = 3. Prove the inequality

1

1

1

+ + > 1.
a+bc+abc b+ca+bca c¢+ab+cab

Solution By AM > HM we have:
1

1 1

a+bc+abc+b+ca+bca+c+ab+cab

9

> .
“a+b+c+ab+bc+ca+3abe

Using the well known inequalities:

a?+b*+c*>ab+bc+ac and (@+b+c)?>3@ +b*+c?)

and according to a’ + b% + ¢? = 3, we deduce

ab+bc+ca<3

and a+b+c<3.

235

(D

2

(D

2



236 21

Solutions

By AM > GM we have a® + b?> + ¢* > 3y/(abc)? and since a® + b + ¢ =3 we

easily deduce that
abc <1
Now according to (1), (2) and (3) we obtain

1 1 1
a+bc+abc+b+ca+bca +c+ab+cab
9 9
> > =
“a+b+c+ab+bc+ca+3abc T 3+34+3

Equality occurs if and only if a =b=c = 1.
41 Leta, b, c € RT such that a + b + ¢ = 3. Prove the inequality.

b +a>+b> B2 4+pP 4+ a4+ +4?
+ +
ab+1 bc+1 ca+1

9
> .
2

Solution Let a, b € RT then we have

(@a—1D*b-1*%=0
& a*b? —2a*b+a* —2ab* +4ab—2a+b*—2b+1>0

& a?b*+a* +b%>24a%b + 2ab* +2a +2b — dab — 1

& a’b*+a’ +b*>2a(ab+1)+2b(ab+1) —4(ab+ 1) +3

= (ab+1)(2a +2b—4) +3.

Hence
212 2 2
ab+a-+b 3
- " > 2b —4 4+ ——.
ab+1 Zat +ab+1
Similarly we obtain
b*c? +b* + 2 3
— > 2b+2c—4
P R
and
22, .2 2
3
caltcira o ay

ca+1 ca+1

3)

(D

2

3)
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Adding (1), (2) and (3) gives us

a2 +a>+ b2 B2 +pP 4+ a4+ +4?

ab+1 bc+1 ca+1
>4(a+b+c)— 12+ 3 + 3 + >
a c) —
- ab+1 bc+1 ca+1
3 3 3
= . 4
ab+1+bc+1+ca+1 @)
Applying AM > HM we obtain
1 1 1 9
)]

> .
1+ab+ l+bc+ 14+ca = 3+ab+bc+ca

Using the well known inequality (a + b + ¢)?>3(ab+bc+ca)anda+b+c=3
we deduce

ab +bc +ca < 3. (6)
Finally by (4), (5) and (6) we obtain

@b +a?+b% b2E4+br+cr PatP+ 44
+ +
ab+1 bc+1 ca—+1
3 3 3 27 27 9

> + + > = =5
“ab+1 bc+1 ca+1~"34ab+bc+ca 3+3 2

Equality occurs iffa=b=c=1. |

42 Let a, b, c,d be positive real numbers such that a> + b> + ¢> + d*> = 4. Prove
the inequality
a?+b*+3 b*+c*+3 A+dP+3 d*+a*+3
+ + + >
a+b b+c c+d d+a

10.

Solution Observe that for any real numbers x, y we have

2 5,2
3
x2+xy+y2:(x+§) +%zo,

equality achieves if and only if x =y =0.
Hence (a — 1)2 4+ (@ — 1)(b — 1) + (b — 1)2 > 0, which is equivalent to

a*+b*+ab—3a—3b+3>0,
from which we obtain

a®+b>+3>3a+3b—ab,
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i.e.

a’+b*+3 ab
— >3- .
a+b a+b
By AM > GM we easily deduce that

a+b ab
> .
4 T a+b

Therefore by previous inequality we get

a’+b*+3
PEEE——
a+b

3_a+b

Similarly we obtain

b*+c%+3 b+c 24+d>+3 c+d
>3 - , >3 —
b+c - 4 c+d -
d*+a*+3 d+a
- >3- .
d+a 4

and

Adding the last four inequality yields

a?+b*+3 b24+c2+3 24+d 43 d2+a2+3>12 a+b+c+d
a-+b b+c c+d d+a - 2 )

(D
According to inequality QM > AM we deduce that

\/a2+b2+c2+d2 _atbtc+d
4 - 4
and since a® 4 b? + ¢* 4 d? = 4 we obtain
a+b+c+d=<4 2)
By (1) and (2) we get

a?+b2+3 b 4243 Z+4+d 43 d2+a2+3>12 a+b+c+d
a+b b+c c+d d+a - 2

>12—--=10,
2

as required.
Equality occurs ifand only ifa =b=c=d = 1. |
43 Let a, b, c be positive real numbers. Prove the inequality

1 1 1 9
+ + > :
ab(a+b) be(b+c) calc+a) ~ 2@3+b3+c3)
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Solution According to the obvious inequality (a 4 b)(a — b)*> > 0 we get the in-
equality

a® + b3 >ab(a+b).
Thus

1 1
> .
ab(a+b) ~ a’3+b3

Similarly we get

1 1 1 1
> and = .
be(b+c) ~ b3+3 ca(c+a) ~ 3 +a3

After adding the last three inequalities we obtain

1 1 1 1 1 1
+ > + - o
ab(a+b)+bc(b+c) ca(c+a) “ad+b3 b3+3 3A+4d3 M
Now since AM > HM we have
1 1 1 9
IR B S 32 303 3.3 3 3
a+b> b+’ cC+ad T (@ +b)+ B+ )+ (¢ +ad)
= ) 2)
2@+ b+
From (1) and (2) we get the required inequality.
Equality holds if and only ifa =b =c. |

44 Leta,b,c € RT such that av/bc + b./ca + cv/ab > 1. Prove the inequality
a+b+c> V3.

Solution We have

b b
1 <a~bc+ b/ca+cvab <a ;C—i—bc—;a—i—ca;
b 2
:ab_l’_ac_kbciw,
i.e.
(a+b+c)?>3 o a+btc>3 n

45 Let a, b, c be positive real numbers such that abc = 1. Prove the inequality

b+c c+a a+b
+ + > Ja+b+Jc+3.
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Solution By AM > GM we get

b+c+c+a+a+b
Va o b e

zz\/gn\/%ug
() (522 5)

>2(Ja + b+ ¢) = Ja+ b+ Jc+3Vabe
=Va+b+Jc+3. m

46 Let x, y, z be positive real numbers such that x + y + z = 4. Prove the inequality

1 1 1 1
+ + <—.
2xy+xz4+yz  xy+2xz4+yz  xy+xz+2yz T xyz

Solution By AM > HM we have that % + % > ﬁ, forany a, b € RT.

Therefore

1 1 1 1 1
— < —
2xy +xz2+yz (xy+xz)+(xy+yz)_4(xy+xz xy+y2>
<1 1/1 n 1 Jr1 1 n 1
T 4\4\xy xz 4\xy yz
1 /2 1 1 274+ y+x
=—|—+t—+—)=—
16\xy xz yz 16xyz

Similarly,

1 Z+2y+x 1 Z+y+2x
< and < .
xy+2xz+yz 16xyz xy+xz+42yz 16xyz

Adding the three inequalities yields that

1 n 1 n 1 - 1(4(x+y+z)>_ 1
2xy+xz4+yz xy+2xz+yz xy+xz+2yz~ 16 xyz Coxyz

Equality occurs iff x =y =z =4/3. |
47 Leta, b, c € RT. Prove the inequality

abc>=@+b—-c)b+c—a)(c+a-—-D>).
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Solution Settinga+b—c=x,b+c—a=y,c+a— b=z the inequality becomes
(x+ O +2)(z+x) > 8xyz.

Let us assume that x < 0. Then ¢ > a + b, and clearly y and z are positive and the
right-hand side of the given inequality is negative or zero, but the left-hand side is
positive, i.e. the inequality holds.

So we may assume that x, y, z > 0. Then using AM > GM we get

X+ + 2@ +x) > 25y - 2/5% - 2/x2 = 8xyz

and we are done. [ |

48 Leta, b, c be positive real numbers such that a + b + ¢ = 3. Prove the inequality

12

b —>5
a C+ab+bc+ac -

Solution Recalling the well-known inequality abc > (b + ¢ —a)(c +a — b)(a +
b — ¢) (Problem 47) we obtain

abc> (3 —2a)(3—2b)(3 —2c¢)
& abc>27—18(a+ b+ c)+ 12(ab + bc + ca) — 8abc
& 3abc>=4(ab+bc+ca)—9

- 4(ab + bc + ca) _

& b 3.
abc > 3
Therefore we have
12 4(ab+b 12
abe + > dabtbetca) —3>8-3=5,
ab+ bc+ac 3 ab+ bc+ac
where the last inequality follows since AM > GM. |

49 Let a, b, c be positive real numbers such that abc = 1. Prove that

o)D)=

Solution Since abc = 1, it is natural to take a = %, b= %, c= )% where x, y, z > 0.
Now the given inequality becomes

(£_1+£>(X_1+£><£_1+X)51 ie.
y Y/ \z /X X

x+y—2@+x—y)O+z—x)<xyz,

which is true (Problem 47). Equality occurs iffa =b=c = 1. |
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50 Let a, b, c be positive real numbers such that abc = 1. Prove the inequality
1 n 1 n 1 - 1 n 1 n 1
l4+a+b 14+b+c l+c+a” 24a 2+b 2+c

Solution Letx =a+b+cand y =ab + ac + bc.
Clearly x, y > 3 (these are immediate consequences of AM > GM).
Now the given inequality is equivalent to
34+4x 4y +x? _1244x+y
2x4+y+x24xy " 9+4x+2y’

1.€.
3x2y —l—)cy2—|—6xy—5x2 —y2—24x —3y—27>0,
ie.
(3x2y —5x% —12x) + ()cy2 — y2 —3x —3y) 4+ (bxy —9x —27) >0,
which is true since x, y > 3. n

51 Leta, b, c > 0. Prove the inequality

100abc
a+b+c’

(a+b)?+(@a+b+40)?>
Solution Since AM > GM we have
(a+b)>+@+b+4c)’=@+b)*+ (a+2c+b+2c)?
> dab + (2v/2ac +2v/2bc)?, .
(a+b)? + (@a+b+4c)> > 4ab + 8ac + 8bc + 16¢v/ab.

Now

(@a+b?+@+b+4c)?
abc

- 4ab + 8ac + 8bc + 16¢c~/ab
- abc

(a+b+c)

(a+b+c)

g 1+1+1+ 1 N 1 a+a+b+b+
=8|l—+-+-"+—+—|{z+z+=+=+¢]|.
2c b a ~Jab ~Jab 2 2 2 2

Using the last inequality and AM > GM once more we obtain

(a+b)?+(a

+b+4c)? F 5| azb2c
abe (@+bte)=8-5 5553 1~ 100
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ie.
100abc
a+b+c
Equality occurs if and only if a = b = 2c. |

(a+b)2+(a+b+do)?>

52 Leta, b, c > 0 such that abc = 1. Prove the inequality

1+ab 1+bc 1+ac
+ + >3
14+a 1+b l1+a

Solution Since abc = 1 we have

l+ab abc+ab ab(c+1)
l4+a  14a  a+1

and similarly

1+bc_bc(a+l) and 1+ca_ca(b+1)
1+b  b+1 l4+¢  c+1

Now by AM > GM we obtain

1+ab 1+bc 1+ca_ab(c+1) bca+1) cab+1)

1+a+1+b+1+c_ a+1 b+1 c+1
>3\3/ab(c+l) bea+1) calb+1)
- a+1 b+1 c+1
=3+v/(abc)? = 3.
Equality occursiffa=b=c=1. n

53 Leta, b, ¢ be real numbers such that ab + bc + ca = 1. Prove the inequality

1\? 1\? 1\?
b ooy o
b c a
Solution 1 We have
1\? 1\? 1\?
<a+—> —i—(b—i——) +<c+—>
b c a
1 1 1 a b ¢
2 2, 2
= b TR, | (e i
a +b"+c +a2+b2+c2+ <b+c+a>

LI S S DY (i
=a"+ — —+c+ = -4+ -4+ -
a? b2 c2 b ¢ a
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s ab+bc+ca , ab+bcH+ca , ab+bcHca
=a"+———+b"+———+c"t+————

a? b? c2

a b ¢
+2<—+—+—>
b ¢ a

@A (2 ) a(Cat b (e e b
= ¢ a b ¢ a b ¢ a2 b2 2

>ab+bc+ca+3+9+3=14+3+9+3=16.
Clearly, equality occurs iff a = b = c = 1/+/3. |

Solution 2 By well-known inequality x> 4+ y* + z> > xy + yz + zx we have
1\? 1\? 1\? 1 1 1 1
at+— ) +(b+=) +|c+=) =|a+)(b+=)+(b+=)(c+-
b c a b c c a
Y L T
c+—Jla+ -,
a b

1\? 1\? 1\? a b ¢
at+—) +{b+-|) +|ct+t-) zab+tbct+ca+—-+—-+_-+3
b c a c a b

PRLEL (1)
ab  bc  ca’

1 1 9 =92 i
v T 2a = ahgberea = 1 =9, respectively.

By last two inequalities and (1) we obtain

1\? 1\2 1\?
<a+g> +(b+—) +(c+—> >1+34+3+9=16,
C a

as required. |

Solution 3 By QM > AM we have

12 1\? 1\?_ (@+b+c+i+i+1?
(a—i—E) +<b+—> +<c+—> > 3 bt
c a

By well-known (a + b + ¢)? > 3(ab + bc + ca) and ab + be + ca = 1 we obtain

a—i—b—i—cz«/g. )
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According to AM > GM we have

1 =ab + be + ca > 3v/(abc)?,

ie.
1 - \/g
Jabe ~
By AM > GM and previous inequality we have
I 1 1 3
e > 34/3. 3
Ttz T V3 3)

Finally by (1), (2) and (3) we get

2 2 2 2
(Hz) +(,,+1) +<C+1) L WBEE3VRE o
b c a 3

as required. Equality occurs iff a = b = ¢ = 1/+/3. |

54 Let a, b, c be positive real numbers such that abc > 1. Prove the inequality

14a 14+b 1+c¢
a+b+c> + + .
1+b 14c¢c 1+a

Solution We have

l+4a 14+b 1+4c¢
1+b 1+4+c¢c 1+4a

1 1+b 1
—(1ra— ) (1462 ) (14— -FC) =3
1+b I+c +a

1 1 1

_(+apb  (A+bc  (+c)a
T 140 l+c l4+a

a+b+c—

~33 (1+a)b . (1+b)c . (1+c¢)a _
- 1+b 1+c¢ 14+a

=3vabc—3>0 (abc>1).

Equality occurs iffa=b=c=1. |

55 Leta, b € RT. Prove the inequality

b+ V(P ratrd)= (204 (24 L
4 4)= 2 2)
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Solution For any x € R we have x? + JT > x.
So it follows that

2 pi 2 V(P ratr2) s (asbr i) (arbrt)=(atprl 2
a 1 a 1)Z a > a 5)= a >

_(&r+%+4>2_(?a+%+2b+%>2

2 2

AEG 5 1 b 1
= (1+§ +§ . ]

56 Leta,b,c € Rt such that abc = 1. Prove the inequality

a n b n c <1
a?+2 br42 2427

Solution By the well-known inequality x2+1>2x,VYx € R, we have

a b c a b c
22 2t a2 T il Pt x4l
- a n b n c
“2a+1 2b+1 2c+1
1 1 1
= =A.

Tt 1t 1T
2+ T2yl ol

The inequality A <1 is equivalent to
1 1 1 1 1 1
24— 24+ )+(2+-)J(2+- )+ {2+ )2+
b c a c a b
1 1 1
<2+ 12+ )2+ ),
a b c

4<1+1+1+1 . 3<1+1+1
— 4 — 4+ —+—, ie. < —+—4+—,
“ab ac bc abc ab ac bc

i.e.

i : 1 1 1 3/ _1
which is true since —> + == + ;- > 3./ ()3 =3.
Equality occurs iffa =b=c=1. n

57 Let x, y, z > 0 be real numbers such that x + y + z = xyz. Prove the inequality
(x =Dy —-DHi—1)<6v/3-10.

Solution Since x < xyz we have yz > 1 and analogously xz > 1 and xy > 1. At
most one of x, y, z can be less than 1.
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Letx <1,y >1,z> 1. Then we have (x — 1)(y — 1)(z — 1) <0, so the given
inequality holds.
So it’s enough to consider the case when x > 1,y > 1,z > 1.
Letx—1=a,y—1=b,z—1=c.
Then a, b, c are non-negative and since x =a+1,y=b+ 1,z =c+ 1 we obtain
a+14+b+1+c+l=@+DbB+Dc+1), ie.
abc+ab+ bc+ca=2. €))
Let x = ~/abc, so we have
ab + bc + ca > 3v/(abc)? = 3x°. )
Combine (1) and (2) we have
x3+3x2§abc+ab+bc+ca=2 o (x+1)(x2+2x—2)50,
so we must have x2 +2x — 2 < 0 and we easily deduce that x < V3 - 1,1i.e. we get
B<W3-1*=6/3-10

and we are done. [ |

58 Leta, b, c € (1,2) be real numbers. Prove the inequality

ba N cvb N as/c -
4b\/c—c\a  4cfa—avb  4avb—bc )

Solution Since a, b, c € (1,2) we have
4biJfc — ca > 4/c —2/c =24/c > 0.

Analogously we get 4c/a — a~x/b > 0 and 4a~v/b — b./c > 0.
We’ll prove that

b/a - a 0
dbJc—cJa " a+b+c
Since 4b./c — ci/a > 0 inequality (1) is
b(a+b+c) = Ja(@dbc —ca)
< (a+b)(b+c)>=4bs/ac,
which is clearly true (AM > GM).
Similarly we deduce that
c\/l; b
2)

>
deJa—avb ~ atb+c
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and
ae . ¢ 3)
4avb—byfc ~a+b+c
Adding (1), (2) and (3) we get the required result. [ |

59 Leta,b,c € R" such that a + b + ¢ = 3. Prove the inequality

Vab +c) +/b(c +a) +/c(a+b) >3+ 2abc.
Solution We have

vab +ac> ?(\/a_b%—«/ﬁ).

Analogously

Vbc+ba > g(\/lz+%) and ca+ch> ?(ﬁ*—\/c_b)-
So it suffices to show that
V2(ab + ac + Nbe) = 33/ 2abe,
ie.

\/ab—i—«/ac—i—\/ﬁziwabc. (D
By AM > GM we have

vab + yJac + «/ﬁz 33 abc > 3/ abc

where the last inequality is true since
b
Jabe < % =1, ie abc<l. a

60 Leta, b, c be positive real numbers such that a + b + ¢ = 1. Prove the inequality

Va+bc+~b+ca+c+ab<?2.

Solution Sincea+b+c=1wehavea+bc=a(a+b+c)+bc=(a+b)(a+-c)
i.e.

(a+b)+(a+c) 2a+b+c

x/a—i—bc:\/(a—}—b)(a—i—c)g > 5

Similarly we obtain

2b 2 b
Vb +ca< # and ~/c+ab< %.
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After adding the last three inequalities, we obtain

a+b+c + 2b+c+a n 2c+a+b
2 2 2

=2(a+b+c)=2.

2
Va+be+b+ca+~ec+ab<

Equality occurs iffa =b=c=1/3. |

61 Leta, b, c be positive real numbers such that a + b + ¢ + 1 = 4abc. Prove that
P4+ 2+a? a?+p?
+ +
a b c

> 2(ab + bc + ca).

Solution By the well-known inequalities:

4+y2>2xy and 3(2+y2+20) > (x+y+2)n

we obtain
b2+c2 C2+a2 a2+b2
+ +
a b c
. 2be  2ca N 2ab _ 2((be)? + (ca)* + (ab)?) . 2(bc + ca +ab)2. W
a b c abc 3abc
‘We have

(ab + bc + ca)2 > 3((ab)(bc) + (bc)(ca) + (ca)(ab)) =3abc(a + b + ¢),

ie.
ab + bc + ca > \/3abc(a + b+ c). )
Also
dabc=a+b+c+1 24%
ie.
abc > 1. 3)
Therefore
a+b+c=4abc —1=3abc+ abc — 1%)3(1176. 4)

By (1), (2) and (4) we obtain

P24+c? +a? a2+ b2
+ +
a b c

- 2(bc + ca + ab)? - 2(ab + bc 4 ca)~/3abc(a + b + ¢)
- 3abc - 3abc

- 2(ab + bc + ca)+/ (3abc)?
- 3abc

=2(ab + bc + ca). n
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62 Let a,b,c € (—1, 1) be real numbers such that ab + bc + ac = 1. Prove the
inequality

6v(1l—a2)(1 —b)(1—c2) <1+ (a+b+c)

Solution Since a,b,c € (—1,1) wehave 1 —a?, 1 —b%1—¢%>0.
By AM > GM we get

6v (1 —a2)(1 —b2)(1 —c2)=2-37(1 —a2)(1 —b2)(1 — c2)
<20 —a’+1-b>+1-¢%
=23 — (@ +b*+c?)
=6—2(a’+b*+ ).
‘We’ll show that
6—2(@*+b*+cH) <1+ (a+b+c)
This inequality is equivalent to
62>+ +cH<l+a>+b*+c*+2
ie.
3<3@*+b*+ch)
ie.
a4+,

which is true since a2 + b% + 2 > ab+bc+ac=1.

Equality holds iffa=b=c == A |

63 Let a, b, ¢, d be positive real numbers such that a> + b> + ¢> + d> = 1. Prove
the inequality

VI—a+VT=b+VT—c+V1—d>Ja+ b+ Jc+d.

Solution First we’ll show that

a+b+c+d<2. (1)
We have
atbtctd _ a2+br+c2+d> 1
4 - 4 )
i.e.

a+b+c+d<2.
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Furthermore
V1—a— V11— 1-2
\/l—a—\/az( a—va) a+ﬁ)= L
N —a+./a NT1—a+/a
By AM < OM we have
«/l—a—i-\/c_lS l—a—i-a:L’ . 1 ZL- 3)
2 2 V2 l—a+.a~ 2
Using (2) and (3) we deduce
1—2a
N—a—iJa> .
T V2
Similarly
1-2b 1—2c
T Vb=1"20 T ye= and
V2 V2
1—2d
V1—d—+d=>
V2
So it follows that
Vi—a—Va+V1=b—Vb+V1—c—Je+/1—d—+d
Z4—2(a+b+c+d)(é)0’
V2
as required. |

64 Let x, y, z be positive real numbers such that xyz = 1. Prove the inequality

1 1 1
+ +
x+D24+y24+1 (+D2+224+1 @+D?+x241

1
<.
-2

Solution We have

1 1 1
= < .
(x+D2+y24+1  2+4x2+y24+2x ~ 2(1+x +xy)

Similarly

1 1 | 1
2 +22+1° 20 and D2+x2+1- 21 '
Y+ D +z2+ A+y+y2) (z+ D> +x>+ 14+z4+2zx)
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So we have

1 1 1
+ +
x+D2+y2+1 G+ D2+22+1 @+ D2+x2+1

1 1 1
S—( + + >
2\1+x+xy 14+y4+yz 14+z+4+2zx
We’ll show that

1 1 1
+ + =
l+x4+xy 14+y+yz 14+z+2zx

’

from which we’ll deduce the required result.
We have
1 1 1
+ +
Il+x+xy 14+y+yz 1+z4zx
xXyz 1 1
- Y + +
xyz+x+xy l14+y+yz 14+z4+zx
z 1
= Y + + Y
yz+l+y 14+y+yz y+yz+1
_l+y+yz_1
l+y+yz

as required.

65 Leta, b, c € R™. Prove the inequality

a3 a3 a3
> 1.
a3+(b+c)3+ a3+(b+c)3jL ad+(b+c)3 ~

Solution We’ll prove that for any x, y, z € R* we have

x3 - x?
B+ +23 T 2+ 2+
x3 - x?
B+ (y+23 T x2+yr 422

x3 x4

>
B+ T (2 +?)?
s 2207+ D+ 0P+ D =x(y +2)°.

We have

Solutions

(D

2
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By AM < OM we have

257+ = v +2)7,
ie.

83"+ = (v +2)°.
Using AM > GM and the previous result we get

2x2(y + 2)®
26202 + D)+ 02 + 22 22/20207 + 223 = 2, % — x5 +2)°

so we prove (2), i.e. (1).
By (1) we have

a3 a3 a3
a’+ (b+c) + a’+ (b+c)3 + a’+ (b+c)

2 b2 62

a
> =1.
S R -y R R -

66 Let x,y,z € RT. Prove the inequality
x+y+ z)z(xy +yz+ )% <3(x% + Xy + yz)(y2 +yz+ (% + zx +x2).
Solution We have
2 3 S Y SO 2
Xtxy+y ==+ +5x -y =-(x+y7°,
4 4 4
similarly

y2+yz+zzz (y+z)2 and z2+zx+x22 (z+x)2.

AW
AW

Hence
2 24/.2 2402 2 3\’ 2 2 2
3 +xy+y) +yz+z2)E@ +zx+x7) =3 2 x4+ 0+ (z+x)
81 5
=a((x+y)(y+z)(z+X)) .
We’ll show that
81 2 2 2
6—4((x+y)(y+1)(z+x)) >(x+y+2)°(xy+yz+2x)7,

i.e.

g(x +O0+)@+x)>x+y+2)(xy + yz+zx),
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i.e.
Ix+y)(y+2)z+x)=8x+y+2)(xy+ yz+zx), (1

from which we’ll obtain the desired inequality.
Let’s note that

x4+ +)z+x)=x+y+2)xy+yz+2x) —xyz.
Now by (1) we get
Ax + )y +2)+x) =8((x + y)(y+ 2)(z+x) +xy2),
ie.
x+y0Q+2)(z+x)>8xyz,
which is clearly true since
x4y =2y, y+z>2yz, 24+x>2/zx.

Equality occurs if and only if x =y = z. |

67 Let a, b, c be real numbers such that a + b + ¢ = 3. Prove the inequality
2(a’b* + b*? + *a®) + 3 <3(a® +b* + ).

Solution Without loss of generality we may assume a > b > c.

Let’s denote u = # and v = %.

We easily obtaina=u+vand b=u — v.
We have ab = u? — v? > ¢2 which implies 2u? —2¢2 -2 >0.
Now we have

a’b* + b** + *a’ = cz(a2 + bz) +a%b? = 02(2u2 +20%) + (u2 — v2)2
=—v2Qu® =22 —v?) +ut + 2% <ut + 224 ()
Also
A+ b+ =2+ 207+ 2> 2P + A2 )
We’ll show that
2 +2¢%u?) +3 <3Qu* + ). (3)

Froma + b+ c=3 we have c =3 — 2u.
Now inequality (3) is equivalent to

2ut + 43 — 2u)?u® + 3 < 6u® +3(3 — 2u)?
& -8l +3ul+6u—4<0 & (u—1*GCur-2u—4)<0.

Since 2u < 3 we easily deduce that 3u” — 2u — 4 < 0. So inequality (3) holds.
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Combining (1), (2) and (3) we obtain the required result.
Equality holds if and only ifa =b=c=1. |

68 Leta,b, c,d be positive real numbers. Prove the inequality

a—b+b—c+c—d+d—a>
b+c c¢c+d d+a a+b~

Solution Applying AM > HM we have

a—-b b—c c¢c—d d-—a

b+c+c+d+d+a+a+b
a+c b+d c4+a d+0b
:b+c+c+d+d+a+a+b

1 1 1 1
= b+d — | -4
(a+c)( tora )+( + )< +d+a+b>
4(a+c) dbtd)
a+b+c+d a+b+c+d -

—4

69 Leta, b, c € Rt such that a + b + ¢ = 1. Prove the inequality

el

a n b n c -
(b+0? (c+a)? (a+b)? 4

Solution 'We’ll use the following well known inequalities
For any a, b, c > 0 we have m+ L+a +a+b 5 3 (Nesbit’s) and forany x, y, z >
0 we have

2
x+y+ (x—i—y—i—z)
3
Now we obtain
a b c ala+b+c) bla+b+c) cla+b+c)
+ + =
b+ (c+a)?  (a+b)? (b +c)? (c+a)? (a+b)?
. a 2+ b 2+ c 2+ a
“\b+c c+a a+b b+c
b c

c+a+a+b'
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Using previous well-known inequalities we have

a n b n c
b+0)? (c+a)? (a+b)?

>1a+b+62+a+b+c
“3\b+c c+a a+b b+c c+a a+b

173 2+3_9
—3\2 27 47 |

70 Leta, b, c € Rt such that abc = 1. Prove the inequality

adc n bia n 3b
b+co)cta) (c+a)a+b) (a+b)b+o)

>3
4
Solution Clearing denominators gives us
4(a4c +b*a+cta+adch +bac + c3ba)
> 3(a2b +alc+bra+b3c+cta+ctb+ 2abc),
ie.
4(a4c +bla+cta+a’+ b7+ cz) > 3(a2b +a’c+bla+bic+cPa+cPb+ 2).
By AM > GM and abc = 1 we have
4(a4c +b*a+cta+a®+b*+ P
= (a4c +ad*+ b4a) + (b4a +b% + c4b) + (c4b +cr+ a4c) + (a4c +ad*+ c2)
+ @' a+b*+a?) + b+ 2+ + (a*c+bra+c*b) + (@ + b2+ )
> 3V/ath? + 3v/b0c3 + 37/ c0a + 3v/abc3 + 3v/c0b3 + 3V aShS S
+3Va2b2?

= 3(a2b +ad’c+b*a+bic+cPa+ b+ 2),

and we are done. |

71 Let a, b, ¢ > 0 be real numbers such that abc = 1. Prove that
(@+b)yb+o)c+a)=4a+b+c—1).

Solution Using the identity

(a+b)b+c)(c+a)=(a+b+c)lab+ bc+ca)—1,
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the given inequality becomes

3
ab+bc+ca+ ———— =>4
a+b+c

By AM > GM we have

3 3(ab + bc + ca) 3 4 (@b + bc + ca)?
ab+bc+ca+ = + >4 .
a+b+c 3 a+b+c 9(@a+b+c)

So it’s enough to show that

(ab+bc+ca)’ >9a+b+c). (1)
By AM > GM and abc =1 we get
ab+bc+caZ3W=3. 2)
Furthermore, since (x +y + z)2 > 3(xy 4+ yz + zx), we deduce
(ab + bc + ca)2 > 3((ab)(bc) + (be)(ca) + (ca)(ab)) =3(@+b+c). (3)
By (2) and (3) we obtain (ab + bc + ca)® > 9(a + b +¢), i.e. (1) is true. [ |

72 Let a, b, ¢ be positive real numbers such that abc = 1. Prove the inequality

3 6

1+ > .
a+b+c~ ab+bc+ca

Solution Let x = %, y= %, 7= % Then clearly xyz = 1.

The given inequality becomes
3 6
+ > .
Xy+yz+zx x+y-+z

Using the well-known inequality (x + y + z)? > 3(xy + yz + zx) we deduce

3 9
sy
Xy + yz +zx x+y+2)

So it’s enough to prove that

9 6
1+ 5> .
x+y+2)* " x+y+z
The last inequality is equivalent to (1 — +i +z)2 > (0, and clearly holds. |

73 Let x, y, z be positive real numbers such that x2 + y? 4+ z2 = xyz. Prove the
following inequalities:
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1° xyz>27

2° xy+yz+zx =27

3 x+y+z=>9

4° xy+yz+zx>2(x+y+2) +09.

Solution

1° Using AM > GM we get

xyz=x>4+y2+22 >3 (xy2)2, ie. (xyz)’>27(xyz2)>,
which implies
xyz >27.

2° By AM > GM we get xy + yz + zx > 3/ (xyz)? > 38272 = 27.

3° By AM > GM and 1° we get x +y +z > 3./xyz > 3427 =9.

4° Note that x2 + y% 4+ z2 = xyz implies x2 <xyz, ie. x <yz; analogously y < zx
and z < xYy.

So xy < yz - zx, i.e. z2 > 1, from which we deduce that z > 1; analogously x > 1
and y > 1. So all three numbers are greater than 1.

Let’sdenotea=x —1,b=y —1,c=z— 1. Then a,b,c > 0 and clearly x =
a+1l,y=b+1,z=c+1.

Now the initial condition x% + y? + z> = xyz becomes

a?+b*+c*+a+b+c+2=abc+ab+bc+ca. @))

If we set ¢ = ab + bc + ca we have

q 3/2 (3¢)3?
a2+b2+022q, a+b+c>+/3q and abc§<§) ZT.

Finally by (1) and the last three inequalities we obtain

3/2
q—l—\/3q+25a2+b2+c2+a+b+c+2=abc+ab+bc+ca5 7 +q,
i.e.

(3q)¥/?
3 2< . 2
V3g+2< > 2

Denote +/3g = A. Then inequality (2) is equivalent to
A3 )
A+2§E < (A-60)(A+3)"=0,

from which we deduce that we must have \/3g = A > 6,1i.e. ¢ > 12.
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Hence
ab+bc+ca>12 < x-Dy-D+OG-Dz-1D+@E-Dx-1)>12,

from which we obtain xy 4+ yz 4+ zx > 2(x + y 4+ z) + 9, and we are done. |

74 Let a, b, ¢ be real numbers such that a3 + b3 + ¢® — 3abc = 1. Prove the in-
equality

a’+b>+c* > 1.
Solution Observe that
l=a>+b°+3 —3abc=(a+b+c)(a2+b2+c2—ab—bc—ca)

_(a+b+c)

> (@ —b)%+ (b —c)?+ (c—a)).

Since (a — )2+ (b —c)®* 4+ (c —a)? >0 wemusthave a + b + ¢ > 0.
According to

(a+b+c)(a2+b2+c2—ab—bc—ca):1

we deduce

b 2 2—b2— 2
(a+b+c)(a2+b2+cz—(a+ +c) 2a C):l

and easily find
LI (a+b+c)2+#
3 a+b+c)’
Since a + b + ¢ > 0 we may use AM > GM as follows

P Y I U S — > 1
3 a+b+c a+b+c) 7

as required.
Equality occursiffa +b +c=1. |

75LetabcdeR+suchthat+4+ b4+ L4+ d4—1Provethat

abcd > 3.

Solution 'We’ll use the following substitutions

1 1 | 1
— =, = =z,
1+ a 1+ b <

1+c* 14 d*

Then we obtain x +y +z+¢=1and a* = =% p* = Ty,c“:ﬁ,d“: 1t
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‘We need to show that

a*b*ctd* > 81,

l—x 11—y 11—z 1—t¢
X y Z t
Applying AM > GM we have

l—x I—y l—z I—t y+z+4+1 x+z+1 x+y+t x+y+z

X y 4 t X y Z t
- 3Yyzt 3J/xzt 3Yxyt 3Yxyz el
- X y Z t - )
as desired. [ |

76 Let a, b, c be non-negative real numbers. Prove the inequality

\/ab+bc+ca <\3/(a+b)(b+c)(c+a)
3 - 8 '

Solution The given inequality is homogenous, so we may assume that ab + bc +
ca=3.
Then clearly

(a+b+c)223(ab+bc+ca)=9, ie. a+b+c>3

and

b+b
1= w > V(abc)?, ie. abc<l.

So we need to prove that

\3/<“+b)(”+c)(c+“)zl ie. (@+b)b+o)c+a)=s.

3 ,
We have

(a+b)(b+c)(c+a)=(a+b—+c)(ab+ bc+ ca) —abc
=3(a+b+c)—abc>=9—-1=38,

and we are done.
Equality holds iff a = b = c. n

77 Leta, b, c, d be positive real numbers such that a + b + ¢ + d = 1. Prove that

16(abc + bcd + cda + dab) < 1.
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Solution We’ll show that
16(abc + bed + cda + dab) < (a + b + ¢ + d)°.
Applying AM > GM gives us
16(abc + bed + cda + dab) = 16ab(c + d) + 16¢d(a + b)
<4a+b)(c+d)+4(c+d)*@+b)
=4(c+d)a+b)a+b+c+d)
<(a+b+c+d)’.

It is obvious that equality holds if and only ifa =b=c=d = 1/4. |

78 Leta,b, c,d, e be positive real numbers such thata + b + c +d + e = 5. Prove
the inequality

abc + bed + cde +dea + eab < 5.

Solution Without loss of generality, we may assume that e = min{a, b, c, d, e}.
By AM > GM, we have

abc + bed + cde +dea + eab =e(a+c)(b+d) + bcla+d —e)

<a+c+b+d>2 <b+c+a+d—e)3
<el ————) +

2 3

5—¢e)2 (5-—2¢)3
_e5=e +( e)'
4 27

So it suffices to prove that

Y o3
e(5—e) + (5 —2e) -
4 27 -

57

which can be rewrite as (¢ — 1)2(e 4+ 8) > 0, which is obviously true.
Equality holds ifand onlyifa=b=c=d=e=1. |

79 Leta, b, c > 0 be real numbers. Prove the inequality

a b ¢ a+b b+c
> +
b ¢ a b+4+c cHa

+ 1.

Solution Letx =7,y =
Then we get

S

c y a+b x+1 b+c y+1
a x b+c y+1’ c+a x4y’
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and the given inequality becomes
x3y2+x2+x+y3+y22x2y+2xy+2xy2. (D
Using AM > GM we obtain

x3y2+x 2 )c3y2—|—x+y3+y2
— X"y, )

> ny2 and x*+ y2 >2xy.

After adding the last three inequalities we obtain inequality (1).
Equality occursiff x =y =1,1e.iffa=b=c. |

80 Leta, b, ¢ > 0 be real numbers such that abc = 1. Prove the inequality

a b c
(l+—)<l+—><l+—> >2(1+a+b+c).
b c a

Solution The given inequality is equivalent to

a a b b ¢ ¢
-4 -4 —F—+-—>2(a+b+o0).
c a ¢ a b

b
Furthermore
g+g+1=g—|—g+abcz3\/3a3=3a.
b ¢ b ¢
Analogously
b b
2124123 and S+ <4123
a C a b
So
a a b b ¢ ¢
—+—4+—-+-+—-—+-+3=>3@+b+o0). (1)
b ¢ a ¢ a b

It is enough to show that a + b + ¢ > 3.
We have a + b + ¢ > 35/abc = 3, and finally from (1) we obtain

b b ¢

a a c
—+E+E+;+;+Z+322(a+b+0)+(a+b+0)22(a+b+0)+37

b
i.e.
a a b b ¢ ¢
-4+ —-—4+—-4+-4+—-+-=2(a+b+0).
b ¢ a ¢ a b
Equality holds iffa=b=c=1. |

81 Let a, b, c be positive real numbers such that a +b + ¢ > % + % + % Prove the
inequality
2

3
b >+ —.
at +c_a+b+c+abc
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Solution By AM > HM we get

1 1 1 9
at+b+c>=x—+-+->—-——,
a b ¢ a+b+c
i.e.

a+b+c> 3
3 “a+b+c

(D

We will prove that

2(a+b+c) - 2

- 2
3 ~ abc 2)
i.e.
3
a+b+c>——.
abc

Using the well-known inequality (xy 4+ yz +zx)? > 3(xy + yz + zx) we obtain

1 1 1)\’ 11 1 a+b+c
(a+b+c)2z<g+g+;) 23<—+—+—>:37,

ab  bc  ca abc
ie.
3
a+b+c>—.
abc
After adding (1) and (2) we get the required inequality. |

82 Leta, b, c, d be positive real numbers such that abcd = 1. Prove the inequality

1+ab+1+bc+1+cd+1+da>4
1+a 1+b 1+¢ 1+d —

Solution Clearly cd = - and ad = 4-.
Now we have

A_1+ab l+bc 1+cd 14da
1+a 1+b I+c 14+d
l+ab 1+bc 1+1/ab 1+1/bc

T 1+a | 14b ' 1+c 1+d

1 1 1 1
=(1+ab 1+b ¢!
(1+a )(1+a+ab+abc>+( + C)<l+b+bc+bcd> M
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By AM > HM and (1) we deduce

1 1 1 1
A=(1+4ab 1+b
(1+a )<1+a+ab+abc)+( + C)<1+b+bc+bcd)

4(1 + ab) 4(1 4 bc)
“1+a+ab+abc 1+4+b+bc+ bed

_4 14+ab n 1+ bc
- l1+a+ab+abc 1+b+bc+ bed

1+ab a+abc
4 ‘ . @
l1+a+ab+abc a+ab+ abc+ abcd

Since abcd =1 from (2) we obtain A > 4, as required. |

83 Leta, b, c € R, Prove the inequality

1 n 1 n 1 - 27
ba+b) cb+c) alc+a) ~ 2a+b+c)?

Solution Applying AM > GM we have

1 1 1 ; 1
b(a + b) + c(b+c) + a(c+a) = 3\/abc(a +b)(b+c)(c+a) )

and
+b+c>33abe, ie L ,_3 (2)
a c abe, ie. > .
- Jabc " a+b+c
Furthermore
1 3,
a+b+C=5((a+b)+(b+6)+(c+a))z5\/(a+b)(b+6)(c+a),
i.e.
1 3
3)

Sa+b)b+c)c+a) = 2a+b+c)
Combining (2), (3) and (1) we get

S S Z$¢ 1
ba+b) cb+c) alc+a) abc(a+b)(b+c)(c+a)

3 3 3 B 27
= a+b+c 2a+b+c) 2a+b+0)?
]
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84 Leta, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove the inequality

a? b? c?

+ +
b2 —2b+3 2—2¢c+3 a?-2a+3

3
> .
-2
Solution Since a + b+ c =3 by OM > AM we have
G-1D*=((1-a)+1—0)*<2(la— 1>+ (c— D).
Hence
2 _ 2 2 2 2 2 5 2 2
b-1 55((a—1) +Bb-1D"4+ (-1 ):§(a + b“ +c” —3).
So we have
2 2 2 5 2 2 2 5 2 2
b —=2b+3=(0b-1) +2§§(a +b“+c —3)+2:§(a +b° + ),
which implies

a? a? 3a?

> = .
b2 —2b+3 7 22+ b2 +c?)  2a*+br+c?)

Similarly we get

b2 3b2 c? 3¢?
> and > .
2—2c+3 " 2@?+b2+c2) a?—2a+3 " 2(a@®2+b2+c2)

By adding the last three inequalities we obtain the required inequality. |
85 Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove the in-
equality

1 1 1 1
3 + 3 + 3 <—
1+a*b+c) 14+b(c+a) 1+c*(a+b) ™ abc

Solution Observe that

1 1 1 1
l4+a?2(b+c¢) l+a@h+ac) 14+aB—be) 3a+1—abc’

By AM > GM we get

| = W > Yabo?.

Thus

abc < 1.



266 21 Solutions

Therefore
1 B 1
l4+a2(b+c) 3a+1—abe

1
<.
~ 3a
Similarly,
1 1 1 1

— < and ——— < .
1+b%c+a) ~ 3b 1+c2(@a+b) ~ 3¢

Now we have

1 1 1
1+a2(b+c0) + 14+ b%(c+a) + 1+c2(a+b)

<1 1+1+1 _1 ab+ bc+ ca . 1
—3\a b ¢) 3 abc " abc’

Equality holds iffa=b=c=1. |

86 Leta, b, ¢ be positive real numbers such that a + b + ¢ = 1. Prove the inequality

aJ1+b—c+byJ1+c—a+aJl1+a—b<1.

Solution Notethat 1 +b—c=a+b+c+b—c=a+2b>0.
Now by GM < AM we have

1+b— 1+1 b—
av31+b—c§a + ;+ + :a+a(3 c).

Similarly

b(c —a) c(a—Db)

b +c—a<b+ and cv1+a—-b<c+ T

Adding these three inequalities we get

a\3/1+b—c+b\3/1—I—c—a+c«3/1+a—b§a+b—|—c=1.
Equality occurs iffa=b=c=1/3. |

87 Leta,b,c € RT such that a + b + ¢ = 1. Prove the inequality

1—2ab 1—2bc 1—2ca
+ + =
c a b

Solution We have
1-2ab 1—-2bc 1—2ca
+ +
c a b
_(a+b+c)*—2ab N (@a+b+c)? —2bc N (@a+b+c)?—2ca
N c a b
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_a2+b2+cz+2bc+2ac+a2+b2+cz+2ac+2ab

c a
+a1+ﬂ+w2+mw+2m
b
S 1 1
=@*+p+c% +ot o +4(a+b+c)
2 2 1 1
=@ +b*+c t,TC +4. M
By OM > AM we get
b+c)? 1 1 1 1 9
Py peetbror oy L9
3 3 a b ¢ a+b+c

Finally, from previous inequalities and (1) we obtain

1—2ab 1—-2bc 1—2ca
+ +
c a b

11 9
(2+#+w%< + -+ >+4z—+4=1
b 3 n

88 Let a, b, ¢ be non-negative real numbers such that a’ + b% + ¢? = 1. Prove the
inequality
1—ab+l—ab+1—ab 1
7—3ac 7—-3ac 7—3ac 3

Solution First we’ll show that
1 1 1 1
7 3ab 7 —3bc 7 —3ca -2
By AM > HM we have

(D

IA

1 1 1 1
= <= +1).
7—3ab  3(1—ab)+2+2 9<3a—am )

Similarly we get

1 <1 1 1 d 1 <1 1 ‘1
— an — .
7—3bc — 9\ 3(1 —bc) 7—3ca — 9\ 3(1 —ca)

So it follows that

! + ! + L ] ! + ! + ! + 2
7—3ab  7—3bc 7—3ca " 27\1—ab 1—bc 1—ca 3
Recalling the well-known Vasile Cirtoaje’s inequality

1 . 1 n 1 -
l—ab 1—bc 1—ca ™

\SYINe)
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by (2) we obtain

1 1 1
7—3ab+7—3bc+7—3ca

1
<-.
-2
Since a? + b% 4 ¢2 =1 we have a, b, ¢ < 1 and then clearly

7 —3ab,7 —3ab,7 —3ab >0,

so by AM > GM we have

7—3ab+7—3ab+7—3ab>
7—3ac  7—3ac 7-3ac

3)

Finally by (2) and (3) we have

3—3ab+3—3ab+3—3ab
7—3ac T—3ac 7T-—3ac

_ 7—3ab+7—3ab+7—3ab 4 1 n 1 n 1
" \7-3ac  7-3ac 7-3ac 7—3ab T7—3bc 7—3ca

>3-2=1,

i.e.
1—ab 1—ab 1—ab 1
=

7—3ac+7—3ac+7—3ac 5’

as required. |

89 Letx,y,z € RT such that x + y + z = 1. Prove the inequality
1

S_

Xy X vz
1 + 1 + 1 2
\/§+Z2 \/§+y2 \/§+x2

Solution We have

x2+y2+12+2(xy+yz+zx) 42

1 1
+x2=§(x+y+z)2+x2= 3

3
xy+yz+zx+2(xy+yz+zx
= yry 3(y ) )+x2:xy+yz+zx+x2

=(x+y)x+2).

Now we get

HM<GM 1 1
2 Xf( + ). (1)

rz < <
\/%+XQ_J(x+y)(x+z) - 2 \x+y x+z
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Analogously

Xy <ﬂ< 1 n 1 )
1+Z2 2 \z+x z+4Yy

3

and

X X 1 1
7/57 + + +x )
%—I—yz yrz oy

Adding (1), (2) and (3) we obtain

xy 1 1 X 1 1 yz 1 1
L=<— + +=|—+ + = +
2 \z+x z+Yy 2\y+z y+x 2\x+y x+z

1<xy+yz xy+zx+yz+zx>_x+y+z_

1
T2\ x4z y+z y+x 2 2

90 Leta, b, c be positive real numbers such that a + b + ¢ = 1. Prove the inequality

a—bc b—ca c—ab 3
<=

a+bc+b+ca+c+ab_2

Solution Note that

a—bc_ 2bc _ 2bc _ 2bc
a+bc l—b—c+bc (A=b1=-¢) (c+a)a+b)

1

i.e.
a——bc 11— 2bc
a+bc (c+a)a+b)
Similarly we get
b—ca= _ 2ca and c—abzl_ 2ab '
b+ ca (c+b)y(b+a) c+ab b+c)(c+a)

Now the given inequality becomes

- 2bc Ll 2ca 1 2ab
(c+a)a+b) (c+b)b+a) b+co)c+a)

3
< =
-2

or
2bc n 2ca n 2ab
(c+a)a+b) (c+b)bta) (b+c)ct+a)

After expanding we get the equivalent form as follows

3
> =,
-2

4(bc(b+c) 4+ ca(c+a) +ab(a + b)) > 3(a+ b)(b+ c)(c+ a),
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i.e.
. 1 1 1
ab+bc+ac>9abc, ie. —+ -+ ->09,
a b ¢
which is true since
Loy % o ams e
b ¢ a+b+c - '
Equality occurs iffta=b=c =1/3. |

91 Leta, b, ¢ be positive real numbers such that abc = 1. Prove the inequality

\/a+b \/b+c \/c+a
+ + > 3.
a+1 c+1 a+1

Solution By AM > GM we get

\/a+b \/b+c \/c+a \6/(a+b)(b+c)(c+a)
+ + >3 :
a+1 c+1 a+1 (a+ DB+ D(c+1)

So it suffices to prove that

(a+b)(b+c)c+a) -
@+ D@+ Dc+1) —

i.e.
(@a+b)yb+c)c+a)= @+ DB+ D+ D).
Since abc = 1 we need to prove that
ab(a+b)+bc(b+c)+ca(c+a)>a+b+c+ab+ bc+ca. (D)

According to AM > GM we have

2(ab(a + b) + be(b + ¢) + ca(c + a)) + (ab + bc + ca)

=Z(a2b+a2b+a2c+azc+bc)zSZa:S(cz—i—b—i—c) 2)

cyc cyc

and

2(ab(a+b) +bc(b+c)+ca(c+a))+ (a+b+c)

=Z(a2b+a2b+b2a+b2a+c)zSZab:S(ab—}—bc—i—ca). 3)

cyc cyc
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After adding (2) and (3) we obtain

4(ab(a + b) + bc(b+ ¢) +ca(c +a)) + (ab+ bc+ ca) + (a+ b+ c)
> 5(ab+ bc+ca)+5(a+b+c).

Hence we have proved (1), as required. Equality holds iffa =b=c=1. |

92 Let x, y, z > 0 be real numbers such that xy + yz 4+ zx = 1. Prove the inequality

X y z <3\/§

1+x2+1+y2+1+z2_ 4

Solution We have
l+x2=xy+yz+zx+x>=x+y)(x +2).
Analogously we obtain
1+y>=(+x)(y+z) and 1+z22=@E+x)z+).

Therefore
X y z X y z
1+ x2 + 1+y2 + 1+22 (+nx+2 * G+x)(y+2) + (z+x)(z+y)
_x(y+ ) +ty(x+2) tzix +y)
O+ DE+)
2

— : (1)
x+y+@E+x)
It is easy to show that
x+yOo+20@+x)=x+y+z—xyz. )
Due to the well-known inequality (x + y + 2)% > 3(xy + yz + zx) we obtain
(x+y+2?=3xy+yz4+z0)=3, ie. x+y+z>+3. 3)
Applying AM > GM it follows that
xy 4+ yz +zx > 37 (xy2)2,
ie.
Lt e -2 )
— > (xyz — >XVyZ.
27 = 33
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Using (3) and (4) we obtain

1 8
X+y+z—xyz>=V3-——=——. (5)
Y Y V3 33
Finally using (1), (2) and (5) we get

x z 2 2 3J3
; s 7+ 2= = = :

I+x* 14y 1422 x+»O0+2)E+x) x+y+z—xyz~ 4
Equality occurs iff x =y =z = % |

93 Let a, b, c be non-negative real numbers such that ab + bc + ca = 1. Prove the
inequality

1 1 1 33
+ + > f.
Il+a 14+b 1+c~ /341

Solution After some algebraic calculations we get
4+2a+bto) 3J3
2+a+b+c+abc ™ /341
& 2Q4a+b+0W3+1)=3V3Q+a+b+c+abe)

33
2-V3

& 24 @+b+c)>

abc,

ie.
24 (a+b+c)>3V32+3)abe. (1)
Applying AM > GM we obtain

1 =ab + be + ca > 3v/ (abe)?,

i.e.
! > ab 2)
—— >abc.
B
Also we have
a+b+c> V3. 3

Using (2) and (3) we get
24 (@+b+c)>2++/3>3V32++/3)abe,

i.e. we have shown inequality (1), as desired.
Equality holds if and only if a = b = ¢ = 1//3. |
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94 Let a, b, c be non-negative real numbers such that ab + bc + ca = 1. Prove the
inequality

2 2 2
a b c 3
L
I4a 14b 14c~ /3+1

. . 2
Solution Using 1"? =x—-1+ ﬁ we have

AL A S S S B
=da — .
l4a " 14b 1+c ¢ l4a " 1+b 1+c

Now using the result from Problem 89 and the inequality a + b 4 ¢ > +/3 we obtain

a2+b2+c2 TSI SR
=d C —
l4+a 140 1+4c¢ l4+a 1+b 1+4c¢
3V3 3
>V3-3+ Vi _ 3 .
V3i+l 341
Equality occurs if and only if a = b = ¢ = 1//3. |

95 Leta, b, c € RY such that (a + b)(b + ¢)(c + a) = 8. Prove the inequality
a+b+c - ulad +b3+c3
3 - 3 '

(a+b+e)’ =+ +3+3@+b)b+c)(c+a)

Solution We have

=P+ +24=+P+ 434+ 43
| ——
8

> 9v/(a3 + b3 + ¢3)38

a+b+c\® Jad+p3+3 a+b+c wlad+b3+3
= > , 1le. = .
3 3 3 3 -

. . 4_ .2
96 Find the maximum value of );Hﬁ’ where x e R, x > 1.
Solution We have
4 2 1 1
x*—x X — = X —=
X — X (1)

R BN T R R 5 T )

X
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)

Since x > 1 we have 1 > %,i.e.x — )% > 0.
From AM > GM we get

1\° 1\? ; 1\? 1
x——) +2={x——) +1+1>3/|x——) -1-1=3{x——.
X X X X

Now in (1) we obtain

We’ll show that

4 2 _1 _1 1
X=X X~ x Xy Xy

B0 1 di2-%  G-pr2+3a-Db 3@ Dt3a-1)

97 Let a, b, c be positive real numbers. Prove the inequality

a+\/ab+\3/abc<3 a+b a+b+c
—_—_—nm ao . _
3 - 2 3

Solution Applying AM > GM we get

b
ﬁab-a—; 2\3/ab-«/%=
/ b
a+Vab+v3abc§a+ 2’ab~a;— + Vabc.

Now, it is enough to show that

3 a+b
Y 2

Another application of AM > GM gives us

So

3abcf3\3/a.a;b.%b—+_c.

\3/1 2a 3a 1+ a+h + a+h+c 1.1, 3b < 2+ a+b+c
a+b a+b+c 3 ’ a+b+c— 3
and
\3/1_ 26 3¢ < 1+ 2 a+b + a+b+c
a+b a+b+c ™ 3
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Adding, we obtain

\7261 3a \7 3b \/ 2b 3¢
. + + : S3a
a+b a+b+c a+b+c a+b a+b+c
1 2 3 b
\3/_.—'7 a+,3/ab-a+ + abc ) <3,
a a+b a+b+c 2
3 at+b \g/ a+b a+b+c
lab - —— 4+ 3/ . et iy
a+.la 5 + Vabc <3.la > 3 n

98 Let a, b, ¢ be positive real numbers such that abc(a + b 4+ ¢) = 3. Prove the
inequality

i.e.

i.e.

(@a+b)(b+c)c+a)>8.
Solution We have
A= (a+b)b+c)c+a)=(ab+ac+b*>+bc)(c+a)
=(ba+b+c)+ac)(c+a)= (% +ac>(c+a).

By AM > GM we obtain

3 1 1 1
A:(;—}—ac)(c—}—a):( +—+—+GC>(C+61)

ac

>4 /(a)3 2/ac= 4\/_ 2/ ac=8.

Equality occurs iff a = ¢ and % =ac,i.e.a =c =1, and then we easily get b = 1.
[ ]

99 Leta, b, c be positive real numbers. Prove the inequality

\/ 2a \/ 2b / 2c
+ + <3.
b+c c+a a+b

Solution Applying AM > HM we get

1. 2a 2 4a
V' b4c™ 1+b+° “2atbtc
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Analogously we obtain

2b 4b 2¢ 4c
/ < and =< .
c+a " a+2b+c a+b " a+b+2c

So it is enough to prove that

<3

b
al—2—+ +— )<
2a+b+c a+2b+c a+b+2c

’

i.e.
a n b n c
2a+b+c a+2b+c a+b+2c

Since the last inequality is homogeneous we can assume thata +b +c = 1.
Now inequality (1) becomes

<3 1
=7 (D

a n b n c
l4a 14+4b 1+c¢

3
< T i.e. 5(ab+ bc+ ca)+9abc <?2. 2)

By the well-known inequality 3(ab + bc + ac) < (a + b + ¢)*> and AM > GM we
obtain ab + bc +ac < % and abc < % Now it is quite easy to prove inequality (2),
as desired. |

100 Leta, b, c € R such that ab + bc + ca = 1. Prove the inequality

1 1 1
a(a + b) +b(b+c) +c(c+a)

>

NS} Ne]

Solution The given inequality is equivalent to

cla+b)+ab a(b+c)+bc b(c+a)+ac>9
aa+b) b(b+c) clc+a) ~ 2
i.e.
a b ¢ b c a 9
— 4+ = _ > _
b ¢ a a+b b+c cH+a” 2
a+b b+c cHa b c a 15
+ > — (D
b c a a+b b+c cHa 2
‘We have
at+b b+c c+Ha b c a
+ + +
b c a a+b b+c cHa
a+b b+c cHa b c a
= + +

4b 4c 4a a+b+b+c+c+a
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4 b c a

>6\6/a+b b+c c+a b c a +3 a~|—b+c+3
- 4b 4c da a+b b+c c+a 4\b ¢ a

3/ 4a b c 18 15
>3+ -3 —--—— +3)=34+—=—
4 c a

as required. |

3/a+b b+c c+a
+ +

101 Let 0 <a < b < c <1 be real numbers. Prove that

108
2 2

b—c)+b by+c (1—c)<—
a“( c) (c—b) c( c)_529

Solution Using AM > GM we have

2 2 2 1 2
a“b—c)+b(c—b)+c (1—c)§0+§(b~b'(20—2b))+c (1-o0)

[\

1/b+b+2c—2b\°
S—(%) +c*(1—c)

=’ i +1—-c 1— e
—\27 27
(34 (B (3¢ (, _ 2B¢
-\ 23 54 )\ 54 27
54\2(1)° 108
23) \3) " 509 u
102 Leta, b, c € RT such that a + b + ¢ = 1. Prove the inequality

256
S=a*b+b* <=0
@bt C+”’—3125

Solution Without loss of generality we can assume that a = max{a, b, c}.
So it follows that

4 2.3

b4c§a3bc and c"a <c‘a §ca4.

Since 34—C > 5 we obtain
Aa ta 4 2.3

4 4 4 3 ca cTa
=a'b+b +—+—< b+a’bc+ —+ —
S a C a a oc

3 a’c 3 c 3 3¢
=a b(a+c)+T(a+c)=a (a—+c) b+5 <a’(a+c) b+Z . ()
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Now using (1) and AM > GM we get

3 3
s§a3(a+c>(b+z“>:44.z.z.z.m.(b+_0>

<44(%+%+%+%+(b+ %))5_44(a+b+c>5_ 256
< : = =

103 Let a, b, ¢ > 0 be real numbers. Prove the inequality

a2+b2+cz>a+b+c
b2 2 a2 b ¢ a

Solution Let % =x, % =y, % = z. Then it is clear that xyz = 1, and the given in-

equality becomes

x2+y2+z22x+y+z.

/x2+y2+z2>x+y+z
3 - 3 ’

( +y+Z)2 3Yyi+y+x)
3 - 3

From QM > AM we have

i.e.

Xyt

X+y+z. m

104 Prove that for all positive real numbers a, b, c we have

ad o3
nta +—>a+b—|—c

Solution Using AM > GM we get

613 a3
s t2b= kb b=3 s bob=3a.

Analogously we have
b3 3
—2+2C23b and —2+2(133C
c a

Adding these three inequalities we obtain

3 b3 3
+—5+—>5+2a+b+c)=3@+b+o),
C a

a
b2
as required. Equality holds iff a = b = c. |
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105 Prove that for all positive real numbers a, b, c we have

3 b3 C3 a2 b2 C2
i — > — i -
+ 2 + 2> + + P

a
b?

Solution Using AM > GM we get

a’ a’ a?
Analogously we have
b b? o c?
—+b>2— and —+c=>2—.
c? c a? a

Adding these three inequalities we obtain

ad b» 3 a> b
-+ =+ b >2l —+—+—). 1
b2+02+a2+(a+ +c) > <b+c+a> (D
According to Exercise 2.12 (Chap. 2) we have that
2 2 2
a b c
—+—+—>=a+b+tc. )
b c a

Now using (1) and (2) we obtain

a3 b3 6‘3 a2 b2 C2 a2 b2 C2
atat +(a+b+c)>2(b+ + ) 5t T tatbto,

v

and equality holds iff a =b =c. |

106 Prove that for all positive real numbers a, b, ¢ we have

3 3 3

b
a—+—+c—zab+bc+ca.
b c a

Solution Using AM > GM we get

33 303
“—+—+bc>3 &2 be =3ab.
b b ¢

Analogously we have

b3 3 3 3

—+C—+caz3bc and C—+a—+abz3ca.
c a a b
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Adding these three inequalities we obtain

a3 b3 (,’3
2(74——4——) +ab+ bc+ ca = 3(ab + bc + ca),
c a

from which follows the desired inequality. Equality holds iff a = b =c. |

107 Prove that for all positive real numbers a, b, ¢ we have

5 b5 CS

a +—3+—3202+b2+cz.
c a

b3

Solution Using AM > GM we get

2a5 3b2 B a5 a5
P IS

2 2 2 sa> ad 2 12 12 2
+b°+b"+b">5 b_S'ﬁ'b'b b2 =5a"°.

Analogously we have

b o
2— + 3¢2 > 5b% and 2+ 3a% > 5¢2.
C a

Adding these three inequalities we obtain

@ bp 2 2, 2 2 2, 2
2 stats +3(@"+b"+c7) =5 +b"+ ),

b3
ie.
5 5 5
a b c 2 a9
ﬁ+c_3+a_32a +b°4c”.
Equality holds iff a = b = c. |

108 Leta, b, c € RT such that a + b + ¢ = 3. Prove the inequality

a’ b3 3
+ + >1
bQ2c+a) cRa+b) alb+c)

Solution We’ll show that

a’ b3 e a+b+c
+ + > ,
bQc+a) cQRa+b) ab+c) 3

from which, with the initial condition, will follow the desired inequality.
Using AM > GM we get

943
3b+ (2 >3] ———.3b.(2 =9q.
+3b+ 2c+a)> \/b(2c+a) (2c+a)=9a

94>
b(2c + a)
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Analogously we have

LA +(Qa+b)>3b and 9 L, +Qb+e)=3
EaEE——— C a an EE—— a C C.
c(2a +b) - a2b +¢) -

Adding the last three inequalities we obtain

a’ b3 3
? 6(a+b >9a+b+c),
<b(20+a)+c(2a+b)+a(2b+c))+ (@+b+c)=9%a+b+c)
i.e.
a’ b’ c a+b+c 3
+ + > "
b2c+a)  cQRa+b)  ab+o) 3 3 -

109 Leta,b,c € Rt and a® 4 b* + ¢? = 3. Prove the inequality

al n b3 n 3 -1
b+2c c¢c+2a a+2b~

Solution We’ll prove that

a3 b3 A3 a?+ b2 42
+ + >
b+2c c¢c+2a a+2b 3

)

from which since a2 + b2 + ¢ = 3, we’ll obtain the required result.
Applying AM > GM we get

3

b+2c

3
a-(b+2c)=6a.

Fab+20)> 2] 22
a4 V=N broc

Analogously we deduce

9 3 3
+b(c+2a)>6b and —o -+ cla+2b) = 6.

c+2a

Adding the last three inequalities we obtain

al b3 3
9 + + +3(ab + bc + ca) > 6(a*> + b> + %)
b+2c c+2a a+2b - ’

i.e.

a’ b3 A3 - 6(a% + b% + ¢*) — 3(ab + be + ca)

1
b+2c+c+2a+a+2b_ 9 )

Using the well-known inequality

az—i-bz—i—czzab—i—hc—i—ca,
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according to (1) we obtain

a’ b3 3 >3(a2+b2+cz)_a2+b2+cz_3

A
b+26+c+2a+a+2b_ 9 3 3 L

110 Let a, b, ¢ be positive real numbers such that a® + b% + ¢ = 3. Prove the
inequality
1 . 1 . 1 -1
a+2 bP+2 A+27

Solution We have

1 1 a3 1 a3 1 a’ 1 a?
—=—(1- = (1l—-—a—)>=(1-=—)==(1-=—).
ad+2 2 a’+2 2 a+1+1 2 3a 2 3

Therefore

1 N 1 N 1 >11 a2+11 192+11 2
ad+2 b34+2 S+2° 3 2 3 2 3

Equality holds iffa=b=c=1. |

111 Leta, b,c € R such that a + b + ¢ = 1. Prove the inequality

a’ n b3 n 3 - 1
a2+b2 b2+ 24a2 2
Solution Clearly we have
a’ +b? . ab 1
>ab ie. —— <-—.
2 a?+b?2 "2
Therefore
a’ b ab - b
——=a—-b——=>a——.
a? +b? a?+bv> = 2
Analogously
b3 c 3 a
——>b—= and ——>c— —.
b2 42~ 2 02+a2_c 2

After adding these and using a + b 4+ ¢ = 1 we obtain

a3 n b3 . 3 ~at bt a+b+c a+b+c 1
a C — = = —.
a?+b2  b24+c2 0 cZ4a? 2 2 2 u
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112 Leta, b, c be positive real numbers such that a + b+ ¢ = 3. Prove the inequality

1 1 1
>1
1+2a2b+ 1—|—2b2c+ 1+2c2a —

Solution Note that

1 2a%h 2a% 2a%b
14242 142a2b 14a?b+a?b ~ 3722
B 23%b>1 2(2a + b)
e B

After adding these inequalities for all variables we get

1 N 1 N 1 - 6(a—|—b—i—c)_3 1
1+2a2b  1+2b%c  1+2c%a ~ 9 B -
as required.
Equality holds iffa =b=c=1. n

113 Let a, b, c, d be positive real numbers such that a + b + ¢ + d = 4. Prove the
inequality

a n b n c . d -
1+b%2¢c 14c%d 1+d%a 1+a%b—

Solution Applying AM > GM we have

a ab’c ab’c ab\/c b/a-ac
—=a- >a— =a-— >a— ——
1+ b%c 1+ b%¢ 2b./c 2 2
e b(a + ac)’
= 4
ie.
a

1
T 5% >a— Z(ab—i—abc).

Analogously we obtain

b 1 c 1
>b— —(bc+bcd), >c— —(cd +cda),
T > 4( ¢+ bed) 1+d2a_c 4(c + cda)
d

1
>d — —(da + dab).
a2 =47 3atdab)
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Adding these three inequalities we obtain

a n b n c n d
14+b%c 14+c2d 14d%a 14+a?b 0
1
>(a+b+c+d)— Z(ab—l—bc—i—cd—i—du+abc+bcd—|—cda+dab).
One more use of AM > GM give us
1
ab+bc+cd+da§Z(a+b+c+d)2:4 2)
and
1
abc+bcd+cda+dab§1—6(a+b—|—c+d)3:4. 3)
From (1), (2) and (3) it follows that
a n b n c . S4_9—2
14+b%  1+c%d  1+d%a  1+a%h ™~ -7
as desired.
Equality holds if and only ifa =b=c=d = 1. |
114 Let a, b, ¢, d be positive real numbers. Prove the inequality
a’ n b3 n P n d? - a+b+c+d
a?+br b 4c? 2+d? dP+a? T 2 )
Solution Using AM > GM we get
a’ ab? - ab? b
———=a-———=>a——=a— —.
a? +b? a2 +b2— 2ab 2
Analogously
b3 c P d a3 a
—>b__9 726__7 7Zd__'
b2 42— 2 24 d? 2 d?+a? 2
Adding these inequalities give us the required inequality. |

115 Leta, b, c be positive real numbers such that a + b+ ¢ = 3. Prove the inequality

a? b? c?

> 1
at202 T bhr22 et

Solution Applying AM > GM we get

a? 2ab? 2ab? 2(ab)*/3
—_—=a — 2 a — =da — .
a + 2b? a+ 2b? 3T ab* 3




21 Solutions 285

Analogously we obtain

b? 2(bc)?/? c? 2(ca)?/?
>b— an >c— .
b+ 2c? 3 ¢ +2a? 3

Adding these three inequalities gives us

2 b2 2

2
? +- —l—c2a2 2 (@+b+0) = S(@by + ey’ + (ca)’”).

a—|—2b2+b—i—2c2

So it is enough to show that
2
(@+b+0) = 3@ + ey’ + (ca*) = 1.
ie.
(@b)*? + (bc)* + (ca)* < 3. (1)
Applying AM > GM we get

@h)? + b + (ca)?’ < (a4+ab+b)+b+bc+c)+(c+ca+a)

3
_2(a+b+c)+(ab+bc+ca)
B 3
_2@+b+o+@+b+o’/3 23433 _;
= 3 3 )
i.e. we have proved (1), and we are done.
Equality holds iffa=b=c=1. |

116 Leta, b, c be positive real numbers such that a +b+ ¢ = 3. Prove the inequality

a? n b? n c? -1
a+2b3  b+2c3  c+42a3

Solution Applying AM > GM gives us

a® 2ab’ - 2ab? 2ba*3
——=a- a— =a-— .
a+2b3 a+2b3 ~ 35 ab? 3
Analogously
b2 2cb?/3 2 2ac*/3
——>b-— and >c— .
b+2c3 3 c+2a3 3

Adding these three inequalities implies

a2 n b2 n C2 >( +b+ ) 2(b 2/3+ b2/3+ 2/3)
a c)— —(\ba C ac .
a+2b2 b+2C2 C+2a2 3
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So it is enough to prove that
2
(a+b+c)— g(ba2/3 +cb?B +ac*?) > 1,
ie.
ba*? + cb*3 + ac?3 <3. (D)
After another application of AM > GM we get

3
a+b+c—+2(ab+ bc+ ca)
- 3
- (@+b+c)+(a+b+c)?/3 3+2-32/3 _;
< 3 3 ;
i.e. we have proved (1), and we are done.
Equality holds iffa=b=c=1. |

117 Let a, b, ¢ be positive real numbers such that a? + b2 + ¢? = 3. Find the mini-
mum value of the expression
16
a+b+c+ ————.
a+b+c
Solution By the inequality AM > GM we get
16
a+b+c+——=>2/16=8,
a+b+c

16
a+b+c

with equality if and only if a +b+c = from which we deduce thata+b+c =

4 and then
16=(@+b+c)><3@+b*>+c*)=09,

a contradiction.
We estimate that the minimal value occurs whena =b=c,ie.a=b=c=1.
Leta + b+ ¢ = 73 Thus « =9 at the point of incidencea =b=c=1.
Therefore let us rewrite the given expression as follows

9 7

a+b+c+ + .
a+b+c a+b+c

ey
Applying AM > GM and 3(a” + b + ¢?) > (a + b + ¢)* we have

9
a+b+c+——>2/9=6 2
a+b

+c
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and
1 1 1
> = 3)
at+b+c™ /3@ +b2+c) 3
By (1), (2) and (3) we obtain
16 9 7 7 25
atbt+c+———=a+b+c+ + =26+ -=—,
a+b+c a+b+c a+b+c 3 3
with equality if and only ifa =b=c=1. |

118 Let a, b, ¢ > 0 be real numbers such that a? + b2 + ¢ = 1. Find the minimal
value of the expression

1
A=a+b+c+—.
abc

Solution By AM > GM we obtain

1 / 1
A:a+b+c+—z44abc-—=4,
abc abc

with equality iffa =b=c=——,ie.a=b=c=1.
Thus a2 + b2 +c* =3 # 1, a contradiction.
Since A is a symmetrical expression in a, b and ¢, we estimate that min A occurs
at the incidence pointa =b=c,i.e.a=b=c= 1/\/5
Hence at the incidence point we have a = b =c =
S S -
abe T (1/v/3)*
Therefore

L1
aabc T /3’

and it follows

that o =

1 8
A= b — = b
@t +c+abc @t +C+9abc+9abc

1 8 1 8
> 4. abc - =4C/j . 1
- ave 9abc + 9abc 9 + 9abc M

By OM > GM we obtain

2 b2 2 1
1/% > 3Jabe, ie. \/; > 3Jabe.

— >33 )

Hence

By (1) and (2) we get

4 8
A>— +3/3. - =43,
V3 9

So min A = 4+/3, and it occurs iff a = b = ¢ = 1//3. n
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119 Leta, b, c be positive real numbers such that a + b+ ¢ = 6. Prove the inequality

/9
Jab + bc + /bc + ca + ¥ca + ab + ) Z(a2+b2+62)§9.

Solution Analogously as in the first solution of Exercise 5.13 we obtain that

1/2(ab+b 48
3/ab+bc+3/bc+ca+€/ca+ab§z< (@b +be+ca) + > (D)

3

At the point of incidence a = b = ¢ = 2 we have a® + b> + ¢? = 12.
Therefore by AM > GM we have

9, 39@?+b24+c2)- 1212 1,
Z b2 4+ ¢2) = =— 24b24¢2)-12-12
J@ 402+ \/ WENE 4\/(a+ +c2)
23124 2
Sl a®+b"+c 424 . @)
4 3
By (1) and (2) we obtain
9
«S/ab+bc+«3/bc+ca+«3/ca+ab+,3/5(a2+b2+cz)
_1(2@b+bctca)+48 +1 a’* 4+ b*+c* 424
4 3 4 3
1 6%+ 72
=— b+c)+72) = =9,
12((a~|— +0)"+72) 2
as required.
Equality occurs if and only if a =b=c = 2. |

120 Leta, b, c € RT such that a + 2b + 3¢ > 20. Prove the inequality

3 9 4
S=a+b+c+—-—+—+->13.
a 2b ¢

Solution § =13 atthe pointa=2,b=3,c=4.
Using AM > GM we get

4 [ 4 9 [ 9 16 16
a+—>20a - —=4, b+ —->2./b-—=6, c+—>2/c-— =38,
a a b b c c

ie.
S P e 2Ys3 ad L(es 1) 52
4T )= 3 p)=> M g\eT o)==~
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Adding the last three inequalities we have

3 1 3 9 4

a+ b+— +o o 28

4 4 2b
Using a 4 2b + 3¢ > 20 we obtain

Lot lpi3ess
4T e=

Finally, after adding (1) and (2) we get

+b+ +3+9+4 > 13
a c — + - s
2b

as desired.

121 Leta, b, c € RT. Prove the inequality

1 1 1

23
S = 30a+3b2+—+36< +oot—

9 b bc

Solution S =84 atthe pointa=1,b=2,c=3.
From AM > GM we obtain

2 2 b2

2 2 5
2-a+—+42-—=a+a+—+—+—=>5]a*:

4 ab 4 ab ab~

o3 6 b2 A\ [(6)\°
342 611 =) (=
regrer=ni(5)(5) ()

o3 3 3 ° 3\3
C i3a+43- 227 ) =7
27+ R 27’ (ca)

i.e.

4

289

(1

2

»: 4 32 203 36 3 9
N2a+—+—) =45, —+ + > 11, 4 —+3a+— ) >28.
ab 27 ca

4 bc —

After adding these three inequalities we get

30 +3b2+23+36 1+1+1
“ = R
9 ab ' be

122 Leta, b, c € RT such that ac > 12 and bc > 8. Prove the inequality

1 1 1
S=a+bt+c+2| —+—+—)+—
ab ' be ' ca

8
abc
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Solution S = 12l at the pointa=3,b=2,c=4.
Use of AM Z GM gives us

8
-+ -+ —>3, -+ -4+ —>3, -4+ —-4+—>3 d
3tat s i 1t3t an
a+b c+24 4
3 2 4 abc "
i.e.
a+b+6 3 4b+c 8 12 - c a 12 -1
32 ab 7 2 4 be) 7 4 3 ca) T
a+b c_+_24>4
3 2 4 abc

After adding these three inequalities we get

6 32 84 24
3a+b+o)+—+ —+ —+—=40. (1)
ab bc ca abc

Also, since ac > 12 and bc > 8 we obtain

1 1 1 1
—<— and — <-,
ac ~ 12 bc — 8
so from (1) it follows that
26 78 26 78 121
40<385+ —+ — <3S+ ie. §>
Tt TRty e 2E n

123 Leta, b, ¢, d > 0 be real numbers. Determine the minimal value of the expres-

sion
2a 2b 2c 2d
1 1 1 14+ —).
( +3b>< T3 )( +3d>< +3a>

Solution By AM > GM we get

[2a [2b [2¢ [2d
A>2 ) — 2./ — 2,/ — -2,/ — =38,
3b 3c 3d 3a

with equality if and only if ZZ = %]L’ %—fl = %Z =1.
Hence 2(a+b+c+d)=3(a+ b+ c+d),ie. 2 =23, which is impossible.
Since A is a symmetrical expression in a, b, ¢ and d, the minimum (maximum)

occurs at the incidence point a = b =c =d > 0, and then

A_1+24_&5
B 3) 81
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We have

20 _1 1 1 a a_ s 1N’ (a\> 5(a\*"
33 3 3 3 3b 3 3b) ~ 3\b '

Similarly we get

1+2b>5 b\ 1+2c>5 c\*? d 1+2d>5 d\?*"?
— > - —>—(- n — > - .
3c—3\c) 3d = 3\d a 32~ 3\a

. . .- . 625
If we multiply the above inequalities we obtain A > %=.

Equality holds if and only ifa =b=c=d > 0. |

124 Let a, b, ¢ > 0 be real numbers such that a% + b% + ¢ = 12. Determine the
maximal value of the expression

A=avb?+c?+bVc? +a?+cva® + b2,

Solution Since A is a symmetrical expression with respect to a,b and c, max A
occurs whena=b=c>0,iec.ca=b=c=2.
Hence

2a> =2b*=2c* =38
and

2

b2+c2=c +a2=a2+b2=8.

By AM > GM we have

1
avb? + 2 = a3 B2 + B =aS B2 + )2 = 5‘6/(2“2)3 (B2 +c2)? -8

- l%z(zaz)(2412)(2612)(192 +c2) (b2 + ¢2)

2
1 8+6a>+2(b>+c?)  4+3a>+Db*+c?
-2 6 N 6 '
Similarly
v 4+ta+307 4+ . 44a2+ b2+ 32
bvct+a? < 5 and cva?+b2< g .

After adding the last three inequalities we get

- 1245?+b*+c?)  12+45-12

A
6 6

12,

with equality if and only if a =b =c = 2. |
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125 Leta, b, ¢ > 0 such that a 4+ b + ¢ = 3. Prove the inequality
(a® —ab + b*) (b — be + ) (¢? — ca +a®) < 12.

Solution Without loss of generality we may assume thata > b > ¢ > 0.
So it follows that

0<b>—bc+c?<b? and 0<c®>—ca+ad®<a’,

i.e. we obtain
(b2 —bc+ cz) (02 —ca+ad®) <a*b’.
Now we have
(a*—ab+ 192)(192 —bc+ cz)(c2 —ca+ az)
<a’b*(a* —ab+b?)

4 3ab 3ab oo 4 (1(3ab 3ab >\’
= @ —ab+ )<~ [ =+ = —ab+b
5 @ a+)_9<3<2+2+(a ab + b%)

_4 <a+b>2)3<i(w)3_i<£)3_12
9 3 -9 3 T9\3) 7 [ ]

126 Let a, b, ¢ be positive real numbers. Prove the inequality

@ —a*>+3)(B —b*+3)( = +3)>(a+b+c).

Solution For every positive real number x, we have that x> — 1 and x> — 1 have the
same signs, and because of this ==+ 1=02=-DE3-1)>0,ie. we
obtain

x° —x2+32x3+2.
Now we get
(@ —a>+3)(B° =" +3)( =P +3) = (@ + 2B +2)(° +2).
So it is enough to show that
@+ + D +D = @+b+o). (1)
After a little algebra we obtain that (1) is equivalent to
03P 43+ + )+ 2@ + b3+ 3d) + 8

> 3(a2b +b*a+b*c+ b+ cta+ azc) + 6abc. 2)
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Using AM > GM we can easily obtain the following inequalities
A +a+1>3a%,  d+dP+1=3d%, PP +d’h+1>3b%,
B+ +1 > 3b20, S+ +1 > 3cza, S+ +1 > 3czb,
CrE+P+ P+ +1+1 > 6abc.
After adding the previous inequalities we obtain inequality (2), as desired. |
127 Let x, y,z € RT such that x + y 4 z = 1. Prove the inequality

Xy X vz 1
+ + = .
Vi+22 J1+yr V14227 V10

Solution We have

V1i+z22=/9 12+2— LIS & Sy (L
“= 3) 7°F 32 2= /o\3 3¢
\—/—J
9 9
34z
V10~
i.e. we obtain that
AT e
14272 34z
Analogously we obtain
yz yz and X 9~

—— <10 — < V10 .
V1+x2 3+x V1i+y? 3+y

So it is enough to prove that

1
«/E(xy+zx+yz)< :
34z 34y 3+x)7 /10

i.e.
Xy X vz
+ +
34z 34y 34x
Leta=34+x,b=34+y,c=3+2z.

Then clearly a + b + ¢ = 10.
Inequality (1) is equivalent to

(a—3)(b—3)+(C—3)(a—3)+(b—3)(6—3)Ei’
c b a 10

<i 1
=10 (1)
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i.e.

ab—3@+b)+9 ca—3(c+a)+9 bc—3b+c)+9 1
+ + < —
c b a 10
ab+3c—21 ca+3b—21 bc+3a—-21 1
+ + < —
c b a 10
ab—21+ca—21+bc—21< 89
¢ b a ~ 10

After clearing denominators, we obtain
21@ (b +¢) +b*(a +¢) + b +a)) + 16(a’be + b*ac + 2ab)
> 58(a’b” + b2c? + *a?)
& (2lab —8¢*)(a — b)? + 21bc — 8a*) (b — ¢)?
+ (2lca — 8b%)(c — a)* > 0,
which is true since a, b, c € (3,4), i.e.
2lab —8c*>21-3-3-8-4>=61> 0.

In the same way we find that 21b¢ — 8a% > 0 and 21ca — 8b° > 0. |
128 Let a, b, c € RT. Prove the inequality

(a+b+0)°>27a?+b* + ) (ab + be + ca)?.

Solution Denote x =a+b+c,y =ab+ bc + ca.
Then we have

x0>27(x* = 2y)y?
& X0 > 27)52y2 — 54y3
& (2 =3yt +3x%y —18y%) >0,
which is true, since
2 _ 2 _ 4 2
x“=(a+b+c) =3(ab+ bc+ ca) =3y, x*>9y° and
3x%y >33y y=9y%
i.e. we have

x2=3y>0 and x*+3x%y—18y?>9y? +9y? —18y? =0. ]
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129 Leta, b, c € [1, 2] be real numbers. Prove the inequality
A+ +3 < Sabc.

Solution Without loss of generality we may assume thata > b > c.
Then since a, b, ¢ € [1, 2] we have

PP+b+1<a’*+a+1<2a+a+1<5a and

cz+c+1§a2+a+l§5a§5ab.

Because of the previous inequalities it follows that:

a+2<5a & (a—-2)(@*+2a-1) <0, (1)
S5a+b3<5ab+1 & (b-D0*+b+1-5a)<0, 2)
5ab+c* <5abc+1 & (c—1D(*+c+1—5ab) <0. (3)

Adding (1), (2) and (3) gives us the desired inequality.
Equality holds iffa =2, b =c=1. |

130 Let a, b, ¢ be positive real numbers such that ab + bc 4+ ca = 3. Prove the
inequality

(@’ —a*+3)(B —b>+3)(c* —c+3)=>27.
Solution For any real number x, the numbers x — 1, x2—1,x3—1and x*—1, are

of the same sign.
Therefore

x-—DE3=1>0, —DE3-1)>0 and 3 -DHE*—1) >0,

ie.
= —ct1>0, (1)
b —b*—b>+1>0, 2
a7—a4—a3+120. 3)

By (1), (2) and (3) we have
a—a*+3>a>+2, P -0 +3>p4+2 and *t—c+3>3 42
After multiplying these inequalities it follows that

(@ —a*+3)B - +3)(c* —c+3) > @ +2B*+2)(+2). @
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Analogously as in Problem 126, we can prove that
@+ + D +D = @+b+o). 5)

By the obvious inequality (a + b + ¢)? > 3(ab + bc + ca), since ab + bc + ca =3
we deduce that

a+b+c>3. (6)
Finally from (4), (5) and (6) we obtain the required inequality.
Equality occurs iffa=b=c=1. |

131 Leta, b, c € [1, 2] be real numbers. Prove the inequality

1 1 1
(a+b+6)<—+—+—)510.
a b ¢

Solution The given inequality is equivalent to

a b ¢ b ¢ a
-4+ —-4+-4+-4+-4+-<T7 1
b ¢ a a b ¢
Without loss of generality we may assume thata > b > c.
Then, since (a — b)(b — ¢) > 0 we deduce that

b
ab—i—bczbz—i—ac, i.e. g—+—1>——1——.

Analogously as ab + bc > b2 + ac we have g +1> % +
Now we obtain

a b ¢ b a c
-+ -4+ -=<-+-4+2
b ¢ b a ¢ a
So
a b ¢ b ¢ a a ¢
-+ -4+ -+ -+ -+ =242 -+ 2
b ¢ a a b c c a

Let x = % Then 2 > x > 1, i.e. we have that (x — 2)(x — 1) <0, from which we
deduce that

x4+ 1 < é 3)
x 2
Finally using (2) and (3) we obtain inequality (1).
Equality occurs iffa=b=2,c=1ora=2,b=c=1. |

132 Leta, b,c € R such that a + b + ¢ = 1. Prove the inequality

0@+ +3)—9@ +b +)> 1.



21 Solutions 297

Solution Denote L = 10(a> + b3 + ¢3) —9(a® + b + ).
Letx=a+b+c=1,y=ab+ bc+ca,z=abc.
Then

10>+ + ) =10((a + b+ ¢)* = 3(a + b + ¢)(ab + be + ca) + 3abe)

=10—30y + 30z
and
9a’ + b +¢°) =9(x> — 5x°y + 5xy% 4+ 5x%2 — 5y2)

=9(1 —5y +5y? +5z —5yz)

=9 — 45y +45y% 4457 — 45yz.
We have

L>1 & 10—30y+430z —9+45y —45y> — 457 +45yz > 1,
ie.
1+ 15y — 157 — 45y% +45yz > 1,
ie.
y—z=3y(y-220 & (1-3y)(—-2=0. 1
Furthermore,
y=ab+bc+ca < (a—i—l;—+c)2=%’ ie. 1—-3y>0

and

y=ab+bc+ca>3Va2b2c2 =372 > z.

The last inequality is true since
b 3
z=abc < <M> =1<27.
3
From the previous two inequalities we get inequality (1), as desired. |

133 Letn € Nand xq, x2, ..., x, € (0, 7). Find maximum value of the expression
Sinxj cos xp + Sinxp cos x3 + - - - + sinx; cos xj.

Solution 1t’s clear that for all real numbers a, b we have a? + b% > 2ab. So we
obtain

Sinxj cos xp + Sinxp cos x3 + - - - + sin x; COS X1

- sin® X1 + cos? xs sin? X2 4 cos? x3 sin? Xn+cos?x; n
- 2 2 2 2
Equality occurs iff x; =xp =---=x, = 7. [ |
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134 Leto; € [%, ST”], fori =1,2,...,n. Prove the inequality
1 2
<sinot1 +sinog + -+ +sina, + Z) > (cosa +cosap + - - - + cosay,).

Solution Let S =sinoy + sinop + - -+ + sinoy,.
We have

s+1 2—52+S+1—52 S+1+S— S 12+S>S (1)
4) 2 16 2 16 o 4 -7

Since a; € [7, ST”] we deduce that

sina; >cose;, foralli=1,2,...,n. 2)
Using (1) and (2) we obtain the required inequality. |
135 Let a1, an, ..., ay; ay+1 = ai, ap+2 = ap be positive real numbers. Prove the

inequality

n
ai — a;
Z i i+2 >0.

iz ajy+1+ai+2

Solution Applying AM > GM we have

n

aj +aj+1 aitay ax+tas ap—1+a, a,+a
> = + +ot +
ai+1+aij42  ax+az  az+ay anp +ap ay+a

i=1

Zn\’/al +a2.a2+a3 o dn—t +ay Gn +a —n. ()

a)+az az+ay a, + ap a1 +ap

So

n

n n
Z di+1 Z di+1 taita Z ai+2
i

o G+l Taiv2 T divi T digr ] Givl T dig2
n
di42
—n-y e
o di+1 T a2
n n
(QZ a; +ajq _Z a2
C T Git1 taiga Aiy1 + ait2

i=1 i=1

from where it follows that

Z —ait2

a!+1 +al+2 |
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136 Letn >2,n € Nand xq, x2, ..., x, be positive real numbers such that

1 1 1 1
x1+1998+x2+1998+"'+xn+1998_ 1998

Prove the inequality

Yxi1x2 - x, >1998(n — 1).

Solution After setting % =a;,fori =1,2,...,n, the identity

1 1 1 1
xl+1998+x2+1998+"'+xn+1998_ 1998

becomes
ai+ay+---+a,=1.

We need to show that

()G () zem
— =1 ——1)—=1)=m-1D". (D
ai a an

We have

i—l— l—a; ar+--+a—_1+ai1+-+ay

a; h a; - a;

a e a_ a e a
Z(Vl—l)"—\l/l tlll—H n.
al”
1

Multiplying these inequalities for i =1, 2, ..., n we obtain (1), as desired. [ |
137 Letay,an,...,a, € RT. Prove the inequality

n n
n k
3 kay < (2) 3k
k=1 k=1
Solution For 1 <k <n we have

af+ k=D =af +1+1+---+1>kak =kay.
| S —
k—1
After adding these inequalities, for 1 <k <n we get

n n n n n(n 1) n n
k k - k
,;kakfzak +I;(k—1)=kz_;ak+ 5 :k_lak—i—(z). n

k=1
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138 Let ay,az, ..., a, be positive real numbers such that a; +ay + --- + a, =n.
Prove that for every natural number & the following inequality holds

alf—l—alz‘—i—u-—i—aszalf_l+a§_l+~--+a,lf].

Solution Using AM > GM we get

k—Dak+1=d +af +- +a +1>kJar " = ka!

k—1
and if we add these inequalities for i = 1,2, ..., n we obtain
(k—1)(af +a5+-+a)+n=k@ " +a +-+a7H. (D)
‘We’ll show that
A a4 padk s 2)

One more application of AM > GM gives us

A k- =d T L 1 (- D) YT = (k- D

i
k=2

and adding the previous inequalities fori =1, 2,...,n we get
k—1 k—1 k—1 _
(a7 +ay +-+a, )+nk—=2)=k-1(a +ar+ - +a)=nk—1),
from which we deduce
a’l{_l +a]2‘_1 + - —i—aﬁ*] >n.

So we are done with (2).
Now from (1) and (2) we obtain

k=@ +ad+- +dy+n>k@ ' +a& 4 4 ak
& (k—D@j+as+--+a})+n
>k-D@ ' +dd 7+l @ T dk Y
>k —D@ " +d 4 a4

< a]f+a§+-~-+a§ za/f_l +a]2‘_1 +-~~+a,’1‘_1,
as desired.
Equality holds iff aj =ap =---=a, = 1. [

Remark The given inequality immediately follows by Chebishev’s inequality.
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139 Leta, b, ¢, d be positive real numbers. Prove the inequality

a 5+ b 5+ c 5+ d 5>1
a+b b+c c+d d+a) — 8

Solution 1 Letx =b/a,y=c/b,z=d/candt=a/d.
Then it is clear that xyzt = 1, and the given inequality becomes

(LY 1y 1y LY.L X
_<1+x> +<1+y> +(1+z> +<l+t> -8 M

By the inequality AM > GM we have

ya 5+3_ 1 5+ 1 5+1+1+1>5 1\’
1+x 327 \I+x 1+x 32 32 32 8\1+4+x/)°
i.e.
1\ 3 5/ 1 \?
2 + > )
14+x 3278\ 1+x
So it follows that

=i () () () () e
32 7 8\\1+x I+y 1+z 1+1¢ '

We’ll prove that for all positive real numbers x and y the following inequality holds

1 4 1 - 1 .
(I14+x)2  (14+y)?2 " 1+xy

We have
1 n 1 1 _xy(x2+y2)—x2y2—2xy+l
A+x2 (A4+y2 14+xy  (A+x020 421 +xy)
_ o=y ey -1
I+ )21+ 21 +xy) —

Now according to the previous inequality and the condition xyzt = 1, we deduce

() () + () + ()

1 1 1 1

> = =1.
_1+xy+1+zt 1+xy+1+1/xy

3)

By (2) and (3) we get

12 5 . 1
2A4+ —>—, ie. A>-—.
327 8
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140 Let xq, x2, ..., x, be positive real numbers not greater then 1. Prove the in-
equality

1 i i
(T+xD)2(I+x2)% - (L4 x,)% 22"

Solution From 0 < x1, x2, ..., x, <1 it follows that
1 1 1
—— ..., —>1.
X1 X2 Xn

By Corollary 4.7, (Chap. 4) we have that for every x > —1 and « € [1, c0), the
following inequality

A+x)%>1+xa

holds.
Hence we get

1 1 1 X1 X2 Xn
A+x)7 1 +x2)5 - (1 +x) 7 > <1 + g> (1 + x—>~--(1 + —>. (1)

3

Furthermore, applying AM > GM we get
<1+x_1)<1+x_2>...<1+x_n> so S 2 o[
X2 X3 X1 X2 X3 X1
By (1) and (2) we obtain

1 1 1
(I+xp)2(14+x)% - (1 +x,)% >2",

Equality occurs iff x; =xp =+ - =x, = 1. [

141 Let x1,x2,...,x, be non-negative real numbers such that x; + xo + --- +
Xp < % Prove the inequality

(1—x1>(1—x2)-~-<1—xn)z%.

Solution From x; +xp + --- + x, < % and the fact that xq, x», ..., x, are non-
negative we deduce that

1
0§x[§§<1, ie. —x;>—1, foralli=1,2,...,n,

and it’s clear that all —x; are of the same sign.
Applying Bernoulli’s inequality we obtain

A =x)d=x2)--- (I =2xp) =L+ (=x)) (L + (=x2)) - - (1 + (=xn))

> 14 (=X =X — = Xp)

1
=1—()C1+X2+"'+xn)21_§=_~ u
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142 Leta, b, c € R such that abc = 1. Prove the inequality

1 1 1
+ + <1
A+ +1 P4+l S+ad+17

Solution We have

1 1 1
= <
a+b3+1 (@+b)((a—b2+ab)+1~ (a+bab+1’

and since ab = % we deduce

1 1 c
< = .
ad+b3+1 " (a+byab+1 a+b+c

Similarly

1 1 b
3 < a and < .
PP+c3+1 " a+b+c AS+aP+1 " a+b+c

Adding the last three inequalities we obtain the required inequality.
Equality holds if and only ifa =b=c=1. |

143 Let 0 <a, b, ¢ < 1. Prove the inequality

c b a
+ +
T+a>+b3 T+3+a® T4+03+3

1
<-.
-3

Solution Since 0 < a, b, ¢ <1 it follows that 0 < a3, b3, ¢3 < 1, so we have

c b a
7+a3+b3 +7+c3+a3 +7+b3+c3
- c n b n a
T6+al+b+3 6+A+ad+b 6+ +A+d’
a+b+c

Ry
It suffices to prove that
3a+b+c)<6+a’+b>+¢,
which is true since 13 — 371 +2=(t — 1)2(t +2) > 0,for 0 <t < 1. [ |
144 Leta, b, c € R* such that abc = 1. Prove the inequality

ab bc ca
+ + =L
aS+ab+b> bBS+bc+cd  SH+ca+a’d
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Solution Since
a*—a’b—ab’ +b* =a*(a—b) —b*(a — b) = (a — b)*(a* —ab +b*) > 0,
we have
@+ b =(a+b)a* —a’b+a*b> —ab® +b*) > (a + b)ab>.
So

ab - ab _ abc? . c
aS+ab+b5 = (a+b)a2b?>+ab  (a+b)a2b2 2 +abc® a+b+c’

(1
Analogously
b
e @
+bc+cd “a+b+c
and
ca b
< . 3
AS+ca+a® " a+b+c ®)
Adding (1), (2) and (3) gives us the required inequality. |

145 Leta, b, c € RT such that a + b + ¢ = 3. Prove the inequality

a3 b3 A3
+ + > 1.
al+ab+b%2  b24+bc+c? c2+4ca+a?

Solution We’ll show that

a3 b3 3 a+b+c
A= + + > .
a?+ab+b%2  b24+bc+c?  2+ca+ad? 3

3 3
X +y x+y - . . . _
o7 > =5+, in which equality occurs iff x = y.

(This inequality follows from the obvious inequality 2(x + y)(x — )2 >0.)
On the other hand, we have

For every x, y € RT we have

A a3 L b3 n 3 _ b3
T a24ab+b2 B24bc+c2 R4ca+a? a?+ab+ b2
C3 a3

+ + :
b2 +bc+c?  c2+ca+a?

SO

DA — a+ b3 b +3 A+dd >a+b+b+c c+a
T a2 4ab+b2 B2+bc+c?2 24cata?:T 3 3 37




21 Solutions 305

ie.

a+b+c
> - =
- 3
Equality occurs if and only if a =b=c =1/3. |

A 1.

146 Let a, b, c be positive real numbers such that a® + b2 + ¢? = 3abc. Prove the
inequality
a n b n c - 9
b2c2 " 2a?  a?b? T a+b+c’

Solution The given inequality is equivalent to
(@ +b*+c)a+b+c) = 9ahc?.
Applying the Cauchy—Schwarz inequality we have
@ +b*+ca+b+c)> (@ +b*+cH)?
Since a® + b? + ¢ = 3abc we obtain
@+ b+ a+b+c)> (@ +b*+c?)? = (Babe)® =9a*b> .
Equality holds if and only if a =b =c = 1. |

147 Leta, b, c, x, y, z be positive real number, and let a + b = 3. Prove the inequal-
ity

AR
ay+bz az+bx ax+by

Solution We’ll show that

X y z 3
+ + = )
ay+bz az+bx ax+by  a+b

and combining with a + b = 3 will give us the required inequality.
Applying the Cauchy-Schwarz inequality we have

x Ly
ay+bz az+bx ax+by
B x2 N y2 N z2 - (x+y+2)>
axy+bxz ayz+bxy axz+byz  (a+b)(xy+ yz+zx)
3

=1
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148 Let x, y, z > 0 be real numbers. Prove the inequality

X N y n b4
x+2y+3z y+2z43x  z+2x+3y

1
> .
-2

Solution The Cauchy-Schwarz inequality gives us

2 2 2
x N y N z
x24+2xy+3xz  y24+2yz+3xy  z2+2xz+3yz

(x+y+2)?

=Xy 2 150yt e
It suffices to prove that
2+ y+2)2 = x>+ 2+ 22 +5(xy + yz + 2x),
which is exactly x? 4+ y% +z2 > xy + yz + zx, and clearly holds. |

149 Leta, b, c,d € R*. Prove the inequality

c n d . a n b -1
a+3b b+3¢c c¢c+3d d+3a~

2 d 2 b2
aciSbc + bd+3cd + cLHa»Sda + bd+3ab*
Applying the Cauchy—-Schwarz inequality we get

Solution Let L =

((ac +3bc) + (bd + 3cd) + (ca + 3da) + (bd +3ab)) - L > (a + b + ¢ + d)?

I (a+b+c+d)?
~ 2ac +2bd + 3bc + 3cd + 3ad + 3ab’

<

It suffices to prove that
(@a+b+c+d)?>2ac+2bd +3bc + 3cd + 3ad + 3ab
& @=-b+@a—-d*+bB-—0)>+c—d)?*>0,

which is clearly true.
Equality holds iffa =b=c=d. |

150 Leta, b, c,d, e be positive real numbers. Prove the inequality

a+b+c+d+e
b+c c¢c+d d+4+e e+a a+b

5
> =,
-2
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Solution Applying the Cauchy—Schwarz inequality we have

a b c d e
b+c+c+d+d+e+e+a+a+b
_ a2 . b2 . 2 . 42 . o2
ab4+ac bc+bd cd+ce de+ad ae-+be
(@a+b+c+d+e)?

= ab+ac+ad +ae +bc + bd + be + cd + ce +de’
So it is suffices to show that
(@a+b+c+d+e)?
ab+ac+ad+ae+bc+bd +be+cd+ce+de
which clearly holds (Why?). |

5
>_7
-2

151 Prove that for all positive real numbers a, b, ¢ the following inequality holds

a3 b3 A3 a?+ b2 42
2 7t 3 T3 7 =
a‘+ab+b b+ bc+c c“+ca+ta a+b+c

Solution Applying the Cauchy—Schwarz inequality we have

QR S
T a24ab+b2 b24+be+c? 2+4ca+a?
a* bt *

- a(a?+ab +b?) + b(b% + bc + c2) + c(c?2 4+ ca+a?)
- (a® 4 b* + c?)?
T (a(@®+ab+b%) +bb?+bc+c?) +c(c?+ca+a?))

So it suffices to prove that
(a+b+c)a®+b*+c?) >a@®+ab+b>) +bb* +bec + ) + c(c? + ca + a?),

which is true. u

152 Let a, b, ¢ be positive real numbers such that ab + bc 4+ ca = 1. Prove the
inequality
1 . 1 n 1
4a2 —bc+1  4b2—ca+1 4c2—ab+1

3
>,
-2
Solution Since 1 —bc =ac+ab,1 —ca =ab+bc and 1 —ab = ac+ bc, the given
inequality can be rewritten as

1 1 1
a(da+b+c) +b(4b+c+a) +c(4c+a+b)

3
>,
-2
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By the Cauchy-Schwarz inequality we get

1 1 1
<a(4a+b+c) +b(4b+c+a) +c(4c+a+b)>
da+b+c 4db+c+a 4dc+a—+b
X + +

a b c

. 1+1+12_ 1
“\a b )  a?p2c?

So it suffices to prove that

2 >4a+b+c+4b+c+a+4c+a+b
3a%b%c? — a b c ’

‘We have

da+b+c 4db+c+a 4dc+a+b
+ +
a b c
a+b+c b4+c+a c+a+b
+ +
a b c

=9+

1 1 1
:9+(a+b+c)<—+—+—>
a b ¢

94 (a+b+c)lab+ bc+ ca)

abc
b
=9 + M,
abc
so inequality (1) becomes
a+b+c | 2.2 2
m29+w, ie. 27a°bc +3abc(a+b+c)§2

By AM > GM we have
1=ab+ bc+ca> 3\3/m, ie. 27a%b*c? <1.
By the well-known inequality (x 4+ y + 2)% > 3(xy + yz + zx) we get
3abc(a+b+c) < (ab—l—bc—i—ca)2 =1.

Finally by (3) and (4) we get inequality (2), as required.

Equality occurs iffa=b=c= A

153 Leta, b, ¢ be positive real numbers such that

1 |
> 1
a2+b2+1+b2+02+1+62+02+1 -

(D

2)

3)

4)
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Prove the inequality

ab+ bc +ca <3.
Solution Using the Cauchy—Schwarz inequality gives us

1 2+ c?
<

2 32 2 2
+b°+ DA +1+c)=>(@+b+c), ie. .
(a ) )z ) e a?+b>+1~" (a+b+c)?

Analogous we obtain

1 2+a? 1 2+ b2
2.2 = 5 and  ———s = 2"
b>+c+1~" (a+b+c) cc+a*+1~" (a+b+c)

So we have

1 1 1 6+a?+b%+c?
1< + + <
a?+b24+1 b24+c2+1 2+a2+1 (a+b+c)?

i.e.

6+a2+b2+c22(a+b+0)2, i.e. ab+bc+ca<3. [ |

154 Let a, b, c be positive real numbers such that ab + bc + ca = 1/3. Prove the
inequality

a b c 1
2 + .3 +3 = :
acr—bc+1 b*—ca+1 c*—ab+1 " a+b+c

Solution Applying the Cauchy—Schwarz inequality we have

a b c
a’>—bc+1 +b2—ca+1 +c2—ab+1
a? b? c?
_a3—abc+a +b3—abc+b+c3—abc+c
(a+b+c)?

> .
“a3+b3+c3+a+b+c—3abe
Furthermore, since

a3+b3+c3—3abc=(a+b+c)(a2+b2+c2—ab—bc—ca)
=(@+b+c)a®>+b*+c*—1/3),
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we obtain
(@a+b+c)? (a+b+c)?
Bt tatbtc—3abe (@+bto)@@+b2+c2+1—1/3)
a+b+c
T2t +2+2/3
a+b+c
T @2+ D21 2+ 2(ab+ be +ca)
1
Tat+b+c
as required. |

155 Let a, b, ¢ be positive real numbers. Prove the inequality
a’ b’ o
+ + >1
a’+b3+abc b +c3+abc 3 +ad+abe

Solution Let x = %, y= %, 7= % Then clearly xyz = 1.
Therefore
a’ _ 1 _ 1 _ Xyz
ad+b3tabe  1+x3+% 1T+x3+x2y  xyz+x3 42y
_ Yz
yz+x24xy’

Similarly we deduce

b3 Xz 3 Xy

= and = .
b3+c3+abec  xz+yr+zy +adtabe xy+z2+xz
So it suffices to prove that
vz N Xz Xy .
yz+x2+xy  xz4+y’+zy xy+z24axz

According to the Cauchy—Schwarz inequality (Corollary 4.3, Chap. 4) we have
y< Xz Xy
2 + 2 + 2
yz+xc+xy xz+y +zy xy+z-+xz
- (xy + yz + zx)?
T oyz(yz+x2 4+ xy) +xz(xz+ y2 +zy) +xy(xy + 22 +x2)
We need to prove that

xy+yz+ zx)2 >yz(yz + x? +xy)+xz(xz+ y2 +zy) +xy(xy + 22 +xz2),

which is in fact an equality.
Equality holds iff x =y =z,ie.a=b=c. |
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156 Let a, b, ¢ be positive real numbers such that a? + b% + ¢ = 3. Prove the
inequality
a b c 1
2 o2 T3 =5
ar+2b+3 b +2c+3 c*+2a+37 2

Solution Clearly x2 41> 2x, for every real x, and therefore

a b c
a2+2b+3+b2+26+3+62+2a+3
a b c
< + + )
2@+b+1) 2(b+c+1) 2cH+a+1)

So it remains to prove that

a n b L+ c -
a+b+1 b+c+1 c+a+1"—

1. (1)

Inequality (1) is equivalent to

b+1 c+1 a+1
+ + >2.
a+b+1 b+c+1 c+a+1

According to the Cauchy—Schwarz inequality (Corollary 4.3) we have

b+1 c+1 a+1
a+b+1 b+c+1 c+a+1
- (a+b+c+3)? s
T+ Da+bt+hH+(c+Db+c+ D+ @+ Dct+a+l)
Equality holds iffa=b=c=1. |

157 Leta, b, c,d > 1 be real numbers. Prove the inequality

Va—14+Vb—14+Ve—1++d—1</(ab+1)(cd + 1).

Solution We’ll prove that for every x, y € RT we have v/x — 14+ /y — 1 <  /xy.
Applying the Cauchy-Schwarz inequality fora; = /x — l,ay =1; b1 =1,by =
Jy — 1 gives us

Wx—=14y— 1)2 <xy, ie. Vx—-1+y—1=</xy.
Now we easily deduce that

Va—T1+Vb—14Ve—1+Vd—1<ab+cd < /(ab+ 1)(cd+1). N

158 Letaj,as,...,a, € RY such that aja; - - - a, = 1. Prove the inequality

Var+Ja+tJag<ai+ayt - tap.
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Solution Applying AM > GM we obtain

«/aJr«/a—sz...Jm/%z o Jar v =1

i.e.
Vai+Ja + -+ Jag = n. (D
Now we’ll use the Cauchy—Schwarz inequality.
We have
(Vai+ a2+ +a)* <(a+az+-+a)(l+ 1+ +1),
ie.

(Vai +var+ -+ Ja)’ <n(a +ar+ - +ap). 2)
Using (1) and (2) gives us

(Var +az + -+ Jan)? <nla +ar+ - +ap) < (Jar + Jaz + -+ /an)
X (a1 +a+---+ay)

i.e.

Vart+ya+ -+ an <ar+ay+--+an,

as required. |

159 Leta, b, c be positive real numbers such that a +b + ¢ = 1. Prove the inequality
1
avb+byc+ca < —.
V3

Solution Applying the Cauchy—Schwarz inequality we have
(avVbh+byc+ceva)Y <@ +b>+cHa+b+ce)=d>+b>+c% (1)
One more use of the Cauchy—Schwarz inequality for
Al =4/a, Ay = /b, A3 =4+/c and
B = ab, B> = /b, B3 = \/ca
gives us
(a\/l;—i—b\/g—l—c«/g)z <(a+b+c)ab+ bc+ ca) =ab + bc + ca,

i.e.

2(av'b + b/< + c/a)? < 2(ab + be + ca). 2)
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By adding (1) and (2) we get

3(avb + byJc + c/a)? < a® + b* + ¢* + 2(ab + be + ca),

i.e.
3(avb+bye+eva)y <@+b+c)=1,
i.e.
1
avb+byc+ca < —.
NE] ]

160 Leta, b, c € (0, 1) be real numbers. Prove the inequality

Vabe ++/(1 —a)(1 —b)(1 —c) < 1.

Solution 1 For x € (0, 1) we have /x < J/x.
So

Vabe < Vabe and (1 —a)(1—b)(1—c) <J(1—a) (1 —b)(1—0c). (1)

Using (1) and AM > GM gives us

Vabe +/ (1 —a)(1 —b)(1 —c) < Vabe + /(1 —a)(1 —b)(1 —¢)

<a+b+c+1—a+1—b+1—c_1
=3 3 - n

Solution 2 Since a, b, ¢ € (0, 1) we obtain
Vabe +/ (1 —a) (1 =b)(1 —¢) < VbJ/c+VT—bJ/T—c. (1)

Using the Cauchy—Schwarz inequality we have

VoJe+VT=bVT=c<V(b+1-b)2(c+1-0c)2=1. )
From (1) and (2), we obtain the required inequality. |

161 Leta, b, c be positive real numbers such that a +b + ¢ = 3. Prove the inequality

a+2 bPP+2 c3+2>
b+2 c+2  a+2 7

Solution By AM > GM we have

A+2_a+1+1 3311 _ 3a
b+2  b+2 T b+2  b+2
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Similarly we get

b +2  3b A+2 3
> and > .
c+2 T c+2 a+2 " a+2
Therefore
a3+2_|_b3+2_|_c3+2> a n b n c 0
b+2  c+2 a+2 " \b+2 c+2 a+2)
Applying the Cauchy—Schwarz inequality (Corollary 4.3) we obtain
a n b n c a? . b? n c?
b+2 c+2 a+2 ab+2) bc+2) cla+2)
- (a+b+c)?
“ab+2)+b(c+2)+cla+2)
_ (@+b+c)? )
T ab+bctca+2@+b+e)
Since (a + b + ¢)* > 3(ab + bc + ca) we deduce that
1 - 3 3)
ab+bc+ca ~ (a+b+c)?
From (2) and (3) we get
a b c (@a+b+c)?
+ + >
b+2 c¢c+2 a+2 ab+bc+ca+2a@+b+c)
- (a+b+c)?
“(a+b+0)?/34+2a+b+0)
_ 3(a+b+c)? _ 3a+b+o) @
T (a+b+c)2+6(a+b+c) (a+b+c)+6
Finally by (1), (4) and since a + b + ¢ = 3 we obtain
Az3( 4oy by ), dadbto 2T,
b+2 c¢+2 a+2 (a+b+c)+6 9
as required. Equality occurs iffa =b=c = 1. ]

162 Let a, b, ¢ be positive real numbers such that a? + b? + ¢ = 3. Prove the
inequality
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Solution Rewrite the given inequality as follows

i.e.

¢
>3,
2a—a2+2b—b2+2c—(:2_

Clearly a, b, ¢ € (0, /3), s0 2a — a%,2b — b2, 2¢ — ¢* > 0.
Now by the Cauchy—Schwarz inequality (Corollary 4.3) we obtain

a? b? c? (@+b+c)?
+ + >
2a —a? 2b—br 2c—c? " 2a+b+c)— (a2 +b2+c?)
. 9
C 2a+b+c)—-3"

So it remains to prove that

(a+b+c)? -
2a+b+c)—3 "~

which is equivalent to (@ +b + ¢ — 3)2 > 0, and clearly holds.
Equality holds iffa=b=c=1. |

163 Let a, b, ¢ be positive real numbers such that abc = 8. Prove the inequality

a—2+b—2+c—2<0
a+1 b+1 c+1~ 7

Solution Rewrite the given inequality as follows

a+1-3 b+4+1-3 c+l—3<

0
a+1 b+1 c+1 ~—
or
1 n 1 n 1 -1
a+1 b+1 c+17~
Leta:%‘,b:%,c:%.
Then
1 1 1 1 1 1

- + = + +
a+1 b+1 c+1 27x_|_1 %—i—l %4_1
y z x
= + +
2x+y 2y+4+z 2z4x
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oy N 2 . 42
S 2xy+y?r o 2yz+z2 0 2zx 4+ x2
(x+y+2)?

> =1
2xy + y*+2yz+ 22 4+ 2zx + x2

In the last step we used the Cauchy—Schwarz inequality (Corollary 4.3). |
164 Leta, b, c € R* such that a® + b? + c> = 1. Prove the inequality
a+b+c—2abc§\/§.

Solution Since a®+b*+c? =1 and a? > 0 it follows that b2 +¢* < 1, i.e. 2bc < 1.
Applying the Cauchy—Schwarz inequality we have

a+b+c—2abc=a(l—2bc)+ (h+c)-1<va2+ b+c)2/(1—2bc)2+1

=/(@% 4 b2 + c2 + 2bc)(2 — dbc + 4b2c2)

= /(1 +2bc) (2 — 4be + 4b2c?).
So it suffices to show that
(1+2bc)(2 — 4bc + 4b*c?) < 2.
We have
2 — (14 2bc)(2 — dbe + 4b*c?) = 4b*c* (1 — 2bc) > 0. -
165 Let x, y, z € R such that x? 4+ y2 4 z2 = 2. Prove the inequality
x+y+z=<24+xyz.

Solution 1 Let x = aﬁ, y= bﬁ, 7 =c~/2. Then a? + b? + ¢? = 1 and the given
inequality becomes a + b + ¢ — 2abc < ﬁ, which is true (Problem 127). [ |

Solution 2 The given inequality becomes
x(1—yn)+y+z<2.
Using the Cauchy—Schwarz inequality we get
1=y + G+ D’ <+ 0+ -y’ +17)
& (Hy+z—xy)? <P +y 4+ +2y02 - 2yz 4?7

& (xFy+z—xy2)? <21 +y2)Q2 —2yz 4+ y*2?).
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So it suffices to show that

2(1 4 y2)2 — 2yz + y*2?) <4,

ie.
(A+yDQ2—2yz+y’2) <2 & y2 <y,
ie.
yz=<L
The last inequality is true since 2yz < V242 <x?4+yr4z2=2. [ |

166 Let x, y, z > —1 be real numbers. Prove the inequality

1+x? 1+y? 1422 -
I+y+22 I4z4+x2  IT4x+y2~

Solution Notice that # >yand 1 +y+z2>0.

So
14 x2 - 1+x2 2(14x2)
1+y+Z2_1+#+Z2_2(1+12)+1+y2'
Analogously
1+ y? - 2(1 4 y?) 1+ 22 2(1+22)

d .
T2 20+ 41422 0 Thxt+y? 2004y + 1442
It suffices to show that

2(1 + x2) 2(1 +y?) 2(1+22)
20422+ 14y 2004+x) +1+22 2(0+y)+1+x2 7

Let1+x2= a,l+ y2 =b,1+ 72 = ¢, i.e. we need to show that

a n b n c -1
2c+b 2a+4+c 2b+4+a”

Applying the Cauchy—Schwarz inequality we obtain

3 + i + ¢ (ab+bc+ca) > (a+b+c)?
a ¢+ ca a c
2ca+ab  2ab+bc  2bcH+ca -
i.e.
a b c (a+b+c)?
>

bl

2c+b+2a+c+2b+a ~ 3(ab+ bc +ca) —

as required. |
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167 Leta, b, c, d be positive real numbers such that abcd = 1. Prove the inequality
A+a)A+)(A+ (1 +d) = (@+b+c+d).

Solution Since abcd = 1, there are two numbers x, y among a, b, ¢, d, such that
x,y>1or x,y < 1. Without loss of generality we may suppose that they are b

and d. Then clearly (b — 1)(d — 1) > 0,ie.bd+1>b+d.
According to the Cauchy—Schwarz inequality and the previous note, we obtain

(I +a) A+ + DA +d*) =1 +a> + b + b)) (P + 1+ d> + Pd?)
>(c4+a+bd+1)>>@+b+c+d)>
Equality holds iffa=b=c=d = 1. |

168 Leta,b,c,d € R such that 1 + 1 + 1 4+ 1 =4 Prove the inequality

3 b3 b3 3 3 d3 d3 3
SR [ XL LS,

Solution

2 2
Lemma 21,2 fx,y € B then {75 < £22°

Proof The given inequality is equivalent to (x — y)*(x2 4+ xy + y?) > 0. g

So it follows that

3a3+b3+3b3+c3+3c3+d3+3d3—|—a3
2 2 2 2

<ﬁ+ﬂ+ﬂ+&+&+ﬂ+#+ﬁ
~ a+b b+c c+d d+a

Furthermore, we have

@+ b) a’ +b? 2ab
a — = .
a+b a+b
So
2ab 2bc 2cd 2da
L< b)y———+ b - — d)———+W — ,
<(a+b) a+b+(+0) b+c+(c+) c+d+( +a) d+a

and it is sufficient to prove that

ab_i_bc_i_cd_i_da>2
a+b b+c c+d d+a—
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Applying the Cauchy—Schwarz inequality we obtain
ab n bc n cd n da ) 1+1+1+1 o g2
a+b b+c c+d d+a a b ¢ d))~

ab + bc + cd + da
a+b b+4+c c+d d+Ha
as required. |

i.e.

>E=2’
- 8

169 Let x, y,z € [—1, 1] be real numbers such that x + y + z + xyz = 0. Prove the
inequality

Vx+T4+y+1+/7+1<3.

Solution Applying the Cauchy—Schwarz inequality we have

Vx+1+y+14+Vz+1<3x+y+z+3).

If x +y+z<0then vVx +1+y+1++z+1<3, and the given inequality
clearly holds.

So let us assume that x + y + z > 0. Then we have xyz = —(x +y +z) <O.
Without loss of generality we may assume that z < 0 and then it’s clear that x, y €
(0, 1].

Applying once more, the Cauchy—Schwarz inequality we obtain

Vit l+yy+1+Vz+1<2x +2y +4+Vz + 1.

So it suffices to show that

V2x 2y +4+/z+1<3.
We have

V2x+2y+4+4V7+1<3 & J2x+2y+4-2<1-+z+1

2x+y) - -z
V2 +2y+4+2 7 Jz+ 141
—2z(1 +xy)

<

—Z
2X+2y +4+2 7 V141
& 20 4x)(1+vV142) < V2x +2y +4+2

& 20y +2(1+x)V1+z2<y2x +2y +4. (1)

d=x)(-y)
I+xy

xy 4+ /(1 =x)(1 —y)d +xy) 5,/1+%.

We can easily deduce that 1 + z = , and then inequality (1) is equivalent

to
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Finally, using the Cauchy—Schwarz inequality we obtain

xy+/A =)A= A +xy) =Vxy/xy2 + VT —x/T4+xy —y —x)?

S\/(x+1—x)(xy2+1+xy—y—xy2)

_/Ttyd-n<t< /1422

2

as desired. [ |

170 Let a, b, ¢ > 0 be positive real numbers such that a + b + ¢ = abc. Prove the
inequality

ab+bctca>3+vVa2+1+vVh2+14+/2+1.
Solution First we’ll show that
a’b® + b*c® + *a® > a’b* . @))
We have

(ab)? + (be)? + (ca)? > (ab)(bc) + (be)(ca) + (ca)(ab) = abe(a + b + ¢)

ie.
o1 (ab)? + (bc)? + (ca)? _atbte
a? b2 (abc)? ~  abc
& a?b? + b + 2d? > a*b*c?.
Furthermore
(ab + be + ca)® = a?b? + b*c? + 2a® + 2abe(a + b + ¢)
22 4 2abea+ b+ ) =3a+b+ o). (2)
So
(ab + bc + ca — 3)> = (ab + be + ca)® — 6(ab + be + ca) +9
3 +b+0) — 6ab +be+ca) +9
=3+ b+ +9,
i.e.

ab+bc+ca>3++/3@2+b2+c2)+9. 3)
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Applying the Cauchy—Schwarz inequality we have

3a*+ b2+ A +9=3(a*+ D+ B>+ 1)+ (c*+ 1)

>V + 1+ + 14V +1)%,

i.e.

V3@2+ 02+ +9=Val + 1+ Vb2 + 14V + 1. €5
Using (3) and (4) we obtain

ab+betca>3+V3@+bh2+c2)+9>34+Va2 +1+vVb2+ 14+ +1,

as required. |

171 Leta, b, c, x, y, z be positive real numbers such that ax + by +cz = xyz. Prove
the inequality

Va+b+vb+c+Jeta<x+y+z.

. b c
Solution We have y”—z +ot+ ;7 =1
Let

We need to show that

\/z(yu+xv)+\/x(zv—|—yw)+\/y(xw+zu) <x+y+z

where u +v+w =1.
Applying the Cauchy—Schwarz inequality we obtain

(Vz(u +xv) + x(zv + yw) + /vy (cw + zu))?
<(x+y+2Qu+xv+zv+yw+xw+ zu).

Also we have

yu+xv+zv+yw+xw+zu=x(1—-u)+y(l —v)+z(1 —w)
=x+y+z—@Qu+yv+zw)<x+y+z.

Now we obtain

Wz(u +xv) + x(zv + yw) +yw + zu))? < (x +y +2)%,

i.e.

Vzu +xv) + x(zv + yw) +yGw +zu) <x +y +z. m
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172 Let a, b, ¢ be non-negative real numbers such that a? + b% + ¢% = 1. Prove the
inequality
a n b
b2+1  c2+1

1_4<af+bf+cf>2

Solution We’ll use the Cauchy—Schwarz inequality, i.e.
(@} +a3 +a3) (b3 + b3 +b3) > (a1by + axby + a3b3)*. (1)
Let

a) =va?(b?+1), ar =+/b2(c? +1), a3 =+/c2(@?>+1) and

b1=,/L, ,/ ,/
b2 +1 +1 +1

Then using (1) we get

2,12 2,2 2,2 a b ¢
b 1 b 1 1
(@b + 1)+ (C+)+C(a+))<b2+1+c2+1+a2+l>

> (av/a +bvVb +c /o),

i.e.

@ . b LA (a/a + b/b + ¢ /c)?
b24+1  2+1 a®>+1 7 2G>+ D) +b> P+ 1)+ 2@ +1)

So it suffices to show that

4
PGP+ D) +PE+ D)+ @+ 1) < 3

From the obvious inequality (a?> — b%)% + (b> — ¢*)? + (c? — a*®)* > 0 we deduce
that
a’b? + b** + Pa® <at + bt + )
Now we have
B+ D)+ b+ D)+ 2@+ 1)
=a® + 0>+ 2 +d?b?* + b + Pd?

=a’+ b0+ + el +b;cz + cta)
@ 5 5, 2@+ b2 +cta?) +at + b+t
< b
<a " +0o"+c" + 3
2 2 4 242
b 1 4
=a2+b2+62+%=1+§=§,

as required.
Equality occurs iff a = b = ¢ = 1/+/3. |
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173 Let a, b, ¢ be positive real numbers. Prove the inequality

a b c 9
+ + > :
b+c)? (c+a)? (a+b)?  4a+b+o)

Solution Applying the Cauchy—Schwarz inequality gives us

@tbio a n b n c - a n b n c 2
a c .
b+c)?  (c+a)? (@+b?) " \b+c c+a a+b

ey
Recalling Nesbitt’s inequality we have
a n b n ¢ 3 @)
b+c c+a a+b~2
From (1) and (2) we obtain the required inequality. |
174 Let x > y > z > 0 be real numbers. Prove the inequality
2 2 2
x 7 7°x
S s
z X y
Solution Applying the Cauchy—Schwarz inequality we obtain
2 2 2 2 2 2
x z  Z°x\[xz Xz
<—y+y—+—)<—+y—+—y>z(x2+y2+z2)2. (1)
z X y y Z X
We’ll prove that
2 2 2 2 2 2
X z "X _x°z Xz
A e r e, Y @)
Z X y y Z X

From

_ (xy+yz+zx)(x —y)x —2)(y —2) -0
xXyz -

’

we deduce that

2 2 2 2 2 2
pY Z yame X~z X <
S R

z x y y z x
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Combining (1) and (2) give us

2 2 2 2 2 2 2 2 2 2
X Z yars X Z .y X°Z X Z
(—y+y—+—) z(—y+y—+—><7+y7+—y>

z X y Z X y X
>+ + 2
ie.
2 2 2
X z  °x
R T
z X y
Equality occurs if and only if x =y = z. |

175 Let a, b, c be positive real numbers such that abc = 1. Prove the inequality

1 1 1
<1
2—|—a+2+b+2+c_

Solution The given inequality can be rewritten as

2 2 2

- - - o1,
2ta 246 T 24c7

which is equivalent with

a+b+c>
24+a 24b 24c—

(D

X —Y ~=2Z
Leta_y,b_z,c_x.

Inequality (1) becomes

X y z
+ + > 1. 2
x+2y y+2z z+4+2x @)

Applying the Cauchy—Schwarz inequality we have

X y z x2 y? z?

+ + = + +
x+2y y+2z z+2x  xZ+2xy  y24+2yz  z2+2zx

- (x+y+2)? .
T2+ y? 4+ 22 +2xy +2yz 4 2zx

So we have proved (2) and we are done.
Equality occurs iff x =y =z,ie.a=b=c=1. |
176 Let a, b, c be positive real numbers such that abc > 1. Prove the inequality

1 1
<1.
a*+ b3+ ¢ +b4+c3+a2 +C4+a3 +b2 =
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Solution By the Cauchy—Schwarz inequality we have

1 B 14+b+c? __l+b+e?
at+b3+cr (@ + b+ A1 +b+c?) T (@24 b2+ c2)?

Similarly we get

1 l1+c+a? 1 1+a+b?
< and < .
b*+ 3 +a? 7 (a4 b* 4 c2)? ct+ad+b2 7 (a?+ b+ c?)?

It follows that

1 + 1 n 1 <a2+b2+c2+a+b~l—c+3
a4+b3+C2 b4~|—c3+a2 C4+613+b2_ (a2+b2+C2)2

So it remains to prove that

a?+b>+ctH+a+b+c+3 -
(a2 + b2 + 02)2 -
By AM > GM we have a +b + ¢ > 3 and a® + b* + ¢* > 3.
Consider the well-known inequality 3@+ b*+c2) > (a+b+c)2
Then we obtain

2 2
aA+b2++a+b+c+3 - a?+ b2+ 2+ (a+b3+c) + (a+bB+C)
(a2+b2+c2)2 — (a2+b2+c2)2
- a?+ 0>+ 4 (@ + b+ )+ (@ + b+ ?)
- (@2 + b2 +c2)2

=< l,
a’?+b>+c*
as required. |

177 Leta, b, c, d be positive real numbers such that abcd = 1. Prove the inequality

1 1 1 1
>2
a0+ Thato Teara Taara =

Solution With the substitutions a =
becomes

; . .
To=le=5d= 2, the given inequality

X y z t
+ >2
z+t x4+t x+y z4+Yy
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By the Cauchy-Schwarz inequality we have

X y Z t x2 y2 72 12
+ = + + +
z+t x+t x+y z+y xz+xt yx+yt zx+4+zy tz+ty
x+y+z+1)?

> .
T 2xz 42yt +xt+yx+zy+1z

Hence it suffices to prove that

x+y+z+1)?

2xz 42yt +xt+yx+zy+12 =2
which is equivalent to
x—2>+@-n%=0.
Equality occurs iff x =z, y=t,ie.a=c=1/b=1/d. |

178 Let a, b, ¢ be non-negative real numbers such that @ + b + ¢ = 1. Prove the
inequality
ab n bc n ca_ _ 1
c+1 a+1 b+1—4

Solution If one of a, b, c is equal to zero then it is easy to show that the given
inequality is true. Equality in this case occurs iff one of a, b, ¢ is zero, and the other
two numbers are equal to 1/2.

Because of this we can assume that a, b, c € RT.

From a + b + ¢ =1 it follows that at least one of the numbers a, b, ¢ is less then
4/9. In the opposite case, if all of them are greater then 4/9, we will have

+b+ 3 4_1 1
>3. —==>1,
a c 5= 3

a contradiction.
So we can assume that

c<4/9. (1)
Let A= 2b + b 4 o,
Then
A:abc<l+l+l— ! — ! — 1). 2)
a b ¢ a+1 b+1 c+1
Since

1 1 11 1 1 1
= @+ )+ (b+1 1 :
ari o Tegr T al@r e hres ))<a+1+b+1+c+l>
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applying the Cauchy—Schwarz inequality we have

1 " 1 " 1
a—+1 b+1 c+1
@ ntre+n4ery(— 1y 1
VA ¢ a+1 b+l e+l
1 9
>_(1+1+12=2. 3
> 0414122 3)

Now using (2) and (3) we obtain

A b 1+1+1 1 n 1 n 1
=abc| -+-+-—
a b ¢ a+1 b+1 c+1
1 1

1 9 9ab
§abc(g+g+c—z>=ab+ac+bc— a4c “4)
On the other hand, we have
(1—¢)* = (a+b)* = 4ab,
i.e.
(1—c)?
b< , 5
ab < — %)
and using (4) we get
1 9ab 1 9ab 1
A—Zfab+ac+bc— a4C—Z=ab+c(a+b)— a4c_Z
9 1
=ab<1—zc>+c(1—c)—z
M. (1 —¢)? 9¢ 1
< 1—= l1—¢)— —
< 7 ) +c(l—o) 1
1 —c —c(Bc —1)?
=—(-9 +6c2—¢c)=—(O9c® —6c+1)=——— <0,
6P O m =g O — et ) T
as required.
Equality occurs iffa =b=c=1/3. |

179 Leta, b, ¢ be positive real numbers such that abc = 1. Prove the inequality

1 1 1
@+ D20 10 G+t et DXatb)

3
<=
-8
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Solution Leta =x*,b = y?, ¢ = z>. The given inequality becomes

1 1 1
+ + <
X2+ D232 4+22) 24+ D222 4+x2)  (Z24+D2(x24y2) —

3
g

By the Cauchy—Schwarz inequality we have

1 2241
\/(xz—l—l)(yz—i-zz)zw—i—z:z—i—z: .
and
2 2442 ! Y +1
\/(x + 1Dz +y)2xz+y=;+y= v

Multiplying these two inequalities we get

@+ 4yt z EEDEHD

yz
i.e.
2 2 2
2 2,0 o T+ D +DEI+1)
x“+ D(z" + > .
( ) ( y) = -
Hence
1 vz

24+ 1D2(y2+72) = E2+DO2+DE2+D

Similarly we obtain

1 zx
A2+ - DO+ D@+ D)

and
1 - Xy
Z+ D22 +y) T 2+ DO+ DE A+
We have
1 1 1
CH DD T P D@D | @ PG
Xy +yz+zx

< bl
T @24+ DOGP+HDE+D
and it suffices to prove that

Xy +yz+zx
FZ24+DO2+DEE2+D

3
< =
-8
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i.e.
2 2 2 8
E+DO+DHE+D = g(xy + yz + zx).

By the Cauchy—Schwarz inequality we have

YEr+DA+y)zx+y,  VE@+DI+x?)=z+x and
VOR+DA+22) >y +z

Multiplying these three inequalities gives us
@CHDO*+DE+D = @+ )0+ D@ +x). (1)
By the well-known inequality
8
x+yO+2@Ez+x)=> §(x +y+2)xy+yz+zx),
and the AM > GM we obtain
8 8
x+yOo+2@Ez+x)=> §(x +y+2)(xy+yz+2zx) > g(xy +yz+2zx). (2)

By (1) and (2) we obtain

CHDOPHDE+H D> @+ YO+ D@ +x) > g(xy + yz +2x),

as required.
Equality occurs iff x =y=z=1ie.a=b=c=1. |

180 Let x, y, z be positive real numbers. Prove the inequality

xyx+y—2)+yzy+z—x)+zxz+x—y) > \/3(x3y3 +y323 +23x3).
Solution Notice that

xyx4+y—2)+yz(0+z—x)+zx(z+x—y)
. x(3+2% n y(@* +x3) n 23+ y?)
Ty 4z Z+x x+y

Leta=x3,b=y3,c=z3.
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Using Corollary 4.5 (Chap. 4) and the previous identity we obtain

xyx+y—2+yz0+z—x)+zx(z+x—y)

_x(y3+z3)+y<z3+x3)+z(x3+y3)
y+z Z+x xX+y

=T otor—cta)t —
B +x x+y

y+z z
> V/3ab+ be +ca) = /33y + Y32 + 230),

as required. |

(a+Db)

181 Leta, b, ¢ be positive real numbers. Prove the inequality

ab(@ +b%  be+3)  cal@+d)
a2+b2 b2+C2 C2+£12

> \/3abc(a3 + b3 +3).

Solution Let

1 1 1
x—c—z, y—b—z, Z=a2 and
ab? b2c? a?c?
A= , B=—  C=—
c a b
We have
ab(a® + b3) y be(b® + )
B+C)= , C+A)=—7-——
y+z( +0) a?+b? z—i—x( +4) b? + 2
and
z ca(c3 +a3)
A+B)=———-
x+y( +B) 2 +a?

Using Corollary 4.5 (Chap. 4) and the previous identities we obtain

ab(@®+b3)  be3 4+ ca +ad)

a2+b2 b2+C2 C2+a2

X y z
=——B+C)+——(C+A)+ (A+B)

y+z Z+x X+y
> /3(AB + BC + CA) = /3abc(a3 + b3 + ¢3). n

182 Let a, b, ¢ be positive real numbers. Prove the inequality.

b b
aba+c+bc ta +cac+ >+/3abc(a+ b +c).

b+c c+a a+b
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Solution Letx:ﬁ,y:%,z:ﬁandA:ac,B:ab,C:bc.
We have
b
Y B+ =ab® T et A =be2 T and
y+z b+c Z+x c+a
b
L A+ B)=caF2.
xX+y a+b

Using Corollary 4.5 (Chap. 4) and the previous identities we obtain

a+c b+a c+b
+b +

ab c ca
b+c c+a a+b

= B+O+——(C+AH+——(A+B)
+z Z+x X+y
> /3(AB+ BC + CA) = /3abc(a+ b +c). [

183 Leta, b, c and x, y, z be positive real numbers. Prove the inequality

a(y +2) +b(z+x) +c(x +y) =2/ (xy + yz + zx)(ab + bc + ca).

Solution Since the given inequality is homogenous we may assume that x + y +
z=1.
Now the given inequality can be written as follows

2\/(xy+yz+zx)(ab+bc+ca)+ax+by+cz§a+b+c.

Applying the Cauch—Schwarz inequality twice we have

ax+by+cz—|—2\/(xy+yz+zx)(ab~|—bc+ca)
<Va2+ b2+ 2 \Jx2+y2 4+ 22+ 2(xy + yz + zx) - 2(ab + bc + ca)

§\/a2+b2+c2+2(ab+bc+ca)~\/x2+y2+z2+2(xy+yz+zx)
=a+b+ec. [ |

184 Let a, b, c be positive real numbers such that abc > 1. Prove the inequality
aA+bp+3 >ab+ bc+ca.
Solution By Chebishev’s inequality it is easy to obtain
3@ +b + )= (a+b+ce)a+b* +cP). 1)
Now by AM > GM we have
a+b+c>3abc>3
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and clearly

a? +b*+c? >ab+ bc+ca.
So by (1) we obtain

3 (atbto@+b>+c*)  3(ab+be+ca)

3 3
b
a +b" +c¢ 3 > 3

=ab+ bc +ca.
[ |

185 Let a, b, c > 0 be real numbers such that a/3 + b%/3 + ¢?/3 = 3. Prove the
inequality
A+ b+ 2= a4 b3 4
Solution After setting a'B=x,p'3 = v, c!/3 = 7 the initial condition becomes
X2y 42 =3, (1
and the given inequality is equivalent to
x6+y6+z6 2x4+y4+z4.

Assume that x2 < y2 < 72, Then it is clear that x* < y4 <74

Applying Chebishev’s inequality we get
2+ 2+ +2H <368+ )0+ 29,
and using (1) we obtain x4+ y6 +20>x*+ y4 +z4 as required. [ |

186 Leta, b, c be positive real numbers such that a +b + ¢ = 3. Prove the inequality

1 1 1
<
c2+a+b+a2+b+c+b2+c+a -

Solution Observe that
1 1 1 1 a(l —a)

a2+b+c_3_az—a+3_3=3(a2—a+3)'

Analogously
1 1 b(1->) 1 1 c(l—c¢)

- == and — = ————.
b>+c+a 3 302 —-b+3) Z4+a+b 3 3(?2—-c+3)
Now the given inequality is equivalent to

ala—1) b(b-1) c(c—1) -
a?—a+3 b2—b+3 2—c+3~

i.e.
a—1 b—1 c—1
+ + >0
a—143/a b—1+3/b c—1+4+3/c

Without loss of generality we may assume thata > b > c.
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Then clearly a — 1 > b — 1 > ¢ — 1 and since a + b + ¢ = 3 it follows that
ab, bc, ca < 3. Now we can easily show that

1 _ 1 _ L
a—1+3/a " b—1+43/b c—1+3/c

Applying Chebishev’s inequality we obtain

1 1 1
l4b—l4c—1 <34
@=1+b-1I+c )(a—1+3/a+b—1+3/b+c—1+3/c)_

i.e.

Equality occurs iffa=b=c=1. |

187 Leta, b,c € Rt . Prove the inequality

24> 2b? 2¢?
+ + >a+b+c.
b+c c+a a+b
Solution Without loss of generality we can assume thata > b > c.
Then clearly
1 1 1
> > .

b+c c+a a+b

By Chebishev’s inequality we have

27 | 27 | 2 > 2@+ P4 At — (1)
b+c cH+a a+b_3a ¢ b+c c+a a+b)

Applying OM > AM we deduce

a’?+b2+c2 a+b+c . a’+b%+c? a+b+c\?
3 > 3 S 1.€. 3 > 3 .

By (1) and the previous inequality it follows that

2a® N 2b? N 22 >2( B LS S )
—(a c .
b+c c+a a+b™ 9 b+c c+a a+b

Applying AM > HM we deduce

1 1 1 9 9
+ + > = .
b+c c+a a+b” b+co)+(c+a)+(a+b) 2a+b+c)

Finally from the previous inequality and (2), we get required result. |
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188 Let a, b, ¢ be positive real numbers such that abc = 2. Prove the inequality.

A+ +3>avb+c+bJc+a+ca+b.

Solution Applying the Cauchy—Schwarz inequality we get

a\/b+c+b«/c+a+c\/a+b§\/2(a2+b2+cz)(a+b+c). (1)

Using Chebishev’s inequality we get

V2@ + 02+ ) a+b+0) < V6@ + b3+ ). 2
Also from AM > GM we have
a’+ b+ > 3abe =6. 3)
Combining (1), (2) and (3) we have

AP+ >V6@+b3+c3)>avb+c+byct+a+ceva+b.

Equality holds iff a = b = ¢ = /2. |
189 Letaj,ay, ..., a, be positive real numbers. Prove the inequality
1 1 1
1 1 T 1 1 T
Tathat " Toe atyt ta 7
Solution We can assume thatay >ar > --- > a,.
If we take x; = 2, y; = g fori =1,2,...,n then
1 1 1 1
—=<—=<---<— and < <---=
ar ~ ar a, ar+1 " ay+1 a, +1
Also we have that
1 1 1
XiYi Xi = Yi-

g+l @ a+1
So we can use Chebishev’s inequality, i.e. we have
n

AN N | 1 1 1
R B T D
Py a; oy a; +1 aij(ai +1) ‘ la,- a; +1

i=1
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Now we easily obtain

1 1

1 1 1 1 1 1
Ta T T e ata T Ta

v
S| =

Equality holds iff aj = a; =--- = a,,. [ |
190 Leta, b, c,d € RT such that ab + bc + cd + da = 1. Prove the inequality

a’ b3 A3 d3
b+c+d+a+c+d+b+d+a +b+c—i—a

1
> —.
-3

Solution Leta + b+ ¢+ d = s. Then the given inequality is equivalent to

3 3 3 3
a b c d 1
A= > —. 1
s—a+s—b+s—c+s—d_3 M
Letus assume a > b > ¢ > d. Then
Pepdzd® md x> Lo Lo 1
s—a_s—b s—c s—d
Applying Chebishev’s inequality we get
1 1 1 1
(a3+b3+c3+d3)( + + + >
s—a s—b s—c s—d
a’ b3 A3 d3
<4
- (s—a+s—b+s—c+s—d)
i.e.
4A> (@° +b° +c” +d°) + + + ) (2)
s—a s—b s—c s—d

Since a > b > ¢ > d it follows that a® > b% > ¢% > d?, and one more application of
Chebishev’s inequality gives us

@4+ +d)a+b+c+d) <4@ +b + 3 +dd),

@ +b*+E+dHa+b+c+d)
7 .

S+ ++d > 3)

Furthermore

a’+b? +b2+c2 +c2+d2 +d2+a2
2 2 2 2

>ab+bc+cd+da=1.

A+ 4+ +d? =
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So in (3) we deduce
b d
a3+b3+c3+d3z# )

and clearly we have

—a)+G—-Db+G—-c)+(6—d)

a+b+c+d= 3 (3)
Now from (4) and (5) we obtain
R P B G0 B Gl ) R Gt B G 0} ©

12
Using (2), (6) and AM > HM we have

4A2(@—a%+@—b%+G—C%HS—®>(Sl N 1 N 1 N 1 )

12 —a s—b s—c s-—d
16
> — =,
—12 3
i.e. it follows that A > %, as required. [ |

191 Let o, x, y, z be positive real numbers such that xyz =1 and « > 1. Prove the
inequality
th o ZO{
n Y
y+z z+x x+Yy

3
> .
-2

Solution Without loss of generality we may assume that x >y > z.
Then

X Z
> 2 !

> > and x%
y+z z+x x+Yy

Applying Chebishev’s inequality we have

B _ _ X z xO( o ZO{
L 1)( + 24 )§3< SR A )
y+z z+x x+Yy y+z z+x x4y

(D

> yotfl > Zafl.

Recalling AM > GM we get

x0T yerl ol > 3 (xyzye—1 =3, )

Nesbitt’s inequality gives us

X n y z
y+z z+x x+Yy

3
= 5 3
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Finally using (1), (2) and (3) we obtain

xlX o o X
3< + 2= )Z(x“_l+y“_1+z“_l)< I )
y+z z+x x4y y+z z4+x x4y

3
=3.=
2
i.e.
o o o
T2 < L3
y+z z4+x x4y~ 2 [ |
192 Let x1, x2, ..., x, be positive real numbers such that
1 1 1
+ 4+ 4 =1.
14+ x 14+ x2 1+x,
Prove the inequality
X1+ S+ X 1 1 1
B A N b
n—1 JX1 0 Jxo Xn
Solution Letﬁ:ai,forizl,l...,n.

Clearly ", a; = 1 and the given inequality becomes

n n n n
1 —a; a; 1 a;i
>m—1 J—
2T i ¢ Laia 2" i,
i=1 i=1 i=1 i=1
n a n n 1
1
< ; — .
o 2 (B (B o)

The last inequality is true according to Chebishev’s inequality applied to the se-
quences

1 1 1
(@@, an) - and (Jal(l—al)’Jaz(l—az)""’Jan(l—an)) L

193 Let x1, x2, ..., x, > 0 be real numbers. Prove the inequality
X1 x Xp+xp+-4xn
xllxzz...xr“\;ﬂz(x]xz...xn) n

Solution If we take the logarithm of both sides the given inequality becomes:

xiInx;+xp2Inxo +---4+x,Inx, > all +x2—|’;~~+xn (Inx;+Inxy +---+1nxy,).

(D

We may assume that x; > xp > --- > x,, thenlnx; >Inxy > --- > Inx,.
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Applying Chebishev’s inequality we get

(x14+x2+---+x,)(nx; +Inxy+---+1nx,) <n(x;Inx;+x2lnxo+---+x,Inx,),

ie.

xiInx; +xolnxy + -+ x, Inx, > al +x2—ri;--~—|—xn (Inx; +Inxy +---+1nxy,).

194 Let a, b, ¢ > 0 be real numbers such that a + b + ¢ = 1. Prove the inequality

al+b b 4+c A+a
+ + = 2.
b+c c+a a+b

Solution 1 Applying the Cauchy—Schwarz inequality for the sequences
a’+b b2 +c cz+a
ar = , ar = , a3 =
: b+c z c+a : a+b
and

b1 =vV (@ +b)b+c), by =+ (b2 +¢)(c+a), by =+ (c24+a)a+b)

we obtain

a2+b+b2+c+c2+a> (@®> +b*+ 2 +1)?
b+c c+a a+b ~ @+b)b+o)+Br+o)c+a)+ (2 +a)a+b)

So it suffices to show that

(@ 45>+ +1)? -
@ +b)b+c)+ B2 +c)c+a)+ (cE+a)a+b) ~

‘We have
(@ +b*++1)? -
@ +b)b+c)+B2+c)c+a)+ (2 +a)a+b) ~
& @4+ + D =2(@ +b)(b+co) + (B +o)(c+a)

+(¢* +a)(a+b))

& 14+ @+ 4+ >22B+0)+b2(c+a)+Ea+b))
+ 2(ab + bc + ca)

& 14+ @ +b*+A?>2@ (1 —a)+b*(1 —b) + (1 —c¢))
+ 2(ab + bc + ca)
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& 1+ @+ +D)? =2+ +—ad P -

+2(ab + bc + ca)
& @+ A+ 2P+ ) =20 + b+ P+ ab+be+ca) — 1
& (@4 +A 420+ + ) =201 —¢)+b(1 —a)
+c(1—b) —1
& (@PH+PP+D)+2d++ ) =1-2(ab+ be+ca)
& @4+ 2@+ 0P+ ) = @+ b+ ¢)* —2(ab + be + ca)
=a’+b* + 2
So we need to show that
@ +D*+ ) +2@ +0 + ) za + b7+ (1)

By Chebishev’s inequality we deduce

5 a?+b*+c?

(a+b+o)@+b*+H) <3@+b°+c, ie. P+ +> 3 ,
and clearly (¢ + b + ¢%)? > %.
Adding these inequalities gives us inequality (1). |

Solution 2 Takea+b+c=p=1,ab+ bc+ ca = q, abc =r and use the method
from Chap. 14. |

195 Let a, b, c > 1 be positive real numbers such that ﬁ + ﬁ + ﬁ =1.
Prove the inequality
1 n 1 n 1 <1
a+1 b+1 c+1~

Solution Without loss of generality we may assume that a > b > c. Then we have

a—2 b—-2 c¢-2 a+2 b+2 c+2
> > and < < .
a+1 " b+1" c+1 a—1"b—-1""c—1

Now by Chebishev’s inequality we get
3 a2—4+b2—4+c2—4 (a2, b=2 c-2
a?—1 b2—1 c2—=1) " \a+1 b+1 c+1
a+2+b+2+c+2
X .
a—1 b—-1 c—1
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and
a+2 b+2 c+2
>
a—1 b—1 c¢—1

we must have

a—2+b—2+c—2 -0
a+1 b+1 c+1~7

which is equivalent to ﬁ + ﬁ + ﬁ <1, as required.
Equality holds iffa =b=c = 2. [ |

196 Let a, b, c, d be positive real numbers such that a’ + b% + ¢ + d?* = 4. Prove
the inequality

1 1+ 1 1+ 1 1+ 1 1<0
5-a 4 5-b 4 5-c¢c 4 5-d 477

ie.
a—1+b—1+c—1+d—1<
S5—a 5-b 5—c¢ 5-d~—
Without loss of generality we may assume thata > b > ¢ >d.
Thenwehavea2—lzbz—lzcz—lzdz—l.
We’ll show that 1
We have

0.

1 < L
a—a?+5 — 4b—b2+5

4a—a*+5>4b—b>+5 & a+b<4,
which is obviously true since a’+b% <4,
So we have

1 - 1 - 1 - 1 .
da—a?+5 " 4b—b*+5 " dc—c2+5 " 4d—d*+5

Now by Chebishev’s inequality we obtain

( a?—1 N b2 —1 N a?—1 N a?—1 >
da—a’+5 4b—b>+5 4dc—c*+5 4d—d*+5

1
X0 () o

cyc
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Thus

0= a®—1 N b*—1 N a’—1 N a’—1

“4a—a’+5 4b—b2+5 4c—c2+5 4d—d?+5
a—1 b—-—1 c¢c—1 d-1

=5_a T 5-p 5-c 5-a

as required.
Equality holds iffa=b=c=d =1. |

197Leta,b,c,deRsuchthatﬁ—i—ﬁ—kﬁ—i—ﬁ—i—ﬁ:l.ﬁovethe
inequality

a n b n c n d n € -

44a? 44Db2 4+t 4+dr 442

Solution We have
1—a 1-b 1—c¢c 1-d 1—e
dva Td4b T dtc dtd ave
5—(@4+a) 5—(@4+b) 5—(@4+4c) 5—(@+d) S—(@4+e)
T 4+a 445 I 4+d 4+e
—5-5=0.

We’ll prove that

a b c d e 1 1 1 1

<
4+azJr4+b2+4+c2+4+al2 Jr4+e2 “4+a Jr4+b+4+c+4+d
1

(D

4+e
Inequality (1) is equivalent to
l—a n 1-b n 1-c 4 1-d
G+a)d+a%)  @A+b)E+b>)  @G+o@E+c?)  @G+d@E+d?)

1—e

T aroard =0 ®

Without loss of generality we may assume that a > b > ¢ > d > e, and then we
easily deduce that

l—-a 1-b 1—c¢c 1-d 1l-e
< < < <

44+a " 4+b " 4+c T 4+d " 4+te

1 1 1 1 1

< < < < .

44a> T 44+b> T 4+c? T 4+d> T 44 €2

and
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So by Chebishev’s inequality we get

1—a l1—a 1
52(4+a)(4+a2) ZZ4+a 'Z4+a2 =0,

sym sym sym

which means that inequality (2) holds, i.e. inequality (1) is true and since ﬁ +
ﬁ + ﬁ + ﬁ + ﬁ = 1 we obtain the required result.

Equality occurs iffa=b=c=d=e=1. |

198 Let a, b, ¢ be real numbers different from 1, such that a + b + ¢ = 1. Prove the
inequality

1+a2+1+b2+1+c2> 15

l—a? 1-b2 1—-c2~ 4°

Solution Since a,b,c >0,a# 1,b# 1,c# 1 and a + b + ¢ = 1 it follows that
O<a,b,c<]1.

The given inequality is symmetric, so without loss of generality we may assume
thata <b <c.

Then we have

l+a?2<14+b2<1+c? and 1-c2<1-b*<1-—d>

Hence
1 1 1
< < .
1—a?2 " 1-b2"1=¢2

Now by Chebishev’s inequality we have

Cl4a® 1407 14

A=
1—a? 1-=-5b2 1-¢2

S0 TR IS R Y (S R
=30 Ni—a2 1= " 1=a)

i.e.

- 3 l—az—‘_l—bz—i_l—c2 M

Also we have the well-known inequality

A>(a2+b2+c2+3)< 1 1 1 )

2. (a+b+c)? 1
- 3 3

a’+b*+c
Therefore by (1) we obtain

A>(1/3+3) 1+1+1 10 1+1+1
= 3 1—a?2 1-02 1-¢2) 9\1—-a2 1-b2 1-¢2)

2
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Since 1 — az, 1— bz, 1—c2> 0, by using AM > HM we deduce

1 n 1 n 1 - 9 - 9 _27 3)
1—a?2  1-b2 1—¢2 " 3—(a24+b2+¢%) ~3-1/3 8
Finally from (2) and (3) we get
A>10 1 n 1 n 1 >10 27_15
“9\l—-a?2 1-b2 1-¢2)~9 8 4’
with equality iffa =b=c=1/3. |
199 Let x, y, z > 0, such that xyz = 1. Prove the inequality
x3 y3 2 3
+ + >
A+y)(d+z) (A+2(0+x) A4+x)A+y) 4
Solution Let x >y > z. Then
1 1 1
x*>y3>7 and = z :
A+y)(d+z2) " I+20(01+x) ~ A+x)A+y)
Applying Chebishev’s inequality we get
3 3 3
3S=3( . b + < )
A+y(d+20 (d+2(1+x) A+x)A+y)
> (2% + 3+z3)( : + : + : )
- I+n(+2  (+20+0  (+00+y)
I+ +0+y»+0+z2
:(xgﬂgﬂg)(( )+ (4 ) 4 ))
dI+x)A+y)(1+2)
34x+y+z >
3 3, .3
=" +y +z ,
o )<(1+x)(1+y)(1+z)
ie.
3 3.3 3
Sz<x +y +z )( +x+y+z ) 0
3 A+x)A+y)A+2)

Let Xzﬁ = a. Then we have

X +yd+ 3 >(x+y+z

3
. > 3 >=a3 and 3a>3¥xyz=3, ie a>1.

From AM > GM we get

3
A+ +y)(1+7) < <3+x3ﬂ> = +a).
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So by (1) we obtain

S><x3+y3+z3)< 3+x+y+z >>a3< 6 )
- 3 T+x)A+y(+2)/)~ (1+a) )

Hence it suffices to show that

6a’
(1+4+a)d

1\ 6d 3
6(1— = > —.
1+4+a (14+a)3 ~ 4
Since a > 1, and the function f(x) = 6(1 — $)3 increases on [1, co] (why?), it

follows that f(a) > f(1) = %, as required. |

Z

3
1

i.e.

200 Leta,b, c,d > 0 be real numbers. Prove the inequality

a b c d
+ + +
b+2c+3d c+2d+3a d+2a+3b a+2b+3c

2
> —.
-3
Solution Let

A=b+2c+3d, B =c+2d+3a, C=d+2a+3b, D =a+2b+3c.

By the Cauchy-Schwarz inequality we have

a b ¢ d 5
<X+§+E+B)(aA+bB+CC+dD)Z(a+b+c+d)

a b c d
bt2ct3d ct2d+t3a d+2a+3b at2b+ie
(a+b+c+d)?

> : ey
aA+bB+cCH+dD

Furthermore
aA+bB+cC+dD=4(ab+ ac+ ad + bc+ bd + cd),

and (1) becomes

a b c d
bt2ct3d ct2d+3a d+2a+3b at2b+tic
(a+b+c+d)?

> .
~ 4(ab+ac+ ad + bc + bd + cd)
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So it suffices to prove that

(a+b+c+d)? 2
4(ab+ac+ad +bc+bd+cd) — 3’
i.e.
3(a+b+c+d)?>8(ab+ac+ad+bc+bd + cd). 2)
We’ll use Maclaurin’s theorem.
We have
¢ ab+ac+ad+bec+bd+cd
pr=—= , e
6 6
ab+ac+ad—+bc+bd—+cd=6p,
and

cl _a+b+c+d

Pl= = ie. a+b+c+d=4p.

Now inequality (2) is equivalent to 48 p% >48py, ie. p1 > p;/ 2, which is true due
to Maclaurin’s theorem. [ |

201 Leta, b, c be positive real numbers. Prove the inequality

a2+bc b +ca A+ab
+ +

> b .
b+c c+a a+b Zatbte

Solution Assume a > b > c. Then clearly a’>>b%>>c?and ﬁ > ﬁ > ﬁ.

According to the rearrangement inequality we have

a? n b2 n 2 - b? n 2 n a?
b+c c4+a a+b b+c c+a a+b’

i.e.

a2+bc b 4+ca A+ab b 4+bc *+ca a*+ab

> =a-+b+c.
b+c c+a a+b b+c c+a a+b

Equality occurs iffa = b =c. |

202 Leta, b > 0,n € N. Prove the inequality

n b n
5o o
b a

Solution We’ll use the fact that the function f(x) = x" is concave on (0, 00).
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So according to Jensen’s inequality we have

n n n
x"+y - X+y .
2 - 2

Remark Note that this is a power mean inequality.
Now we have

1 a\” b\" l+a/b+1+b/a\"  (2+a/b+b/a\"
S((5) +(+0) )= (=) - (5)

(D

Using 7 + g > 2 and (1) we deduce

a\" b\" 24+2\"
1+ — 1+-) >2(=—=) =2*.
(1+5) +(+3) =2(%5) .

203 Leta, b, c > 0 be real numbers such that a + b 4 ¢ = 1. Prove the inequality

1\?2 1\? 1\> 100
a+—) +(b+-) +(c+-) =—.
a b c 3

Solution The function f(x) = x?2 is convex on (0, 00).
So according to Jensen’s inequality we have

1 1\? 1\? 1\? 1 1 1 1\\?
Nla+-) +(b+=) +(c+-) |)=2(z(a+—-+b+—-+c+-)]),
3 a b c 3 a b c

204 Let x, y, z > 0 be real numbers. Prove the inequality

X n y Z
2x+y+z x+2y+z x+y+2z

3
<-.
4
Solution Lets =x+y + z.

The given inequality becomes

X n y z
s+x s+y s+z

3
<.
~4

Consider the function f : (0, +00) — (0, +00), defined by f(a) = ﬁ
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We can easily show that f”(a) <0, for every a € R™, i.e. f is concave on R™.
By Jensen’s inequality we have

S+ )+ f@) <f<x+y+z>

3 3
ie.
s—)lc—x—i_sj]-y S_T_sz(x)‘i‘f()’)—i-f(Z)
2(75)=(5) = 5
as required. .

205 Let a,b,c,d > 0 be real numbers such that a < l,a+b <5,a+b+c <
14,a 4+ b + ¢ +d < 30. Prove that

Va4 Vb4 e +d <10.

Solution The function f : (0, +00) — (0, +00) defined by f(x) = /X is concave
on (0, +00), so by Jensen’s inequality, for

. 1 2 3 4
=R M= 2T YT %7
we get
l‘/_+2\ﬁ+3f+4 d<\/a+b+c+d
10V " 10Va T 10Vo T 10Vie V10 20 T30 " 40’
ie.
12a + 6b + 4c + 3d
JE+JZ+JE+«/E§10\/ a 12+0 el (1

On the other hand, we have

12a + 6b 4+ 4c + 3d
=3(a+b+c+d)+@+b+c)+2(a+b)+6a
<3.30+14+2-5+6-1=120.

By (1) and the last inequality we obtain the required result. |
206 Let a, b, c,d be positive real numbers such that a + b + ¢ 4+ d = 4. Prove the
inequality

a n b n c n d - 8
V2+b c24+c d?’+d a’+a (a+o)b+d)
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. _ _a b c
Solution Denote A = vt ot ra t o
Consider the function f(x) = ﬁ Then f is convex for x > 0.
According to Jensen’s inequality, we have

’ d b+be+cd+d
%'f(b)+Z'f(C)+§-f(d)+Z.f(a)zf<a +bc+cd + a)’

4

i.e.
64
A > .
~ (ab+bc+cd +da)? +4(ab + be + cd + da)

So it remains to prove that

64 8
>
(ab+bc+cd+da)?+4ab+bc+cd+da) ~ (a+c)b+d)’

ie.
ab+bc+cd +da <4,
ie.
(a—b+c—d)*>0,
which is obviously true. Equality holds iffa =b=c=d = 1. |

207 Letxy,x2,...,x, >0andn € N,n > 1, such that x; +x+---+x, = 1. Prove
the inequality

X1 n bY) R Xn >\/x_1+ /334 + X
J1=x1 JT—x; ST=x, ~ Vn—1 ’
. . x
Solution The function f(x) = Ji=; is convex on (0, 00). (Why?)

Hence by Jensen’s inequality we have

1 X1+t
X1 X2 Xn .
n\1—x V1 —x0 V1 —xy /1 X 0t
n
1
__n 1

_\/1_%:\/;1(”—1)'

It follows that

X1 DY) X n

+ +ot === .
\/l_xl \/l_x2 M —x, " Vn—1

&)
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By OM > AM we have

ﬁ+m+---+ﬁ<\/x1+xz+--~+xn 1
n - n Jn'

ie.
VA X2+ xS/ 2
By (1) and (2) we deduce
X n X3 R Xp > n zﬁ+ﬁ+...+ /_Xn’
JT=x1 J1—x J1—x, n—1 Jn—1

as required. |

208 Letn € N, n > 2. Determine the minimal value of
5 5 5
X X x
‘ + = +ot . :
Xo+x3t-o X XXzt Xy X1+ x4+ X

where x1, x2,...,x, € Rt suchthatx%+x%+--~+xrzl=1.

Solution Let S =x; +x2 + -+ - + x,. We may assume that x; > x, > --- > x,,.
5 5
—_ " )
L.etA_ S—x1 +S—xz +”'+S
Since

5 5
Xn — Zn X
—Xn i=1 §—x;°

X X X,
’411 and 1 > 2 >.> n
S —x S—x S —xy

4. .4
X[ =x; > >x

we can use Chebishev’s inequality.
_ n 4 x;
Wehave A=) 1" x; 57
So

A=Zx?SinznZ;x;‘~ZsiiXi. (1)

By OM > AM we have

1
XP=—. )

n n 4 n2é&=~"1" n

n 4 n 2 n n
> i X . Zi:lxi . 4 I 2
- ) i

The function f(x) = = is convex.
So by Jensen’s inequality we have

X1 +x2+- 4 x, 1 o
f( >§;§f(xi)y

n
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i.e.

n ) X1 +X2+-+xn

1
_§ : Xi n _ n _
wes - - ’
n 4 S_xl X1+X2+ +x _ Xitxo+t-H4x, 1_ n_l

n

from which it follows that

n

Y 5oy Ean G
LuS—x; n—1
i=1

Finally using (2), (3) and (1) we obtain

1 n n

A>n =

n n—1 n-—1

Equality occurs if and only if xj = xp =--- = x,, = 1/4/n. |

209 Let P, L, R denote the area, perimeter and circumradius of AABC, respec-

tively. Determine the maximum value of the expression %P

Solution We have

LP (a+b+c)abc  2R(sina +sinf + sin ¥)8R3sinasin B smy

R} R34R N 4R4
i.e.
LP . . . . . .
F:4(sma+sm,3—l—smy)smozsm,Bsmy. @))

By AM > GM we have

. . . (sina+sin/3+siny)3
sina sin B siny < .

3
So by (1) we get
LP 4(sma 4+ sin 8 + sin y)4
R = 2
R 27
The function f(x) = —sinx is convex on [0, ], so by Jensen’s inequality we have

sina + sin B +siny <Sin<ot+ﬂ+)/) _ V3

3 3 T2

Finally from (2) we obtain

Equality occurs iffa = b =c. n
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210 Leta, b, c € RT such that a + b + ¢ = abc. Prove the inequality

1 1 1 3
+ + <.
Vi+a2 V1462 V14272

Solution 1 After taking a =tanco, b =tan 8, c =tany where «, 8, y € (0, 7/2), the
given inequality becomes

1 1
+ <

sin” o in2 '
== s e

N W

i.e.
3
coso +cos B +cosy < 3"

Also
tane +tan B +tany — tanw tan ftany

tan(o =
@t+p+y)= —tanotanf —tanftany —tany tano

a+b+c—abc

:—:O,
1—ab—bc—ca

whichmeansa + 8+ y =m.
The function f(x) = — cosx is convex on [0, 7 /2].
So by Jensen’s inequality we have

cosa + cos B+ cosy a+p+y 1
3 SeSTT Ty

i.e. we get
3
cosa +cosfB +cosy < X

as required. |

Solution 2 Leta = %, b= %
The constraint a + b + ¢
equality becomes equivalent to

CcC=
z’
= abc becomes xy + yz + zx = 1, and the given in-

(O8]

x z
+ Y + S_a
V241 Jy2+l V22412

ie.
x z
+ 2 + <
Valdxy+yz+zx JyPdxy+yztzx J22Hxy+yz+zx

[\SH OS]
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ie.
X 3
+ 2 + = <. W
Vet +) JO+IO+D)  Je+nG+y) T2
By AM > GM we have
x _ Xty t+z)  x((x+y)+ @ +2)
VEx+y)(x+2) x+»Ex+z) 7 20x+y)x+2)
l< X X )
=_ + .
2\x+y x4z
Analogously we get
1
+§—< Y + Y ) and
VO++x) T 2\y+z ytx
z 1( z Z )
——=s| —+ .
JE+EX)Z+y) T 2\z+x  z+y
Adding these three inequalities we get inequality (1). |

211 Leta, b, c € R such that abc + a + ¢ = b. Prove the inequality

2 2 3 10
_ + < .
a?+1 b2+1 24173
Solution The given condition is equivalent to b = I“jfc.
This suggest the substitutions:
a=tana, b =tan g, c=tanvy,

where tan 8 =tan(e + y) and o, 8, y € (—m /2, w/2), so we have

2 2 3 2 2 3

= — + = = +
a?+1 b24+1 A2+1 tan?a+1 tan?(a+y)+1 tan?y +1

=2cos’a —2cos’(a +y) +3cos’y

= (20032a —-1) - (20052(05 +y)—D+ 30052)/
= cos 2a — cos(2a + 2y) + 3 cos? y

=2sin(Qo + y)siny + 3 cos? Y.

Let x = |sin y|. Then we have

A§2x+3(l—x2)=—3x2+2x+3=—3(x——
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Equality holds if and only if sin(2a 4+ y) = 1 and siny = %, from which we deduce
(@,b,0) = (V2/2,v/2.v2/4). n

212 Let x, y,z > 1 be real numbers such that % + % + % = 2. Prove the inequality

Vi—T+yy—1+Vi-1</x+y+z

Solution I Letx =a+1,y=b+1,z=c+ 1, and clearly a, b and c are positive
real numbers.
C . s 1 1 1 _ 1 1 1 _»
The initial condition s 3 +-= 2 becomes it ta= 2, 1.e.

ab + bc + ca + 2abc = 1. (D
We need to show that
Va+Vb+Je<va+b+tcts. 2)
After squaring inequality (2) we get

a+b+c+2vVab+2vVbc+2Jca<a+b+c+3

or
2vab + 2v/be + 2/ca < 3,
ie.
3
Vab +be + Jea < 5 (3)

Identity (1) is equivalent to
(Vab)* + (Vbe)? + (Vea)? +2(Vab - Vbe - Jea) =1,
so due to Case 7 (Chap. 8) we may take
«/ab:sin%, «/ﬁ:sing, «/ca:sin%,

where o, B,y € O, m) anda + B+ y =m.
Now inequality (3) is equivalent to

.o . B .y 3
—_ - L <
sm2+sm2+sm2_2,
where o, B8,y € (0, ), ¢ + B + y = 7, which is true by N3 (Chap. 8). |

Solution 2 Applying the Cauchy-Schwarz inequality we have

<x;1+y;l+Z;1>(x+y+z)2(«/x—1+\/y—1+x/z—1)2.
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Also

x—1+y—1 Z—1=3_<l l 1):1

X y z X ¥y z
So

x—}—y—i—zz(«/x—l—i-\/y—l—i-«/z—l)z,
ie.

Sy Fie Vi l+y—1+vi— 1

Equalityoccursiff%:%:%and%+§+%:2,i.e.x=y=z=3/2. [ |

213 Leta, b, ¢ be positive real numbers such that a + b+ c = 1. Prove the inequality

\/1 1\/1 1+\/1 1\/1 1-1—\/l 1\/1 1>6
a b b ¢ ¢ a -

Solution Let a =xy,b = yz,c = zx. Then xy + yz + zx = 1 and due to Case 3
(Chap. 8) we may take

tan - t tan ¥
X =tan —, =tan —, z=tan =,
2 Y 2 2

where a, B,y € (O, r) anda +B+y =m.
We have

\/1_1\/1_1_\/0—&)(1—19)_ (1—x)(1 —y2)
a b o ab - xyZZ

=\/(yZ+zx)(zx+xy) Z\/(y+x)(z+y) _VI+y?

2

xy?z y y
B V1 +tan2§ B 1
B T an B
tanj sin 5

Similarly we obtain

1 1 1 1 1 1
——1,/-=1=— and ——1,/—=1=—= .
b c sin c a sin §

Now the given inequality becomes

1 1 1

- + + — > 6.
sin§  sin g sin &
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By AM > HM we have
1 1 1 9

>
in% B in¥ = ano B v
S = n = = £
7 sing S5 sing +sin5 +sin 5

So we need to prove that sin 5 + sing + sin% < % which is true according to N3
(Chap. 8).

Equality occursifand only ifa ==y =n/3,ie.a=b=c= |

Wl —

214 Let a, b, ¢ be positive real numbers such that a + b + ¢ + 1 = 4abc. Prove the
inequalities

1 1 1 1 1 1
-4+ -4+-=3> + +

a b ¢ Jab  Nbc  AJca

Solution We have
a+b+c+1=4abc
& ! + ! + ! + ! =4
bc ca ab abc
1 1 1 2

(2vab)?  (2vbc)?  (2ca)?  (24/ab)(2v/bc)(24/ca)
Due to Case 7 (Chap. 8) we can make the substitutions

1 .o 1 B 1 % 0
—— =sin —, =sm_, =sm -,
2+/bc 2 2\/ca 2 2+/ab 2

where o, B,y € (0, 7)) anda + B +y =m.
From (1) we easily obtain

1 2sinfsink 1 2sintsing 1 2sin%sin2

_ 2 2 _ 2 2 d _ 2 2 2
—= 22 c=——75— and —=—"7—=. (2
a sin 5 b sin 5 c sin 5

Now the given inequality becomes
Lo . B .Y
2sin — + 2sin — + 2sin — < 3,
51n2+ s1n2+ sm2 <
i.e.
N T - 4
—_ - L < =
sm2 4+ sin > 4+ sin 7=
where o, B8,y € (0, ) and o + 8 + y = 7, which clearly holds due to N3.
We need to show the left inequality which, due to (2) is equivalent to

. /3 sy Y s o ﬂ
231n7s1n7 Zsmjsmj 251njsm7

- . >3. 3
sin § sin g sin &
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Let a, b, ¢ be the lengths of the sides of the triangle with angles «, 8 and y, let s be
its semi-perimeter, and let x =s —a,y=s — b,z =5 — c.
Then due to Case 9 (Chap. 8) inequality (3) is equivalent to
X y Z 3

+ + 2_7
y+z z4+x x4y~ 2

i.e. we obtain the famous Nesbitt’s inequality, which clearly holds. And we are done.
|

215 Leta, b, c be non-negative real numbers such that ab + bc + ca = 1. Prove the
inequality

a b c 343
+ + < ‘/_.
1+a?2 1402 1+4c2 4

Solution Since ab + bc + ca = 1 (Case 3, Chap. 8) we take:

a:tan%, b:tang, c:tang,
where o, B,y € O, m) anda + B+ y =m.
So we have
a b c 1

e + R + e :E(sina+sinﬂ+siny),

and the given inequality becomes

3J3

1
E(sina +sinfB +siny) < R
i.e.
3V3

sing +sin B 4 siny < -

which is true according to Nj (Chap. 8).
Equality occurs if and only if a = b = ¢ = 1//3. |

Remark This is the same problem as Problem 92.

216 Leta, b, c be positive real numbers such that a + b+ c = 1. Prove the inequality
\/ ab n \/ bc n ca_ _ 3
c+ab a—+bc b+ca~ 2

(c—l—a)(c—l—b):cz—i—ca—i—cb—i—ab:cz+c(a+b)+ab=c2+c(l—c)+ab

Solution We have

=c+ab.
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Analogously we get
(a+b)a+c)=a+bc and (b+c)(b+a)=>b+ca.

Now the given inequality becomes

ab be ca 3
+ + <:.
\/(C+a)(c+b) \/(a+b)(a+0) b+o)b+a) ~ 2

According to Case 9 (Chap. 8) it suffices to show that

L« . B .y 3
_ - <
sm2+sm2+sm2_2,
where «, 8,y € (0, ) and o + 8 + y = , which is true due to N3 (Chap. §). W

217 Leta, b, ¢ > 0 be real numbers such that (a + b)(b + ¢)(c + a) = 1. Prove the
inequality

W

ab+bc+ca <
Solution We homogenize as follows
3 27 2 2 2
(ab + bc + ca) 56—4(a+b) b+ c) (c+a). (1)

Since inequality (1) is homogenous, we may assume that ab + bc + ca = 1.
Now, by Case 3 (Chap. 8) we can use the substitutions

o B Y
a =tan —, b =tan —, c=tan —,
2 2 2
where o, B,y € (0O, m) anda + 8+ y =m.
Then
a—i—b—tang—i—tané— sin%cos%—i—cos%sing _ sin# _ cos%
- - o B - o B o B
2 2 COs 5 COS 5 COS 5 COS’5  COS 5 COS 5
Similarly
cos% cosg
b—’—C:ﬁi and c—i—a:ﬁ,
cos 5 cos & cos L cos §
i.e. we obtain
1

(a+b)(b+c)(c+a)= — 5
cos § cos 5 cos §
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Therefore inequality (1) becomes

1 64 o y 3V3
>—, 1e C€0S—COS—COS— < —,
cos2 2 cos? B cos2 L 27 2 2 2 8
2 2 2
which is true due to Ng (Chap. 8). So we are done. |

218 Let a. b, ¢ > 0 be real numbers such that a2 + b% + ¢2 + abc = 4. Prove the
inequality

0<ab+bc+ca—abec<2.

Solution Observe that if a, b, ¢ > 1 then a2 + b2 + ¢ + abc > 4.
Therefore at least one number from a, b and ¢ must be less than or equal to 1.
Without loss of generality assume that a < 1.
Then we have

ab+ bc+ ca —abc > bc —abc =bc(1 —a) > 0.
So we have proved the left inequality.
Leta=2x,b=2y,c=2z.
Then the condition a® + b? 4 ¢? 4 abc = 4 becomes
x4y 42+ 2xyz=1 (D
and the given inequality becomes
2xy 4+ 2yz+2zx —4xyz < 1. 2)
By (1) and Case 8 (Chap. 8) we can take
X =cosa, y =cosf, z=cosy,

where o, B,y € [0,7/2] anda + B+ y =m.
Therefore inequality (2) becomes

2cosacosPB+2cosfcosy +2cosycosa —4cosacosfcosy <1,

1
cosacos B+ cosBcosy +cosy cosa —2cosacos fcosy < 7 3)

Clearly at least one of the angles «, 8 and y is less than or equal to /3.
Without loss of generality, we may assume « > /3 and it follows that coso < %
We have

cosa cos B+ cosBcosy +cosycosa —2cosacos B cosy

=cosa(cos B +cosy) +cosBcosy(l —2cosa). @)
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By N5 (Chap. 8) we have that

cosoz—{—cos,B—I—cosyf%, ie. cos,3+cosy§%—cosa. 5)
Also
2cosBcosy =cos(B—y)+cos(B+y)<1+4+cos(B+y)=1—cosa. (6)
By (4), (5) and (6) we obtain

cosa cos B+ cosfcosy 4+ cosy cosa —2cosa cos fcosy
=cosa(cos B +cosy) +cosBcosy(l —2cosa)

3 1 —cosa
<cosa E—cosoc —i—T(l—Zcosa):Z,

as required. |
219 Leta, b, c be positive real numbers. Prove the inequality
a? +b* +c* +2abc+3 > (1 +a)(1+b)(1 + o).
Solution The given inequality is equivalent to
a2+b2+C2+abc+22a+b+c+ab+bc+ac.

Recall the Turkevicius inequality:
For any positive real numbers x, y, z, t we have

x4+y4+z4+t4—|—2xyzt zxzy2 —i—yzzz-i-zztz +12x2+x2z2 +y2t2.
If we seta:xz,bzyz,c=zz,t= 1 we deduce
a2+b2+c2+2Vabc+1za—i—b—i—c—i—ab—}—bc—i—ac. €))

Since AM > GM we get
2V abec <abc + 1. )

From (1) and (2) we obtain

a2+b2+02+abc+2Za2+b2+02+ZVabc+l2a—|—b+c+ab+bc—|—ac.
[ |

220 Let a, b, c be real numbers. Prove the inequality

\/a2+(1—b)2+\/b2+(l—c)2+\/c2+(l—a)2z%E.
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Solution By Minkowski’s inequality we have

Va2 + (1 =024+ Vb2 + (1 — )2+ + (1 —a)?

3\ 9
2\/(a+b+c)2+(3—a—b—c)2:\/2<a+b+c—§) tsz

221 Let aj,az,...,a, € RT such that )7, ai3 =3and )|, al.S = 5. Prove the
inequality

" 3
a; > —.

Solution We’ll use Holder’s inequality:
If aj,az,...,a,;b1,b2,...,b, e RT and p,q € (0,1),1/p +1/g =1 then we
have

n n % n é
i=1 i=1 i=1
We have
n 2/5
Za _Zaza < <Za5/3> (Z(a?)5/2> i
i=l1 i=l1
i.e.
n 3/5 3 n 3/5
3< (Zaim) .52/5 e 275 < (Z“im) ) ¢))

‘We’ll show that

Let S=)"7,a.
Since 0 < ¢ <1 and > 1 we have that (¢ )33 < % — 1 from which we deduce

" a3 g
(5) x5

i=1 i=1

So

n n 5/3
Sl <55 = (Za,-) ,
i=1 i=1

since 2° > 52,2 > 5%/ and by (1) we obtain the required inequality. |
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222 Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove the
inequality

A +aH(1+b)(A+c?) > 8.
Solution By Holder’s inequality we have
@b*+a* + 0> + 1) (B> +* +b*c* + 1) (@* +a*c* +* + 1) = (1 +ab+bc+ca)’
ie.
(14 a*)>(1+b*)*(1 +c*)* = 28,
as required. |

223 Let a, b, ¢ be positive real numbers such that ab + bc + ca = 1. Prove the
inequality

(@ +ab+b>) (B> + be + ) (P +ca+a*) > 1.
Solution We’ll show stronger inequality, i.e.
(a2 +ab+ 172)(192 + bc + cz)(c2 + ca + az) > (ab + bc + ca)’.
By Holder’s inequality we have

(a® 4 ab + b*)(b* + be + ) (? + ca + a?)
= (ab +d*+ 192)(l72 +cr+ bc)(a2 + ca + 02) > (ab+ bc + ca)3,

as required. |

224 Leta, b, c be positive real numbers such that abc = 1. Prove the inequality

b
4 =1
NI+b24+c2 T+ +a2 VT+a?+b2

Solution Denote

a b c
A= + +
VI+b2+2 VT1+c2+a? VT+a>+b2

and
B=a(7+b>+c*) +b(1+c? +a*) + c(7+ a* + b?).
By Holder’s inequality we have

Asz(a+b+c)3. (D
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Furthermore
B=7a+b+c)+(@+b+c)ab+bc+ca)—3

b 3
sua+b+a+fii§i9——3sm+b+a3 @)

and by (1) and (2) we obtain

3
22 (a+b+c) >
B

A 1, ie. A>1,

as required. |

225 Let ay, ay, ..., a, be positive real numbers such that a; +as + --- +a, = 1.
Prove the inequality

aj a a n

+ o = :
J1—a1  JT—a J1—ay n—1

Solution Let us denote

ai az an

\/1—a1 \/1—02 «/l—an
B=ai(l-a)+a(l—-a)+---+a,(1—ay).

A

By Holder’s inequality we have
A’Bz (i +a+-+a)’ =1 (1)
Applying OM > AM we deduce

(a+ar+---+a)? n—1

B=1—(a}+d3+--+a>)<1- )
n n
By (1) and (2) we obtain
n—1 2 2 . n
A >A“B>1, 1e. A> .
n n—1
Equality holds iff a; = 1, foreveryi =1,2,...,n. [

226 Leta, b, c be positive real numbers. Prove the inequality

a b c

+ + > /3.
V202422 —a?2 V22 +2a2 = b2 V24?4202 — 2

Solution Denote

a b c
A= + +
V202 422 —a?2 V22 +2a2 =B 2424202 — 2
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and

B =ab*+2c¢* —a*) + b2c* +2a% — b?) + c(2a® + 2b* — %)
=2ab(a + b) +2bc(b+ ¢) +2ca(c+a) — a—bp =
By Holder’s inequality we have
A’B>(a+b+c). (1)
We’ll show that
(@+b+c)’ =3B, ©)

and then by (1) we’ll obtain the required inequality.
Inequality (2) is equivalent to

4(a’ + b® + ) 4 6abe > 4(ab(a + b) + be(b + ¢) + ca(c + a)). 3)
The following inequalities are true:
3((a® + b® + ) 4 3abc) > 4(ab(a + b) + be(b 4 ¢) + ca(c +a))  (Schur),
A +b3+>3abe (AM > GM).

Adding the last two inequalities we obtain inequality (3).
Equality occurs iffa = b =c. n

227 Let a, b, ¢ be positive real numbers such that ab + bc + ca > 3. Prove the
inequality
a b c 3
+ + > —.
Va+b Jbt+c Jeta T V2

Solution By Holder’s inequality we have

b 2/3
<¢ a+b+\/b+ +\/C+ ) (@@+b)+bb+c)+clc+a)'’?>a+b+e,
a C C a

i.e.

< a + b + c >2> (@a+b+c)3
Ja+tb b+c Jet+a) T ai+b2+ct+ab+be+ca

It is enough to show that

(@a+b+c)?
a’?+b%2+c2+ab+bc+ca

9
>_9
-2
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i.e.
2a+b+c)=9a®+b*+c? +ab+be +ca). (1)

Let p=a+b+cand g =ab+ bc+ ca.
Using the initial condition we have ¢ > 3, and then inequality (1) is equivalent to

2p° >9(p* —2¢ +q) or 2p’+9g>9p>.
Applying AM > GM we obtain
2p3 499 > 2p3 +27=p* + p* +27>327p° =9p?,
as required. |
228 Leta, b, c > 1 be real numbers such that a + b + ¢ = 2abc. Prove the inequality

J@a+b+c)2>Jab—1+bc— 1+ ~/ca—1.

Solution By the initial condition we have

1 1 1 b—1 bc—1 -1
a+b+c=2abc or —4+—+—=2 <& a + ¢ +Ca =1.
ab  bc ca ab bc ca
By Holder’s inequality for triples
b—1 bc—1 —1
(@,b,c), (b,c,a), [ e, &
ab bc ca
we obtain
b—1 bc—1 —1\'?
@+b+0) Ph+eta)P( -y &
ab bc ca
> (ab—1)'3 + (bc — )3 + (ca — D'/3,
Since
ab—l_|_bc—l+ca—l_1
ab bc ca
we get
J@a+b+c)2>Jab—1+bc— 1+ /ca—1. m

229 Lett1,, tp, t. be the lengths of the medians, and a, b, ¢ be the lengths of the sides
of a given triangle. Prove the inequality

5
tatp +tpte + 1oty < Z(ab + bc + ca).
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Solution We can easily show the inequalities

b+c a+c b+a
I, < > I < 5 I < .

After adding these we get
tat+tp+t.<a+b+c. (1)
By squaring (1) we deduce
12+ 1 124 2(taty + tle + tey) < a® + B>+ 2+ 2(ab+be +ca). ()
On the other hand, we have

2 2(b% + ) — a? 2 2(a® + %) — b? 2 2(b* 4 a?) — ¢?
a — 4 ’ b — 4 ’ c 4

SO
2 2 2 3 2 2 2
o+ +12 =@ +b +c?).

Now using the previous result and (2) we get
1
tatp + tpte + Loty < g(az—i—bz—i—cz) + (ab + bc + ca). 3)

Also we have a2 + b% + ¢2 < 2(ab + be + ca), since
a2+b2+c2—2(ab+bc+ca):a(a—b—c)+b(b—a—c)+c(c—a—b)<0.

Finally by (3) and the previous inequality we obtain
5
tatp +tpte + toty < Z(ab + bc + ca). m

230 Leta, b, c and t,, 1, t. be the lengths of the sides and lengths of the medians
of an arbitrary triangle, respectively. Prove the inequality

3
at, + bty + ct. < %(a2 +b%+ cz).

Solution By the Cauchy—Schwarz inequality we have
@ +b* + A (2 + 17 +12) = (aty + bty + ct)?. (1)
Also

3
t§+tb2+t02=2(a2+b2+cz). )
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From (1) and (2) we get

3 3
(aty + bty +ct)* < : @*+b*+c*? e aty+bty+ct. < % (a* +b* + ),
as required. |

231 Leta, b, c be the lengths of the sides of a triangle. Prove the inequality

Vatb—c+Veta—b+vVb+c—a<Ja+b+ e

Solution We’ll use Ravi’s substitutions, i.e. leta =x+y,b=y+z,c=z+x,
where x, y,z e R,
Now the given inequality is equivalent to

V2 +2y+ V2 s x+y+y Vit

By OM > AM we have # > M, from which we deduce that

Vit Yy

JxFty> 7

Analogously we get

L IEVE g e ARV
VFEz S amd ez

After adding these three inequalities we obtain

Jx+y+¢y+z+\/z+xzz*/7_+2*§+ :j—_
ie.
VIFY Y F Vx> V2 + 2y + /22,
as required. |

232 Let P be the area of the triangle with side lengths a, b and ¢, and T be the area
of the triangle with side lengths @ 4+ b, b 4+ ¢ and ¢ 4+ a. Prove that T > 4P.
Solution We have

b
P> = s(s—a)(s —b)(s —c), wheres= %,

ie.
16P>=(a+b+c)a+b—c)a+c—b)b+c—a).
Let 51 be the semi-perimeter of the triangle with side lengths a + b, a + ¢, b + c.



21 Solutions 367

Then

_a+b+a+c+b+c

= b =2s.
> a+b+c S

51
So we get

T? =51(s1 — (a+b)(s1 — (a+)(s1 — (b +0))
=25Q2s —(@a+b)2s —(a+¢))2s — (b+c)) =abc(a+ b +c).

It suffices to show that T2 > 16 P2 i.e.

abca+b+c)=@+b+c)a+b—c)la+c—b)(b+c—a).
We have

a2zaz—(b—c)2=(a—b+c)(a+b—c):(a+c—b)(a+b—c).

Analogously

b* > (a+b—c)(b+c—a) and 022(b+c—a)(a+c—b).
If we multiply the last three inequalities (Can we do this?) we obtain

a*b*? > (a+b—c)a+c—b2b+c—a),
ie.
abc>(@+b—c)a+c—b)(b+c—a),

as required.
Equality occurs iffa =b =c. |

233 Let a, b, c be the lengths of the sides of a triangle, such that a + b + ¢ = 3.
Prove the inequality

dabc 13
>

a’>+b*>+c* + >

Solution Leta=x+y,b=y+zandc=z+x.

Sowehave x +y+z = % and since AM > GM we get xyz < (H3L+Z)3 = %
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Now we obtain

4ab
a2+b2+c2+%
_ (@24 b*+c2(a+b+c)+4abe
B 3
A+’ + 0422+ @)@ +Hy+) HAE+ O+ D +X)
B 3
4yt o) )54 3}V 1\ 13
=—-((x —x =) —=)=—=.
g TyremU=3z) 78)73
Equality occurs iff x =y =z,ie.a=b=c=1. |

234 Leta, b, c be the lengths of the sides of a triangle. Prove that

> max{a, b, c}.

\3/a3+b3+c3—|—3abc
2

Solution Without loss of generality we may assume thata > b > c.
We need to show that

a’

slad 4+ b3 + 3 + 3abe -
> >

i.e.
—a> + b3+ +3abe > 0.

Since

&P+ + 3 +3abe=(—a)) + b + 3 = 3(—a)be
1

- 5(—a +b+o)@+b)?+ (a+0)*+ (b —0c)?),

and since b + ¢ > a we obtain
—a’ + b3+ 3 +3abe >0,
as required. |

235 Leta, b, c be the lengths of the sides of a triangle. Prove the inequality

3
abc < az(s —a) +b2(s —a) +cz(s —a) < Eabc.
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Solution Since
2(a%(s — a) + b*(s — a) + (s — a)) = a®b + a*c + b*a + b*c + c*a + *b
—(@+b+c)
and
(b+c—a)lc+a—b)la+b—rc)
=a’b+a’c+b%a+b*c+ c*a+ c*b — (a3 +b+ c3) — 2abc
we have
2@’ (s —a)+b*(s —a)+ (s —a)) = (b+c—a)(c+a—b)(a+b—c)+2abc.

Hence

b+c—a)(c+a—b)(la+b—c)
5 +a

az(s—a)+b2(s—a)+c2(s—a)= bc
> abc.

Recalling the well-known inequality

b+c—a)c+a—b)a+b—c)<abc,

we have
b+c—a)c+a—b)a+b—
az(s—a)+b2(s—a)+c2(s—a)= ( G ;l )a ) + abc
3
< —abc.
2
Equality holds if and only if the triangle is equilateral. |

236 Leta, b, c be the lengths of the sides of a triangle. Prove that

1 1 1 3(Ja+ b+ /o)
+ + > .
Va+vb—Jec b+ Jo—a Jo+Ja—/b atb+tc
Solution Firstly it is easy to show that if there exists a triangle with lengths sides

a, b, ¢ then there also exists a triangle with length sides +/a, v/b, +/c.
Furthermore

(Wa+~b+ Vo) > =a+b+c+2(ab+Vbe+ Jea) <3a+b+c)

i.e.
1 _Vat+Nb+ e
Va+Vb+. e~ 3a+b+o) '

(D
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Applying AM > HM we deduce

3 Ja+vb+ o
1 + 1 + 1 = 3 ’
Vatvb—ye - NVbtJe—a T JetJa—b
ie.
1 1 1 9
+ + > - @
Va+Vb—c b+ Jc—Ja Je+Ja—b T Ja+b+. /e

By (1) and (2) we get the required inequality. |

237 Leta, b, c be the lengths of the sides of a triangle with area P. Prove that
a’> +b* +c? > 4V3P.

Solution After settinga =x +y,b=y+z,c=1z-+ x where x, y, z > 0, the given
inequality becomes

((x+ 2+ (427 + @+ 1)) > 48xyz(x + ¥ +2).
From AM > GM we have
(x+ 92+ G+ + @ +00D)? = (@xy +4yz+4z0)? = 16(xy +yz+2z0)% (1)
Since for every p, q,r € R we have (p 4+ g +r)> > 3(pq + qr +rp), by (1) we get
((+ 0+ +2° + @ +0))?

>16(xy + yz + zx)2
>16-3((xy)(y2) + (y2)(zx) + (zx)(xy)) =48xyz(x + y + 2),

as required.
Equality holds iff x =y =z, 1e.iffa=b=c. |

238 (Hadwinger—Finsler) Let a, b, c be the lengths of the sides of a triangle. Prove
the inequality

A4+ +>4V3P+@—b)>+ b -0+ (c—a)
Solution 1 The given inequality is equivalent to
2(ab + be + ca) — (a* + b* +¢?) = 4/3P.

We’ll use Ravi’s substitutions,i.e.a =x+y,b=y+z,c=z+x,wherex, y,z > 0.
Then the previous inequality becomes

Xy +yz+zx >/3xyz(x +y + 2),
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which is true due to

2 2 2
xy —yz)"+(yz—2zx)" +(2x —x
(xy+yz+zx)2—3xyz(x+y+z)=( bt i y)'

2
Clearly equality holds iff x =y =z,i.e. iffa=b =c. |
Solution 2 The given inequality can be rewritten as
2(ab +bc +ca) > 43P +a* +b* + . (1)
Using %2507 — acsinf _ besing _ p g follows that
2P 2P 2P
ab=——, ac=——, bc=——.
siny sin 8 sing
From
brc2—a?
cos
cota = ¢ _ ZZC = (b*+* —a?)
sino 3R ab
we get
R 2 2, 2
cota +cotf +coty = —(a” + b +c”),
abc
ie.

a*?+ b+t = 4P(cota + cot B + coty),

and inequality (1) becomes

1 1 1
4P< — + —— + = )24\/§P+4P(Cota+cot,3+coty),
sine siny sinf

1 1 1
< - —COt()l)-l—(.——COtﬂ)—‘r(,——COt}/)Z\/§
sin o sin 8 sin y

l1—cosa 1—cos 1 —cos
: + — p +— 2V S B )
sino sin B siny

i.e.

But 1 — cosa = 2 sin? 5 and sina = 2sin 5 cos 7, so we have

1 —cosa 2sin2% ran &
- = — =tan —.
sino 2sin 5 cos 5 2

Now inequality (2) is equivalent to
o B 14
tan — + tan = + tan = > /3,
an2+ an2+ an2 _\/_

which is true, since tan x is convex on (0, 7 /2) (Jensen’s inequality). [ |
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239 Leta, b, c be the lengths of the sides of a triangle. Prove that
1

1
8abc+ (a+b—c)3 +

1 1
8abc+ (b+c¢ —a)3

8abc+ (c+a — b)3 3abc’

Solution The given inequality is equivalent to

1 1 1 1 1
8abc  8abc+ (a+b—c)3 + 8abc  8abc + (b +c —a)3 + 8abc
1
8abc + (c +a — b)3
3 1
= - 5 4
~ 8abc  3abc
ie.
(a+b—c)’ (b+c—a)’ (c+a—b) 1
8abc+ (a+b—c)3

>—. (1
8abc+ (b+c—a)? 8abc+(c+a—b)3 3 (.)

Lemma 21.3 Leta,b,c,x,y,z € RT. Then

a> b3

A3 - (a+b+c)?
x oy oz 3x+y+a)’
Proof We’ll use the generalized Holder inequality, i.e

If (ai), (bi), (ci),i =1,2,...,n, are positive real numbers and p, g, r are such
that p +¢q +r =1, then

n p n q n

i=1 i=1 i=1
Forn=3,p=q=r=1/3 and
ay=ay=az=1;

by =x, by=y, b3

a’ b3 A3
X

=2z
c=—, 0=—, c3=—

Z
we get

. @3 » 3
A+1+Dx+y+2)| —+—+—
x oy oz

eI
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i.e.
3 3 3 3 3 3 3
a b c a b c a+b+c
3(x+y+z)<—+—+—)2(a+b+6)3 < —+—+—Z¥.
x ¥y oz x y z 3+y+2)

According to (1) and Lemma 21.3, we have

(a+b—c) (b+c—a) (c+a—b)}
8abc+ (a+b—c)3 8abc+ (b+c—a)> 8abc+ (c+a—b)3
- (a+b—c+b+c—a+c+a—>b)? 1
T 3Q4abc+(a+b—c)¥+b+c—a)B+(c+a—b)3) 3 O

240 In the triangle ABC, AC is the arithmetic mean of BC~ and AB". Prove that

cot? B > cota - coty.

Solution Let BC =a, AC =b, AB = c. Then we have 2b*> = a” + ¢2. By the law
of sines and cosines we have

2 2 2
_cosp 4 te—b _ (a®+c2— bR

cotf = — 2ac
i b
sin 8 7% abc
B>+ —a®R (b*> +a*— AR
cotg =——— and coty=—"""+—.
abc abc

So we need to prove that

B+ —a’ )R B*+a’— AR _ (@ + )R’
abc abc - (abc)?

ie.
B>+ c*—d®) - b +a* =) < @+ - bH
Applying AM > GM we have

b2+ 2 —a2+ b2 +a?—c2\?
242 —a?y. (b2 22 o
b +c"—a”)-(b"+a"—c) = > ,
i.e.

as required.
Equality occurs iffa =b =c. n

241 Let dj,d, and d3 be the distances from an arbitrary point to the sides
BC, CA, AB, respectively, of the triangle ABC. Prove the inequality
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2
9 P
4 +dh= (=) .
Sy B rdd = (1
Solution We have P = w, ie.

1
P’ = Z(adl + bdy + cd3). (1)

By the Cauchy-Schwarz inequality we have
(adi + bdy + cd3)* < (a® +b* + ) (d} +d3 +d3). )
Also
a’ +b* +c* <9R%. 3)

Finally by (1), (2) and (3) we obtain the required inequality.
Equality holds iff the triangle is equilateral and the given point is the center of
the triangle. |

242 Let a, b, c be the side lengths, and hg, hp, he be the lengths of the altitudes
(respectively) of a given triangle. Prove the inequality

ha +hp +he < \/g

a+b+c 2

Solution We have
5 3abc
(a+b+c) =3(ab+bc+ca) = F(ha +hp+he) =6R-(hy+hp+he). (1)

Recall the well-known inequality a® + b + ¢ < 9R2.
Then we have

(a+b+c)?<3(@®+b*>+c?) <27R?, ie. a+b+c<3V3R. (2

Now by (1) and (2) we get
(a+b+c) . hathy+he 3
b 2>6——— " (ha+hp+he), ie. 2 <<
(a+b+0) = 33 (ha +hp+he),  ie itbhtc ~ 2
Equality occurs iff a = b =c. |

243 Let O be an arbitrary point in the interior of AABC. Let x, y and z be the dis-
tances from O to the sides BC, CA, AB, respectively, and let R be the circumradius
of the triangle AABC. Prove the inequality

ﬁ+ﬁ+ﬁs3\/§.
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Solution Let BC = a, CA=b,AB =c.
By the Cauchy-Schwarz inequality we have
) 1 1 1
(Vx+ Y+ <(ax+by+c2) Sty to)

Since ax +by +cz=2P and P = % we have

b+bc+ca ab+bc+ca
2<9p. ¢ - : 1
Wx+y+V2)" = e R (1)
Also we have
ab+bc+ca§a2+b2+c2§9R2. 2)
By (1) and (2) it follows that
2 9 . R
WX+ .y +/2)° < ER, ie. Vx+.y+/z<3 7
Equality holds iff the triangle is equilateral. |

244 Let D, E and F be the feet of the altitudes of the triangle ABC dropped from
the vertices A, B and C, respectively. Prove the inequality

EF\’ N FD\? N DE\? U3
a b c 4
Solution Clearly EF = acosa, FD = bcos 8, DE = ccosy, and the given in-
equality becomes

W

cos’ o + cos? B+ cos? y >

which is true according to N1 (Chap. 8). |

245 Let a, b, ¢ be the side-lengths and h,, hp, h. be the lengths of the respective
altitudes, and s be the semi-perimeter of a given triangle. Prove the inequality

ha hp he s
_— _ < .
a +b+c - 2r

Solution From /(s —b)(s —c¢) < % = 75 (equality holds iff b = ¢), we have

1 1
I ——
a 2 —=b)(s—c)
Hence
hy 2P P

A TG0
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Analogously we get

hyp P he P
—<— and —< —+«+———.
b T 2(s—c)(s—a) ¢ 2(s—a)(s—Db)
Hence
ha . hp n he _ P 1 n 1 n 1
a b c  2\(6-b—-¢c) G—c)—a) (—a)(s—D>b)
sP s2P 52 52 s

T 25—a)s—b)s—c) 2PZ 2P 2sr 2
Equality occurs iff the triangle is equilateral. |
246 Leta, b, c be the side lengths, and &, hp, h, be the altitudes, respectively, of a
triangle. Prove the inequality
a® b? c?
h? + h? * h2 +h2 * h2 +h3 =

Solution We have
a? n b? n c? . a’b?c? n a’b?c? n a’b?c?
h2+h2  hZ+h2 R4 h) AP2(D2+c?)  APX(a’+ ) 4P2(a+b?)

_atbict (1 PR S
T 4P2 \ P24 a4 a?+p2)

Also
a’b*c* = 16 P*R?
and
1 1 1 9 .
b? +c? ta +¢? T T2 2(a® +b>+¢c?) (since AM = HA).
Therefore
a? b? c? 16P2R? 9 18R?

> . = >2’
h§+hg+hg+h§+hg+hg— 4P 2@*+b*+c?) @’ +b*+cr T

where the last inequality is true since a® + b% + ¢ < 9R?.
Equality holds iff the triangle is equilateral. |

247 Leta, b, c be the side lengths, h,, hp, h, be the altitudes, respectively and r be
the inradius of a triangle. Prove the inequality

1 + 1 n 1 >3
ha —2r  hp—2r  he—2r —r
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Solution By hl + % + hl = } we obtain
a c

hg—2r hy—2r h.—2r
a + b + c

=1.
ha hb hc
Applying AM > HM we get
ha—2r+hb—2r+hc—2r hq n hp n he >0,
hy hp he he—2r hp—2r he—2r
i.e.
h h h
a + b + c 219'
he—2r  hp—2r he—2r
Therefore
2r n 2r n 2r
he—2r  hp—=2r he—2r
_ha—(hg—=2r)  hp—(hp —2r)  hc—(hc—2r)
 hg—2r hy —2r he —2r
hg hp he
= —3>9_-_3= 6’
ha—2r+hb—2r+hc—2r -
i.e.

1 n 1 . 1 3
hg—2r hpy—2r h.—2r " r [ |
248 Leta, b, c;ly,1g,1, be the lengths of the sides and the bisectors of the respec-
tive angles. Let s be the semi-perimeter and r denote the inradius of a given triangle.
Prove the inequality

lo g l_y - K

E+Z+ c T 2r

Solution The following identities hold:

2Jb 2Jca 2/ab
ly = b+c\/s(s—a), lﬁ:%\/s(s—b) and I, = +ab\/s(s—c).
C C a a

T

From the obvious inequality rx}y < 1 and the previous identities we obtain that

ly <V/s(s —a), lg <+/s(s—b) and [, < /s(s—o). (1)
Also

hae <lg, hy <lg and hc<I,. )
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So we have
o g by _laha , lphy | lyhe® G+IG+1
b c 2P 2P 2P — 2P
(i) s(s—a)+s(s—b)+s(s—c)
- 2P
352 —s(a+b+c) 3s>—2s2 52 s
- 2rs = s 2rs 28
Equality occurs iff the triangle is equilateral. |

249 Leta,b,c;ly,lg,1, be the lengths of the sides and of the bisectors of respec-
tive angles. Let R and r be the circumradius and inradius, respectively, of a given
triangle. Prove the inequality

18r2V/3 <aly + blg + cl, < 9R>.
Solution We have
a?>d*—(b—-cl=@+b—c)a+c—b)=4(s —c)(s —b).

Hence

a>2y/(s—c)s—Db),

with equality if and only if b =c.
Since I, =2+/bc —Vsb(i;“) and by the previous inequality we get

44/b
aly, > = CP.
b+c
Analogously we obtain
4. /ac 4+/ab
blg > —P and cl, >~ p.
a+b
Therefore
4+/bc Jac  4+/ab
ly + bl l, >4P . 1
@la +blp +cly = <b+c a+c+a+b> 0
By AM > GM we have
4+/be L 4 /ac n 4+/ab S 33 abc . @
b+c a+c a+b (a+b)(b+c)(c+a)

Also we have

4s=(a+b)+(b+c)+(c+a)23\3/(a+b)(b+c)(c+a).
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Hence
; 1 3
> —. (3)
(a+b)(b+c)c+a) ~ 4s
By (1), (2) and (3) we obtain
9P 9
aly + blg + cl,, > — /abc = — /APR = 9r J/4srR. )
s s

According to Exercise 13.2 (Chap. 3) we have that s > 3r+/3, and clearly R > 2r.
Now by (4) we get

aly + blg + cl, > 9rJasrR > 9ry 24r33/3 = 18r24/3.

Equality occurs iffa =b =c.
We need to show the right-hand side inequality.
We have

rs_a)<s+s—a _b+c

2 2

Note that we have a strict inequality since s # s — a.
Now we have

s(s — b b
la=2\/bc%<vbc§%, ie. aly <a ;C.
c

Analogously we obtain

b
bl,3<baT+c and o, <27

So
aly +blg +cl, <ab+bc+ca. 5

If we consider the well-known inequalities
ab+bc+ca§a2+b2~|—62 and a2+b2+62§9R2,
from (5) we obtain the required inequality. |

250 Let a, b, c be the lengths of the sides of triangle, with circumradius r = 1/2.
Prove the inequality

4 4 4
b
a ¢ > 9./3.

b+c—a+a+c—b+a+b—c_
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Solution Let s be the semi-perimeter of the given triangle. The given inequality
becomes

4

a b* &t
A== o T T26-0 =9V3.

By the Cauchy—Schwarz inequality we obtain
A-Qs—a)+2(s—b)+2(s —¢)) > (a*+ b> +*)?
& 25-A> (az—i—bz—i—cz)z,
ie.

A (Clz+b2+6‘2)2

1
a+b+c )

Applying OM > AM we deduce

2 (a+b+c)?
—_ 3 .

A2+ 4+ fa+b+c\ ., o,
> , lLe. a"+b"+c
3 3
Then by (1) we get

A (a4 b% + c2)? - (a+b+c)* _ (a+b+c)
= a+4+b+c T 9a+b+c) 9 '

2)

Let’s introduce Ravi’s substitutions, i.e. letustakea=x+y,b=y+z,c=z+x.
Then clearly s = % =x+y+z.
By Heron’s formula we obtain

P?=s(s —a)(s —b)(s — ) = xyz(x + y +2). 3)
Also
P2:S2r2=(x+);+z)2' @
By (3) and (4) we get
x+y+z=4xyz. %)

Since AM > GM and using (5) we obtain

X+y+z 3>xyz_x+y+z
3 = 4

i.e.

33
x+y+z>T.
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Thus
a+b+c=2(x+y+2z) >33 (6)
Finally according to (2) and (6) it follows that

3 3
Azm+z+@ :6ﬁ5 » 0V3.

Equality occurs if and only if the triangle is equilateral with side equal to /3. W

251 Leta, b, c be the side-lengths of a triangle. Prove the inequality

a n b n c -1
3a—b+c 3b—c+a 3c—a+b

Solution We have
4a n 4b n 4c
3a—b+c 3b—c+a 3c—a+b
a+b—c b+c—a L c+a—>b
3a—b+c 3b—c+a 3c—a+b

=3+

So it remains to show that

a+b—c b+c—a c+a—b>
3a—b+c 3b—c+a 3c—a+b

By the Cauchy-Schwarz inequality (Corollary 4.3) we have

a+b—c n b+c—a N c+a—>b
3a—b+c 3b—c+a 3c—a+b

B (a+b—c)? (b+c—a)>
T Ba—b+c)a+b—c¢) GBb—c+a)b+c—a)
(c+a—b)?

Bc—a+b)(c+a—D>b)
. (a+b+c)?
T Ba—-b+co)a+b—-c)+@Bb—cH+a)b+c—a)+ Bc—a+b)(c+a—Db)
=1,

as required.
Equality holds iffa =b=c=1. n

252 Let hy, hp and k. be the lengths of the altitudes, and R and r be the circumra-
dius and inradius, respectively, of a given triangle. Prove the inequality

hg+hp+he <2R+5r.
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Solution
Lemma 21.4 In an arbitrary triangle we have

ab+bc+ca=r*>+s*+4rR and a*+b*+c>=2(s> —4Rr —r?).
Proof We have

2 2 P? 5, abc P
r'+s"+4rR=—+s"+— - —
s

+

P s s
_s3—asz—bsz—cs2+abs+bcs+cas—abc+s3+abc

(—a)s=b)s—0) , , abe
N

N

=2s2—s(a+b+c)+ab+bc+ca
=2s>—2s>+ab +bc+ ca=ab + bc + ca.
Hence
ab +bc + ca=r*+ s>+ 4rR. (D)
Now by (1) we have

(a+b+c)2)

1
ab+bc~|—ca=r2+s2+4rR=§<2r2+8rR+ >

1 a? +b* + 2 ab+ bc+ ca
=—(2r>+8rR ,
2( r“+8rR + > ) 5
from which it follows that
2 2,2
b
ab+bc+ca=2r2+8r1e+¥. )
Now (1) and (2) yields
a’ + b+ =2(s> —4Rr — r?). (3)
O

Without proof we will give the following lemma (the proof can be found in [6]).

Lemma 21.5 In an arbitrary triangle we have
s> <4R?> + 4Rr +3r>. (4)
Lemma 21.6 In an arbitrary triangle we have a* + b* + ¢> < 8R* + 4r2.

Proof From (3) and (4) we have

a’+b*+c?=2(s>—4Rr —r?) <2(4R*+4Rr +3r> —4Rr —r>) =8R%> + 4r%.
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Hence

a4+ b* +c* <8R+ 4r2. 5)
O

Now let us consider our problem.

‘We have
2p 2P 2P ab + bc + ca
2R(hg +hp +he) =2R[ =—+=—+=—) =4PR
a b c abc
=ab+ bc+ ca
2 4 p2 2
@02 1 grg 4 CEEHE

“)
< 2r> +8rR + 4R* 4+ 2/2
& R(hg+hp +he) <2R?>+4Rr +2r> <2R?> +4Rr + Rr < RQ2R + 57).
Hence

hg+hp+he <2R+5r.
Equality occurs iffa = b =c. |

253 Leta, b, c be the side-lengths, and «, B and y be the angles of a given triangle,
respectively. Prove the inequality

1 1 1 1 1 1 a b ¢
alz+—=)+bl—+—)+cl=+=)=2(=+-+— ).

B v Yy « a B «a By
Solution If a > b then o > B and analogously if a < b then we have o < 8.

So we have (a — b)(«¢ — B) > 0, i.e. we have

ao +bB > apf + ba

ie.
a b a b
-4+ —>—4-. 1
,3+Ol_0l+,3 M
Analogously we have
a ¢ a c
—-—+-=—+4+— 2)
y o o Yy
and
c+b>c+b 3)
B v B v

Adding (1), (2) and (3) we obtain the required inequality.
Equality occurs iff a = b = ¢, i.e. if the triangle is equilateral. |
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254 Let a, b, ¢ be the lengths of the sides of a given triangle, and «, 8, y be the
respective angles (in radians). Prove the inequalities

1 i+ g+y =2

2° b+; “ + c+2 by a+ﬁ_c > ?T‘Y, where s = %

30 b—&:a—a 4 C+];lﬂ b + a—i—cby c > 79[

Solution 1° Since AM > HM we have
[ PR
« By at+tBty =

2°Letx=b+c—a,y=c+a—bandz=a+b—c.

Without loss the generality we may assume that a < b < c¢. Then clearly
a<p=y.

Alsox>y>zand %z

Chebishev’s inequality gives

(x + +@( +1+1) 3<£+X+5>
' B v a By

1
v’
us

i.e.

9(x+y+Z)_6_S
a+B+y T’

o __ b4c—a _ cta—b __ at+b—c
3°Letx ===,y == and z = “F—.

Without loss the generality we may assume a <b <c. Thena < < y.
AlsonyZzandéZ%>l.

Chebishev’s inequality gives us

(£+Z+£>> (x+y+z)( +1+1)
«a By B v

1/b+c—a c+a—b a+b—c 9
23 + +

a b c T

3/a b a ¢ b c 3
=|l-4+-4+-4+-4+-4+--3)>—-2+24+2-3)=—
n\b a ¢ a ¢ b T JT.

255 Let X be an arbitrary interior point of a given regular n-gon with side-length a.
Let iy, ha, ..., h, be the distances from X to the sides of the n-gon. Prove that

1 1 1 2

/’l_1+h_2+ +E>7
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Solution Let S be the area of the given n-gon, and let r be the inradius of its in-
scribed circle.

Then § = *5-.

On the other hand, we have

1
S=—alhi+hy+--+hy).

2
Applying AM > HM we have
n <h1+h2+--~+hn_25
L, 1 T = “aa
R e n na
ie.
! + ! 4+ Lon (D
hy  ha hp ~ 1

The perimeter of the n-gon is larger than the perimeter of its inscribed circle, so we
have

. n 2n
na >2mr, ie. —>—.
r a
Now by (1) we obtain
1 n 1 T 1 >n 2
—_— R— e —_— —>—'
hy  ho hn —r  a [ |

256 Prove that among the lengths of the sides of an arbitrary n-gon (n > 3), there
always exist two of them (let’s denote them by b and c), such that 1 < % < 2.

Solution Letay,as, ..., a, be the lengths of the sides of the given n-gon.

Without loss of generality we may assume thata; >ap > --- > a,.

Suppose that such a side does not exist, i.e. let us suppose that for any two sides
b and c we have % >2 (b > ¢),1i.e. let us suppose that for every i € {1,2,...,n— 1}
we have a,aﬁ > 2.

So it follows that

If we add these inequalities we obtain

11 1 1
az+~~+an§a1(§+§+'“+2n—_1)=a1<1—2,1—_1)<a1,

which is impossible (why?). |
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257 Letay, az, az, as be the lengths of the sides, and s be the semi-perimeter of an
arbitrary quadrilateral. Prove that

1

1 2
iy L
= s+a 915i<j54 (s —ai)(s —aj)

Solution From AM > GM we have

oY

I<i<j<4

2 1
Z.0
(s —aj)(s —aj) = 9 Z (s —aj)+(s—aj)

I<i<j<4

4 1

. )
1<i<j<a Taj

Leta; =a,ap=b,a3=c,a4 =d.
We’ll show that

2 1 n 1 . 1 n 1 n 1 + 1
9\a+b a+c a+d b+c b+d c+d
1 1 1 1
> + + + .
3a+b+c+d a+3b+c+d a+b+3¢c+d a+b+c+3d

From AM > HM we deduce

1 1 1
<a+b+a+c+a+d)((a+b)+(a~l—c)+(a+d))29,

i.e.

1 1 1 1 1
- + + > :
9(a+b a+c a+d> 3a+b+c+d

Similarly we obtain

v

1 1 1 1
(a b+b+c+b+d) a+3b+c+d’

1

+

1 N 1 N 1 )> 1

+c b4c c4+d) a+b+3c+d
1

+

I | i
> .
<a d+b+d+c+d>_a+b+c+3d
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Adding these inequalities we get

2 1 n 1 n 1 n 1 n 1 N 1
9\a+b a+c a+d b+c b+d c+d
1 1 1 1
> + + +
3a+b+c+d a+3b+c+d a+b+3¢c+d a+b+c+3d

IRV S B S
" 2\s+a s+b s+c s+d)

ie.
4
4 1 1
5 ——z) )
l<i<j<4 diTdp TS Tdi
From (1) and (2) we obtain the given inequality.
Equality holds iffa =b=c=d. |

258 Letn € N, and «, B, y be the angles of a given triangle. Prove the inequality

[N

o n+!
cot” 5 + cot” g +cot" = >372 .

=

Solution We use the identity

cotg +C0té+C0tZ:COtg ~COté -COtZ.
2 2 2 2 2 2

Since §, g, £ €(0,7/2) it follows that cot §, cot g, cot L > 0.
Applying AM > GM we have

cotg—i-coté—l-cotz23\3/00tg'COtE‘COtZ
2 2 2 2 2 2
or

Cotg.coté.cotz23\3/00tg'C0tﬁ'COtZ,

2 2 2 2 2 2
i.e.
cotg -cotE ~cotZ >332, ey
2 2 2

Furthermore, using the power mean inequality we get

n/3
cot” % + cot” g + cot” g > 3(cot% ~cot§ -cot%) .
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Now from the previous inequality and (1) we obtain

cot” % + cot” g + cot” % 23%.

Equality occurs iff « = 8 =y = 7/3. |
259 Leta, B, y be the angles of an arbitrary acute triangle. Prove that
2(sina + sin 8 + siny) > 3(cosa + cos 8 + cos y).

Solution Clearly o + > 7.
Since sinx is an increasing function on [0, 7 /2] we have

sino > sin(% — ﬂ) =cos 8. (D

Analogously
. . (T

sin 8 > sm(i — a) =cosa. 2)

Now (1) and (2) give us
l1—cosBp>1—sine and 1—cosa>1—sing.
If we multiply these inequalities we get
(1 —cosB)(1 —cosar) > (1 —sinw)(1 —sin B)

or
1 —cosfB —cosa+cosacosf>1—sinf —sina + sina sin 8

or

sina +sin > cosa + cos f — cosw cos B + sinw sin B

=cosa + cos B —cos(a + B) =cosa + cos B + cos y.
Analogously we obtain
sinf +siny >cosa+cosf+cosy and siny +sina > cosa + cos B+ cosy.
After adding these inequalities we get
2(sina +sin B +siny) > 3(cosa + cos f +cosy),

as required. |
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260 Let «, B, y be the angles of a triangle. Prove the inequality
sino + sin 8 4 siny > sin2« + sin28 + sin2y.

Solution Applying the sine law we obtain

ina + sin B + si a+b+c P
sin sin siny = ——— = —.
* Y=TR TR
Also
sin2a + sin2p + sin2y = 2(sina cos @ + sin S cos B + siny cos y)
1
= E(a cosa +bcosB +ccosy).
Since
2P
acosa +bcospB+ccosy = =
we have
. . . 2P
sin2a 4 sin2p 4 sin2y = 7k
Therefore
sine +sinf+siny R -1
sin2a +sin2f +sin2y  2r
Equality holds if and only if the triangle is equilateral. |

261 Leta, B, y be the angles of a triangle. Prove the inequality
cosa + x/i(cos,B +cosy) <2.

Solution Since o + B + y = m, we have

coso + «/5(005,3 4 cosy) =cosa +2+/2cos P —; Y cos p ; Y
=cos« +2x/§singcos Py
2 2
2 2
fcosoe—l—Z\/Esing =2-2 sing — £ <2
2 2 2
Equality holds if and only if « =7 /2, B = y. |

262 Let «, B, y be the angles of a triangle and let ¢ be a real number. Prove the
inequality
12
cosa +t(cosB+cosy) <1+ 5



390 21 Solutions
Solution For any three real numbers 8, y, t, the following inequality holds:

(cos B +cosy — N>+ (sin 8 — sin y)2 >0,
ie.

2
t
—cos(B+y)+t(cosB+cosy) <1+ >

Since o + 8 + y =7 we have

2
t
cosa +t(cosB+cosy) <1+ 5

Equality occurs iff 0 < ¢ <2,cosa =1 — % cos S =cosy. [ |
263 Let 0 <, B, y <90° such that sina + sin 8 + siny = 1. Prove the inequality
2 2 2 3
tan” o 4 tan” 8 + tan” y > 3

Solution We have

5 sinx 1 —cos’x 1
tan® x = = — —1.
cos? x cos2 x cos? x
The given inequality becomes
1 n 1 n 1 - 3 3= 27
cos?a  cos2B  cosly — 8 8
Applying AM > HM we get
3 - cos?a + cos? B +cos? y _q sin? @ + sin® B + sin’ y
1 1 1 = 3 - 3 ’

cosZa + cos? B + cos2y
(1)

and since sinx > 0 for x € [0, 7] we have

\/sin2a+sin2ﬂ+sin2y - sine +sinf +siny 1
3 - 3 KX

ie.
) ) .2 1
sin” o + sin“ B + sin 7/25.

So in (1) we obtain

3 _1 sin2a+sin2ﬁ+sin2y< 1 8
1 + 1 + 1 - 3 = 9 9’

cos2a | cos2B | cosly
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i.e.
1 1 1 27

Z_

8 ’

+ +
cos2a  cos2f  cosly
as required. |
264 Leta, b, c be positive real numbers such that a + b + ¢ = 3. Prove the inequality

A+a+a)A+b+b>(1+c+c?) =9(ab + be + ca).

Solution Letusdenote x =a+b+c=3,y=ab+ bc+ ca,z=abc.
Now the given inequality can be rewritten as

z2—2z—2xz+z(x+y)+x2—|—x+y2—y+3xy+1z9y,
ie.
@=D’=G@-DE=»N+G&-»>=0,
which is obviously true. Equality holds iffa =b=c = 1. |
265 Leta, b, c > 0 such that a + b + ¢ = 1. Prove the inequality

6(a>+b+)+1>5@>+b*+ ).

Solution Leta+b+c=p=1,ab+bc+ca=gq,abc=r.
By I and I> (Chap. 14) we have

A+ +E=p(p?—=3¢)+3r=1-3q+3r
and
A+ +t=p>—2g=1-24.
Now the given inequality becomes
18r+1—-2g—6g+1=>0,
ie.
9r +1>4q
which is true due to Ny (Chap. 14). |

266 Letx,y,z € RT such that x + y + z = 1. Prove the inequality

A=x2+1=-22+0 -2 <1 +x)0+ ) +2).
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Solution Let p=x+y+z=1,g=xy+yz+zx,r =xyz.
The given inequality is equivalent to

32+’ + )+t S <+ 0+ ) +2).
By Iy, 14 and Iy (Chap. 14) we have
Py =p—2¢=1-2g,

eyt 4t = (7 - 2907 - 2(¢7 = 2pr) = (1 - 29)* — 2(¢* - 2r),
A+x)A+y)(A+2)=1+p+g+r=2+qg+r.

So we need to show that
3-2(1—2q)+ (1 -29)* —2(q> —=2r) <24 q +r,
i.e.
3—244g+1—4qg+4g>—2¢> +4r <2+4q+r
& 2q2—q+3r50.

By Nj and N3 (Chap. 14) we have

1
3g<p’=1, ie. q9=3 (1)
and
pq=>9r, ie. ¢g=>9r, ie. r< g 2)
By (2) we have
2 2 q _ 1
2g°—q+3r<2q —q+3§—2q q-3 <0.
The last inequality is true due to (1) and the fact that g > 0, so we are done. ]

267 Let x, y, z be non-negative real numbers such that xz4+ y2 + 72 = 1. Prove the
inequality

(1= = y2)(1 —2x) = %

Solution Let p=x+y+z,9g =xy+ yz+zx,r =xyz. Clearly p,q,r > 0.
Then x2 + y2 4+ 72 = p? — 24q, and the constraint becomes

p?—2g=1. 1)
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We can easily show that

(1I—xy)(1—y2)(A —zx)=1—gq+ pr —r>.

Now the given inequality becomes

2, 2

1— - .
atprorzo
By N; :p3—4pq+9r20and(l), we have

p(p* —4q)+9r >0

< p(l1-29)+9r>0

S 9r>=pRg-—1.
By Ny : p? = 3q and p?> — 2g = 1 we obtain

2q+1>3q, ie. g¢g<]I.

From (4) and N3 : pg — 9r > 0 we obtain

8
p=pqg=9r <& 9p-9r=8p & p—rzgp,

from which we deduce

®8 pRg—1) _8p*2¢—1) 1)82g+ 12 —1)

8
— > —pr>
rp=rzgpr=gr—yg 81 81

Now we have

l—gq+pr—r’=l—q+r(p-r=1l-q+

82q+1)(2q —1)

81

By (2) and (6), we have that it suffices to show that

82¢ + 1)(2g — 1)
— >
9+ 81 =27

)

which is equivalent to
(1=¢)(49 —329) =0,
which clearly holds, due to (4).

268 Leta, b, c € RT such that 14 ﬁ + —= = 2. Prove the inequalities:

1
a+1 c+1

o 1 1 1
1 8a2+41 + 8h2+1 + 8c2+1
20

| | |
3ab+1 T W1 T FeatT

393

2

3)

“4)
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Solution Let p=a+b+c,q=ab+bc+ ca,r =abc.
1 1 1
From ittt =2 we deduce

(a@a+DHO+DH+G+Dc+D+(c+ D@+ =2+ DO+ Dc+1). (1)
According to Ig and 19 (Chap. 14), (1) is equivalent to

342p+q=2(1+p+q+7r)

i.e.
g+2r=1. 2)
1° We easily get that
(8a® +1)(8b> + 1) + (86> + 1)(8c* + 1) + (8c2 + 1)(8a® + 1)
=64(¢> —2pr) +16(p* —2¢) + 3
and

(8a% 4+ 1)(8b% + 1)(8¢ + 1) =512 + 64(¢*> — 2pr) + 8(p*> —2¢) + 1.

So inequality 1° becomes

64(q> —2pr) + 16(p*> —2q) +3 > 512r% + 64(¢> — 2pr) + 8(p> — 2¢) + 1,
ie.

8(p? —2¢) +2>512r2 (3)
Using that ¢> > 27r2 and ¢ = 1 — 2r we get
(1-2r>27" & 834152 +6r—1<0
s @r-DE*+2r+1)<0,

from where we deduce that

8r—1<0, ie r<

4)

| —

Since AM > HM we have

1 1 1
((a+1)+(b+1)+(c+1))<a+l+b+1+c+l)z9

or

2@+b+c+3)=>9,
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i.e.

[\SHRON)

p=a+b+c>

From Nj : p?> > 3¢ (Chap. 14) it follows that
2
p
— >q.
3 Z4
By (5) and (6) we have

2 8 89
8(p2—2q)+228<172—2%)+2=§P2+2Z§Z+2:8'

From (3) and (7) we have that it suffices to show that
8 >512r2
or

r=

’

oo | =—

which is true according to (4). And we are done.
2° We have

395

(&)

(6)

)

(4ab+ 1)(4bc+ 1)+ (4bc + 1)(4ca+ 1) + (4ca+ 1)(4ab+ 1) =64pr +8q + 3

and
(4ab + 1)(4bc + 1)(4ca + 1) = 64r* + 16pr + 4q + 1.
We need to show that
3
64pr +8q +3 > E(64r2 +16pr +4q + 1)
or

32pr +16g + 6 > 192r> +48pr + 129 + 3,

19272 + 16pr —4q —3 < 0.

2
By N7 :q* > 3pr (Chap. 14), it follows that pr < %-.
Now since g =1 — 2r we get

2
1922 + 16pr — 4g — 3 < 1927% + 16% —49-3

1 —2r)2
:192r2+16%—4(1 —2r) =3

()
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=2(1282—-8r—1)

—5 128 ! ! 9
(D ) o

From (9) and r < % it follows that 1922 + 16pr — 4q — 3 < 0, which means that
inequality (8), i.e. inequality 2°, holds. |

W[ W

269 Leta, b, ¢ > 0 be real numbers such that ab + bc +ca = 1. Prove the inequality

1 1 1 1
— >
a+b+b+c+c+a a+b+c ™

Solution Let p=a+b+c,gq=ab+bc+ca=1,r =abc.
The given inequality is equivalent to

(a+b)(b+c)+(b+c)(c+a)+(c+a)(a+b)_ 1 -
(a+b)(b+c)(c+a) at+b+c ™

6]

By Is, I (Chap. 14) and (1) we have that it is enough to prove that

i.e.

which is equivalent as follows

p3+p—p+r22p2—2pr
& p3—2p2+2pr—|—r20
s pP-2pP+r@p+1)=>0. 2)
Let
f(p=p’ =2p>+r2p+1). 3)

From Ny : p2 > 3g =3 (Chap. 14) it follows that p > 3.
If p > 2 then clearly f(p) > 0.
Letv/3<p<2.
By Ni : p? —4pg +9r > 0 we have

p3—4p+9r20, ie. r> 4)



21 Solutions 397

By (3) and (4) we obtain

4p — 3
Fp)=p* =2 +r@p+1) = p’ —2p7 + (%)(219 +1)
==2p(p=2)(p— D2 0.

The last inequality holds, since p < 2. So we have proved (2), and we are done. W

270 Leta, b, ¢ > 0 be real numbers. Prove the inequality

ab+4bc+ca bc+4ca+ ab ca+4ab+bc>6
a?+be b? +ca c+ab

Solution Let p=a+b+c,q=ab+bc+ ca,r =abc.

Since the given inequality is homogenous we may assume that p = 1.

After elementary algebraic operations we can easily rewrite the given inequality
in the form

Tpq — 12r° > 4q° — ¢°. (1)

1

By N : p> —4pg +9r > 0 (Chap. 14) we have 9r > 4g — 1 and clearly 0 < ¢ < 3

So

9
g >q*g -1 & ¥2q2(4q—1) & 3rg=q*g—-1. ()

From N3 : pg — 9r > 0 (Chap. 14) it follows that g > 9r, i.e. we have
4rq > 36r* > 12r2. (3)
By (2) and (3) we obtain
Tpq — 122 =3rq +4rq — 12¢> > 3rq > q*(4q — 1),
i.e. inequality (1) holds, as required. |

271 Leta, b, c be positive real numbers such that a + b 4+ ¢ + 1 = 4abc. Prove the
inequality

1 1 1 3
+ < .
a4+b+c+b4+c+a A+a+b " a+b+c

Solution By the Cauchy-Schwarz inequality we have

1 B 1+b63+63 - 1+b63+63
a*+b+c @Hb+o)(1+b3+3) " (@2 +b2+cH)?
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Similarly we get

1 1+ 461 1 14+a°+ b
< and < .
b*+c+a ~ (a*>+b>+c?)? A +a+b” (a*+b*+c?)?

After adding the last three inequalities we obtain

1 N 1 N 1 <3+2(a3+b3+c3)
a*+b+c b*+c+a AHa+bT  (@+b2+c2)?

bl

so it suffices to prove that

342@3+b3+3 - 3
@+b2+c»?2 “a+b+c’

i.e.
3>+ >+ = (a+b+c)B+2a@ +b° + D).

Leta+b+c=p,ab+bc+ca=qandabc=r.
Then since a + b + ¢ + 1 =4abc, by AM > GM it follows that

4r=a+b+c+124(4/7, ie. r>1.
Now we have
A=3@?>+b0*+c2? —(a+b+0)B+2d® +b*+%)

=3(p" —29)* = p(3+2p(p* —3q) +61)

=3(p* —29)> = 3p —2p*(p* = 3q) — 6pr

=3p* —12p%q +12¢%> —3p —2p* + 6p*q — 6pr

=p* —6p*q+ 124> —3p —6pr

=(p* =39)* + 4> =3p +2(¢* = 3pr).
Since r > 1 we have g> — 3p > ¢ — 3pr and it follows that

A=(p*=39)* +¢* = 3p+2q° = 3pr) = (P> = 3¢)° +3(¢° = 3pr).
According to N7 : g2 — 3pr > 0 we deduce that
Az (p*=39)" +3(¢*> =3pr) =0,

as required. |

272 Let x, y, z > 0 be real numbers such that x 4+ y 4+ z = 1. Prove the inequality

1
)P+ D+ D) < o
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399

Solution Let p=x+y+z=1,g=xy+yz+zx,r =xyz.
Then we have

x2+y2=(x+y)2—2xy=(1—z)z—nyzl—Zz—l—zz—ny

=l—-z—z(1-2)—2xy=1—-z—z(x+y)—2xy=1—2z—¢q — xy.
Analogously we deduce

y2+22=1—x—q—yz and zz-{-xz:l_y_q_zx_

So the given inequality becomes

1
(l—z—q—xy)(l—x—q—yz)(l—y—q—zx)fﬁ.

(D
After algebraic transformations we find that inequality (1) is equivalent to
2 3 1
g —2q¢" —r2+r—4q) < —. ()
32
Assume that g < 4—11.
Using N : p° —4pg +9r > 0 (Chap. 14), it follows that
4q — 1
O >4qg—1, ie. r> 1

9 9
and clearly g < %
It follows that

4g — 1 17 —32 17 — 32
2+r—4q22+qT—4q= 4 3

> > 0.
9 9

So we have

? 20> —rQ+r—49) <q¢* —2¢° =4¢*(1 —29)

q q(2g+01-29\* ¢ 1
==-291-29) < =| —M= == <—,
p 2 =2a)= 2( 2 8§~ 32
i.e. inequality (2) holds for g < %.
We need just to consider the case when g > %.
Let
f)=¢>=2¢° —r@+r—A4q). 3)
Clearly r > #.

Using N3 : pg — 9r > 0 (Chap. 14) it follows that 9r < g, i.e.r < %.
We have

4
f’(r)=4q—2—2r§§—2—2r50.
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This means that f is a strictly decreasing function on (%, %), from which it
follows that

4g — 1 1
f(r)ff( q9 >:q2—2q3—8—1(4q—1)(17—32q),

ie.

F) < 81<q2—2q3>—(;1q—1)(17—32q). @
Let

g(q) =81(q*> —2¢°) — (4g — (17 — 329). (5)
Then

¢'(q) = —486¢* + 418g — 100.

Since % <q < % we get

—486 418
¢'(q) = —486¢ +418g — 100 <

LT 100 <.
6 73 =

So g decreases on (1/4,1/3), i.e. we have

1\ 81 6
g(q)<g<z>—3—2. (6)

Finally by (3), (4), (5) and (6) we obtain

4g —1
q2—243—r(2+r—4q)=f(r)§f< S )
_ 81(¢% —2¢%) — (4g — D(17 — 329)
B 81
1, 8l
_s) s _ B _1

81 81 81 32

as required.

273 Letx,y,z € RT such that x + y + z = 1. Prove the inequalities:

9
[ < <2
l—yz 1—2zx 8

Solution Let p=x+y+z=1,g=xy+yz+zx,r =xyz.
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We have
x(I=zx)(—=xy)+y(1 —yz2)(1 —xy) +z(1 — zx)(1 — yz)
=x(1 —xy —zx +xy2) + y(1 = xy = yz + y*x2) +2(1 —2x — 2y +2°xy)
=x4+y+z—x2(y+2) =y @+x) =22+ y) +xyz+ ¥ x +2xy
=p—xX(p—x) =Y’ (p—y) - (p— ) +xyz(x> +y* + )
=p—(p—xy)+ Y+ D)+ +y +2°
=p—(p=r)(p* =2q) + p(p* = 3q) +3r
=1-0-r)(1-2g)+1—-3g+3r; (1)
also we have
(1=xy)(1 —y2)(1 —zx) = (1 —xy — yz + y*x2)(1 — zx)
=l—-zx—xy—yz+ xzyz + yzzx + zzxy - x2y222
=l—q+pr—r’=1—qg+r—r-. )
By (1) and (2) we have that the left inequality is equivalent to
1—q+r—r2§1—(1—r)(1—2q)+1—3q+3r & r—2¢q+3>0. 3)

Using Ns : p° > 27r (Chap. 14), it follows that r < 21—7

Also by N : p? —4pg +9r > 0 (Chap. 14), we haveq < 9’4—+1.
Now we deduce
9r +1 _4r—18r—2+12_10—14r_5—7r

—29+3>2r-2 3 =
r—2q+3=>r + 1 1 )

5_ 1L
. 27

>0,

i.e. inequality (3) holds.
We need to show the right side inequality from (1), which, using identities (1)
and (2) is

972 +23r +q — 16gr < 1. 4)

Let us denote f(r) =9r> +r(23 — 169) +q.
By N7 : g2 > 3pr =3r (Chap. 14), it follows that

2 2
rfq—, i.e. Ofrfq—.
3 3
‘We have
f'(r)=18r +23 — 16¢. (®)]

Using Ny : p? > 3g (Chap. 14), it follows that ¢ < %
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By (5) we have

16
f/(r)z 18r +23 — 16q > 18r +23 — ? >0,

i.e. f increases on (0, ‘13—2), there q =< %
So we obtain f(r) < f(%).
It suffices to show that f("3—2) <l1.
2
We have f (%) =q*— %66]3 + %qz +gq.

Now we get
2
q
- < 1
(%)=

16 23

& ¢ ——+=¢*+q-1<0
3 3

& (g-D(G*—5¢>+6g+3)<0

< (Bg—Dg@—=2(—-3)+3) =<0,

which clearly holds since 0 < g < % This complete the proof. |

274 Letx,y,z € RT, such that xyz = 1. Prove the inequality

1 1 1 2
1.
(1+x)2 * (14 )2 + (1+2)? + A4+x)0+y)(1+2) =

Solution Letx +y+z=p,xy+yz+zx=qandxyz=r=1.
The given inequality becomes

A4+020+ )24+ 1+ 920 +2*+ A+ 220 + )% +2(1 +x)(1 + y)(1 +z2)

> 1421+ (1 +2)% (1)
By Iy and 777 (Chap. 14), we have
I+xA+yA+2)=1+p+g+r=2+p+gq
and

I+ 020+ )2+ A+ +2% + 1+ 221 +x)?
=@4+2p+¢)’=2C3+p) (A +p+qg+r)
=GB+2p+9)? -2C3+p)Q2+p+q).
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So inequality (1) becomes
BG+2p+9)° —26+p)2+p+9+2Q+p+9) =2+ p+9q)°
& p2 >2q + 3.
According to Ng : q3 >27r2 =27 (Chap. 14), it follows that
q=3. 2)

By Ny : p? > 3¢ (Chap. 14), we obtain

5 @
p - =>3q=2q9+q=>2q+3,
as required. |

275 Leta, b, c > 0 such that a + b + ¢ = 1. Prove the inequalities:

1° ab+ bc +ca <a’ + b3 + ¢ + 6abc
2° @3+ b3+ 3+ 6abe <a?+b*+ 2
3° a2+ b2+ 2 <2 + b3+ A3) + 3abe.

Solution Let p=a+b+c=1,q=ab+ bc+ ca,r =abc.
1° Using I, : a® + b + ¢ = p(p?> — 3q) + 3r =1 — 3q + 3r we have that
inequality 1° is equivalent to

g<1-3g+4+3r+6r < 9r+1>4q,

which is true since Ni (Chap. 14).
2° Using I : a® + b* 4 ¢* = p*> — 2qg = 1 — 2q we get the equivalent form

1-3¢g+9r<1-2q & 9r<gq

which is true since N3 (Chap. 14).
3° The given inequality is equivalent to

1—-2g<2(1—-3¢g+3r)+3r < 49g<1+09r,

which is true since Ny (Chap. 14). [ |

276 Let x, y, z > 0 be real numbers such that xy + yz + zx 4+ xyz = 4. Prove the
inequality

3(x2 +y? +25) +xyz > 10,

Solution Let p=x+y+z=1,g=xy+yz+zx,r =xyz.
The given inequality becomes

3(p2 —2g)+r >10, withconstraintq +r =4.
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So it is enough to show that
3pP—6g+4—q>10, ie. 3p>—Tg—6>0. (1)

Applying Ni : p? —4pg + 9r > 0 (Chap. 14), and since ¢ + r =4 we deuce

3
3 . p° +36
—4pg+9(@4—¢q)>0, ie g< .
p pq+9(4—gq) = Le q_4p+9
So
3 2
36 —3)(5p>+42p+ 102
32— Tg—6>3p 70130 p=IGpHApH 10D
4p+9 4p+9
Applying AM > GM we obtain
4=xy+yz+zx +xyz 24y (xy2)}
& 1>xyz. 3)

Also (x +y +2)? > 3(xy + yz + zx), so we deduce

3
p=x+y+2>3@4—xy2) =364 -1)=3.
Finally by using (2) we obtain that 3p? — 7g — 6 > 0, i.e. inequality (1) holds. M

277 Leta, b, c € RT. Prove the inequality
4 4 4 1 5
O+ Yy ettty = Sty 4

Solution Let p=a+b+c,q=ab+ bc+ ca,r =abc.
Since the given inequality is homogenous, without loss of generality we may
assume that p = 1.
‘We have
4 4 4 _ .3 3 3
X+ +y @+ +Tx+y)=x"(xy +x2) + ¥y (yz+ yx) + 277 (2x +2y)
=x*(q—y2)+y (g —2x) +2°(q — xy)
=qg3+y +2) —xyz(® +y2+ )
=q(p(p* —3q) +3r) —r(p* —29)
=q(1—-3g+3r)—r(1 —2q)
=q(1 =3q) +r(Sq—1).
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Now the given inequality becomes

1
q(1—3q)+r(5q—l)fﬁ. (N

From 3¢g < p2 it follows that

q=<rs. 2

W =

Ifg < % then r(5g — 1) <0, so we have

(1-39)+3¢\* 1
2 12

1 G<A1l
q(1—3q)+r(5q—1)Sq(1—3q)=§(1—3q)'3q < 3

i.e. inequality (1) holds.
Let

9>z 3)

ie. letg € (1/5,1/3] and denote
f@)=q( =3q)+5rq—r.
Then
f'(@)=1—6q +5r. (G))

Using N3 : pg > 9r (Chap. 14), we get

q=9r. (&)
Now according to (3), (4) and (5) we deduce

5 49 49 1
"@)=1-6g+5r<1—6g+=-g=1——q<1—— =<0,
@ q + S5r < q+9q 9q< 9 5<

i.e. f is strictly decreasing on g € (1/5, 1/3], so it follows that f(g) < f(%), i.e.
we deduce that

1 2 1

1 3
1-3 Sq—D<-(1-2 So—l)=— <—
q( q) +r(5q )<5< 5>+r<5 ) 25<12,

as required. |

278 Leta, b, c € RY such that a + b + ¢ = 1. Prove the inequality

1 1 1
— 4+ — 4+ — +48(ab + bc + ca) > 25.
a b ¢
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2
Solution Setting ab + bc 4 ca = I_Tq >0, g >0, it follows that g € [0, 1].
‘We have

1 1 1 b+b
Ll L a8abtbe+cay = 22T L u8ab + be + ca)
a b ¢ abc

1—q2

- +16(1 — g?).
3r

So it suffices to show that

1— 2
9 L 16(1 - g2) > 25.

Due to Theorem 15.1 (Chap. 15) we have

2 2

—q 2 —q 2
16(1 — ¢2) > 27 16(1 —
3 T 22T g T D
1+q 2
-9 T 16(1-¢g?
(-1 +29) 7
2¢%(4g — 1)?
_ 207@Ga D7 50

A=) +29)

Equality occurs if and only if (a,b,c) = (1/3,1/3,1/3) or (a,b,c) = (1/2,1/4,
1/4) (up to permutation). |

279 Let a, b, ¢ be non-negative real numbers such that a + b + ¢ = 2. Prove the
inequality

a4+b4+c4+abcza3—|—b3+c3.
Solution Applying Schur’s inequality (fourth degree) we have that
at+ bttt tabca+b+o)=aP(b+eo)+b(c+a)+ P a+b),
ie.
2@t + b+ M tabc@a+b+ce)> @+ +cHa+b+o)

from which, using the initial condition, we obtain the result as required.
Equality holds iff a =b=c=2/3 ora =b =1, c = 0 (over all permutations).
[ |

280 Let a, b, c be non-negative real numbers. Prove the inequality

2> +b>+P) +abc+8>5a+b+o).
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Solution We’ll use Schur’s inequality, i.e.

x4 y3 +22 4+ 3xyz=xy(x+y)+yz(y +2)+zx(z+x), forallx,y,z>0.
By AM > GM and QM > AM we have

62> +b*+ ) +abc+8—5@@+b+c))
=12(a® + b*> + ) + 6abc + 48 —30(a + b + ¢)
=12(a®> 4+ b> +c?) +3Qabc+ 1) +45-30(a+ b +¢)

> 12(a> + b* + ) + 9V (abc)? + 45— 5((@+ b+ ¢)* +9)

9abc
= +3w2+b2+&)—6Wb+bc+a0
Jabe
+2((a—b)*+ B -0+ (c—a))
> 29 | 3@ 41+ P — 6(ab + be + ca)
a c“) —6(a c+ca
~ Jabc
27ab
_L+3(a+b+c)2—l2(ab+bc+ca)
a+b+c
:—————ﬂhhﬁ%a+b+cﬁ—4@b+bo+wﬂa+b+c»
a+b+c
3
:7(513+b3+c3+3abc—ab(a+b)+bc(b+c)+ca(c—|—a))20.
a+b+c
And we are done. Equality holds iffa=b=c=1. |

281 Let a, b, c be non-negative real numbers. Prove the inequality

a3+b3+c3+4(a+b+c)+9abcz8(ab+bc+ca).

Solution We’ll use Schur’s inequality, i.e. for all a, b, c > 0 we have
a>+ b+ +abc(a+ b+ ) > aba® + b%) + be(b? + ¢?) + ca(c® + a?).

By AM > GM we have

4(ab + bc + ca)?
4a+b+c)+ ———— = 8(ab+ bc + ca).
( ) (a+b+c) — ( )
So it suffices to prove that
4(ab + be + ca)?

a3+b3+c3+9abcz
(a+b+c)



408 21 Solutions

The previous inequality is equivalent to
at+ b+t + abcla+b+c)+ ab(a2 + bz) + bc(b2 + cz) + ca(c2 + az)
> 4(a’b* + b*c* + Pa?).
Applying Schur’s inequality and AM > GM we obtain
at+ b+t + abc(a+b+c)+ ab(a2 + bz) + bc(b2 + cz) + ca(c2 + az)
> 2(ab(a® + b?) + be(b? + ) + ca(c® + d?))
> 2(ab(2ab) + bc(2bc) + ca(2ca)) = 4(a*b* + b*c* + c2a?),
as required.

Equality holds iffa=b=c=1ora =b =2, c =0 (up to permutation). |

282 Let a, b, c be non-negative real numbers. Prove the inequality

a’ b3 3

+ + >a+b+c.
b2 —bc+c? 2 —ca+a? az—ab—i—bz_a ¢

Solution Applying the Cauchy—Schwarz inequality (Corollary 4.3) we deduce

a3 . b3 . A3
b2—bc+c?2 c2—ca+a? a?—ab+b?
(14 b4 C4
= + +
a(b? —bc+c?)  b(ct—ca+a?)  c(a?—ab+b?)
((12 + b2 + 6‘2)2

> .
~a(b? —bc+c?) 4+ b(c? —ca+a?) + c(a? —ab + b?)
So it suffices to prove that
(a2 +b? —i—cz)2 > (a(b2 — bc+c2) +b(c2 —ca —|—a2) —i—c(a2 —ab+b2))(a +b+c).
The previous inequality is equivalent to
a* + b+t + 2((12172 + b2+ c2a2)

>(a+b+c)a’(b+c)+b*(c+a)+c*(a+b)) —3abc(a+b+c)
or

4, 14 4 3 3 3

a ' +b"+c" +abcla+b+c)y=a’b+c)+b’(c+a)+c’(a+b),
and it is Schur’s inequality (fourth degree).
Equality holds iff a = b = c or a = b, ¢ = 0 (up to permutation). |

283 Let a, b, ¢ be non-negative real numbers such that a + b + ¢ = 2. Prove the
inequality

15ab
a3+b3+c3+%>2.
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Solution Applying Schur’s inequality we have that the following inequality holds

15abc - (a+b+c)
4 ~ 4

A+ +3+

9

from which we obtain the required inequality. Equality holds iffa =b=c=2/3 or
a=b=1,c=0 (over all permutations). |

284 Let a, b, c be positive real numbers such that abc = 1. Prove the inequality

a+be b2+ ca 2 +ab
al(b+c) b c+a) cZa+b)

>ab + bc+ ca.

Solution We’ll show that

a’ +be n b2+ ca n 2 +ab >1_}_1_‘_1 0
alb+c) b2 (c+a) c2a+b) "a b c

‘We have
a?+bc 1 _ (a—b)a—c)
a2b+c) a  a’b+o)

Analogously we deduce

b’+ca 1 _(b—c)b—a) Z+ab 1 (c—a)c—D)

——= an ——=
b2(c+a) b b2(c +a) cZa+b) ¢ c2(a+b)

Applying the previous identities and Corollary 12.1 from Schur’s inequality we ob-
tain (1). From (1) and abc = 1 we obtain the required inequality.
Equality holds iffa =b=c=1. |

285 Let a, b, ¢ be positive real numbers such that a? + b? + ¢ = 3. Prove the
inequality

ad+abc b} +abc A +abe - 3
b+0)?  (c+a)? (a+b? ~ 2
Solution We’ll show that
ad+abc b +abc A +abe a? b? 2

> . 1
b+0c)?  (c+a)? (a+b)2_b+c+c+a+a+b M

We have

a3 + abe a? . a
(b+c)? b+c (b+o

analogously we get the other two identities.

5@ —Db)(a—o);
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Now (1) is equivalent to

o )2< =D a=O+ s b=+ s +b)2(c a)(c—b) 0. (2)

Assume thata > b > c.
Then we easily deduce that

b
@ +C)2 = +a)2 > G +b)2, and the correctness of (2)

will follow from Corollary 12.1 of Schur’s inequality.
Furthermore, we’ll show that

a? b? ¢ B+t

b+c+c+a+a+b_ 2

3)

Assume that a > b > ¢. Then
5 1 - 1 - 1

2 and > > .
b+c c+a a+b

a Zb2ZC

Applying Chebishev’s inequality and AM > HM we get

< + 4 + ¢ SR Y (LN
> —(a c
b+c c¢c+a a+b™ 3 b+c c+a a+b

1
Z Pircdy— 2
3(a T T o

3@+ 4+ 3@+ +c?)
2\/3(a + b2 +c2) 2 '

So inequality (3) is proved.
By (1), (3) and the initial condition we obtain

a’+abc  b>+abc A +abe a? b? c? - V3(@? 4+ b2 +c?)

>
(b+c)2+(c+a)2+(a+b)2_b+c+c+a+a+b_ 2

_3

=7
Equality holds iffa=b=c=1. |

286 Let a, b, c be positive real numbers such that a* + b* + ¢* = 3. Prove the
inequality

[ RN S
4—ab 4—bc 4—ca”

Solution 1 After clearing denominators the given inequality becomes

48—szab+abcza <64— 16Zab+4abc2a—a2bzcz,

sym sym sym sym
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i.e.
16 + 3abc(a +b +c) > a’b*c + 8(ab + bc + ca).

Applying Schur’s inequality we have that

411

(D

(@ +b3+c3+3abc)@+b+c)> (abla+b)+be(b+c)+calc+a))(a+b+c),

and since a* + b* + ¢* = 3 we deduce

34 3abc(a+b+c) > (ab+ ac)2 + (ac + bc)2 + (bc + ab)z.
Using AM > GM we get

(ab + ac)2 + (ac + be)? + (be + ab)*> + 12 > 8(ab + bc + ca).
Now from (2) and (3) we deduce

15+ 3abc(a+ b+ c¢) > 8(ab + bc + ca).
Once more we apply AM > GM, and we get
3=a*+ b4+ c* >3 (abe)*, ie. 1>abe

or

1> a*b3c?.

Finally using (4) and (5) we get inequality (1).
Equality holds iffa =b=c=1.

Solution 2 Let x = ab,y = bc and z = ac. The given inequality is equivalent to

1l—x 1—-y 1-—z
>
4—x 44—y 44—z

0

or
1—x? 1—y? 1—22
()
443x —x* 4+43y—y? 4437+72

Notice that
x>+ y2 + 22 = (@b)? + (bc)* + (ca)® <a* + b* + * =3.
Assume that x > y > z. Then clearly

1 1 1

1—x2§1—y2§1—z2 and

2)

3)

“4)

S

< < .
443x —x? 443y —y2 T 443z+72
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Therefore by Chebishev’s inequality we obtain

3 1—x2 1—y? 1—22
443x—x2 443y—y>? 4437472

1 1 1
>(1—x*+1-y*+1-2
L Z)<4—i-3x—xz+4—|—3y—yz+4—i—3z—i—zz)

>0,

as required.
Equality occurs iffa =b=c = 1. n

287 Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove the
inequality

@ —a+35® —b>+5)(’ - +5)>125.

Solution For any real number x, the numbers x — 1, x2—1,x3—1and x5 —1 are
of the same sign.
Therefore

(x—1D@x>—1)>0, -DE*=1)>0 and 2—-1x>—-1)>0,
i.e.
a—a®—a+1>0,
B —b—b*+1>0,
= —ct+1 > 0.
So it follows that
a3—a+52a2+4, bS—b3+52b2+4 and C7—65+5202+4.
Multiplying these inequalities gives us
@ —a+50 = +5( =45 =@ +HB+HCE+4. D)
We’ll prove that
(@ +4) (B> +4)(c? +4) > 25(ab + bc + ca+2). (2)
We have
@ +HB*+4 (P +4)
= a’b?’c? 4+ 4(a®b* + b>c? 4 2a®) + 16(a® + b* + %) + 64
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=a’b*? + (@* + b* 4+ ) + 2+ 4@*b* + b + *d® +3)
+15(a* 4+ b* + ¢*) + 50. 3)
By the obvious inequalities

a@a—b?*+b-c?+c—a)>0 and (ab— 1>+ (bc—1>+(ca—1)2>0

we obtain
a2+b2+c22ab+bc+ca, 4)
a’b* + b*c? + *a® +3 > 2(ab + bc + ca). (®)]
We’ll prove that
a’b*? + (a> + b* + ¢*) + 2= 2(ab + be + ca). (6)

Lemma 21.7 Let x,y,z > 0. Then
3xyz 4+ 4+ 32 + 22 > 2(00) Y2 + (02 + (2x)P?).
Proof By Schur’s inequality and AM > GM we have
Py 2 430y > Py + v + Py ) + (P42
= 2(00)Y2 + (22 + @0 ). O
By Lemma 21.7 for x = a2/3, y= b2/3, 7z = 23 we deduce
3(abe)?? 4+ a? 4+ b 4 ¢* > 2(ab + be + ca).
Therefore it suffices to prove that
a’b*c? +2 > 3(abc)??,

which follows immediately by AM > GM.

Thus we have proved inequality (6).

Now by (3), (4), (5) and (6) we obtain inequality (2).

Finally by (1), (2) and since ab + bc + ca = 3 we obtain the required inequality.
Equality occurs if and only ifa =b=c=1. |

288 Let x, y, z be positive real numbers. Prove the inequality

1 1 1 9
2 2+ 2 2+ 2 2z 2°
x24+xy+yr o ¥ 4yi+2 ZPHmx+xrT (e+y+2)
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Solution Ttis true that x> +xy +y2 = (x +y+2)> — (xy+ yz+2x) — (x + y+2)z.
Now we have

(x+y+2? 1

2 2 xy+yztzx z
X +xy+ 1- -
yry (x+y+2)?  xFy+z

ie.
(x+y+Z)2_ 1
x24+xy+y2 11— (ab+bc+ca)—c
_ X _ Yy — 4
where a = . b = 97, € = T

The given inequality can be written in the form

1 1 1
> 1
1—d—c+l—d—b+1—d—a_9 M

where a, b, ¢ are positive real numbers such that
a+b+c=1 and d=ab+ bc+ ca.
After clearing the denominators, inequality (1) becomes
9d°> —6d*> —3d+1+4+9abc>0 or dB3d—1)>+ (1 —4d + 9abc) > 0,

which is true since 1 — 4d + 9abc > 0 (the last inequality is a direct consequences
of Schur’s inequality). |

289 Let x, y, z be positive real numbers such that xyz = x + y 4+ z + 2. Prove the
inequalities

1° xy+yz+zx>2(x+y+2)

2° X+ T+ 5

Solution 1° The identity xyz = x 4+ y 4+ z 4+ 2 can be rewritten as

1 1 1 _
l+x 14y 14z
Let’s denote HLX —=a, % =b, ILH =c.
Then
b b
a+b+c=1 and x= +C, y=c~|—a’ Z=a+ .
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Now we have

xy+yz+zx=2(x+y+72)
b+c¢c c+a c¢c+a a+b a+b b+c

a b b c c a
(b—i—c c+ta a+b>
>2 + +
a b c

s A+ +3 + 3abc > ab(a + b) + bc(b + ¢) + ca(c + a),

which clearly holds (Schur’s inequality).
2° The given inequality is equivalent to

1 1
+—+
YT Jxo L Jxy
b
&

+\/ b c n c a <3 0
b+c c+a c+a a+b a+b b+c 2

Adding the last three inequalities we obtain inequality (1), as required. |

290 Let x, y, z be positive real numbers. Prove the inequality
8+ + ) =+ O+ + @+,
Solution 1 The given inequality is equivalent to
203 + 3+ ) =Py + %z Y+ Yz P+ Py
& T[3,0,0]1>T[2,1,0], (1)

which obviously holds according to Muirhead’s inequality. |

Solution2 Let p=x+y+z,9=xy+yz+zx,r =xyz.
Since the given inequality is homogenous we may assume that p = 1.
Using I, we get

x3+y3+z3=p(p2—3q)+3r=1—3q+3r
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and

x2y +xzz—|—y2x +y2z+22x +z2y =xy(x+y)+yz(y +2) +zx(z+x)
=xy(l —2)+yz(I —x) +zx(1 —y)
=xy+yz+zx —3xyz=q —3r.

Now inequality (1) becomes
21 =3¢g+3r)y>qg—-3r & 249r>7q,
which is true according to Ng, and we are done. |
Solution 3 We can easily deduce that
47 +5) =+’ =30+ N = 9?20, Qe 467+ =+
Analogously we get
A+ = +2° and 4P +xY) =@ +x)d
Adding these three inequalities we obtain the result. |

Solution 4 According to Jensen’s inequality for the convex function f(x) =x3, we
obtain

1 1 + 3y +3Y’
Efu)+§f@)zf<x2y> or = 2y z(xzy)

& 4@+ =+t

Now the solution follows as in the previous solution. |

291 Let a, b, c be non-negative real numbers. Prove the inequality
3 3 3 1 3
a’+ b’ +c’ +abc> 7(a+b+c) .

Solution We have

(a+b+cP=a+bp+ +3(a2(b—|—c)+b2(c+a)+c2(a+b))+6abc

_ T[3,0,0]

> +3T[2,1,01+T1, 1, 1]

and

T[3,0,0] TI[1,1,1
[ ]Jr [ ]'

@ +b3+3 +abe= 6
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So we need to prove that

T
7 (3,0,0] + Tl 1,1] . T[3,0,0]
2 6 2

+3T[2,1,01+T[1, 1,11,

i.e.

T[1,1,1]

417

which is true according to 7[3,0,0] > T[2,1,0] and T[1, 1, 1] > 0 (Muirhead’s

theorem).

292 Leta, b, c be positive real numbers such that a + b+ c = 1. Prove the inequality

4
a2+b2+c2~|—3abcz 5"

Solution We will normalize as follows
9a+b+c)a® +b>+c?) +27abe > 4(a + b + ¢)*
which is equivalent to
5(a® + b3 + ) + 3abe > 3(ab(a + b) + be(b + ¢) + ca(c + a)).

According to Schur’s inequality we have that

a’ + b3+ +3abe >ab(a+b) + bc(b+c)+calc+a)
and by Muirhead’s theorem we have that

27(3,0,0] = 2T[2,1,0],

ie.

4(a3 +b+ c3) >2(ab(a + b) + bc(b+ ¢) + ca(c + a)).

Adding these two inequalities gives us inequality (1).

293 Letaj,as, ..., a, be positive real numbers. Prove the inequality
a% a% a,zl
(I+ap+a)---A+a)<{14+—){1+—=])---|14+—7).
ap as aj

Solution Let x; = Ina;, then given inequality becomes

(D

)

3)

A+ DA +e?2) - (1+e") < (14172 (1 4227 oo (1 4 25,

After taking logarithm on the both sides we obtain

In(1 +€") + - +1In(1 + ) <In(l 4 >172) 4 .- + In(1 + > ).

Let consider the sequences a : 2x1 —x3, 2xp — X3, ...,2x, —x1and b : x1, x2, ...

, Xn.
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Since f(x) =1In(l + ¢*) is convex function on R by Karamata’s inequality it
suffices to prove that a (ordered in some way) majorizes the sequences b (ordered
in some way), which can be done exactly as in Exercise 12.13, and therefore is left
to the reader. |

294 Leta, b, c,d be positive real numbers such that abcd = 1. Prove the inequality

1 1 1 1
> 1.
G+ T ase2 Tare2 Taza2 ™

Solution I First we’ll show that for all real numbers x and y the following inequality
holds

1 1 1
+ > .
(14+x)2  (A4+y)2 " 14xy

We have
1 1 1
7+ 2
(1+x) a+y) 1+ xy

_ @4y —x%y? -2y + 1 ayG =y P+ y -1
020+ A +xy) A +x0)2A+ )21 +xy) —

Now we obtain

1 1 1 1
(1+a)? * (1 +b)2 * (1+c)? * (1 +d)?
_ 1 N 11 N 1
“1+4+ab 1+cd 1+ab 1+1/ab
. 1 " ab _
" l4ab  l4ab
Equality holds iffa=b=c=d =1. |
Solution 2 Let
1 1 1

f(a,b,c,d)=

(14 a)? * (14 b)? * (1+4¢)? * (14 d)?
gla,b,c,d)=abcd — 1.

Define

1 1 1 1

L=f-ke= (14a)? +(1+b)2 * (14¢)? +(1+d)2

— AMabced —1).
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For the first partial derivatives we have

JL —4 A . —4a
—_— = — =0, ie A=—,
da _ (+a? a (1 +a)?
oL —4 A ) —4b
— = ——=0, ie. A=—-—,
b (1+b)? b (1+b)?
oL —4 A . —4c
— = — — =0, ie. A=——,
dc (14+0? ¢ (1+0¢)?
oL —4 A . —4d
— = — — =0, ie. A=——.
dd  (1+d)? d (1+d)?
Sowe have —2¢_ — =4 _—dc__ _—4d_ _ ) from which we get the follow-

(+a)?> = (A+5)? 7 (1+0)? T (1+d)?
ing system of equations:

(@a—b)(1—ab)=0, (a—c)(1—ac)=0, (a—d)(1—ad) =0,
(b—c)1—bc)=0, (b-—d)(1—bd)=0, (c—d)(1—-cd)=0.

Solving this system we get that we must have a = b = c =d, and using abed =1 it
follows that @ = b = ¢ =d = 1 and then we have

f(llll)—l—i-l—i-l—i-l—l
U4 4 40 4

Since f(1,1,1/2,2) = }T + }T + % + g = % + g > 1, by Lagrange’s theorem we
conclude that f(a, b, c,d) > 1, as required. [ |

295 Let a,b,c,d > 0 be real numbers such that a + b + ¢ + d = 4. Prove the
inequality

abc + bed + cda + dab + (abe)* + (bed)? + (cda)? + (dab)* < 8.
Solution Let us denote
f(a,b,c,d)=abc+ bed + cda + dab + (abe)? + (bed)? + (cda)? + (dab)?.

Because of symmetry we may assume thata > b > ¢ >d.
‘We have

f(“zi,b,“zi,d) ~ fla.b,c,d)

a—c\’ a+c 2
= (T) ((b+d)+ ((T) +ac>(b2+d2) —2b2d2>

2
a—-c¢ 2 52 2 52
> 3 (4abcd — 2b°d“) =0 (abcd > b°d*).
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So

2 2
According to the SMV theorem it suffices to show that

f(m,b, m,d) > f(a,b,c,d).

f@ t,1,d)<38

where 3t +d =4 and clearly 0 <7 < %.
We have

f,t,6,d)<8 & 432G =30 +3t*@4 -3 +1°<8
& (= 1228 — 161 — 121> — 8) < 0.

So it is enough to show that 28:* — 1613 — 12r> — 8 < 0, which is easy to prove for
0<r<?%
=r=3

Equality holds iffa=b=c=d =1. |

296 Leta,b,c,d > 0 suchthata + b+ c 4+ d = 1. Prove the inequality

148 1
4 4 4 4

b d —abcd > —.
a +b" +c + —|—27ac_27

Solution Denote f(a,b,c,d)=a*+b*+c* +d* + %abcd _ %
Since the given inequality is symmetric we may assume thata > b >c >d.
We have

a+c a+c

b d 7( )2 +3 3 b (a — b)?
—_— =|-@—c ac — — a— .
2 7 27 8 27

f(a,b,c,d)—f(

Since ac > bd it follows that

Flab,e.d)— f(%@ %J) >0,

Fa,b,e,d)= f(“zi,b, ‘gid)

According to the SMV theorem it suffices to show that

1—-d
f(t,tvf,d)io, Wheret:T.
We have
1—d)* 148d(1—d)® 1 2d(4d — 1)2(19d +2
27 729 27 729
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Equality occurs if and only ifa =b=c=d=1/4ora=b=c=1/3,d =0 (up
to permutation). |

297 Let a, b, ¢ be positive real numbers such that a? + b? + ¢ = 3. Prove the
inequality

A’ + b’ +Pa’ <a+b+ec.
Solution Without loss of generality we may assume that a < b < c. Then clearly

a <1 and b? + ¢2 > 2, from which it follows that b + ¢ > /2.
Let f(a,b,c)=a+b+c— a’b? — b2c? — %42, Then we have

2 2
Fla.b.c)— \/b +c2 \/b +c2

_(b ) ((b+c)2 >><z 1
B 4 b+c+Jﬂw+m% - 242

2.2 2.2
f(a,b,c)if(a,\/b —Zi—c ’\/b —2i—c>

By the SMV theorem it suffices to prove that f(a,¢,t) > 0, when a?+ 212 =3.
We have

)(b—c) > 0.

Thus

fla,t,1)=0

1
& a+263-a?)=a*3-adH+ 76 —a%)?

2 3 2 3
& (@—D-(a+1)" - > 0. (1)
4 3—a++/23—ad?)
Since a < 1 it follows that
s <> <2
- < —(a
3—a++/23—a? =1°1
Therefore inequality (1) is true, and we are done.
Equality occurs iffa=b=c=1. |

298 Let a,b,c,d > 0 be real numbers such that a + b + ¢ + d = 4. Prove the
inequality

(1+aHA+b)(A+ A1 +d*) > A +a)1 +b)1 +c)(1 +d).
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Solution Let
f@abe,d)=0+aHA+bHA+AHA+d>) — A +a) A +b)A +e)d +4d),

and assume that a < b < ¢ <d (symmetry).
We’ll show that

bv

f(a,b,c,d)zf<a;rc, “%d)

Clearly
a+c<2, (D

so it follows that

f(a,b,c,d>—f<¥,b,¥,d>

2\ 2
=(1+b2)(1+d2)<(1+a2><1+c2>—(1+<“;C) ) )

2
+ (1 +b)(1 +d)(<1 + a—?) -(1+a)(d +C)>-

Since

2\ 2 2
<1+a2>(1+c2)—(1+<“+c> ) =(a—c)2<l_w> >0

2 2 16

(this inequality follows by (1)) and by AM > GM it follows that

2
(1+a)(1+c)§<1+a—;c> .

So

a—+c a+c

f(a,b,c,d) —f(T,b, Td) >0, i.e.

a+tc a—l—c’d).

’bs—
2 2

f(a’bsc’d) Zf(
According to the SMV theorem it suffices to show that
f@,t,t1,d)=0

where 3t +d =41ie.d =4 — 3¢t.
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We have
fatt,d)=0+2A+@ =30 -1 +03G5-30)
=98 — 2417 4+ 44% — 726 4+ 81* — 681 — 5417 — 361 + 12
= — 1)*9° — 67 +23r* — 201 + 18> — 12t + 12)
=t — D2 Gt — )2 + 26" + 50221 — D2 + 106> +3(t —2)*) > 0.

Equality holds if and only ifa=b=c=d = 1. |

299 Let a, b, c be positive real numbers such that abc = 1. Prove the inequality

1+1+1+ 6 ~5
a b ¢ a+b+c

Solution Without loss of generality we may assume thata > b > c.
Letf(a,b,c):%_k%_i_%_i_#.
We’ll prove that

f(a,b,c)> f(a,be,Vbe).
‘We have

f(a,b,c) > f(a,be,Vbc)
N 1+1+ 6 - 2 n 6
b ¢ a+b+c” Jbec a+2Vbc

& cla+b+co)a+2vVbe) +b(a+b+c)a+2vVbc) + 6bc(a + 2v/be)

> 2/bc(a + b+ ¢)(a + 2vbe) + 6bc(a+ b+ c)
& (Vb= ((a+b+c)a+2vbe) — 6bc) > 0. (1)

Since a > b > ¢ we have a > % > bc.
Thus

(a+ b+ c)(a+2vbc) > (Vbe + 2v/be) (Vbe 4 2v/be) = 9be > 6be.
So due to (1) and the last inequality we have
fla,b,¢) > f(a,~be,bo).

According to the SMV theorem we need to prove that f(a,t,t) > 5, with at’ =1.
We have
2 6

1
Jt,1)>5 -+ - >5
fa ) < a+t+a+2t
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which is equivalent to
(t—D2>Qt*+483 — 4> —1+2) >0,
which is true since 2¢* + 413 — 42—t +2 >0 forr > 0. |

300 Leta, b, c be positive real numbers such that a + b + ¢ = 3. Prove the inequality
11 3,13, .3
122 —-4+—-4+-)=4(@ +b" +c°)+21.
a b ¢

Solution Without loss of generality we may assume thata <b <c.
Let
P11 3,13, .3
f@abo)y=12{—+—-+—-)—4@ +b"+).
a b ¢

Then we have

a+b a+b
f(a,b,c)—f( TR ,c)
:12<1+1+1)—4(a3+b3+c3)—12<i+1)+(a+b)3+4c3
a b ¢ at+b ¢
LT (O S B T
a a b a+b 4 a
_ AV _
=3(a—b) (ab(a+b) (a~|—b)). (D

Since a < b < ¢ we must have a + b < 2, and clearly ¢ > 1.
By the AM > GM we have

b)* 4
@D 4 e — 2 @+t >0

b b)? <
abla+b)y" = ——= ab(a+b)

Hence by (1) we deduce that

a+b a+b
2 7 2

f(a»bvc)_f< 2 ) 2

b a+b
,c>zo, ie. f(a,b,c)zf<a+ at ,c).

So according to the SMV theorem it suffices to prove that f(¢,7,c) > 21, when
2t+c=3,c>t.
We have

f t,c)>21

& 12 ;+— + (2t)° —4c’ =21
C
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4 1
s 12(— + —) +20° —4c’ =21
2t ¢

4 1 3 3
& 12 +—-)4+B—-c¢) —4c’ =21
3—c¢c ¢
& —18¢3 +48¢* —36c+12>0
& (c—=2%c—1D(*+3¢-3)>0

which is true since ¢ > 1.
Equality occurs iff (a, b, c) = (2,1/2,1/2). [ |

301 Let a, b, c,d be non-negative real numbers such thata +b+c +d + e =5.
Prove the inequality

4(a* 4+ b* + * 4+ d* + €?) + 5abed = 25.

Solution Without loss of generality we may assume thata >b>c>d > e.
Let us denote

fla,b,c,d, e)=4a>+b*+ +d*> +e*) + 5abed.

Then we easily deduce that

N2
a+d a+d’e>:(a D8 sbce). (1)

7b7 1d7 - —7b7 s T A~
fla,b,c,d,e) f( 5 ¢©—
Sincea > b >c>d > e, we have
3a+b+tc+d+e)
5 =

3«/3bce§b+c+e§ 3.

Thus it follows that bce < 1.
Now, by (1) and the last inequality we get

b, c, = ) (8 —5bce)

a+d a+d (a —d)?
,e
2 2

f(a,b,c,d,e)—f(

_ 2
> @ 4d) (8—5)>0,

ie.
d d
f(avbvc»dae) Z f(%abv c, %s e>'

According to the SMV theorem it remains to prove that f(¢,¢,t,¢,e) > 25, under
the condition 4t + ¢ = 5.
Clearly 4t <5.
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‘We have

f(t,t,t,t,e)>25
& 4 +ed) +5t%e>25
& A2 A5 -4 154 (5-41)—25>0
& (5—4n@—1D**+2t+3) =0,

which is true.
Equality occurs if and only if a=b=c=d=e=1ora=b=c=d =
5/4, e =0 (up to permutation). |

302 Leta, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove the inequality

1 1 1 3

<
2+ a? + b? +2+b2+c2+2+c2+a2 ~4

Solution Without loss of generality we may assume thata > b > c.

1 1
Let f(av bv C) = 2+a2+b2 + 24+b24¢2 + 24c24a?"

‘We have
b b
f(a7 ~2|—C9 ;C)_f(aabac)

=<b2+cz—@)

1 1 >
X — .
((b2 + 2+ 22+ TR (44202 b2+ 2) (4 + 202 + L2

Since
b 2
b%c@ﬂ, 442a%+ 0>+ 2 >b*+c2+2 and
b+c)? b+c)?
4+2a2+( +0) 22+( +0)
2 2
we have

27 2

f<a,_b—;c,b—2l-c> > f(a,b,c).

b b
f(a, te +C)—f(a,b,c)20, ie.

According to SMV theorem it suffices to prove that f(a,t,t) < %, when a + 2t = 3.
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‘We have

f(a,t,t)sg

2 1 3

+ < -
2+a2+12 242127 4
8 N 2 3
8+4a2+ (26?2 4+ 0212 4
8 2 3

+ <_’
8+4a24+B3—-a)? 4+ @B—-a) " 4

IA

which can be easily transformed to (a — D2(15a% — 78a + 111) > 0, and clearly
holds.
Equality holds iffa =b=c=1. |

303 Let a, b, c be positive real numbers such that a® + b? + ¢ = 3. Prove the
inequality

ab+ bc + ca <abc + 2.
Solution Without loss of generality we may assume thata > b > c.

Let f(a,b,c) =ab+ bc+ ca —abc.
‘We have

a*+b*  |a’>+b?
1b1 - ) )
Fano— o [
2 2 2 2 2 2
b / b b
=ab+bc+ca—abc—a; —2c a-; +ca;

2, 32 2,32
=<ab—a ;b )+c((a~|—b)—\/2(a2+b2))—c<ab—a ;b )

_—la=b?* c(a —b)? L cla= b)?

2 (@+b) + 2@+ b2) 2

:(a—b)Z(E—l— ‘ > ()
2 2 (a+b)+ 22 +b?)

Notice that since @ > b > ¢ we must have ¢ < 1,i.e.c <1 and a’ + b >2.
By AM < QM we have

c 1

C
— - — < -
2 2 (a4+b)+2@+b2) 2 2 2/2.(a2+b?)
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_c 1 c <1 1 c
T2 02 2672 2 26
<-—_<o0

24/6

Hence by (1) we get that

2 2 2 2
f(a’b’c)_f(\/a ;b ’\/a ;—b ,C)SO,

2 2 2 2
f(a,b,c)§f<\/a erb ,\/a ;Lb ,c).

According to the SMV theorem we need to prove that f(t,t,c) <2, when 21> +
c?=3.
We have

i.e.

ft,t,0)<2 & t242ct—12c<2
& 2%44ct<2c+4 o der<2’c+3-2%+1
& 4ct§2t20+c2+1,

which is true due to AM > GM, i.e.

2%+t 1=12c+cE+ 1412 >412c-c2 - t2c = 4et. -

304 Let a, b, c be positive real numbers. Prove the inequality

a b c>a+b b+c a+c

b+c+a_b+c+c+a+a+b‘

Solution Without loss of generality we may assume that ¢ = min{a, b, c}.
Notice that for x, y, z > 0 we have

X z 1 1
T4l e =G -20 2.
y z X Xy Xz

Now we obtain
a b ¢ ct+a b+4+c a+c
- 4+-+--3= -
b ¢ a c+b b4+a a+b

1 , 1
& —@-b)"+—@—c)b—ro)
ab ac

1
- g—=P e~ (p_ _
= (@+c)b+c) (a=br+ (@+c)a+b) (b-ota=c
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(1 1 ) 2 (1 1 )

_— -+ | —— —

ab (a+c)(b+c) ac (a+c)a+b)
X (@a—c)(b—-c)=>0.

The last inequality is true, since:

1 1 1 1
¢ =min{a, b, c}, - >0 and — == ———>0.

ac  (a+c)(a+b) ab  (a+o)b+o) g
305 Leta, b, ¢ be positive real numbers. Prove the inequality

a2+b2+c2>a+b+c
b24+c2  24a?  a?+b? " b+c c+a a+b

Solution We have

a? a ab(a —b) +ac(a —c)
2+c2 b+c B2+ B+e)
b? b be(b —¢) +ab(b — a)
— = and
c24+a> cHa (2 +a?)(c+a)
2 c ac(c —a) +bc(c —Db)

a2+b2 a+b  B2+ad)b+a)

Now we obtain

a2+b2+62 a+b+c
b24+c2 2442 aZ4b2 b+c c¢4+a a+b
_ ab(a—b)+ac(a—c) bclb—c)+abb—a) ac(c—a)+bc(c—D>b)
T P+ Db+ (2 +a*)(c+a) (b2 +a?)(b +a)
ab(a — b)?
> 0.
b+oc+a) B>+ (2 +a?) " g

:(a2+b2+c2+ab+bc+ca)~z

306 Let a, b, c be positive real numbers such that @ > b > c. Prove the inequality
2 2 2
a“b(a—>b)+b°cb—c)+c“alc—a)>0.
Solution We have
azb(a —b)+ bzc(b —c)+ cza(c —a)
=a*b(a — b) + b*c(b — ¢) + c*a(c — a) — ab*(a — b) — ab*(b — ¢)

— abz(c —a)
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= (a®b(a — b) — ab*(a — b)) + (b*c(b — ¢) — ab*(b — ¢))

+ (cza(c —a)— abz(c —a))

=ab(a — b)2 + (ab +ac — bz)(a —c)(b—oc).

So we need to show that
ab(a —b)? + (ab + ac — b*)(a — ¢)(b—¢) > 0,

which clearly holds since a > b > c. [ |
307 Let a, b, c be the lengths of the sides of a triangle. Prove the inequality

(b+e)?  (cta)? (a+b)2>

6.
a?+bc b +ca  c+ab ~
Solution We have
b 2 2 b2
b+o) (c+a) (a+Db) 250
a? +be b? + ca 2 +ab
b2+ c?2 =24  *+a?-—2b? a2+b2—2c2>0
a?+bc b? +ca c2+ab

b*—da®>  a*—b? ?—a> a*-=¢?
< <a2—|—bc+b2+ca>+(a2+bc+c2+ab>
2—bp> b2
+(bz—l—ca—i_cz—i-ab>20
b-—a)a+ba+b—c) (c—a)*(c+a)c+a—Db)

(a2 + be) (b2 + ca) (a2 + be)(c? + ab)

b=—cYb+c)b+c—a) ~0
(b2 + ca)(c? + ab) -7

which is clearly true. |

308 Let a, b, c be positive real numbers. Prove the inequality

a+b+b+c c+a 3ab+bc+ca
b+c c+a a+b (a+b+c)? —

Solution Without loss of generality we may assume that ¢ = min{a, b, c}.
Now we have
a+b b+c cHa

3= = (a—b)?
b+c+c+a+a+b (a—l—c)(b+c)(a )

1
Tarhoro @O0
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and

b+b 1
av + c+ca_1: 7)2(51—19)2—

m _(a+b+c C)z(a—C)(b—c),

(a+b+

The given inequality becomes

M(@a—b)?+N@—c)b—c)>0, (1)

-1 1 S S ——
where M = 5575 ~ Givroz AN = @inaro ~ Gt

We can easily prove that M, N > 0, and since ¢ = min{a, b, ¢} we get inequal-
ity (1). [ |
309 Let a, b, c be real numbers. Prove the inequality

3(@® —ab+b)B? —bc+ A (P —ca+a®) >a’b> + b33 +3d.

Solution 1t is enough to consider the case when a, b, ¢ > 0.

We have
(a2 —ab+ bz)(b2 —bc+ cz)(c2 —ca+a®) = Z:a“b2 — Z:a%3 — Za4bc
sym cyc cyc
+a’b*c.

The given inequality is equivalent to
3Y a*b? =43 " a’b* =33 a*be +3a’bPc > 0,
sym cyc cyc

which is equivalent to

Y @t +3a*b* —abe(a +b +c))(a —b)* = 0. )

cyc
Assume a > b > ¢ and denote
S, =2a* +3b*c* — abc(a + b+ ¢),
Sp =2b* +3a°c* — abc(a+b+c)
and
Se = 2¢* +3a*b* — abc(a +b +c).
‘We have
S, = 2a* + 3b*c* — abc(a+b+c) > a* +2a*bc — abc(a+b+c) >0,

Se = 2¢* +3a%b* — abc(a+b+c) > 3a%b* — abc(a+b+c) >0,
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Sa + 28, = 2a* 4 3b>c* + 4b* + 6a*c? — 3abc(a + b+ ¢)

> a* +2a*bc + 8b%ca — 3abc(a+b+c)>0
and

Se + 28, =2¢* + 3a%b% + 4b* + 6a*c* — 3abc(a + b +¢)

> (3a*b? + 3a*c?) + 3a*c* — 3abc(a+ b +¢) > 0.

(Since the given inequality is cyclic if we assume that a < b < ¢ similarly we can
show that S,, S., Sq + 2Sp, Sc + 28, >0.)

According to the SOS theorem we obtain that inequality (1) holds, as required.
Equality holds iff a = b = c. |

310 Leta,b,c,d € RY such that a + b + ¢ +d + abcd = 5. Prove the inequality

1+1+1+1>4
a b ¢ d~
Solution We’ll use Lagrange’s theorem.
Let
1 1 1 1
f(a,b,c,d)=—+g+—+g and g(a,b,c,d)=a+b+c+d+abcd—5=0.
a c
We define
1 1 1 1
L=f-r=—-+-+—-+-—Aa+b+c+d+abcd -)5).
a b ¢ d
For the first partial derivatives we get
aL 1 oL 1
— =—— — A1 +bcd) =0, —=—— -2 d) =0,
9a = a2 MIthed o~ 2 I rad
L_ 1 asaa=0. ol itabe=0
ac 2 WO=T T wa="
So
1 1 1 1

T @20 +bed) . b:(1+acd)  E(1+abd)  d2(1 +abe)
From the first two equations we deduce
a’(1 + bed) =b*>(1 + acd), ie. (a—b)(a+b+abed)=0.

Since a + b + abcd > 0 we must have a = b.
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Analogously we deduce thata =c=d,i.e.a=b=c=d.
Usinga + b+ c+d +abed =5 we get

at+4a-5=0 & (@—-D(@+a*+a+5)=0,
and it follows that we must have a = 1.

Soa=b=c=d=1.
Finally we have f(1,1,1,1)=1+ 141+ 1 =4, and we are done. [ |
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