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The regular solids or regular polyhedra are solid geometric figures with the same identical regular
polygon on each face. There are only five regular solids discovered by the ancient Greek mathematicians.
These five solids are the following.

the tetrahedron (4 faces)
the cube or hexadron (6 faces)
the octahedron (8 faces)
the dodecahedron (12 faces)
the icosahedron (20 faces)

Each figure follows the Euler formula

Number of faces + Number of vertices = Number of edges + 2

F + V = E + 2
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Preface

This is the second volume of an introductory calculus presentation intended for future
scientists and engineers. Volume II is a continuation of volume I and contains chapters six
through twelve. The chapter six presents an introduction to vectors, vector operations, dif-
ferentiation and integration of vectors with many application. The chapter seven investigates
curves and surfaces represented in a vector form and examines vector operations associated
with these forms. Also investigated are methods for representing arclength, surface area
and volume elements from vector representations. The directional derivative is defined along
with other vector operations and their properties as these additional vectors enable one to
find maximum and minimum values associated with functions of more than one variable.
The chapter 8 investigates scalar and vector fields and operations involving these quantities.
The Gauss divergence theorem, the Stokes theorem and Green’s theorem in the plane along
with applications associated with these theorems are investigated in some detail. The chap-
ter 9 presents applications of vectors from selected areas of science and engineering. The
chapter 10 presents an introduction to the matrix calculus and the difference calculus. The
chapter 11 presents an introduction to probability and statistics. The chapters 10 and 11
are presented because in todays society technology development is tending toward a digital
world and students should be exposed to some of the operational calculus that is going to
be needed in order to understand some of this technology. The chapter 12 is added as an
after thought to introduce those interested into some more advanced areas of mathematics.

If you are a beginner in calculus, then be sure that you have had the appropriate back-
ground material of algebra and trigonometry. If you don’t understand something then don’t
be afraid to ask your instructor a question. Go to the library and check out some other
calculus books to get a presentation of the subject from a different perspective. The internet
is a place where one can find numerous help aids for calculus. Also on the internet one can
find many illustrations of the applications of calculus. These additional study aids will show
you that there are multiple approaches to various calculus subjects and should help you with
the development of your analytical and reasoning skills.

J.H. Heinbockel
January 2016
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Chapter 6
Introduction to Vectors

Scalars are quantities with magnitude only whereas vectors are those quantities
having both a magnitude and a direction. Vectors are used to model a variety
of fundamental processes occurring in engineering, physics and the sciences. The
material presented in the pages that follow investigates both scalar and vectors
quantities and operations associated with their use in solving applied problems. In
particular, differentiation and integration techniques associated with both scalar and
vector quantities will be investigated.

Vectors and Scalars
A vector is any quantity which possesses both magnitude and direction.
A scalar is a quantity which possesses a magnitude but does not possess
a direction.

Examples of vector quantities are force, velocity, acceleration, momentum,
weight, torque, angular velocity, angular acceleration, angular momentum.

Examples of scalar quantities are time, temperature, size of an angle, energy,

mass, length, speed, densit
& P Y A vector can be represented by an arrow. The

orientation of the arrow determines the direction of

2B the vector, and the length of the arrow is associated

B with the magnitude of the vector. The magnitude

1B of a vector B is denoted | B | or B and represents

// // the length of the vector. The tail end of the arrow
B 3 B

_ _on —2 is called the origin, and the arrowhead is called the

] terminus. Vectors are usually denoted by letters in
Figure 6-1. o
bold face type. When a bold face type is inconve-

Scalar multiplication.

nient to use, then a letter with an arrow over it
is employed, such as, A4, B, C. Throughout this text the arrow notation is used in
all discussions of vectors.
Properties of Vectors
Some important properties of vectors are
1. Two vectors 4 and B are equal if they have the same magnitude (length) and

direction. Equality is denoted by A = B.



2. The magnitude of a vector is a nonnegative scalar quantity. The magnitude of a
vector B is denoted by the symbols B or |B.

3. A vector B is equal to zero only if its magnitude is zero. A vector whose mag-
nitude is zero is called the zero or null vector and denoted by the symbol 0.

4. Multiplication of a nonzero vector B by a positive scalar m is denoted by mB and
produces a new vector whose direction is the same as B but whose magnitude is
m times the magnitude of B. Symbolically, |mB| = m|B|. If m is a negative scalar
the direction of mB is opposite to that of the direction of B. In figure 6-1 several
vectors obtained from B by scalar multiplication are exhibited.

5. Vectors are considered as “free vectors”. The term “free vector” is used to mean
the following. Any vector may be moved to a new position in space provided
that in the new position it is parallel to and has the same direction as its original
position. In many of the examples that follow, there are times when a given
vector is moved to a convenient point in space in order to emphasize a special

geometrical or physical concept. See for example figure 6-1.
Vector Addition and Subtraction

Let ¢ = A+ B denote the sum of two vectors A and B. To find the vector sum
A+ B, slide the origin of the vector B to the terminus point of the vector A, then draw
the line from the origin of A to the terminus of B to represent ¢. Alternatively, start
with the vector B and place the origin of the vector A at the terminus point of B to
construct the vector B+A. Adding vectors in this way employs the parallelogram law
for vector addition which is illustrated in the figure 6-2. Note that vector addition is
commutative. That is, using the shifted vectors A and B, as illustrated in the figure
6-2, the commutative law for vector addition A + B = B + 4, is illustrated using the
parallelogram illustrated. The addition of vectors can be thought of as connecting

the origin and terminus of directed line segments.

_B B

Figure 6-2. Parallelogram law for vector addition




If F = A— B denotes the difference of two vectors A and B, then F is determined

by the above rule for vector addition by writing F = A + (—=B). Thus, subtraction

of the vector B from the vector A is represented by the addition of the vector —B

to A. In figure 6-2 observe that the vectors A and B are free vectors and have

been translated to appropriate positions to illustrate the concepts of addition and

subtraction. The sum of two or more force vectors is sometimes referred to as the

resultant force. In general, the resultant force acting on an object is calculated by

using a vector addition of all the forces acting on the object.

Vectors constitute a group under the operation of addition. That is, the following

four properties are satisfied.

1.

Closure property If A and B belong to a set of vectors, then their sum 4 + B

must also belong to the same set.

. Associative property The insertion of parentheses or grouping of terms in vector

summation is immaterial. That is,
(A+B)+C=A+(B+0) (6.50)

Identity element The zero or null vector when added to a vector does not produce
a new vector. In symbols, A+0 = A. The null vector is called the identity element
under addition.

Inverse element If to each vector A4, there is associated a vector E such that
under addition these two vectors produce the identity element, and A + E = 0,
then the vector E is called the inverse of A4 under vector addition and is denoted
by E = —A.

Additional properties satisfied by vectors include

. Commutative law If in addition all vectors of the group satisfy A+B = B+ A4, then

the set of vectors is said to form a commutative group under vector addition.

Distributive law The distributive law with respect to scalar multiplication is
m(A + B) = mA +mB, where m is a scalar. (6.51)

Definition (Linear combination)
If there exists constants c;,c3,...,c,, not all zero, together with a set of vectors

Al,ﬁz,...,ﬁn, such that
A=ciAi+ s+ +endy,

then the vector A is said to be a linear combination of the vectors Al, Az, cee A,.
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Definition (Linear dependence and independence of vectors)
Two nonzero vectors A and B are said to be linearly dependent if it is possible

to find scalars k1, ks not both zero, such that the equation
k]_;{ + kzé - 6 (6.3)

is satisfied. If k1 = 0 and ko = 0 are the only scalars for which the above equation

is satisfied, then the vectors A and B are said to be linearly independent.

This definition can be interpreted geometrically. If k; # 0, then equation (6.3)

implies that A = —%E — mB showing that A is a scalar multiple of B. That is, A and
1

B have the same direction and therefore, they are called colinear vectors. If A and
B are not colinear, then they are linearly independent (noncolinear). If two nonzero
vectors A and B are linearly independent, then any vector C lying in the plane of
A and B can be expressed as a linear combination of the these vectors. Construct
as in figure 6-3 a parallelogram with diagonal C and sides parallel to the vectors A
and B when their origins are made to coincide.

G F
& — — =
DG=FEF—=—nA
- _— — =
A GF=DFE—mDB
D B E

Figure 6-3. Vector C is a linear combination of vectors 4 and B.

Since the vector side DE is parallel to B and the vector side EF is parallel to A, then
there exists scalars m and n such that DE = mB and EF = nA. With vector addition,

— —_ — — -
C=DFE+EF=mB+nA (6.54)

which shows that € is a linear combination of the vectors A and B.



Example 6-1. Show that the medians of a triangle meet at a trisection point.

(@) (b) (c)

Figure 6-4. Constructing medians of a triangle

Solution: Let the sides of a triangle with vertices o, 8,7 be denoted by the vectors
A, B, and A — B as illustrated in the figure 6-4. Further, let @ 3, 7 denote the
vectors from the respective vertices of o, 3, v to the midpoints of the opposite sides.

By using the above definitions one can construct the following vector equations

A+d=-B B+-(A-B)=3  B+7=-A (6.5)

N| =
| =
N| =

Let the vectors @ and 3 intersect at a point designated by P, Similarly, let the vectors
G and 7 intersect at the point designated P*. The problem is to show that the points
P and P* are the same. Figures 6-4(b) and 6-4(c) illustrate that for suitable scalars
k, £, m, n, the points P and P* determine the vectors equations

A+td=mf  and B+ny=kG. (6.6)

In these equations the scalars k, ¢, m, n are unknowns to be determined. Use the
set of equations (6.5), to solve for the vectors @, #, 7 in terms of the vectors A and
B and show

O -
da=3B-A F=(A+B) §=jA-B (6.7)

2
These equations can now be substituted into the equations (6.6) to yield, after some

simplification, the equations

(1—5—5)1‘{:(5

)B and (

N~

Since the vectors A and B are linearly independent (noncolinear), the scalar coef-
ficients in the above equation must equal zero, because if these scalar coefficients

were not zero, then the vectors 4 and B would be linearly dependent (colinear)

5]



and a triangle would not exist. By equating to zero the scalar coefficients in these
equations, there results the simultaneous scalar equations
m

m 14 k
1-€-5)=0, (5 —3)=0 (5—35)=0, (1-n-5)=0

The solution of these equations produces the fact that k=¢=m =n = % and hence

the conclusion P = P* is a trisection point.

Unit Vectors
A vector having length or magnitude of one is called a unit vector. If A is

a nonzero vector of length |A], a unit vector in the direction of A is obtained by
multiplying the vector A by the scalar m = . The unit vector so constructed is

|A|
denoted

A .
)= — and satisfies |éal = 1.
|A|
The symbol e is reserved for unit vectors and the notation é, is to be read “a unit
vector in the direction of A.”  The hat or carat () notation is used to represent

a unit vector or normalized vector.

z
r=xé1+yéz+=zég
(x,y,2) Other notations
— =
~ T
] es - -~ . ~
e2 Ay - = -~ o
- Z QZZJ: ey:?,z
e] ég—=k—=—@&,—=—13

e

Figure 6-5. Cartesian axes.

The figure 6-5 illustrates unit base vectors é;, é,, é; in the directions of the pos-
itive z,y, z-coordinate axes in a rectangular three dimensional cartesian coordinate

system. These unit base vectors in the direction of the z,y, » axes have historically
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been represented by a variety of notations. Some of the more common notations

employed in various textbooks to denote rectangular unit base vectors are

1, 7 ka €r, €y, €, 11, 12, 13, 1307 1y7 17;7 €1, €2, €3

The notation e;, é,, &3 to represent the unit base vectors in the direction of the
z,y, z axes will be used in the discussions that follow as this notation makes it easier

to generalize vector concepts to n-dimensional spaces.
Scalar or Dot Product (inner product)

The scalar or dot product of two vectors is sometimes referred to as an inner

product of vectors.
Definition (Dot product) The scalar or dot product of two vectors A and B

18 denoted
A.B =|A||B]| cos®, (6.8)

and represents the magnitude of A times the magnitude B times the cosine of 0,

where 0 is the angle between the vectors A and B when their origins are made to

coincide.
The angle between any two of the orthogonal unit base vectors &, &, &3 in

cartesian coordinates is 90° or Z radians. Using the results cos 7 = 0 and cos0 =1,
there results the following dot product relations for these unit vectors

&3 é]_ é]_:]_ éz'é]_:O ég'é]_:O
é1 " é]_ éz =0 éz . éz =1 ég . éz =0 (6.9)
€2
é]_ é3:0 éz-é3:0 ég'égzl

Using an index notation the above dot products can be expressed é; - é; = 4;;

where the subscripts i and j can take on any of the integer values 1,2,3. Here 4;; is
the Kronecker delta symbol® defined by 4;; = {(1): z ;j :
The dot product satisfies the following properties
Commutative law A-B=B-A
A(B+C)=A-B+A.C

Magnitude squared A -A = A? = |A]?
which are proved using the definition of a dot product.

—

oy

Distributive law

! Leopold Kronecker (1823-1891) A German mathematician.



The physical interpretation of projection can be assigned to the dot product as
is illustrated in figure 6-6. In this figure A and B are nonzero vectors with é, and
ép unit vectors in the directions of A and B, respectively. The figure 6-6 illustrates

the physical interpretation of the following equations:

ép- A = |A| cosd = Projection of A onto direction of ég

é4 - B = |B| cosf = Projection of B onto direction of é,4.

In general, the dot product of a nonzero vector A with a unit vector é is given
by A-é = ¢&-A = |A||é|cosf and represents the projection of the given vector onto
the direction of the unit vector. The dot product of a vector with a unit vector
is a basic fundamental concept which arises in a variety of science and engineering

applications.

A.ep=projection of A on é&xs

projection of A on é

B-ea=projection of Bon éa

Figure 6-6. Projection of one vector onto another.

Observe that if the dot product of two vectors is zero, A - B = |A||B|cosf = 0,
then this implies that either A =0, B =0, or § = 2. If A and B are both nonzero
vectors and their dot product is zero, then the angle between these vectors, when
their origins coincide, must be § = Z. One can then say the vector A is perpendicular
to the vector B or one can state that the projection of B on A4 is zero. If A and B are
nonzero vectors and A - B = 0, then the vectors 4 and B are said to be orthogonal

vectors.

Direction Cosines Associated With Vectors

Let A be a nonzero vector having its origin at the origin of a rectangular cartesian
coordinate system. The dot products



/_('élel fY'éQZAQ /_('éngg (610)

represent respectively, the components or projections of the vector A onto the z,y
and z-axes. The projections A4;, A,, A; of the vector A onto the coordinate axes
are scalars which are called the components of the vector A. From the definition of
the dot product of two vectors, the scalar components of the vector A satisfy the
equations

A=A & =4 cosa, Ay =A- &y = |A|cosf, A3 =A. &3 =|A|cosy, (6.11)

where «, 3, ~ are respectively, the smaller angles between the vector A and the
z, y, z coordinate axes. The cosine of these angles are referred to as the direction
cosines of the vector A. These angles are illustrated in figure 6-7.

=
A
é3 A3
=51 A Yy
A/ e y
? A2
15 @x
Unit Vectors Angles &, Hq‘-yassociated with

direction cosines

Figure 6-7. Unit vectors é;, &, &3 and é4 = cosa &, + cos 3 & + cosy €3

The vector quantities
14)1 = Al él, 12(2 = A2 ég, 14)3 = A3 ég (612)

are called the vector components of the vector A. From the addition property of

vectors, the vector components of 4 may be added to obtain
A=A &+ Ayéy+ Azés = |A|(cosaéy + cos Fé; + cosyés) = |A| é4 (6.13)

This vector representation A = A& + Ayés + Az 65 is called the component form of
the vector A and the unit vector é4 = cosa & + cos 3 &, + cosv &5 is a unit vector in
the direction of A.
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Any numbers proportional to the direction cosines of a line are called the di-
rection numbers of the line. Show for a : b : ¢ the direction numbers of a line which

are not all zero, then the direction cosines are given by

cosa = — cosf3 = — cosyzg,
T T
where r = Va2 + b2 + 2.
Example 6-2.
ot
o Sketch a large version of the letter H. Con-
= sider the sides of the letter H as parallel lines a
1

distance of p units apart. Place a unit vector e

perpendicular to the left side of H and pointing

o

toward the right side of H. Construct a vector 7,
which runs from the origin of & to a point on the
right side of the H. Observe that é-#, = p is a

projection of #; on &. Now construct another vector z,, different from #,, again from

P

the origin of é to the right side of the H. Note also that é -, = p is a projection
of #, on the vector é&. Draw still another vector #, from the origin of & to the right
side of H which is different from #; and #,. Observe that the dot product é -z

representing the projection of # on é still produces the value p.

b

Assume you are given é and p and are asked to solve the vector equation e-z = p
for the unknown quantity . You might think that there is some operation like vector
division, for example ¥ = p/é, whereby Z can be determined. However, if you look
at the equation é-# = p as a projection, one can observe that there would be an
infinite number of solutions to this equation and for this reason there is no division

of vector quantities.

Component Form for Dot Product

Let A, B be two nonzero vectors represented in the component form
A=A1e; + 428+ A3é3,  B=Biéi+B1&+ By
The dot product of these two vectors is

A-B=(A1é1+ Ayéy + A3é3) - (By &1 + By é; + Bgés) (6.14)



and this product can be expanded utilizing the distributive and commutative laws

to obtain o
A-B= ABie;-e +ABye;-é+ ABse; - é3

+ A2B1 €y €1 + A2B2 €9+ €y + A2B3 €y - ég (615)
+ A3Bié3- e + A3Byé3 - e + AzBze3 - e3.

From the previous properties of the dot product of unit vectors, given by equations
(6.9), the dot product reduces to the form

A-B =ABy + AyBy + A3B;. (6.16)

Thus, the dot product of two vectors produces a scalar quantity which is the sum of
the products of like components.

From the definition of the dot product the following useful relationship results:
A-B = ABy + AyBy + A3Bs = | A|| B cos. (6.17)

This relation may be used to find the angle between two vectors when their origins
are made to coincide and their components are known. If in equation (6.17) one
makes the substitution A = B, there results the special formula

A A=A2 4 A2 4 A2 = A Acos0 = A% = |A". (6.18)

Consequently, the magnitude of a vector 4 is given by the square root of the sum of
the squares of its components or [A] = VA4 = \/Af + A2 + A2

The previous dot product definition is moti-

vated by the law of cosines as the following argu- o

ments demonstrate. Consider three points having (B1,B2,Bs)
1 2 3

the coordinates (0,0,0), (A1, A, A3), and (B1, Bs, B3) =

and plot these points in a cartesian coordinate sys- ) o 6‘:]1’—5
tem as illustrated. Denote by A the directed line - =

segment from (0,0,0) to (A, Az, A3) and denote by (A1,A2,A3)
B the directed straight-line segment from (0,0, 0) to

(B1, B, B).

One can now apply the distance formula from analytic geometry to represent
the lengths of these line segments. We find these lengths can be represented by

Al = /A3 + A3+ A2 and |B|=\/B}+ B3+ B3.
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Let C = A — B denote the directed line segment from (B, By, Bs) to (A;, Ay, A3). The
length of this vector is found to be

ICl = V(A1 = B1)? + (A3 — By)? + (A3 — B3)>.
If 0 is the angle between the vectors 4 and B, the law of cosines is employed to write
|C|? = |A]? + | B|? — 2| A|| B| cos 6.

Substitute into this relation the distances of the directed line segments for the mag-
nitudes of A, B and €. Expanding the resulting equation shows that the law of
cosines takes on the form

(A; — B1)? + (Ay — By)? + (A3 — B3)? = A2 + A2 + A2 + B? + B2 + B2 — 2| 4||B| cosf.
With elementary algebra, this relation simplifies to the form
A1 By + Ay By + A3Bs = |A||B| cos 6
which suggests the definition of a dot product as 4 - B = |A]| B| cos 6.

Example 6-3. If A= 4,6 + 4,&,+ Asé; is a given vector in component form,

then
A A=A24+ A2+ 45 and |A| = /A2 + A2 + A2
The vector
1 - A é Aq é As é
ea=—A= 1614 Aozt Se3zcosaé1+cosﬁé2+cosyé3

T4 VAT A2 A2

1S a unit vector in the direction of A, where

Ay Az
cosa=—, cosf=-—, cCosyY=—

Al |A]

are the direction cosines of the vector A. The dot product
€44 =cos’a+cos’ B +cos’y =1

shows that the sum of squares of the direction cosines is unity.
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Example 6-4. Given the vectors

X:2é1+3é2+6é3 and §:é1+2é2+2é3
Find'
(a) |4l, |B|, 4B, |A+B|
(b) The angle between the vectors A and B
)

(c) The direction cosines of A and B
(d) A unit vector in the direction ¢ = 4 — B.

Solution

(@) |4 = V2?2 +@)2+(6)>=v4 =17 oL
A+B:3e1+5eg+8e3

Bl=(1)2+(2)2+(22=v9=3
q|q| VIR A+ Bl =3)?+ (52 + (8)> = Vo8

A-B=(2)(1)+(3)(2) + (6)(2) = 20
(b) A.-B=|A||B|cosd = cosf= X? _ 202

4B 73 21
20 .
§ = arccos (ﬁ) = 0.3098446 radians = 17.753 degrees
or one can determine that

21)2 — (20)2 V41 .
tanf = ( )20( ) = 50 — 6/ =0.3098446 radians

(¢) A unit vector in the direction of the vector A is obtained

by multiplying A by the sealar to obtain

‘CM

Y= = coS v €1 + cos 31 €3 + cosyy €3 =

B
=N
D>
—
+
| w
>
[\
+
o
D>
w

which implies the direction cosines are cosa; =
. ) B ) ) 1, 2
fashion one can show e = @ = COS (g &1 + cos (B3 &3 + Cos Y €3 =

3 6 .
=%, cosy = In a similar

cos (1 -

2
7’

implies the direction cosines are cosay = 3 cos B = 3 cos2 =
(d) C=A—B=2é&+é+4¢é;3and [C|=|A-B|=+/(1)2+ (1)2+ (4)%2 = V18 = 3v2 Unit

vector in direction of C'is  éc = o _ w Make note of the fact that the

IC| 3v/2

sum of the squares of the direction cosines equals unity:.
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Example 6-5. (The Schwarz inequality)

Show that for any two vectors A and B one can write the Schwarz inequality
| A- B |<| A || B | the equality holding if A and B are colinear.
Solution If 4 and B are nonzero quantities, then |4 - B| must be a positive quantity.
Consider a graph of the function

Note that if y(z) > 0 for all values of z, then this would imply the graph of y(x) must
not cross the z—axis. If y(x) did cross the z—axis, then the equation y(z) = 0 would

have the two roots

. —b+ Vb2 — 4ac
N 2a

in which case the discriminant > — 4ac would be positive. If y(z) does not cross the
z—axis, then the discriminant would satisfy 2 — 4ac < 0. Here b = 2(4A - B), a =| B |2
and ¢=| 4 |2 and the condition that the discriminant be less than or equal zero can
be expressed

b> —dac=4(A-B)? —4|B|?| A ?<0

or |A-B|<|A||B|

an inequality known as the Schwarz inequality.

Example 6-6. The triangle inequality
Show that for two vectors 4 and B the inequality | A + B |<| A | + | B | must hold.
This inequality is known as the triangle

inequality and indicates that the length of
one side of a triangle is always less than the | A+B|

sum of the lengths of the other two sides.

Solution To prove the triangle inequality one can use the Schwarz inequality from
the previous example. Observe that

—

|A+B|?>=<(A+B)- (A+B)=A-A+A-B+B-A+B-B



or

| A+ B PP=| AP +2(A-B)+ |B’<|APP+2|A-B|+|B? (6.19)

Using the Schwarz inequality | A- B |<| 4 || B | the equation (6.19) can be expressed

| A+BP<|AP+2]|A||B|+|BP=(A|+]|B|)? (6.20)

Taking the square root of both sides of the equation (6.20) gives the triangle inequal-
ity | A+BI|<|A|+|B|.

The Cross Product or Outer Product

The cross or outer product of two nonzero vectors A and B is denoted using the

notation A x B and represents the construction of a new vector ¢ defined as
C = Ax B =|A||B|sinfé,, (6.21)

. where 6 is the smaller angle between the two nonzero vectors
Plane determined by

the vectors 4 and 3 A and B when their origins coincide, and &, is a unit vector
when their origins are perpendicular to the plane containing the vectors A and B

= i i . .« . . . . . N
¢ made to coincide. when their origins are made to coincide. The direction of &,

-z N is determined by the right-hand rule. Place the fingers of your
€n right-hand in the direction of A and rotate the fingers toward
0 the vector B, then the thumb of the right-hand points in the

1

direction C.
The vectors A, B, C then form a right-handed system.? Note that the cross product
Ax B is a vector which will always be perpendicular to the vectors A and B, whenever
A and B are linearly independent.

A special case of the above definition occurs when A x B = 0 and in this case one
can state that either # = 0, which implies the vectors A and B are parallel or 4 = (
or B =0.

Use the above definition of a cross product and show that the orthogonal

unit vectors e;, é,, ez satisfy the relations

g ~ ~ ~ ~ ~ ~
a ép X e =0 ez X e = —eg ez X €1 = e€q
3
-
81 e; X ey = €3 €z X e =0 ez X ey = —e; (6.22)
é2 N
€1 X €3 = — é9 €y X €3 = &; é3 X é3 =0

2 Note many European technical books use left-handed coordinate systems which produces results different from

using a right-handed coordinate system.

15
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Properties of the Cross Product
AxB=-BxA (noncommutative)

—

Ax(B+C)=AxB+AxC (distributive law)

m(A x B) = (mA) x B=Ax (mB) m a scalar
Ax A=0 since A is parallel to itself.

Let A= A;é; + Ayéy+ Azé3 and B = By &, + By &, + B3 é;3 be two nonzero vectors

in component form and form the cross product 4 x B to obtain
fY X E = (Al él + A2 ég + A3 ég) X (Bl él + B2 ég + Bg ég) (623)
The cross product can be expanded by using the distributive law to obtain

AXxB= AB1é; x & + A1 Byé; X &+ A1 B3 &1 x &3
+ AyB1 €9 X &1 + AyByéy X €9+ AyB3éy X &3 (6.24)
+ A3Bjé3 x € + A3Bsés X €5 + A3 Bz és X és.
Simplification by using the previous results from equation (6.22) produces the im-

portant cross product formula
A x B =(AyBs — A3B;) &1 + (AsBy — A1Bs) &, + (A By — Ay By) é3, (6.25)

This result that can be expressed in the determinant form?

e % S ‘AQ As Ay As

) A A
el_‘Bl By

By Bs

f_()( é = Al A2 A3 = B2 33 ég. (626)

By By Bs

é2+‘

In summary, the cross product of two vectors 4 and B is a new vector C, where
L € € 3
C:AXBzclé1+Cgé2+03é3: Al A2 A3

By By Bj
with components

Cl = Ang — AgBQ, 02 = AgBl — AlBg, 03 = AlBQ — AgBl (627)

3 For more information on determinants see chapter 10.



Geometric Interpretation 17
A geometric interpretation that can be assigned to the magnitude of the cross

product of two vectors is illustrated in figure 6-8.

B

h=|B|sine

—

A

Figure 6-8. Parallelogram with sides 4 and B.

The area of the parallelogram having the vectors A and B for its sides is given
by
Area = |A|-h = |A||B|sinf = |A x B. (6.28)

Therefore, the magnitude of the cross product of two vectors represents the area of

the parallelogram formed from these vectors when their origins are made to coincide.
Vector Identities

The following vector identities are often needed to simplify various equations in
science and engineering.

1. AxB=-BxA (6.29)

2. A-(BxC)=B-(CxA)=C-(AxB) (6.30)

An identity known as the triple scalar product.

3. (AxB)x(C C*[ (A % E} 5[6*-(1&5)}
:E[K (€ x 13} ,I[E-(éxﬁ)} (6.31)
4. Ax(BxC)=B(A-C)-C(4-B) (6.32)

The quantity A x (B x C) is called a triple vector product.
5. (AxB)-(CxD)=(A-C)B -D)—(A-D)B-C) (6.33)

6. The triple vector product satisfies

Ax(BxC)+Bx(CxA)+Cx(AxB)=0 (6.34)
Note that in the triple scalar product A - (B x C) the parenthesis is sometimes
omitted because (A-B)x C is meaningless and so A-B x C can have only one meaning.

The parenthesis just emphasizes this one meaning.
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A physical interpretation can be assigned to the triple scalar product A-(B xC) is
that its absolute value represents the volume of the parallelepiped formed by the three
noncoplaner vectors X,é,é when their origins are made to coincide. The absolute
value is needed because sometimes the triple scalar product is negative. This physical
interpretation can be obtained from the following analysis.

In figure 6-9 note the following.

(a) The magnitude |B x C| represents the area of the parallelogram PQRS.

(b) The unit vector e, = % is normal to the plane containing the vectors B
X

and C.

Figure 6-9. Triple scalar product and volume.

— —

_~ —_ = h represents the projection of 4 on é,
|B x C|

and produces the height of the parallelepiped. These results demonstrate that

(¢) The dot product 4- ¢, = A -

A-(BxC)|=|B xC|h=(Area of base)(Height) = Volume.

so that the magnitude of the triple scalar product is the volume of the paral-

lelepiped formed when the origins of the three vectors are made to coincide.

Example 6-7. Show that the triple scalar product satisfies the relations

A (BxC)=B-(CxA)=C-(AxB)
Note the cyclic rotation of the symbols in the above relations where the first symbol

is moved to the last position and the second and third symbols are each moved to
the left. This is called a cyclic permutation of the symbols.



Solution Use the determinant form for the cross product and express the triple scalar

product as a determinant as follows.

L e e e3
A(BXC):(A1é1+A2é2+A3é3) B1 B2 B3
C1 Cy (s

A (BxC)=(A1é + Ayéy+ A3&3) - [(B203 — B3Cy) &, — (B1C3 — B3Ch) &z + (B1Cy — ByCy) &3]
A (B x C) =A,(ByCs — B3Cy) — Ay(B1C5 — B3Cy) + Ag(B1Cy — ByCh)

A Ay Az
A. (B X C) :Al B2 B3 — A2 Bl B3 + A3 Bl B2 = B1 B2 B3

C'2 C'3 01 03 Cl C'g
Chp Cy (5

Determinants have the property* that the interchange of two rows of a determinant

changes its sign. One can then show

A Ay A B, B, Bs C, Cy Cj
B1 B2 B3 - Cl 02 03 - Al A2 A3
C1 Cy O Al Ay A B, B, B,
or
A (BxC)=B-(CxA)=C-(AxB)

Example 6-8. For nonzero vectors 4, B,C show that the triple vector product
satisfies A x (B x C) # (A x B) x C
That is, the triple vector product is not associative and the order of execution of

the cross product is important.

Solution Let B x ¢ = D denote the vector
perpendicular to the plane determined by the
vectors B and €. The vector A x D = E is a
vector perpendicular to the plane determined by
the vectors A and D and therefore must lie in
the plane of the vectors B and €. One can then

say the vectors B,C and A x (B x C) are coplanar

and consequently there must exist scalars a and
3 such that

—

Ax (BxC)=aB+C (6.35)

4 See chapter 10 for properties of determinants.
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In a similar fashion one can show that the vectors (A x B) x C, A and B are coplanar
so that there exists constants v and § such that

(Ax B)xC =~A+6B (6.36)
The equations (6.35) and (6.36) show that in general

Xx(éxé)#(ﬂxg)xé

Example 6-9. Show that the triple vector product satisfies
Ax(BxC)=(A-C)B-(A-B)C

Solution Use the results from the previous example showing there exists scalars o

and g such that

—

Ax (BxC)=a

&,

+8C (6.37)
Let B x C = D and write

Ax D =aB +3C (6.38)
Take the dot product of both sides of equation (6.38) with the vector A to obtain
the triple scalar product

A (AxD)=a(A-B)+p(A-C)

By the permutation properties of the triple scalar product one can write

— —

A-(AxD)y=A-(DxA)=D-(AxA) =0=a(A-B)+B(4A-C) (6.39)

The above result holds because 4 x A =0 and implies

S Lo o -3
a(A-B)=—-0(A-C) or Té:ﬁ:A
where ) is a scalar. This shows that the equation (6.37) can be expressed in the
form
Ax (BxC)=XA-C)B—-XA-B)C (6.40)
which shows that the vectors A x (B x €) and (4 -C)B — (A - B)C are colinear. The
equation (6.40) must hold for all vectors A, B,C and so it must be true in the special

case A = &, B = &, C = & where equation (6.40) reduces to

& x (é; x &)= e =\é; which implies X=1



Example 6-10.
Derive the law of sines for the triangle illustrated in the figure 6-10.

Solution The sides of the given triangle are formed from the vectors 4, B and € and
since these vectors are free vectors they can be moved to the positions illustrated
in figure 6-10. Also sketch the vector —C as illustrated. The new positions for
the vectors A, B,C and —C are constructed to better visualize certain vector cross

products associated with the law of sines.

O

Figure 6-10. Triangle for law of sines.

Examine figure 6-10 and note the following cross products

CxA=(A-B)x A=AxA-BxA=-BxA=AxB

—

and Bx(-C)=Bx(—A+B)=Bx(-A)+BxB=AxB.

Taking the magnitude of the above cross products gives
|IC x A|=|A x B|=|B x (-C)|
or
ACsinfp = ABsinfo = BCsinfy4.
Dividing by the product of the vector magnitudes ABC produces the law of sines

sinfy  sinflp  sinfc
A B  C

21
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Example 6-11. Derive the law of cosines for the triangle illustrated.

]
|C|}1
h|>1
]

—_—

A

Figure 6-11. Triangle for law of cosines.

Solution Let C = A — B so that the dot product of C with itself gives

— — — —

C. C=(A-B)- (A-B)=A-A+B-B-24-B
or
C? = A + B?> — 2ABcos ¥,

where A=|A|, B=|B|, C=]|C|represent the magnitudes of the vector sides.

Example 6-12. Find the vector equation of the line which passes through the
two pOintS Pl(:cl, Y1, Zl) and PQ(QTQ, Y2, 22).

Solution Let

1 =1 €1 + X2 €9 + T3 €3

and 7y =w9 81 + y2 €2 + 29 €3

denote position vectors to the points P, and P,
respectively and let # = z e, +yé,+zé; denote the

position vector of any other variable point on the

line. Observe that the vector 7, — 7 is parallel
to the line through the points P, and P,. By vector addition the (z,y, z) position on
the line is given by

F:F1+>\(T2_Tl) —OO<>\<OO (641)



where ) is a scalar parameter. Note that as A varies from 0 to 1 the position vector
7 moves from 7, to #,. An alternative form for the equation of the line is given by

F:F2+>\*(F1—F2) —00 < A\ <0
where \* is some other scalar parameter. This second form for the line has the
position vector ¥ moving from 7, to 7, as \* varies from 0 to 1. The vector +(7, — 1)
is called the direction vector of the line. Equating the coefficients of the unit vectors
in the equation (6.41) there results the scalar parametric equations representing the

line. These parametric equations have the form

=1 + AMay — x7), y=uy1+My2— 1), z=1z1+ Az — 22) —00 <A< 00
If the quantities zy — 21, y2 — 31 and z, — z; are different from zero, then the equation
for the line can be represented in the symmetric form

r—x - Z—Z
L _Y"n _ Ly (6.42)
To — T1 Y2 — 1 Z2 — 21

Note that the equation of a line can also be represented as the intersection of

two planes
N1z + Noy + N3z + Dy =0 N - (7 —=79) =0

Mz + Moy + Msz + Dy =0 M - (F—7) =0
provided the planes are not parallel or N # kM, for k a nonzero constant.

Example 6-13. Show the perpendicular distance from a point (z¢, o, 20) to a

given line defined by z = 1 + aut, y =11+ aot, z =2z + agt is given by
S a ~ . A X
d= (TO_Tl)Xﬁ where & =aq €, + agéy + azés
a

Solution The vector equation of the line is

7 =71 +dt, where (z1,y1,21) is a point on the line
(Xo *Yo szo)

described by the position vector 7, and & is the
direction vector of the line. The vector 7, — 7
is a vector pointing from (xy,y1,2) to the point
(x0,90,20). These vectors are illustrated in the =

accompanying figure. (x,,% +2,1)

23
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Define the unit vector e, = % @ and construct the line from (zg, 30, z0) Which is

||

perpendicular to the given line and label this distance d. Our problem is to find the
distance d. From the geometry of the right triangle with sides 7, — ; and d one can

write sinf = # Use the fact that by definition of a cross product one can write

|70 — 71|

— —

|(’F0—’F1)>< éa|:|F0—F1||éa|SiD9:d: (rg—rl)x

o

Example 6-14. Find the equation of the plane which passes through the point

Py(x1,y1,21) and is perpendicular to the given vector N = Ny & + Nyéy + Nj é;.

Solution Let 7, = z, &, + y; & + z; &3 denote the
= N position vector to the point P, and let the vec-
tor ¥ = xé&; +yé, + zé3 denote the position vector

to any variable point (z,y,2) in the plane. If the
p 22 vector ¥ — 7 lies in the plane, then it must be
perpendicular to the given vector N and conse-
quently the dot product of (7 — ;) with N must

(x1,y1,21)

be zero and so one can write
(F—7)-N=0 (6.43)

as the equation representing the plane. In scalar form, the equation of the plane is
given as
(:U—xl)N1+(y—y1)N2+(z—zl)Ng:0 (644)

]
Example 6-15. Find the perpendicular distance d from a given plane
(x—21)N1+ (y —y1)Na2+ (2 —21)N3 =0

to a given point (g, Yo, 20)-
Solution Let the vector 7y = z9é; + yo €2 + 20 €3 point to the given point (x¢, yo, 20)

and the vector 7, = x1 &, + y; & + 21 &3 point the point (z1,y1,2) lying in the plane.
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Construct the vector 7y — 71 which points from the terminus of #; to the terminus of

7o and construct the unit normal to the plane which is given by

_ Nie; + Nyey + Nyes
VN2 + N2 + N2

ey

Observe that the dot product éy - (7o — 71)
equals the projection of 7y — 7, onto éy. This
gives the distance

(o — 21)N1 + (Yo — y1) N2 + (20 — 2)N3
VN? + N2+ N2

where the absolute value signs guarantee that the

sign of d is always positive and does not depend

upon the direction selected for the unit vector éy.

Moment Produced by a Force
The moment of a force with respect to a line is a measure of the forces tendency
to produce a rotation about the line. Let a force F acting at the point (z1,y1,2)
be resolved into components parallel to the coordinate axes by expressing F in the
component form
F =F & + Fyéy+ Fsé3

That component of the force which is parallel to an axis has no tendency to produce a
rotation about that axis. For example, the F; component is parallel to the z—axis and
does not produce a rotation about this axis. For a chosen axis, the moment about
that axis is the product of the force component times the perpendicular distance of
the force from the axis. By using the right-hand screw rule, one can assign a negative
sign to the moment if it acts clockwise and a positive sign to the moment if it acts
counterclockwise. The moment of a force is a vector quantity which produces a
definite sense of rotation about an axis.

With the use of figure 6-12 let us calculate the moment of a force F, acting at
the point (z1,v1,21), about the 2-, y- and z-axes.

(a) For the moment about the z-axis produces
Fy; component parallel to z-axis does not produce moment
(Force)(L distance) = +F3y; (Counterclockwise rotation)

(Force)(L distance) = —Fy2; (Clockwise rotation)
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The total moment about the z-axis is therefore the sum of these moments and
given by
My = F3y; — Fozy.

(b) For the moment about the y-axis, one finds

(Force)(L distance) = +F;z (Counterclockwise rotation)
F, component parallel to the y-axis does not produce a moment

(Force)(L distance) = —Fyx; (Clockwise rotation)

The total moment about the y-axis is therefore

M2 = Flzl - F3,171.

Figure 6-12. Moments produced by a force F = Fy é; + Fy &, + Fyés

(c) For the moment about the z-axis show that

(Force)(L distance) = —Fyy, (Clockwise rotation)
(Force)(L distance) = +Fx; (Counterclockwise rotation)

F3 component parallel to the z-axis does not produce a moment

The total moment about the z-axis is given by

Ms = Fyxy — Fiy.



The total moment about the origin is a vector quantity represented as the vector
sum of the above moments in the form
My = My é; + My &5 + Ms é3
(6.45)
= (F3y1 — Faz1) €1 + (Fizn — Fyzy) € + (Faxy — Fiyr) €3,
If 7, =z &, +y1 & + 2 &3 is the position vector from the origin to the point (z1,y1, 21),
then the moment about the origin produced by the force F can be expressed as a
cross product of the vectors 7, and F and written as
& & &
rr 1 2
F F F3

M0:F1Xﬁ: (646)

This is readily verified by expanding the equation (6.46) and showing the result is
given by equation (6.45).
Moment About Arbitrary Line

Assume one has a force F acting through a

given point A and 74 is the position from the

A origin to the point 4. The moment about the
7a P origin is given by M, = 74 x F. The moment of
" v the given force F about the lines representing the
A Fa_im L Y and z axes are given by the projections of M,
& - on each of these axes. One finds these moments
ér
B

Mg'élel, MO'é2:M27 MO'éZ’):MZ’)

To find the moment about a given line L, choose any point B on the line L
and construct the position vector ¥z from the origin to the point B. The vector
74 — g then points from point B to the force F acting at point A as illustrated in
the previous figure.

The moment of the force F about the point B is given by

MB:(FA—FB) Xﬁ
Observe that this equation for Mp represents a position vector from point B to
the force F crossed with F and has the exact same form as equation (6.46). The

only difference being where the position vector to the force F is constructed. The

27
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moment about the line L is then the projection of the vector moment Mgz on this
line. If &, is a unit vector along the line, then Mg - é;, represents the projection of
Mz on L. The direction of the unit vector &, on the line L can point in one of two
directions (i.e. e, or —eér). However, once the direction of é; has been chosen one
must be careful to analyze the dot product Mg - é;, as its algebraic sign determines
the rotation sense produced by the moment (i.e., clockwise or counterclockwise).

A resultant force is the algebraic sum of the forces associated with a system.
The moment of a resultant force with respect to some axis is equal to the algebraic

sum of the moments of the system forces with respect to the same axis.

Example 6-16. If F = Fyé, + Fyé, + Fzé; is a force acting at the end of the
position vector 7 = z &, + yé, + zé3 then the moment of the force about the origin is
M =Fx F = (yFs— 2Fy) & + (2F, — £ F3) & + (2 Fy — yF}) és. Make note that the moments
of the force components are

Mi=Fx (Fi&)=(xé& +yé+2zé3) x (F &) = —yF, és + zF &,

Mo =7 x (Fy&) = (x& +yéy+ 263) x (Faéy) = xFé3 — 2F5 &

M3 =7 x (F3é3) = (261 +yéy + 263) X (F383) = —2F38y + yF3é;

SO thatM:M1+M2+M3

Differentiation of Vectors

Let us define what is meant by a derivative associated with a vector and consider
some applications of these derivatives. Again notation plays an important part in
the representation of the derivatives and therefore many examples are given to help
clarify concepts as they arise.

The equation of a space curve can be described in terms of a position vector from
the origin of a chosen coordinate system. For example, in cartesian coordinates the
position vector of a space curve can have the form

F = 7(t) = 2(t) & + y(t) & + (1) &, (6.47)
where the space curve is defined by the parametric equations

x = x(t), y =y(t), z = z(t). (6.48)



where t represents some convenient parameter, say time. The derivative of the
position vector # with respect to the parameter ¢ is defined as

ar _ . AT
dt Ao Al
~ lim 7(t+ At) — 7(t)
At—0 At

(6.49)

In component form the derivative is represented in a form where one can recognize

the previous definition of a derivative of a scalar function. One finds

dr o [t A &+ y(t + At) & + 2(t + At) &5] — [a(t) &1 + y(t) & + 2(1) &
dt o At—0 At

dar (et +AY) —x(t) Lyt A —y(t) 2+ A —2()

dt Alirilo At e+ At € + At €3

dr dr | dy . dz ., . PR ) A
T a Sty ety ez =1a'(t)ey +y'(t) e + 2'(t) &3

This shows that the derivative of the position vector (6.47) is obtained by differenti-
ating each component of the vector. It will be shown that this derivative represents
a vector tangent to the space curve at the point (z(t),y(t), 2(t)) for any fixed value of
the parameter t. Second-order and higher order derivatives are defined as derivatives

of derivatives.

Example 6-17. ¥ y=f(z)

The two dimensional curve y = f(z) can be

/

represented by the position vector \
A 5] o

/

F=r(x)=xé + f(z) e 1
. . t t |7
with the derivative ing L4
LU AP b -
dr ~ ' dz 2 YT g ? €1

Note that at the point (z, f(x)) on the curve one can draw the derivative vector and
show that it lies along the tangent line to the curve at the point (z, f(x)). This shows
that the derivative £ is a tangent vector to the curve y = f(z).

In general, if 7 = #(t) is the position vector of a three dimensional curve, then the
vector 4 will be a tangent vector to the curve. This can be illustrated by drawing
the secant line through the points #(t) and #(t + At) and showing the secant line then

approaches the tangent line as At approaches zero.
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Example 6-18.

'P Z Consider the space curve defined by the po-

sition vector

7 =7(t) = costé; +sintéy + teés.

Ll
il This curve sweeps out a spiral called a helix®.
y The projection of the position vector # on the
< plane z = 0 generates a circle with unit radius

about the origin.
The first and second derivatives of the position vector with respect to the pa-

rameter t are

dr L . .
— = —sinte; +costey + €3
dt

a7 ‘e e

— = —coste; —sintes.
a2 1 2

The vector 4 is tangent to the curve at the point (cost,sint,¢) for any fixed value of

the parameter t.

Tangent Vector to Curve

Let s denote the distance along a curve mea-

&=4 sured from some fixed point on the curve and let
the position vector of a point P on the curve be

(s P represented as a function of this distance. If the

y position vector is given by
/ 7 =17(s) =z(s) e + y(s) €2 + z(s) &3

then the derivative with respect to arc length s

is defined
dr . A7 7(s+ As) —17(s)
ds Ay Ay T Aim, As

This limiting statement can be interpreted by the illustration above with the vector

7(s) pointing to some point P and the vector 7(s + As) pointing to some near point

5 The given equation sweeps out a right-handed helix. Can you determine the equation for a left-handed helix?



Q and the vector A7 representing the direction of the secant line through the points
P and Q.

Letting the point @ approach the point P one finds the direction of the secant
line vector A7 approaches the direction of the tangent to the curve at the point P.
In this limiting process one can write

@' lim A7 dx +dyA +d/ .
ds  AsSoAs ds T ds 2T ds T
where é; represents a unit tangent vector to the curve. Note that this tangent vector

is a unit vector since the magnitude of this derivative is

V() (@) (6 - e

since an element of arc length is given by ds® = da® +dy® + dz*. This shows the vector

Z—Z is a unit vector which is tangent to the space curve 7 = 7(s).
By using chain rule differentiation one can assign a geometric interpretation

to the derivative of a space curve 7 = 7(t) which is expressed in terms of a time
parameter ¢. Using the chain rule one finds

dr drds dr . .

dt dsdt  ds ot
Here v = ¢ is a scalar called speed and represents the change in distance with respect
to time. The above equation shows the velocity vector is also tangent to the curve
at any instant of time.
Differentiation Formulas ) ) )
vt + AA7§3f —(t) _ (2_: Note
the derivative of a constant vector is zero. Using the property that the limit of a

The derivative of any vector v = #(¢) is defined Jim

sum is the sum of the limits, the above differentiation formula indicates that each
of the components of a vector must be differentiated. Here it is assumed the unit
vectors e, é;, e; are fixed constants and so their derivatives are zero.

For vector functions of the parameter ¢

£l
I
‘:l

(t) = ua(t) €1 + ua(t) &2 + us(t) €3
(t) = vi(t) €1 + va2(t) €2 + v3(?) €3,

<y
I
@1

(t) = w1 (t) él + wa (t) ég + ’wg(t) ég

g
I
g
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where the components w;(t) ,v;(t) and w;(t), i = 1, 2,3 are continuous and differentiable,
the following differentiation rules can be verified using the definition of a derivative

as given by equation (6.49).
The derivative of a sum is the sum of the derivatives and %({[ +7) = Z—ZL Z—ZL

The derivative of a dot product of two vectors is the first vector dotted with the
derivative of the second vector plus the derivative of the first vector dotted with

the second vector and one can write

d
7 ¢

- L dv  du

u-v):u-a%-a-v

The derivative of a cross product of two vectors gives a similar result

i(_'x_')—_'xg_{_@x_'
at T T

The derivative of a scalar function times a vector is similar to the product rule

and one finds
d o — rdT L
o Oa) = f(t) - +
where f = f(t) is a scalar function. In the special case f = ¢ is a constant one
du

finds %(cﬂ') =co

If @ = i(s) and s = s(t), then the chain rule for differentiating vector functions is

given by
dii  dii ds
dt — ds dt
The derivative of a triple scalar product is found to be
d ., o L L L dd  _ dv _ du _
&(u-vxw):u vx%%—u-axw%—a-vxw

Each of the above derivative relations can be derived using the definition of a
derivative.
Kinematics of Linear Motion

In the study of dynamics or physics one encounters Newton’s three laws of
motion. These three laws are sometimes expressed in the following form.

1. A body at rest remains at rest and a body in motion remains in motion, unless
acted upon by an external force.

2. The time rate of change of the linear momentum of a body is proportional to
the force acting on the body, with the body moving in the direction of the applied
force.

3. For every action there is an equal and opposite reaction.



33

If 7 represents the length and direction of a line drawn to the center of mass of a
body, then % = 7 represents the instantaneous velocity of the body and || = v = |4
represents the speed of the body. Let m denote the scalar mass of the body and let
@ denote the vector weight of the body. Here weight is a force given by @ = mg,
where g is the acceleration of gravity® Denote by m# the linear momentum of the
body and let F denote the force acting on a body. Using these symbols Newton’s
second law can be expressed in the form

d,
&(mv)—k‘F

—

and if the mass m is a constant, then mfl—: — kF or md = kF where k is a propor-

tionality constant and @ = % denotes the acceleration of the body. The value of the
constant k£ depends upon the units used to measure distance, time and force.

The following is a set of units for force, mass, distance and time which allow
for the proportionality constant to have the value k = 1. The notation of brackets
around a quantity is used to denote “the dimensions of” the quantity. For example,
the notation, [y] = meters, is read, " The dimension of y is meters.”

(fps) System

In the foot (ft), pound (Ib), second (sec) system of measurements, one uses

[distance] = ft, [mass] = 1b, [time] = sec, [Force] = slugs

where 1 slug- ft/sec? =1 1b force

(cgs) System

In the centimeter (cm), gram (g), second (sec) system of measurements, one uses
[distance] = cm, [mass| = g, [time] = sec, [Force] = dynes

where 1 dyne =1 g-m/sec?
(mks) System

In the meter (m), kilogram (kg), second (sec) system of measurements, one uses
[distance] = m, [mass] = kg, [time] = sec, [Force] = N

where 1 N =1 Newton =1 kg-m/sec?

S:ZQ and 9.82 % and depends upon

the position of latitude of the body. In this introduction, all particles and bodies are assumed to accelerate in a

6 The magnitude of the acceleration of gravity g varies between 9.78

gravitational field at the same rate with a value of g=32 % or g=980 =% or g=9.8 ;.

7 Bracket notation for dimensions of a quantity was introduced by J.B.J. Fourier, theorie analytique de la chaleur,
Paris, 1822.
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Example 6-19. y

A cannon ball of mass m is fired from a cannon with vo COS @

an initial velocity vy inclined at an angle § with the

horizontal as illustrated. Neglect air resistance and
find the equations of motion, maximum height, and ; .

6 vYoS1ne
range of the cannon ball. :

0

Solution: Let y = y(t) denote the vertical height at any time ¢ and let x = z(¢) denote
the horizontal distance at any time ¢. Consider the cannon ball at a position (z,y)
and examine the forces acting on it. In the y-direction the force due to the weight of
the cannon ball is W = mg, (g = 32ft/sec?). The equation of motion in the y-direction
is represented as

d?y

My = —W = —mg. (6.50)

Forces in the z-direction like air resistance are neglected. Newton’s second law can

then be expressed
cr_, (6.51)
mdt2 = U. .
Make note of the fact that whenever time ¢ is the independent variable, the dot
notation
T S TR
Ta T ar YT aw VT e
is often employed to denote derivatives. Using the dot notation the equations (6.50)

and (6.51) would be represented

(6.52)

ij=—g and i=0 (6.53)

Calculating the = and y-components of the initial velocity, the equations (6.50)
and (6.51) are solved subject to the initial conditions:
2(0)=0,  y(0)=0
#(0) = vocosf,  §(0) = vpsinb,
where v, is the initial speed and 6 is the angle of inclination of the cannon. Solving

the differential equations (6.50) and (6.51) by successive integrations gives

y:_gt+61, ij:c:))
2
y:_g§+clt+02, T =cst + ¢4



where ci,co,c3,c4 are constants of integration. The solution satisfying the initial
conditions can be expressed as
9.2 :
=y(t) = —=t° 4+ (vgsinf) t
y=y(t) = 2 + (g 5in0) 650
x = x(t) = (vg cosh)t.
These are parametric equations describing the position of the cannon ball. The

position vector describing the path of the cannon ball is given by
7= 7(t) = (vocos 0) L& + (—gﬁ + (v sind) t) é,

The maximum height occurs where the derivative % is zero, and the maximum range
occurs when the height y returns to zero at some time ¢ > 0. The derivative % is zero
when t has the value t; = vysinf/g, and at this time,

2 3 29
: z=a(t) = 2202 2;1 (6.55)

v3 sin® @
29

Ymaz = y(tl) =

Vo sin f

The maximum range occurs when y =0 at time ¢, =2 , and at this time,

2 .
v sin 26
Tmazx = $(t2) == g .

Eliminating ¢ from the parametric equations (6.54), demonstrates that the trajectory

of the cannon ball is a parabola.

Example 6-20. (Circular motion)

Consider a particle moving on a circle of radius » with a constant angular velocity

do
dt

Assume the position of the particle at any given time ¢ is given by the position

w = Construct a cartesian set of axes with origin at the center of the circle.

vector

7 =7(t) = rcoswt é + rsinwt é; r and w are constants.

The displacement of the particle as it moves around the circle is given by s = r§ and

the speed of the particle is % =0v= r% = rw. The velocity of the particle is a vector
quantity given by B
U= % = —rwsinwt é; + rwcoswt &, (6.56)

The velocity vector is perpendicular to the position vector 7 since ¢ -7 = 0 as can

be readily verified. The velocity vector is a free vector and can be moved anywhere
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and so it is placed at the end of the position vector, as illustrated in the figure 6-13
to show that the velocity is tangent to the circle. The magnitude of the velocity @
is the speed v given by

|7] =v = Vr2w?sin? wt + r2w? cos? wt = rw

One can define an angular velocity vector & as follows. Use the right-hand rule
and point the fingers of your right-hand in the direction of the position vector 7
and then rotate your fingers in the direction of motion of the particle. Your thumb
then points in the direction of the angular velocity vector. For circular motion
counterclockwise in the z, y-plane, one can define the angular velocity vector & = w és.
By defining an angular velocity vector one can express the velocity vector of a
rotating particle by

€1 € €3
0 0 w
rcosf rsinf 0

T=d X7 = = &1 (—wrsinf) — é; (—wrcosb), 0 =uwt (6.57)

and this equation can be compared with equation (6.56).

The acceleration of the rotating particle is given by

dv 9

— = —rw?coswt & — rw? r
dt

a= sinwt ey = —w?F

This shows the acceleration is directed toward the origin. It is therefore called a

centripetal acceleration.® The magnitude of the centripetal acceleration is

2
|EL’|:w2T:v—:vw
r

The acceleration can also be obtained by differentiating the vector velocity given by

equation (6.57) to obtain
@ — X @ + @ X ,,7-’
at " T ar

and since w is a constant, then 2 =0 so that the above reduces to

a =

dr

a=w X
dt

=0 XT=0 X (J X7F)=—wT

8 Centripetal means “center-seeking”.



where the last simplification was obtained using the vector identity given by equation
(6.32) and the result w-# = 0. The above results are derived under the assumption

that the angular velocity w = % was a constant.

YA Yy A YA
O—=wt a.,=ro ~

— — eg é'r-
7 O\ g e ‘
e E 7 T 0 s
) an %

Figure 6-13. Particle moving in circular motion.

I

In contrast, let us examine what happens if the angular velocity is not a constant.

The position vector to a particle undergoing circular motion is given by
7 =7rcosf € + rsinf &,

where 6 = 0(t) is the angular displacement as a function of time. The velocity of the
particle is given by
dr

v=—= —TsiHGﬁ €1 —i—T‘COS@ﬁ €

dt dt dt

Let % = w(t) denote the angular speed which is a function of time ¢ and express the
velocity as

U= —rw(t)sinf &, + rw(t) cosf &,

The acceleration is obtained by taking the derivative of the velocity to obtain

"—@__ ‘9@_{_(1_(,0‘. 9 A + —(t)" 9ﬁ+d_w ‘9 A
a= pri r |wcos pTRy sinf| €, +r |—w(t)sin prRy cosf| és
a=—rw?cosl & — rasind é; —rw?sinf é; + racosf é,

where a = a(t) = Cfl—j is the angular acceleration. The acceleration vector can be

broken up into two components by writing

a = —rw?[cosh & +sinf &;] +ra[—sinf & + cos &
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The physical interpretation applied to the acceleration vector is as follows. Ob-
serve that the vectors

€, = cosf e; +sinf &, and €y = —sinf e; + cos O e,

are unit vectors and that these vectors are perpendicular to one another since they
satisfy the dot product relation e, - & = 0. The vectors é, and & represent unit
vectors in polar coordinates and are illustrated in the figure 6-13. The acceleration

vector can then be expressed in the form
id=—-rw?é.+raéyg=ad,+dad

where @, = —rw?e, is called the radial component of the acceleration or centripetal

acceleration and @, = raéy is called the tangential component of the acceleration.

These components have the magnitudes
ld,| =rw and |a:| = ra

Note that if w is a constant, then o = 0 and consequently the tangential component of
the acceleration will always be zero leaving only the radial component of acceleration.

Example 6-21. Transverse and Radial Components of Velocity

<

Consider the motion of a particle which is
y described in polar coordinates by an equation
Ve €¢ of the form r = f(6), where 6 is measured in

P or radians. Select a point P with coordinates (r, 6)
on the curve and construct the radius vector 7

from the origin to the point P. Construct the

o > o tangent to the curve at the point P and define
T

/ © the angle ¢ between the radius vector and the

r=75(0) tangent. Label a fixed point on the curve, say

the fixed point z, where the curve intersects the z-axis. Let s denote the arc length
along the curve measured from z, to the point P. The velocity of the particle P as
it moves along the curve is given by the change in distance with respect to time ¢

and can be written v = d—';



The velocity vector is in the direction of the tangent to the curve and the com-
ponent of the velocity along the direction 0P is called the radial component of the
velocity and denoted v,. At the point P construct a line perpendicular to the line
segment 0P, then the component of the velocity projected onto this perpendicular
line segment is called the transverse component of the velocity and denoted by wv,.

These projections of the velocity vector give the radial and transverse components
Uy = U COSY and vg = vsiny

ds g - . .
where v = i \/vZ +v2 is the magnitude of the velocity called the speed of the
particle. The unit tangent vector to the curve is given by

€; = cosY €, +siny éy

where e, is a unit vector in the radial direction and &, is a unit vector in the
transverse direction. The derivative of the position vector with respect to the time

t can be written as

i dr ds

— = —— =0 & =vcosye vsiny ey = v, € Vg €
dt det t d)r‘{' 7/)9 rr+€€

Therefore, when the position vector to the point P is written in the form
F=x€& +yéy Or 7 =rcoshé +rsinfeéey,=ré,

where é, is the unit vector in the radial direction given by é, = cosfé; +sinfé,, one
finds the derivative of this unit vector with respect to # produces the vector
de,

do

= ég = —sin9é1 +C089é2

The derivative of the position vector with respect to arc length is a unit vector so
that

A T W, 88 T~ cosype, +singé
ds ds " ds ° ' ds ds = ' " o
where dé ——‘ineﬁé + *0ﬁé = é @

ds S ds €08 ds 2~ Pds

dr do d
ar ==&y + _Tér = € = cosye, +siny &y

Theref
erefore, - =r—- P
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Equating like components produces the result that
dé ) dr
T =siny and 7s = cos

The derivative of the position vector = r e, with respect to time ¢ takes on the form

dF _ de, dr _ decdo dr A0 dr o
it Ta T e T a e T T g ST e e =
where
dr . . .
v = = vcost is the radial component of the velocity
Vg :r% =wvsinty is the transverse component of the velocity
é, =cosfé; +sinfeéey, 1s a unit vector in the radial direction
ép = —sinfé; +cosféy, 1S a unit vector in the transverse direction
dr

Z =7 =wvcosy e, +vsiny & is alternative form for the velocity vector

Note also that if ¢ = w is the angular velocity, then one can write vy = rw.

Example 6-22. Angular Momentum

Recall that a moment causes a rotational motion. Let us investigate what hap-
pens when Newton’s second law is applied to rotational motion. The angular mo-
mentum of a particle is defined as the moment of the linear momentum. Let H denote
the angular momentum; mv, the linear momentum; and 7, the position vector of the
particle, then by definition the moment of the linear momentum is expressed

H =7 x (m?) =7 x <m%> . (6.58)

Differentiating this relation produces

ﬁ — X ﬁ + @ X @

at ' \"aer) T \Ma )
Observe that the second cross product term is zero because the vectors are parallel.
Also note that by using Newton’s second law, involving a constant mass, one can
write

dv d*7

ﬁ: a = —_— = —_
ST T e



Comparing these last two equations it is found that the time rate of change of
angular momentum is expressible in terms of the force F acting upon the particle.
In particular, one can write

dH o

— =rxF=M.

dt
One of the many marvelous things introduced by the early Greek mathematicians
was that symbols represent ideas and concepts. The symbols in our last equation
tell us about a fundamental principal in Newtonian dynamics, that the time rate
of change of angular momentum equals the moment of the force acting on the

particle.

Angular Velocity

A rigid body is one where any two distinct points remain a constant distance
apart for all time. A rigid body in motion can be studied by considering both
translational and rotational motion of the points within the body. Assume there
is no translational motion but only rotational motion of the rigid body. A simple
rotation of every point in the rigid body, about a line through the body, can be
described by (a) an axis of rotation L and (b) an angular velocity vector &. If the
axis of rotation remains fixed in space, then all points in the rigid body must move
in circular arcs about the line L. Consider a point P revolving about L in a circular
path of radius a as illustrated in figure 6-14.

The average angular speed of the point P is given by %, where A¢ is the angle
swept out by P in a time interval At. The instantaneous angular speed is a scalar

quantity w determined by

d¢ _ . Ad

w=—= lim —.

dt At—0 At
There is a direction associated with the angular motion of P about the line L and
thus an angular velocity vector & is introduced and defined so that

(i) & has a magnitude or length equal to the angular speed w,

(ii) & is perpendicular to the plane of the circular path.
(iii) The direction of & is in the direction of advance of a right-hand screw when turned
in the direction of rotation.

Choose any point O on the line L and construct the position vector # from O to

an arbitrary point P inside the rigid body. The arc length s swept out as P moves
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through the angle ¢ is given by s = a¢. The magnitude of the linear speed v, of the
point P, is given by
_ds _ d¢

V== a = aw = |T|.

Figure 6-14. Rotation of a rigid body about a line.

The geometry in figure 6-14, is investigated and indicates that a = |7]sin6, and

hence the magnitude of the velocity can be represented as

The velocity vector is always normal to the plane containing the position vector and
the angular velocity vector. Therefore the velocity vector can be expressed as

di

g V=IxT= |J||7] siné e,
where &, is a unit vector perpendicular to the plane containing the vectors & and 7.
The above arguments demonstrate that the expression for the velocity of a rotating
vector is independent of the orientation of the cartesian z-,y-,z-axes as long as the
origin of the coordinate system lies on the axis of rotation. To prove this result let
O’ denote the origin of some new 2’,y/, 2’ cartesian reference frame with its origin on
the axis of rotation. If 7 is the position vector from this origin to the same point P
considered earlier, one finds that

dt

—

:171:&XT1.



It therefore remains to show that v; = ¥. The geometry of figure 6-14, provides an
aid in demonstrating that the vectors #; and # are related by the vector equation

7= A4,

where 4 is a vector from the origin of one system to the origin of the other system
and lying along the axis of rotation and in the same direction as &. These results

demonstrate that w x A =0 and

dry .

- - ar
o =0 1=0X(A4T)=0XA+IXTF=0XF=0=—

dt’
Here the distributive law for cross products has been employed and the fact that

both @ and A have the same direction produced a cross product of zero.

Let B denote any vector connecting two fixed
points within a rigid body which is rotating about
a line with angular velocity &. Let 7; denote a
vector to the terminus of B and let #», denote a
vector to the origin of B, as measured from some

origin on the axis of rotation. One can then write

dry dry

=w X T and E

=w X Ty

dB  dF,  difs e Xq < (71— ) « B
— = - —— = WXT] —WXTy=Ww TG —T2) =w
dt dt dt ! 2 L2

Therefore one can state that in general, if B is any fixed vector lying within a rigid
body which is rotating, then with respect to any origin on the axis of rotation, one

can state that .
dB
dt

This is an important result used in the study of rotating bodies.

= x B (6.59)

Two-Dimensional Curves
The graphical representation of a function y = f(z) in a rectangular cartesian
coordinate system can also be presented in a vector language. A graph of the

—

function y = f(x) can be represented by a position vector ##, measured from the
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origin, which sweeps out the curve as the parameter x varies. In figure 6-15, the
position vector 7 is illustrated. This position vector has the representation

7 =7(x) =xé + f(x)é,. (6.60)

As the parameter x varies, the position vector 7 represents the distance and direction

of the point (x, f(x)) with respect to the origin. The derivative

is also illustrated in figure 6-15. Observe that the derivative represents the tangent
vector to the curve at the point (z, f(z)). There can be two tangent vectors to the
curve at (z, f(x)), namely é =7'(z) and —é = —7/(z). Unless otherwise stated, the
tangent vector in the sense of increasing parameter z is to be understood.

The cross product of the unit vector és, out of the plane of the curve, and the
tangent vector % = 7/(z) to the curve, gives a normal vector N to the curve at the

point (x, f(x)). One calculates this normal vector using the cross product

) P
ol @

Note there can be two normal vectors to the curve at the point (z, f(z)), namely N
and —N. To verify that N is normal to the tangent vector at a general point (z, f(z))
one can examine the dot product of the normal and tangent vector N - é and show

N-— =[—f(z)é1+ &) -[é1 + f'(x) &) =0

which demonstrates these two vectors are perpendicular to one another. Further,
the magnitudes of the normal vector N and the tangent vector ¢ are equal and can

be represented
dr

N| =
INI= |7

= V1+[f (@) (6.63)

One can use the magnitudes of the tangent and normal vectors to construct unit
vectors in the tangent and normal directions at each point (z, f(x)) on the plane
curve. One finds these unit vectors have the form

ét _ él + f/(f) ég and én _ —f/(,I) él + ég ‘

(6.64)
L+ [f'(2)]? L+ [f'(2)]?



7 (z+Ax)

Figure 6-15.
Tangent line and normal line to plane curve change with position.

Recall from our earlier study of calculus that the arc length s measured along a

curve from some fixed point (zg, f(x0)) is given by
5= / VIF @R de (6.65)

and the derivative of this arc length with respect to the parameter z is
j—i — VIT @R (6.66)
Using chain rule differentiation one finds
T I T@P
or
A7 1 dF
which shows the unit tangent vector to the curve is the derivative of the position vec-
tor with respect to arc length. The choice of the sign on the square root determines
the direction of the unit tangent vector.
At each point on the plane curve the unit tangent vector eé; makes an angle 0
with the constant unit vector &,. The absolute value of the rate of change of this
angle with respect to arc length is called the curvature and is denoted by the Greek

letter k. The curvature is thus represented by

ﬁ
ds

R =
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By using the results tan§ = Z—i and ds* = dz*+dy?, one can calculate the derivatives
d’y 2
%:7“2 > and Z—i:i 1+<Z—i>.
d
1+ (ﬁ)

The chain rule for differentiation can be employed to calculate the curvature

&y
dz?

_ —[1 ) (3_.7;)2] (6.67)

The unit tangent vector &, satisfies e, - e; = 1. Differentiating this relation with

_ |49 _
= %] =

@ da
dr ds

respect to arc length s and simplifying produces

de; de;

. dé;
ds ds

ds

€ -

.et:2et.

= 0. (6.68)

When the dot product of two nonzero vectors is zero, the two vectors are perpendic-

when evaluated at a common point on the curve. It is known that the vector e, is
perpendicular to the tangent vector. The vectors &, and —— are therefore colinear.

ds
Consequently there exists a suitable constant ¢ such that

dey .
— =ce,.

ds

It is now demonstrated that ¢ = &, the curvature associated with the curve. To
solve for the constant ¢ differentiate &, with respect to the arc length s. From the

expression
déjds dé /1 2 f" (%) & — [&1 + f/(z) &1 + [f/(2)]*] 2 ' (w) /(=)
ds dx dx 1+ [f/(2)]? ’

the derivative of the unit tangent vector with respect to arc length is given by

e f'(a)
ds 1+ [/}

—f'(z)e1+ e
L4 [f"(x)]?

e
1+ 17/ @)

n-

Taking the absolute value of both sides of this equation shows that the scalar cur-
vature x is a function of position and is given by

el
1+ [/ ()2



The reciprocal of the curvature « is called the radius of curvature p. Note that straight
lines have a constant angle § between a unit tangent vector and the z-axis and hence
the curvature of straight lines is zero since the curvature is a measure of how fast
the tangent vector is changing with respect to arc length.

To understand the meaning of the radius of curvature, consider the vectors N (z)
and N(z + Az) which are normal to the curve y = f(z) at the points (z, f(z)) and
(x + Az, f(z + Az)). These vectors are illustrated in figure 6-15. For appropriate

scalars a and 3, the vector equations

C(z) =7(x)+aN(z) and C(z)=7(z+ Az)+ 3N (z + Az)

depict the common point of intersection (h,k) of these normal lines to the plane
curve, provided these normal lines are not parallel. The scalars o and g are related
by the vector equation

—

7(z) + aN (z) = F(z + Az) + BN (z + Az). (6.69)

If in the limit as Az — 0, the point of intersection (h, k) approaches a specific value,
this limit point is called the center of curvature. To find the center of curvature
(h, k), the scalar o (or g) must be determined. This is accomplished by expanding
the above equations relating o and 8. When the vector equation (6.69) is expanded,
one finds have

reéy + f(z)és —af' (v)é +aéy = (v + Azx)é; + f(x + Ax) és — Bf (x + Ax) & + 3 é,.

Equate like components the two scalar equations and show

x—af (z)— (r+ Az) + Bf (x + Az) =0 and

(6.70)
fl@)+a—flz+Az)—-5=0.
By eliminating g from these two equations one finds

NECEEL R I CEEU R 1 PR -

Ax Ax

In this equation let Az — 0 and solve for o and find

/ 2

N ) L (6.72)

fr@)

47



48

From this result the center of curvature is found to have the position vector

1+ [f'(@)]?

Cz)=7(z)+aN(z)=xeé + f(z) e+ f"(x)

[—f'(z) &1 + & . (6.73)
Note the position vector can also be expressed in the form

- 1
C(z) =7(z) + peén, where p=— (6.74)

and consequently the coordinates of the center of curvature can be determined.
These coordinates are given by
=) 1
" ) (@)
provided that f”(x) # 0. For f”(x) =0, there is a point of inflection, and the circle of

curvature degenerates into a straight line which is the tangent line to the point of

1+[f(@)]*) and k= f(z)+ 1+ [f ()], (6.75)

inflection of the curve. Consider the set of all circles which have their centers on
the normal line to the curve and which pass through the point where the normal
line intersects the curve (i.e., circles are tangent to the tangent vectors). Of all the
circles, there is only one which has a contact of the second order and this circle has
its center at the center of curvature (h, k). A contact of second order means that not
only does the circle and curve have a common point of intersection and a common
first derivative but also that they have a common second derivative. A proof of

these statements is now offered. Let the equation of the circle be denoted by
(E—h)* + (n—k)* = p, (6.76)

where the (¢,71) axes coincide with the (z,y) axes and h, k,p are the functions of z
derived above. If one considers = as being held constant and treats n as a function
of ¢, then by differentiating the equation of the circle (6.76) twice one produces the
derivatives

E=h)+(n—k)-=-=0 and 1+<Z—Z> +(n—k)%:0 (6.77)

At the common point of intersection where (¢,7) = (z, f(x)) one finds

f'(x)

= f//($) (1 + [f/(f)] ) and n—- k=

E—h




so that

dp _ £-h /D (3—2)2

_:_;:/ 20 NSy

B =l@ ad = =

This shows that the first and second derivatives at the common point of intersection
of the curve and circle are the same and so this intersection is called a contact of

order two.

Scalar and Vector Fields

Of extreme importance in science and engineering are the concepts of a scalar
field and a vector field.

Scalar and vector fields

Let R denote a region of space in a cartesian coordinate sys-
tem. If corresponding to each point (x,y,z) of the region R there
corresponds a scalar function ¢ = ¢(x,y,z), then a scalar field is
said to exist over the region R. If to each point (x,y,z) of a region

R there corresponds a vector function
F - F(m’ Y, Z) = Fl(m’ Y, Z) é1 + F2(m’ Y, Z) é2 + F3(m, Y, Z) é3’

then a vector field is said to exist in the region R.

That is, a scalar field is a one-to-one correspondence between points in space and
scalar quantities and a vector field is a one-to-one correspondence between points in
space and vector quantities. The functions which occur in the representation of a
vector or scalar fields are assumed to be single valued, continuous, and differentiable

everywhere within their region of definition.

Example 6-23.
y

A An example of a vector field is the velocity
| y=h of a fluid. In such a velocity field, at each point
in some specified region a velocity vector exists
which describes the fluid velocity. The velocity

vector is a function of position within the speci-

=>x y=0

fied region. Consider water flowing in a channel
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having a depth h as illustrated. Construct a set of z,y axes with y = 0 represent-
ing the bottom of the channel and y = h representing the top of the channel. If
the velocity of the fluid in the channel is given by the one-dimensional vector field
7 =ayeé, for 0 <y < h and « is some proportionality constant, then the vector field
associated with this flow can be graphically illustrated by sketching the vectors v at
various depths in the channel. The resulting images represent one way of illustrating

a vector field. The resulting sketch is called a vector field plot.
|

Example 6-24.

Consider the two-dimensional vector field ¢ = #(z,y) = yé, + zé,. There are
computer programs that can graphically illustrate this vector field by plotting vectors
at selected points within a specified region. The resulting images of all the vectors
illustrated at a finite set of points is called a vector field plot. The figure 6-16
illustrates a vector field plot for the above vector @ sketched at selected points over
the region R={(x,y) | -5<x <5, -5<y<5}.

An alternative method of illustrating a vector field is to define a set of curves,
called field lines, where each curve has the property that at each point (z,y) on any
curve, the tangent to the curve at (z,y) has the same direction as the vector field at
that point. If 7 =xé&, +yeé, is a position vector to a point (z,y) on a field line, then
dr’ gives the direction of the tangent line and if this direction is to have the same
direction as #, then the two directions must be proportional and requires that

drf =dxé) +dyéy = kv(z,y) =klyél +xé&] =kyé, + krés (6.78)

where £ is some proportionality constant.
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vector field plot field lines field lines placed
atop vector field plot
Figure 6-16. Vector field plot for 7 = @(z,y) = yé, + z &,




If these direction are the same, then by equating like components one must have
dr=ky and dy=kz or — ===k (6.79)

The equation (6.79) requires that = dr = ydy and if one integrates both sides of this

equation one obtains the family of field lines

22 g2
2

2

% or 2 —y?=C (6.80)
where C/2 is selected as the constant of integration to make all terms have a factor
of 2 in the denominator. Plotting these curves over the region R for various values
of the constant C gives the field lines illustrated in the figure 6-16. The final figure
in figure 6-16 illustrates the field lines atop the vector field plot in order that you

can get a comparison of the two techniques.

Example 6-25.

An example of a two-dimensional scalar field
is a scalar function ¢ = ¢(z,y) representing the
temperature at each point (z, y) inside some spec-
ified region. The scalar field can be visualized by

plotting the family of curves ¢(z,y) = C for vari-

ous values of the constant C.

The resulting family of curves are called level curves and represent curves where
the temperature has a constant value. If the scalar field ¢ = ¢(z,y) represented
height of the water above some reference point, then one can think of say an island
where at different times the level of the water makes a contour of the island shape.
In this case the family of curves ¢(x,y) = C, for various values of the constant C,
are called level curves or contour plots since at various heights C the contour of the
island is given. Example contour plots are illustrated in figures 6-16 and 6-17.

Note that there are many computer programs capable of drawing contour plots
or level curves associated with a given scalar function. The figure 6-17 illustrates
contour plots or level curves for several different two-dimensional scalar functions as
the level C changes.

o1
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Figure 6-17. Contour plots of selected two-dimensional scalar functions.

|
A vector field is a one-to—one correspondence between points in space and vector

quantities, whereas a scalar field is a one-to—one correspondence between points
in space and scalar quantities. The concept of scalar and vector fields has many
generalizations. A scalar field assigns a single number ¢(z, y, z) to each point of space.
A two-dimensional vector field would assign two numbers (Fi(z,y,2), Fa(z,y,2)) to
each point of space, and a three-dimensional vector field would assign three numbers
(Fy(2,y,2), Fa(x,y, 2), F3(x,y,2)) to each point of space. An immediate generalization
would be that an n-dimensional vector field would assign an n-tuple of numbers
(Fy, Fy,...,F,) to each point of space. Here each component F; is a function of

position, and one can write
F, = Fi(x,y,2), i=1,...,n.

Other immediate ideas that come to mind are the concepts of assigning n? numbers
to each point in space or n? numbers to each point in space. These higher dimensional
correspondences lead to the study of matrices and tensor fields which are functions
of position. In science and engineering, there is great interest in how such scalar
and vector fields change with position and time.

Partial Derivatives
If a vector field F = ﬁ(:z:, y,2) = Fi(x,y,2) &1+ Fy(x,y, 2) &+ F3(,y, 2) &3 is referenced
with respect to a fixed set of cartesian axes, then the partial derivatives of this vector

field are given by:

Copyright 2012 J.H. Heinbockel. All rights reserved



OF OF . OF,.  OFs.
Ezﬁxel+8xe ar o
(?9_5 _ 66121 &, + %F; &y + aaFy:’) s (6.81)
OF OF . OF,. OFs.
FECE et 0z C2+ 0z s

Observe that each component of the vector field F must be differentiated.

2 +

The higher partial derivatives are defined as derivatives of derivatives. For ex-
ample, the second order partial derivatives are given by the expressions

#F _ o (0F\  0F_ o (oF\  #F _o (oF -
oz2 oz \ox | oy2 Oy \oy ) Oxdy Oz \ dy )’ '

where each component of the vectors are differentiated. This is analogous to the

definitions of higher derivatives previously considered.

Total Derivative
The total differential of a vector field F = F(z,y, z) is given by

. OF OF oF
F=— -— -—
d axdx+8ydy+ﬁzdz

= (0F oF, oF, .
dF = <a$ dx + 3y dy + 5, dz) €

OF, 0F; OF, .
+ < o dx + 3y dy + 5, dz) & (6.83)

OF3 OF; 0F; .
+ < Ep dx + 3y dy + 5% dz) és.

or

Example 6-26.
For the vector field

— —

F= F(.I,y,Z) = ($2y - Z) él + (y252

—x) ey + xyzé;s

calculate the partial derivatives

OF 9F  OF OF
ox’ Oy’ 0z’ Oxdy
Solution: Using the above definitions produces the results

OF . ) OF ) . .
azlryel—eg%—yzeg, E:—e1+2yze2+xye3
OF 26 4228 1 and O%F a?ﬁQAJFA
— = e e e = = e €es3.
oy TerT e G2 mas s, oxdy  Oyox eI

53



o4

Notation

The position vector 7 = zé; + yéy + zé3 is sometimes represented in matrix no-
tation as a row vector i = (z,y, z) or a column vector # = col(xz,y, z). Sometimes the
substitution = = z1, y = 5 and z = x3 is made and these vectors are represented as

T = (21,20, w3) OF T = cOl(xy, 20, 3) and a vector function
ﬁ(.f,y,Z) = F1($,y,2?) él +F2($,y,2) é? + F3($,y,2?) é3

is represented in the form of either a row vector or column vector

F(7) = (F(Z), F2(T), F3(7) or  F(T) = col(Fi(T), (7). F3(T))
where the representation of the basis vectors é;, &, é; is to be understood and col
is used to denote a column vector.

This change in notation is made in order that scalar and vector concepts can
be extended to represent scalars and vectors in higher dimensions. For example,
the representation # = (zy, s, zs,...,7,) would represent an n—dimensional vector,
The scalar function ¢ = (%) = ¢(z1,22,...,7,) Would represent a scalar function
of n-variables and the vector F(z) = (F\(Z), F»(Z), ..., F,(%)) would represent an n-
dimensional vector function of position.

Gradient, Divergence and Curl

The gradient of a scalar function ¢ = ¢(z,y, z) is the vector function

grad<z>—a—i’ 1+a_‘§e2+a_¢e3

If the scalar function is represented in the form ¢ = ¢(x1, 2, 23), then the gradient
vector is sometimes expressed in the form

g (20,20 00
gra N 6,171’ 6,172’ 8,1?3

where it is to be understood that the partial derivatives are to be evaluated at the

point (zy,z2,z3) = (z,y,2). The vector operator

V—ge%—ae%——e
T o oy 2ol

called the “del operator”or “nabla”, is sometimes used to represent the gradient as
an operator operating upon a scalar function to produce

0 0 . 0 0
graqu:VQS:(a—el (9_ +a— 3>¢_ai 1%-(9—2/S 2+a—¢e3
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The divergence of a vector function F (x,y,2) is a scalar function defined by

.= OF  O0F, O0F3
div = ox * oy * 0z

If one uses the notation # = (z1, 2, x3) the divergence is expressed

oF, O0F, OF
1, 9F2 0f3

leF(JT) - 62?1 82?2 82?3

The del operator can be used to represent the divergence using the dot product

operation

0

~ _ 0 0 - - - OF, OF. OF.
divF =V F=(S-61+ o b+ &) (Frég+ Faey+ Frey) = 50+ 52 4 2
ox oy 0z

ox oy 0z

The curl of a vector function F(z,y, z) is defined by the determinant operation?

. e & es
cwlF =VxF=£2 & &
F, F, F;
- - 0F3 0Fy\ . 0F3 O0F\ . 0F, O0F\ .
lF=VXF=—-—-— - == - = - -
e x < oy 0z ) ! < Ox 9z ) ©? Ox oy e

If the notation F = F(z1, 22, 3) is used, then the curl is sometimes represented in the

form

LA (0B O OR OF OB, OF
i N 82?2 8,173’ 82?3 8,171’ 62?1 82?2
where the unit base vectors are to be understood. The operations of gradient,

divergence and curl will be investigated in more detail in the next chapter.

Taylor Series for Vector Functions

Consider a vector function
ﬁ = ﬁ(f) = ﬁ(x1,$2) = F1($1,$2) él + Fg(xl,ig) ég

which is continuous and possesses (n + 1) partial derivatives. The Taylor series
expansion for this function is just applying the Taylor series expansion to each of
the scalar functions Fy, F,. Associated with the vector A = (hy, he) is the vector
operator

- 0 0

h-V=h—4+ho—
16:51+ 262?2

9 See chapter 10 for properties of determinants.
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so that if ¢ represents either of the components F, or F, one can write

09 + ho=— 0¢

(h V)p = hla s

Observe that the operator

-

(h-V)2¢p =(h-V)(h -

B ¢ o
hl < 8:51 o 8:52) thego oy <h1 0x1 + o 8:@)

0% 0%
—h2 =2 ¢ 2h1h h2
Lgp2 Ty o Ty s
In a similar fashion one can show
(h-V)2¢=(h-V)(h-V)*¢
&3¢ &3¢ 3o 4,030
=3 h2hy—2 2 4 3h K2
Vg3 TG 2y by e T 23 3

and in general for any positive integer n one can use the binomial expansion to

calculate the operator

81 823

This operator can be used to represent the Taylor series expansion of a function

(h- V)¢ = (m 0 +h2i2) 6

F = F(Z) where & = (z1,2,). If #o = (29,29) is a constant and h = (hy, hy) denotes a
small vector displacement from the point #,, then the Taylor series expansion can
be written

F(Zg+h) = ‘(E V)HUR(Z) (6.84)

—_
8
Il
8

S

m=

where all derivatives are to be evaluated at the point 7.

In three dimensions vectors of the form
F = F(%) = F (21,22, 73) = Fy (1,22, 73) & + Fa (1, 72, 73) & + F3(21, 22, 73) &3

which have (n+1) partial derivatives can be expanded in a Taylor series by expanding
each of the components in a Taylor series. Associated with the vector displacement

h = (hy, ha, hs) one can define the operator

- d d d
h-V)=h,— +h h
(h-V) 161+26 +3a$3

and find that the Taylor series expansion has the same form as equation (6.84)



Differentiation of Composite Functions

Let ¢ = ¢(z,y, 2) define a scalar field and consider a curve passing through the
region where the scalar field is defined. Express the curve through the scalar field

in the parametric form

with parameter ¢. The value of the scalar ¢, at the points (z,y, 2) along the curve, is
a function of the coordinates on the curve. By substituting into ¢ the position of a

general point on the curve, one can write

¢ = ¢(x(t), y(t), (1))

By substituting the time-varying coordinates of the curve into the function ¢, one
creates a composite function. The time rate of change of this composite function ¢,
as one moves along the curve, is derived from chain rule differentiation and

do _Dods  0dy 00z

dt ~ Oz dt  Oydt  Ozdt (6.85)

The equation (6.85) gives us the general rule

dl] _olldx 9[]ldy  0[]dz
E—%E—Fa—y%—i-gg (6.86)

where the quantity inside the brackets can be any scalar function of =,y and 2. The

second derivative of ¢ can be calculated by using the product rule and

Eo_ 09 da  do d [09
dt2 Qx dt?2  dt dt |dx

oo d>y dyd [8(;5]

+ ——+ 7 (6.87)

dy dt2 ' dt dt
90 d=d [0
Oz dt?  dtdt |0z

To evaluate the derivatives of the terms inside the brackets of equation (6.87) use
the general differentiation rule given by equation (6.86). This produces a second

derivative having the form

Py d¢dPr  du [a%d:z P dy | 9% d_z]

A2 T Ox dt2  dt |022dt Oz dydt  Ox 0z dt

LGkt dy[ 0 b Fody Do b 655,
Oy dt2 ~ dt |Oydx dt  Oy?2dt Oyozdt ’
0pd?z dz [ 0%¢ dx %¢ dy 0%¢dz

toraE T a [azaxE Dzoydi T 922 E]
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Higher derivatives can be calculated by using the product rule for differentiation
together with the rule for differentiating a composite function.

Integration of Vectors

Let i(s) = ui(s) &1 +ua(s) & +us(s) &3 denote a vector function of arc length, where
the components wu;(s), i = 1,2,3 are continuous functions. The indefinite integral of
i(s) is defined as the indefinite integral of each component of the vector. This is

expressed in the form

/E(s) ds = /ul(s) ds é +/ﬁ2(s) dsé2+/173(s) dsés+C,

— —

=U(s)+C.

(6.89)

where U (s) is a vector such that g — ii(s) and C is a vector constant of integration.

The definite integral of % is defined as

%)~ d(s). (6.90)

/ba(s) ds = U(s) g U(b)—U(a), where

a

The following are some properties associated with the integration of vector func-
tions. These properties are stated without proof.

1. For ¢ a constant vector

/E-a(s)ds:a/a(s)ds and /axﬁ(s)dszgx/ﬁ(s)ds

2. For ¢, and & constant vectors, the integral of a sum equals the sum of the

integrals

/ @) - (s) + & - 7(s)] ds = & - /E(s) ds + & - /17(3) ds,

3. Integration by parts takes on the form

b . b b -
/ f(s)i(s) ds = f(s)T (s) | — / £(5)T (s) ds, (6.91)

where f(s) is a scalar function and d[;—is) = i(s).



Example 6-27. The acceleration of a particle is given by
a = sinteé; + costé,.
If at time ¢ = 0 the position and velocity of the particle are given by
7(0) =668 —3& +4é;3 and T(0) =7é& —6e&y —5es,

find the position and velocity as a function of time.
Solution: An integration of the acceleration with respect to time produces the ve-
locity and

/c—i(t) dt =7 =0(t) = —costeé; +sinteés + ¢,

where &, is a vector constant of integration. From the above initial condition for the
velocity, the constant & can be determined. One finds

—

(0):—é1+51:7é1—6é2—5é3 or C1 8e; —6ey; —Hes.

<y

Consequently, the velocity can be expressed as a function of time in the form

.
T=1(t) = d—; = (—cost +8) &, + (sint — 6) & — 5 és.

An integration of the velocity with respect to time produces the position vector as

a function of time and

/ﬁ(t)dt: %dt:/(—cost+8)dté1+/(sint—6)dtég—5/dté3+52

7(t) = (—sint + 8t) & + (— cost — 6t) €2 — 5t €3 + Ca,

where &, is a vector constant of integration. From the above initial conditions, at

time ¢ = 0, one can determine this vector constant of integration and
F(O):—é2+52:6é1—3é2+4é3 or Co=6€ —26éy +4es.
The position vector as a function of time can be expressed as

7 =7(t) = (—sint + 8+ 6) & + (—cost — 6t — 2) & + (-5t + 4) es.
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Example 6-28. A particle in a force field F = F(z,y, z) having a position
vector 7 = xé&; + yéy + zé3 moves according to Newton’s second law such that

dv

m— or F dt = mdy.
dt

F =ma=
An integration over the time interval ¢; to t, produces
t2 N
t1

The quantity |, ttf F dt is called the linear impulse on the particle over the time interval
(t1,t2). The quantity mv is called the linear momentum of the particle. The above

equation tells us that the linear impulse equals the change in linear momentum.

Example 6-29. In 10 seconds a particle with a mass of 1 gram changes velocity
from

U1 =6€e] +2¢e+ 7é; Cm/S to Uy = —2€1 + e3 Cm/S.

What average force produces this change?

Solution: The average force over a time interval (¢1,,) is given by

. 1 ta
Favg:t n [ Fdt.
1

2 — U
But the integral fff Fdt is the linear impulse and equals the change in linear mo-
mentum given by mw, — m#;. The average force is therefore
. 1 o X X X
Favg = —0 [(—281 + 83) — (681 —|—2€2 + 783)]

[~4é&; — é, —3é3] dynes.

AU = =

Line Integrals of Scalar and Vector Functions.
An important type of vector integration is integration by line integrals. Let C be a

curve defined by a position vector

F:,l?él +yé2+2é3,
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where z,y, z define some parametric representation of the curve C. The element of

arc length along the curve, when squared, is given by
ds® = dF - dF = da? + dy?® + d=°.

An integration (summation) produces the following formulas for the arc length s.
1. If y = y(x) and 2 = z(x) are known in terms of the parameter z, the arc length

between two points Py(zo, %0, 20) and Py(x1,y1,21) on the curve can be represented

= [ () () 69)

2. If the parametric equations of the curve are given by x = x(t), y = y(t) and z = z(¢),
the arc length between two points P, and P, on the curve is given by

L@ e

where the parametric values ¢ = ¢, and ¢t =t; correspond to the points P, and P,

in the form

and
x(to) = w0, y(to) =v0, 2(to) = 20

r(ty) =z, ylt1)=vy1, 2z(t1)=2.

Figure 6-18. Curve C partitioned into n—segments between P, and P,.

The above formulas result indirectly from the following limiting process. On
that part of the curve between the given points Py(xo, o, 20) and Py (z1,y1, 21), the arc
length along the curve is divided into n segments by a set of numbers
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Sop <81 <...< Sp,

where corresponding to each value of the arc length parameter s; there is a position
vector 7(s;) = x(s;) &1 + y(s;) & + z(s;) &3, for i = 1,...,n, as illustrated in figure 6-18.

A change in the element of arc length from #(s;_;) to 7#(s;) is defined as
ASZ‘ = |T_')(Sz) —’F(Si_l)| = |A’FZ| .

The total arc length is obtained from the sum of these elements of arc length as
the number of these lengths increase without bound and the partition gets finer and
finer. In symbols, this limit is denoted as

Sn

n
s = lim E As; = ds.
n—oo
i=1 S0

The above definition for arc length along the curve suggests how values of a scalar

field can be summed as one moves through the scalar field along a curve C.

Definition  (Line integral of a scalar function along a curve C.)
Let f = f(x,y,z) denote a scalar function of position. The line

integral of f along a curve C is defined as
| t@umds= lim S @i uia) As, (6.99)

where (x},y’, z}) is a point on the curve in the ith subinterval As;
and where the symbol fC denotes an integral taken along the given
curve C. This type of integral is called a line integral along the

curve.

Similarly, define the summation of a vector field as one moves through the field
along a curve C. This produces the following definition of a line integral of a vector
function along a curve C.

Definition (Line integral along a curve C involving a dot product.) Let
F = F(m’y’ Z) = Fl(m’y’ Z) é1 + F2(m’ Y, Z) é2 + FS(m, Y, Z) é3

denote a vector function of position. The line integral of F along a given curve C,

defined by a position vector ©¥ = ¥ (s) = x(s) &1 + y(s) é2 + z(s) és, is defined as



d d d
= <F1 —m + F2 —y + F3 —Z> dS, (6'95)
c s s ds

(o] (o] S
where (x},y},zY) is a point inside the ith subinterval of the arc length As;.

In the above definition the dot product F - i—gz represents the projection of the
vector F or component of F in the direction of the tangent vector to the curve C. The
line integral of the vector function may be thought of as representing a summation
of the tangential components of the vector F along the curve C between the points
Py and P,. Line integrals of this type arise in the calculation of the work done in
moving through a force field along a curve. Here the work is given by a summation
of force times distance traveled.

In particular, the above line integral can be expressed in the form

/ﬁ-dfz/ﬁ-dlds:/ﬁ-étds:/Fldengderngz, (6.96)
c c ds c c

where at each point on the curve C, the dot product F - &, is a scalar function of
position and represents the projection of F on the unit tangent vector to the curve.

Summations of cross products along a curve produce another type of line integral.

Definition (Line integral along a curve C involving cross products.)

/F‘xd?
c

is defined by the limiting process

The line integral
n
F xdF = lim Y F(x},y],2}) x A7, (6.97)

where F = F’(m;‘,y;‘,z;‘) is the value of F at a point (x5, yr,27) in

the ith subinterval of arc length on the curve C.

Integrals of this type arise in the calculation of magnetic dipole moments asso-
ciated with current loops.
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Note that each of the line integrals requires knowing the values of z, y and =
along a given curve C and these values must be substituted into the integrand and

after this substitution the summation process reduces to an ordinary integration.

Work Done.

Consider a particle moving from a point Py to a point P, along a curve ¢ which
lies in a force field F = F(z,y, z). At each point (z,y,z) on the curve there are force
vectors acting on the particle as illustrated in figure 6-19.

Po
Nﬂj,y’Z) .
=
P = dr
O I
sy

Figure 6-19. Moving along a curve C in a force field F.

Examine the particle at a general point (z,y, 2) on the given curve C. Construct
the position vector 7, the force vector F, and the tangent vector di acting at this

general point on the curve. The line integral

- Prodp P
WPOPlz/F‘dF:/ F-—ds:/ F . é.ds
C Py dS P,
is a summation of the tangential component of the force times distance traveled

along the curve C. Consequently, the above integral represents the work done in
moving through the force field from point P, to P, along the curve C.

Example 6-30. Let a particle with constant mass m move along a curve C
which lies in a vector force field F = F(z,y, z). Also, let # denote the position vector
of the particle in the force field and on the curve C. As the particle moves along the

curve, at each point (z,y,z) of the curve, the particle experiences a force F(z,y, 2)



which is determined by the vector force field. Newton’s second law of motion is

expressed
#r_ o
Tz = a

The work done in moving along the curve C between two points A and B can then

F=ma=

be expressed as

B B R B B " B "

-, L dr -, dv dv
Wa :/ F-dF:/ F-—dt:/ F.ddt= m—-ﬁ'dt:/ mu - — dt.
5=, " dt " A dt " dt

Now utilize the vector identity

which is easily integrated. One finds

B m o B m 2 2
Wag :/ F -dr = 51} = ) (UB—UA) = Ei(vg) — Ex(va).
A A

In this equation the line integral Wup = [ f F - dF is called the work done in moving
the particle from A to B through the force field F. The quantity Ej(v) = Zv? is called
the kinetic energy of the particle. The above equation tells us that the work done in
moving a particle from A to B in a force field F must equal the change in the kinetic

energy of the particle between the points A and B.

Representation of Line Integrals

The line integral [ F - d7 can be expressed in many different forms:

1.
B ts _ = ts
/ ﬁ-df:/ F-d—rdt:/ F-5dt
A ta dt ta
Integrals of this form are used if F = F(¢t) and ¢ = V(¢) are known func-
tions of the parameter t¢.
2.

/ F-df:/ F-—dS:/ F - é:ds
A A ds SA
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Here F - &, is the tangential component of the force F along the given
curve C. This form of the line integral is used if F = F(s) and &, are

known functions of the arc length s.

. For a force field given by

ﬁ :F;(f,y,Z) :Fl(:v,y,z)él+F2(x,y,z)é2+F3(x,y,z)é3
and the position vector of a point (z,y, z) on a curve C given by
T=x€ +yés+ zé;3 with dr =dreé; + dyeés + dz ez,
Here the work done is represented in the form
B . B
A A

Line integrals are written in this form when a parametric representation
of the curve is known. In the special case where ¥ =z &, +0é&, + 0é3, the
above line integral reduces to an ordinary integral.

. The line integral [, F - d7 may be broken up into a sum of line integrals

along different portions of the curve C. If the curve C is comprised of n

separate curves Cy,Cy, ..., C,, one can write

/F-df:/ F-dF+/ ﬁ-dF+---+/ F - drF.
C Cq Ca Cn

. When the curve C is a simple closed curve (i.e., the curve does not

intersect itself), the line integral is represented by

¢ﬁ-df or /ygﬁ-df (6.98)

C C

where the direction of integration is either in the counterclockwise sense
or clockwise sense. Whenever the line integral is represented in the form
gﬁﬁ -dr then it is to be understood that the integration direction is in
tﬁe counterclockwise sense which is known as the positive sense. Note
that when the curve is a simple closed curve, there is no need to specify
a beginning and end point for the integration. One need only specify a
direction to the integration. The integration is said to be in the positive

sense if the integration is in a counterclockwise direction or it is said



to be in the negative sense if the direction of integration is clockwise.
The sense of integration is the same as that for angular measure. The

situation is illustrated in figure 6-20.

€t
y - Y ‘. SE
@ €T
(a) counterclockwise () clockwise

Figure 6-20. Direction of integration for line integrals.

The direction of integration around a simple closed curve can be
referenced with respect to the unit outward normal e, and to the unit
tangent vector &, to the simple close curve as the direction of the unit
tangent produces an oriented simple closed curve.

6. If the direction of integration is reversed, then the sign of the line integral
changes so that one can write

ygﬁ-dfz—glgﬁ-df

C C

Example 6-31. Consider a particle moving in a two-dimensional force field,
where at any point (z,y) the force in pounds acting on the particle is given by

F=F(z,y) = (2®+y) &1 +azyéy

Find the work done in moving the particle from the origin to the point B along the
path illustrated in figure 6-21, where distance traveled is measured in units of feet.
Solution: Let 7 = zeé; +yeé, denote the position vector of a point on the path OAB

illustrated in figure 21. The work done is obtained by evaluating the line integral

B—»
W:/ F-dr
0

67



68

Using the property that line integrals may be broken up into integration along

B A B
separate curves, one can write W = / F -dr = / F - dF+/ F -dr

o o A
where F - dF = (2 + 5) dx + xy dy.

y=5®"  y=—%2(z—1+5§
Y A A
r=2
ax
o ax—=1
B

Figure 6-21. Find the work done in moving particle from origin to point B.

The portion of the work done in moving along the parabola from 0 to A, where
y =2z and dy = 3(2z dx), is

A - ! 2 3 2 5 2 5
Fodi= | [+ (3] do+2(50%) 2 (20 de) = 2
o 0 3 3 3

The portion of the work done in moving along the straight-line from A4 to B, where

y==2(z—1)+ 2 and dy = =2dux, is expressed as

B %, 18 5 —18 5,18
/A F-dr:/l (22 4 (o = 1)+ Slde + (o (e 1) + 2)(—de) = 4

The total work done is therefore given by the sum W = 2+4 = 6 ft-lbs. Here the unit

of work is the unit of force times unit of distance traveled.

Example 6-32. Compute the value of the line integral

gﬁﬁ-dﬁ
C

where F = zé;, + yé, and C is the circle 22 + y2 = 1.

Solution: Let the circular path be represented in the parametric form

T = cost Yy = sint,



then the above line integral can be written
ygﬁ.dfz / (&) +y&s) - (dx & + dy &)
C c

:/:Ed:v+ydy
C

= /%(cos t)(—sint) dt + (sint)(cost) dt = 0.
0

Here the direction of integration is in the positive sense as the parameter ¢ varies
from 0 to 27.

|
Example 6-33. Compute the value of the line integral gﬁﬁ x di, where
C
F =zé +yeé, and C is the circle 22 + 42 =1
Solution: Write
) & & &
Fxdr=|x y 0]|=eésxdy—ydx)
de dy 0
and therefore
gﬁﬁ X dr’ = gg és(zdy —ydx).
C C
If the circular path of integration is represented in the parametric form
T = cost y =sint
one finds
. 2 2
¢F X dr = eg / (cost)(cost)dt — (sint)(—sint) dt = ég/ dt = 2mes.
C 0 0
|

Example 6-34.

Examine the work done in moving a particle through the force field
F=(x+z)é +(y+z2)é+2z63
as the particle moves along the curve C described by the position vector
F=té +1°& + (—3t+1)é;

as the parameter ¢ ranges from 0 to 2.
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Solution: The work done is determined by evaluating the line integral [, F -d7 where

—

F-di=(z+z2)de+ (y+2)dy+2zdz

On the given curve C use z = t, y = t?> and z = —3t 4+ 1 with dz = dt, dy = 2tdt and
dz = —3dt and substitute these values into the line integral describing the work done.

This produces the result
2
/ F.dF = / [(t—3t+1)(dt) + (t* — 3t + 1)(2tdt) + 2(—3t + 1)(—3dt)] = 18
c 0

where work has the units of force times units of distance traveled.

Example 6-35.

(17171)

For F = z(y+ 1) &, + y & + z(z + 1) & evaluate the line integral F . dr
(0,0,0)

(a) Along the line segments illustrated.

(b) Along the straight line path from (0,0,0) to (1,1,1).
Solution F -dif = z(y+ 1)dz+ydy + z(z + 1) dz

(a) Allong (0,0,0) to (1,0,0), z=1, 2=0, 0<z <1

1
/ rdr = —
0 2

Along (1,0,0) to (1,1,0),z=1, 2=0, 0<y <1
1
1
/ydy=§
0
Along (1,1,0) to (1,1,1),z =1, y=1, 0< 2 <1

1
/ 2zdz =1
0

therefore /

(0,0,0)

(b) The straight line path from (0,0,0) to (1,1,1) is represented by the parametric

(17171)_, 1 1
Fodi=-+-+1=2
T 2+2+

equation

for 0 <t < 1. Therefore

11,1 1 13
/ F-dF:/[t(t+1)+t+t(t+1)]dt:—
(0,0,0) 0 6

The work done in moving from (0,0,0) to (1,1,1) is path dependent.
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Exercises

» 6-1. For the vectors A =36, +2é,+é and B =68&; — & +2é; calculate
(a) A+ B (b) 6A—3B (¢) A+2B
» 6-2. Use vectors to show that the diagonals of a parallelogram bisect one another.

» 6-3. Use vectors to show that the line segment connecting the midpoints of two
sides of a triangle is parallel to the third side and has one half the magnitude of the
third side.

> 6-4. In the parallelogram ABCD illus- D C
trated, construct lines from the vertex A to the %
midpoints of the sides DC and BC. Show that

A B

these lines trisect the diagonal BD.

» 6-5. Are the given vectors linearly dependent or linearly independent?

— —

(@) A =6+ é,—283 (D)A=2&1+ é— &5 (c)A=3& — & +2é3

B=—4¢& —3é& B=2¢& — & B=—¢& + é;
C=7é +6é& —66&; C =3é; C=14¢é; —4é, +6eés.

» 6-6. If A, B,C are nonzero vectors and A-(B xC) = 0, then determine if the following
statements are true or false.
(i) The vectors 4, B,C are linearly independent.
(ii) The vectors A, B,C are linearly dependent.

Justify your answers.

» 6-7. Let A = A(t) denote a vector which has a constant length ¢ for all values of
the parameter t.
(a) Show that A4 - A = C?

(b) Show that the derivative vector CZ—? is perpendicular to A.

» 6-8. ShOW that for ’Fl =T él + Y1 ég + 2z ég and 12( = Al él + A2 ég + A3 ég the distance

d of an arbitrary point (zo,yo,z) from the line 7 = 7, +tA, is given by
d:|(F0—F1) X éA|

where é, is a unit vector in the direction of A and 7y = xo &1 +yo €2+ 2 3 iS a position

vector to the arbitrary point.
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» 6-9. Consider the triangle defined by the three vertices (6,0, 0), (0,6,0) and (0,0, 12).
Use vector methods to find the area of the triangle.

» 6-10. Let the sides of a quadrilateral be
denoted by the vectors A, B, C, D such that

A+B+C+D=0.

Use vectors to show that the lines joining the

midpoints of the sides of this quadrilateral form

a parallelogram. A B

» 6-11. Let 7, represent the position vector of the center of a sphere of radius p and
let 7 represent the position vector of a variable point on the surface of the sphere.
Find the equation of the sphere in a vector form. Simplify your result to a scalar

form.
» 6-12. For A=6,+26 +2é&; and B=7é +4é& +4é;

(a) Find a unit vector in the direction of B. (¢) Find the projection of 4 on B.
(b) Find a unit vector in the direction of A. (d) Find the projection of B on A.

» 6-13. (a) Find a unit vector perpendicular to the vectors
/Y:él—ég—i—ég and §:é1+é2—é3
(b) Find the projection of B on A.

» 6-14. For /Y:—él—{—\/gég—{—\/gég and é, =cosaé; +sinaeé,

a) Verify that e, is a unit vector for all a.

(a)
(b)
()

)

(d) For what angle a is the projection a maximum?

Find the projection of 4 on é,.

For what angle « is the projection equal to zero?

» 6-15. Assume A(t) has derivatives of all orders. Find the constant vectors
Ao, Ay, .. A, if

- S (t—t - (t—tg)? - (t—to)"
( 0) + A2 ( 0) 4t An ( 0)
1! 2! n!

Hint: Evaluate A(t) at ¢ = ¢y, then differentiate A(t) and evaluate result at ¢ = ¢.



» 6-16. Given the vectors A = &, —2é&,+2é&; and B =38&, +28&, + 6é;

Evaluate the following quantities:

(a) AxB (d) (A+B)x A (9) (A+3B)xB
(b) BxA (¢) The angle between A and B (h) (B—A)x(B+A)
(¢) A-B (f) 3Ax2B (i) A-(A+B)

» 6-17. The sides of a parallelogram are A = &;+2é&,+2é; and B =2é& +9&,+2é;.
(a) Find the vectors which represent the diagonals of this parallelogram.

(b) Find the area of the parallelogram.
» 6-18. Determine the direction cosines of the vector j=v2é, + é; — és.

» 6-19. Explain why two vectors are said to be linearly dependent if their vector

cross product is the zero vector.

» 6-20. Three noncolinear points Py (zy,y1,21), Pa(x2,y2, 22), and P3(x3, y3, 23) determine
a plane. Let 7, 7y, 73 denote the position vectors from the origin to each of these
points, respectively, and let # denote the position vector of any variable point (z,y, 2)
in the plane.

(a) Describe and illustrate the vector 73 — 7.
(b)
()

) 7).

(d) Explain the geometrical significance (7 — ) - [(72 — 1) x (73 — 71)] = 0.

Describe and illustrate the vector 7y — 7.

Describe and illustrate the vector (7 — 71) x (73 — 71).

» 6-21. Find the parametric equations of the given line. Also find the tangent vector
to the given line ¥ = 3e +4ey+2e3+ )\(él — ég)

» 6-22. (a) Find the area of the triangle having vertices at the points
Pl(0,0,0) P2(0a3a4) P3(4a3a0)

(b) Find a unit normal vector to the plane passing through the above three points.

(¢) Find the equation of the plane in part (b).

» 6-23. Distance between two skew lines Let line ¢, pass through points Py(x, o, 20)
and Py(xy,y1,21). Let line ¢, pass through the points P (3,92, 20) and Ps(z3,ys3, 23).
(a) Show N = ByP, x P,P; is perpendicular to both lines. (b) Show the projection of

P,P; onto N gives the distance between the lines.
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» 6-24. Is the point (6,13,12) on the line which passes through the points P;(1,0,1)
and P(3,5,2) 7 Find the equation of the line.

> 6-25.
(a) Derive the vector equations of a line in the following forms.

(F—71) x (Fy —71) =0 and F =7 4+ M7y — 1)
for a line passing through the two points Py (z1,y1, z1) and Py(z2,y2, 22).

(b) Show these vector equations produce the same scalar equations for deter-

mining points on the line.

» 6-26. Sketch the vectors &, = cosaé; +sinaé; and &g = cos3é;+sin[é, assuming
a and g are acute constant angles.
(a) Show é, and e are unit vectors.
(b) From the dot product &, - & derive the addition formula for cos(8 + )
(c¢) From the cross product &, x &g, derive the addition formula for sin(8 + «)

» 6-27.  Verify that e; x é; = &, where the + sign is used if (ijk) is an even permu-
tation of (123) and the — sign is used if (ijk) is an odd permutation of (123).

(a) Verify the above by taking three consecutive numbers from the set
{1,2,3,1,2,3} for the values of i,j,k. These are called the even permutations
of the numbers (123).
(b) Verify the above by taking three consecutive numbers from the set
{3,2,1,3,2,1} for the values of i,j,k. These are called the odd permutations of
the numbers (123).

» 6-28. Let a1, 31, 71 and as, 32, 72 be the direction angles of two lines. Move each
line parallel to itself until it passes through the origin. The angle between two lines
is defined as the angle between the shifted lines, which pass through the origin.

(a) Show that the angle 6 between two lines can be expressed in terms of the direction

cosine of the lines and
cos = cos g cos g + cos (31 €os P + €OS Y1 COS Ya.
(b) Find the angle between the lines defined by the equations
F=(14+2t)é +(1+t)é+(1+2t)és and

7= (1+42t)&; + (24 2t) & + (6 + 1) &s.
» 6-29. Find the shortest distance from the point (—1,17,7) to the line which passes
through the points P;(2,5,4) and P»(3,7,6). Hint: See problem 6-8.



» 6-30. IfA=A6+A8,+A38; and B = By &, + By éy+ Bsé; show that AxB = —Bx A.

» 6-31. If AxB=0and B x C =0, then calculate A x C. Justify your answer.

» 6-32. (a) Find the equation of the plane which passes through the points
Pi(3,10,13)  Py(0,11,12)  Py(5,12,14).

(b) Find the perpendicular distance from the origin to this plane.
(c¢) Find the perpendicular distance from the point (6,3,18) to this plane.

» 6-33. Show that the rules for calculating the moment of a force about a line L
can be altered as follows: If 7 is the position vector from a point P on the line L to
any point on the line of action of the force F, then M =7 x F is the moment about
point P on the line L and M - &, is the moment about the line L, where é; is a unit

vector in the direction of L.

» 6-34. A force F =100(&, +2é, — 2é3) Ibs acts at the point P;(2,2,4).
(a) Find the moment of F about the origin.
(b) Find the moment of F about the point Py(-1,3, —4).
(c¢) Find the moment about the line passing through the origin and the point P».

» 6-35. Find the indefinite integral of the following vector functions

(a) @(t)=té; + e —t*es (b) 1i(t) =té&; +sint & +cost é3

» 6-36. Find the position vector and velocity of a particle which has an acceleration
given by @ = cost & +sint &, if at time ¢ = 0 the position and velocity are given by
7(0) =0 and 7(0) = 2 &s.

» 6-37. The acceleration of a particle is given by @ = &, + té,. If at time ¢t = 0 the
velocity is v = #(0) = é; + é3 and its position vector is ¥ = 7(0) = &,, then find the

velocity and position as a function of time.

» 6-38. Distance between parallel planes If (7 —7))- N =0 and (7 —7,)-N =0 are the
equations of parallel planes, then show the distance between the planes is given by

the projection of 7, — 7, onto the normal vector N.
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» 6-39. In a rectangular coordinate system a particle moves around a unit circle in
the plane z = 0 with a constant angular velocity of w = 5rad/sec
(a) What is the angular velocity vector for this system?
(b) What is the velocity of the particle at any time ¢ if the position of the particle
is

7 = cos bt €, + sinbt €37
» 6-40. A particle moves along a curve having the parametric equations
T =€, 1y = cost, z = sint.

(a) Find the velocity and acceleration vectors at any time t.

(b) Find the magnitude of the velocity and acceleration when ¢ = 0.

» 6-41. Let 2 = z2(t), y = y(t) denote the parametric representation of a curve in
two-dimensions. Using chain rule differentiation, show that the center of curvature
vector, at any parameter value ¢, can be represented by

. R LB+
c(t) =x(t) &1 +y(t) és + — y (—yé + 1 é9)
T — YT

2

provided zj — yi is different from zero. Here the notation i = % and i = ZT;E has

been employed.

» 6-42. Find the center and radius of curvature as a function of z for the given
curves.
(@) (z-2)*+(y—3)°=16 (b)) y=e"

» 6-43. Let ¢ denote a unit vector and let A denote a nonzero vector. In what

direction & will the projection A -& be a maximum?

» 6-44. Assume A =

d
(a)  Show that E< g7 i— i
d /> = s> dB dA

» 6-45. Given 14_( = t2 él +té2 +t3 ég and E = sinté1 +COSté2 + ég.

Find  (a) %(X-E) (b) %(zxé) (©) i(é-é)
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» 6-46. For @ =ii(t) =t?é; +téy +2tez and 7 =0(t) =t3 &, + 12 &y + 15 &3

find the derivatives

() Si-7) ) %)

> 6-47. If U =U(x,y) = 222y + y*z) &, + (zy + 32%y) &3,
oUu oU 0*U o*U 9°U
hen find —, —
then find ox’ Oy’ 0x2’ 0y?’ Oz 0y

» 6-48. Consider a rigid body in pure rotation with angular velocity given by
G = wy e +wré +wseés.. For 0 an origin on the axis of rotation and the vector
7(t) = z(t) &, + y(t) éx + 2(t) &3 denoting the position vector of a particle P in the rigid

body, show that the components z,y, » must satisfy the differential equations

dx s — dy dz
—-— = - — =W3T — W1i% — =wy —
i 2 3Y, dt 3 1%, dt 1Y — WaZ
» 6-49. For the space curve 7 = 7(t) = t2é; +té, + 2 é; find
W ¥ B_|
dt dt | dt

(b) The unit tangent vector to the curve at any time ¢.

» 6-50. For A, B, C functions of time ¢ show

—

[Ax(éxé)}zgx(Exi—f)+gx<i—?xé>+%x<§xé>

» 6-51. Letting x = rcosf, y = rsinf the position vector ¥ = xé&; +yé, becomes a

Sl

function of » and ¢ which can be denoted 7 = 7(r, 6).

(a) Show that 2T is perpendicular to the vector 27 and assign a physical interpreta-
tion to your results.

(b) Find unit vectors é, and &y in the directions 2 and 2% and sketch these unit

vectors.

» 6-52. Evaluate the given line integrals along the curve y = 3z from (1,3) to (2,6)
using F = F(z,y) = zy &, + (y — z) és.

(a) Lﬁdf ) Lﬁxﬁ

» 6-53. For F = (zy+1)é;+(x+2+1) &3+ (2+1) &, evaluate the line integral I = / F-dr,
c
where C is the curve consisting of the straight-line segments OA+AB+BC, where O is

the origin (0,0,0), and A, B, C are, respectively, the points (1,0,0), (1,1,0), (1,1,1).
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» 6-54. Evaluate the line integral I = / F -dF, where F = 3(z +y)é +5zyé; and C is

c
the curve y = 22 between the points (0,0) and (2, 4).

» 6-55. For F =z é, +2xyé, +ayés evaluate the line integral Io F -dr, where C is the
curve consisting of the straight-line segments OA + AB, where O is the origin and
A, B are respectively the points (1,1,0), (1,1,2).

» 6-56. For P, = (1,1,1) and P, = (2,3,5), evaluate the line integral

Py N N
I:/ A-dr, where A=yzé +zzé+ayeés
Py
and the integration is
(a) Along the straight-line joining P, and P».
(b) Along any other path joining P, to Ps.

» 6-57. Evaluate the line integral [, F - dr, where F = yz &, +2zé, +yé; and C is the

unit circle 22 + y? =1 lying in the plane 2 = 2.

» 6-58. Find the work done in moving a particle in the force field F = zé&, —z &, +2yé;

along the parabola y = 22, z =2 between the points (0,0,2) and (1,2,2).

» 6-59. Find the work done in moving a particle in the force field F = yé; —zé,+zé;
along the straight-line path joining the points (1,1,1) and (2,3, 5).

» 6-60. Sketch some level curves ¢(z,y) = k for the values of k indicated.
(a) ¢=4x—2y, k=-2,-1,0,1,2 () ¢=x*+9* k=0,1,9,25
(b)) ¢=zxy, k=-2,-1,0,1,2 (d) ¢ =92%+4y* k=16,36,64

Give a physical interpretation to your results.

» 6-61. Sketch the two-dimensional vector fields or their associated field lines.

—

(a) F=zxé& —yé (b) F=2zé +2yé& () Zyé; +2zé,

> 6-62.
xA=0
(b) Show line through (xo,y0, 20) and (z1,y1,21) is given by (7 — ) x (F —71) =0
(¢) Show line through (x,%o, 20) and perpendicular to the vectors A and B is given
by (7 — 7o) x (A x B) =0
(d) Find equation of line through (=g, yo, 20) and perpendicular to plane through the

(a) Show line through (z, 0, 20) and parallel to vector A4 is (7 — 7)

noncolinear points P;,P, and Ps.
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» 6-63. For the curves defined by the given parametric equations, find the position
vector, velocity vector and acceleration vector at the given time.

(a) x=t, y=2t  z=3t, to=1
(b) x=-cos2t, y=sin2t, z=0, to=0
(¢) x=-cos2t, y=sin2t, z=3t, to=m

» 6-64. Show for A = A(t), B = B(t), and C = C(t) that
E[A-(Bx(])} —A-Bx -+ A 2 x0+— BxC
> 6-65. If F = (2% +2)é, + zyzéy + 22y?2? & find the partial derivatives
OF OF OF O2F O2F 92 F
(a) O (b) a—ya (c) 92 (d) D22’ € a—yQ’ f) 922
» 6-66. Find the partial derivatives

od od ki) 0P 9P
(a) B (b) a_ya (c) Ox2’ (d) a—ygﬂ (e) 9z Oy

in each of the following cases.
(i) ®=u*4+v* withu=zyandv=2+y
(i1) ®=wv withu=azyandv=x+y
(i) ®=1*+2v withv=2+y

» 6-67. Let & = ®(r,0) denote a scalar function of position in polar coordinates. If

the coordinates are changed to cartesian, where x = r cos 6 y = rsiné,
(a) Show that
(9_<I> B a—Cbsin +(9_<I>cos9
dy  Or 00
(92_<I> B 8_@00529 i (92_<I> in26 4 2 9?® sinfcos b _2(9_<I>sin9c:os€ i 0?® cos? 0
oy or r arz o1 or 96 T 00 T 002 72

0’ 9*¢  9°® 109 1 0%®
(b) Show that 02 ToE — o tror T2 ag

» 6-68. Show the equation of the tangent plane to point (z1, ¥, z1) on the surface of
sphere centered at (o, o, 20), having radius a, is given by (7 — ) - (F; — 7y) =0
Sketch a diagram illustrating these vectors.

» 6-69. For the scalar function of position F = F(u,v), where u = u(z,y), v = v(x,y)

... OF OF 0*F 0*F O%F
calculate the quantities 9 9y 02 050y O
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» 6-70. Consider the tetrahedron defined by the vectors 4, B, C illustrated.

(a) Show the vectors ity = 3A x B, iy = 1B x C,

fig=1C x A, ity = (0 — A) x (B — A) are normal to the faces

of the tetrahedron with magnitudes equal to the area of the

faces. (b) Show 7y + iy +7is + 7, =0

» 6-71. Find the work done in moving a particle in a counterclockwise direction
around a unit circle in the z = 0 plane if the particle moves in the force field

F=F(z,y,2)=(z+y+2)é14+ 2z —y+32)és+ (3z —y — 2) &3.
» 6-72. The straight-line defined by the parametric equations
=24 A, y=3+2\, z=4—2\

with parameter A, is drawn through the force field F = F(x,y,2) = 2y é; + yzés + z &3.
Evaluate the given line integrals along this line from the point P;(2,3,4) to the point

P2 (4a 7a 0)
P2 P2 N P2 -
(a) / @ +y2)ds  (b) / Fodi (o) / P x dr
P1 Pl Pl
» 6-73. A particle moves around the closed

Yy

curve C illustrated in figure. It moves in a vector
field F defined by

— —

F =F(z,y)=6(y*> —x)é& + 6xé,.

Evaluate the line integrals in parts (a) and (b). (0,0) (1,0)

(a) ggﬁ-df (b) ggﬁxdf (c) Show that 9§ﬁ-dfz _ggﬁ-df
» 6-74. Evaluate the given line integrals along the path
C={(z,y)|x=2t, y=1+t+t*} from t =0 to t = 3.

(a) /Cyd:l:%—(:v%—y)dy (b) /Cyd:c—:vdy (c) /CQ:Eyd:E+:E2dy

» 6-75. Evaluate the given line integrals around the square with vertices (0, 0), (1, 0),
(1,1) and (0, 1), both clockwise and counterclockwise.

(a) géx<y+1>dx+<x+1>ydy (b) @(z?—y%d:w(my?)dy (e) g’gydwxdy



Chapter 7
Vector Calculus 1

One aspect of vector calculus can be described as taking many of the concepts
from scalar calculus, generalizing these concepts and representing them in a vector
format. These alternative vector representations have many applications in repre-
senting two-dimensional and three-dimensional physical problems. Let us begin by
examining the representation of curves using vectors.

Curves
A two-dimensional curve can be defined
(i) Explicitly y= f(x)
(i7) Implicitly F(z,y)=0
(i) Parametrically r=x(t), y=uyt)
(iv) As a vector F=7t) =x(t)é; +yt)éy or F=7i(z)=xé + f(r)eé
A three-dimensional curve can be defined
(i) Parametrically r=2z(), y=yt), =z==z(1)
(ii) As a vector 7 =7(t) = x(t) & +y(t) & + 2(t) &3
(iii) A curve in space is sometimes defined as the intersection of two surfaces

F(x,y,2z) =0 and G(z,y,2) =0 and in this special case the curve

is defined by a set of (z,y, z) values which are common to both surfaces.

It is assumed that the functions used to define these curves are continuous single-
valued functions which are everywhere differentiable. Also note that the parametric
and vector representations of a curve are not unique.

In two-dimensions a parametric curve {z(t),y(t)}, for a <t < b has end points
(z(a),y(a)) and (z(b),y(b)). A curve is called a closed curve if its end points coincide
and z(a) = 2(b) and y(a) = y(b). If (x0,y0) is a point on the given curve, which is not an
end point, such that there exists more than one value of the parameter ¢ such that
(x(t),y(t)) = (z0,y0), then the point (x¢,yo) is called a multiple point or a point where
the curve crosses itself. A curve is called a simple closed curve if it has no multiple
points and the end points coincide. Simple closed curves are defined by one-to-one
mappings. The above definitions of end points, closed curve, simple closed curve and
multiple points apply to parametric curves {z(t), y(t), z(t)} in three-dimensions and to
n-dimensional parametric curves defined by {z1(t), z2(t),...,z,(t)} as the parameter ¢

ranges from a to b.
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A curve is called an oriented curve if
(i) The curve is piecewise smooth.

(ii) The position vector 7 = 7(¢), when expressed in terms of a parameter ¢, determines
the direction of the tangent vector to each point on the curve.

(iii) The direction of the tangent vector is said to determine the orientation of the
curve.

(iv) A plane curve which is a simple closed curve which does not cross itself is said
to have either a clockwise or counterclockwise orientation which depends upon
the directions of the tangent vector at each point on the closed curve.

Tangents to Space Curve
In three-dimensions the derivative vector dr_ 2/ (t)é; +v/(t) &+ 2/ (t) &3 is tangent

dt
to the point (z(t), y(t), z(t)) on the curve ¥ = 7(t) = x(t) & + y(t) & + z(t) &3 for any fixed

—

value of the parameter t. The tangent line to the curve 7 = #(¢t) at the point where

the parameter has the value t = t* is given by

R =R\ =7t") + A — 00 <A< 00
dt |,_,.

where X is a parameter. The tangent line defined by the vector R can also be

expressed in the expanded form
R =R\ = (a(t") + A/ (%)) & + (y(t*) + My (t)) & + (2(t*) + X2'(t)) &3

where t* represents some fixed value of the parameter t. The element of arc length
ds along the curve 7 = 7(t) is obtained from the relation

ds® = dr - di = (dz)* + (dy)? + (dz)? = [(%)2 - <%>2 - <Z—j>2] (dt)?
and ds :\/@—f)Q + <%>2 + <Z—j>2dt (7.1)
o[ =r<z—i>2+<z—z>2+ (5

so that one can write = =3

The total arc length for the curve 7 = #(t) for ¢, <t <t is given by

2 2
arc length of curve _/ ds —/ \/ + <Z—j> dt

The unit tangent vector to the curve can therefore be expressed by
1 dr 1dr dr
ar) dt ds dt  ds

which shows that the derivative of the position vector with respect to arc length s

produces a unit tangent vector to the curve.
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Example 7-1. Reflection property for the parabola.
The parabola y? = 4px with focus F having coordinates (p,0) can be represented
parametrically. One parametric representation for the position vector is
t2

=3

P =

and the resulting parabola is illustrated in the figure 7-1. In this figure assume the

surface of the parabola is a mirrored surface.

Ay normal ta]_:lgent
Fine line

a1
g
AV
ot 81 light ray
.}CB

— &3 2

Figure 7-1. Light ray PB gets reflected to ray through focus.

The derivative vector
d—F—*/(t)—ié + &
dt " 2 ! 2

produces a tangent vector to the curve and the vector

N T e ope,
t = 77 = =

It T+ A AR

is a unit tangent vector to the curve.

Consider a general point P on the parabola where a light ray PB parallel to the
r—axis hits the parabola. Construct the normal to the parabola and label the angle
/BPC the angle 0, and then label the angle ZFPC the angle 6,. The angle 6, is

called the angle of incidence and the angle 6, is called the angle of reflection. Also
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in figure 7-1 are the complementary angles to 6, and 6,. These angles are labeled as

a and 3.
v Construct the vector , from point P to the focus F and by
T(t) 7, using vector addition show with the aid of equation (7.3) that
o a1 ¥ ’F(t)-{—’fﬁ :pél or ﬁlz(p—t2/4p)é1—té2

A unit vector in the direction of #; is
R . (p—t2/4p)é1—té2 . (4p2—t2)é1—4pté2
T T -

Vp—2/4p)% + 12 V(4p? — 12)2 1 16p%t2

Using the definition of the dot product one can show

t
Vi P
—t(4p? — %) + 8p2t _ t(t* + 4p?)
\/4p2 +t2\/(4p2 +t2)2 + 16p2t2 B \/4p2 +t2\/(4p2 +t2)2 + 16p2t2

€, € =cosa =

(_ét) : ém =cos 3 =

If cosa = cos g for all values of the parameter ¢, then one must show that

t _ t(t? + 4p?)
\/4p2 112 \/4p2 42 \/(4p2 + t2)2 + 16p2t2

(7.4)

Using algebra one can establish that equation (7.4) is indeed true and so the angles
o and g3 are equal. Simplify the equation (7.4) to the form

V(4p? 4 2)2 + 16p22 = 12 + 4p?
and then square both sides to show
16p* — 8p*t% + t* 4 16p°t* = (t* + 4p?)?

which reduces to the identity (¢2 + 4p?)? = (#2 + 4p?)2. The equality of the angles a
and 3 implies 0, = 6, or the angle of incidence is equal to the angle of reflection.
One can also show that the distances AF=FP which shows the triangle PFA is an
isosceles triangle with angle Z/FAP equal to angle ZAPF implying the complementary
angles 6, and 6, are equal. These results show that all light coming in parallel to
the z—axis will be reflected by the mirrored parabolic surface and pass through the
focus. Conversely, if a light source is placed at the focus, than rays of light from the
focus are reflected parallel to the z—axis.



Example 7-2. Reflection property of the ellipse.

2 2
Consider the ellipse 2—2 + Z—Q = 1 having eccentricity e < 1 and foci at the points

2 and

Fy, F, with coordinates (c,0) and(—c, 0) respectively. For this ellipse 4? = a? — ¢
c = ae. If P represents an arbitrary point (zg, o) on the ellipse, then one can construct
the vector 7, from P to Fy and also construct the vector #, from point P to F,. The

magnitude of these vectors when summed gives
7] + |72 = 2a (7.5)

The vectors 7y, 7> and the ellipse are illustrated in the figure 7-2. If the ellipse is
mirrored, then a ray of light from the focus Fy will reflect from an arbitrary point P

on the ellipse to the focus at .

Yy normal
line

tangent
line

Figure 7-2. Light ray from one focus passes through other focus.

The position vector of a general point on the ellipse can be represented in the
parametric form
7 =7(t) = acosteé; + bsint é,, 0<t<2m (7.6)

A point P on the ellipse with coordinates (zo,yo) is described by equation (7.6) by
assigning the proper value for the parameter . The proper value for the parameter

t, call it ¢y, is determined by solving the equations

To = acost and Yo = bsint
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ayo
To

simultaneously, to obtain ¢, = tan™* (b ) The derivative vector

dr o .
d_:; = —asinté; + bcostés
evaluated at the value t,, represents a tangent vector to the ellipse at the point P.
A unit vector in the direction of the tangent line at the point P is then given by
—asinté; + bcostes

\/&2 sin®t 4 b2 cos2t

€

where everything is understood to be evaluated at ¢t = ¢,. Using vector addition one
can show the vectors 7, and 7, must satisfy

F(t) + 71 = cé; and F(t) + 7o +cé; =0

These equations allow one to express the vectors #; and 7, in the form
1 =(c —acost) € — bsinté,

o =(—c — acost) € — bsint é,

where again, these vectors are to be evaluated at the parameter value ¢,.

e Unit vectors in the directions of ; and 7, can be expressed

P
o _ét s _ (c—acost)é; —bsint e,
T T
B \/(c—acost)2 + b2sin?t
&p 91 0 3 ) :—(c+acost)é1 — bsinté,
2 2 1 é,,
\/(c+acost)2 + b2sin?t

By employing the definition of the dot product of unit vectors one can verify that
& - (= &) = cos 3 :asint(c —acost) + b?sint cost
71 \/@2 sin?t + b2 cos? t
. . asint(c+ acost) — b?sint cost
&, (&)=cosa=
(2a — 1) Va2sin?t + b2 cos? ¢

where r; = |ry| = \/(c —acost)? 4+ b2sin®t. If cosa = cos § for all values of the parameter

t, then one must show that
asint(c —acost) + b*sintcost  asint(c+ acost) — b*sintcost (7
(2a — 1) Va2 sin® t + b2 cos? ¢

1 \/@2 sin?t + b2 cos? ¢



Using algebra one can verify that the equation (7.7) reduces down to an identity so
that the angles o and 3 are equal. This in turn implies 6, = 6, which states that the
angle of incidence equals the angle of reflection.

Sound waves also are reflected in the same way. Elliptically shaped rooms or
domes have the property that someone whispering at one focus of the ellipse can
easily be heard at the other focus of the ellipse. This gives rise to the phrase
“whispering galleries”. Constructions which make use of this reflection property
of the ellipse can be found at Statuary Hall in the United States capital, St Paul’s
Cathedral in London, the Grand Central Terminal in New York City and in certain
museums throughout the world.

Example 7-3. Reflection property of the hyperbola.

incident
ray

tangent line

Figure 7-3.

Light ray directed toward one focus reflects and goes through other focus.

Sketch the hyperbola Z—E—Z—j = 1 with foci Fy, F, having coordinates (—c,0)
and (c,0) respectively, where ¢ = ae and e > 1 is the eccentricity of the hyperbola.
Construct an incident ray aimed at the focus F, which passes through a known point
(z0,10) on the hyperbola. Label the point where this ray intersects the hyperbola
as point P. Sketch the tangent line and normal line to the hyperbola at the point

P and label the angle of incidence as 6; and the angle of reflection as #,. The
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complementary angles associated with these angles are labeled « and g respectively.
Next construct the vector #; running from the point P on the hyperbola to the focus
Fy and then construct the vector 7, running from the P to the other focus F, as
illustrated in the figure 7-3.

The position vector to a general point on the right branch of the hyperbola can
be expressed

7 = 7(t) = acoshté; + bsinhtéy

where t is a parameter. The value of the parameter ¢, call it ¢y, corresponding to the

point P having coordinates (g, o) is obtained by solving the equations

xo = a cosht and Yo = bsinht

ayo

simultaneously to obtain ¢, = tanh ! <
Lo

). The derivative of the position vector is

dr . .
— = asinhté; + b coshtés

dt

and this vector, when evaluated using the parameter value ¢, is a tangent vector to

the hyperbola at the point P. The vector

R 1 dr asinhté; + b cosht e,y
et —= _— = =
’ : ’ dt /a2 sinh2t + b2 cosh 2t

also evaluated at ¢, is a unit tangent vector to the hyperbola at the point P. Using

5

QU

vector addition one can show that the vectors 7, and 7, are given by

1 =— (acosht+ c)é; — bsinht

R

9 = — (acosht — c)é; — bsinhtés

3

all to be evaluated at the parameter value t,. Unit vectors in the directions of 7

and 7, are

_ —(acosht +c)é; — bsinht e,
" V/(acosht + ¢)2 + b2 sinh 2¢
_ —(acosht —c)é; —bsinht e,
V/(acosht — ¢)2 + b2 sinh 2¢

T T

also to be evaluated at t = t,. The given hyperbola satisfies the properties that

a® + b =c* and |Fy| — |72| = 2a or

V/(a cosht + ¢)2 + b2 sinh 2t — /(a cosht — ¢)2 4 b2 sinh 2t = 24



for all values of the parameter t. The angles o and g constructed at the point P can
be calculated from the dot products

a sinht (a cosht + ¢) + b2 sinht cosht
(V/a? sinh2t + b2 cosht)(y/(a cosht + ¢)2 + b2 sinh 2t)
_ a sinht (a cosht + ¢) + b2 sinht cosht (78)
(V/a? sinh2t + b2 cosh2t)(y/(a cosht — ¢)2 + b2 sinh 2t + 2a)
a sinht (a cosht — ¢) + b? sinht cosht
(V/a? sinh2t + b2 cosh?t)(y/(a cosht — ¢)2 + b2 sinh 2t)

(—é)- &, =cosa=

(—€)- &, =cosf= (7.9)
If cosa = cos 8 then one must show that the right-hand sides of equations (7.8)
and (7.9) are equal. Setting the right-hand sides equal to one another and simplifying
produces
a® sinht cosht + ac sinht + b? sinht cosht B a® sinht cosht — ac sinht + b? sinht cosht
V/(a cosht — ¢)2 + b2 sinh 2t + 2a B V/(a cosht — ¢)2 + b2 sinh 2¢

(7.10)

To show equation (7.10) reduces to an identity, first show equation (7.10) can be

written
c cosht — a

c cosht +a

72| = V/(acosht — ¢)2 + b2 sinh 2t + 2a

and then use the fact that ¢ = a®> +b? and |73 = ¢ cosht — a to simplify the above
equation to the form

¢ cosht + a = v/(a cosht — ¢)2 + b2 sinh 2t + 2a (7.11)

It is now an easy exercise to show equation (7.11) reduces to an identity.

All this algebra shows that the angles o and g are equal and consequently the
complementary angles 6, and 6, are also equal, showing the hyperbola has the prop-
erty that the angle of incidence equals the angle of reflection. The above results
imply that a ray of light aimed at the focus F, will be reflected and pass through the
other focus. This reflection property of the hyperbola is one of the basic principles

used in the construction of a reflecting telescope.
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Normal and Binormal to Space Curve
Recall that the unit tangent vector to a space curve 7 = (t), for any value of the

parameter ¢, is given by the equation

1 dFf dF

~ds

e =

=5

(7.12)

S

and satisfies &, - e, = 1. Differentiating this relation with respect to the arc length

25

parameter s one finds

d . . ]
_[et.et]:et.

ds

de; dey . L dé
E—{—E-et—() or 2et- ds =0 (713)

The zero dot product in equation (7.13) demonstrates that the vector % is per-

pendicular to the unit tangent vector e;. Note that this vector can be calculated
dét ds dét ds . .
= where — is calculated using

ds dt ~ dt dt
the equation (7.1). Observe that there are an infinite number of vectors which are

using the chain rule for differentiation

perpendicular to the unit tangent vector é&;,. The unit vector with the same direction
dé; .
as the vector d—t is called the principal unit normal vector to the curve 7(t) for each
s
value of the parameter ¢. The principal unit normal vector in the direction of the

derivative vector % is given the label e,. The vector ? has the same direction
S

as &, and so one can write
de .
L —keé, (7.14)
ds

where « is a scaling constant called the curvature of the curve 7(t). The curvature

x will vary as the parameter ¢ changes. The quantity p = 1

is called the radius of
curvature at the point associated with the parameter value of . The unit vector e,
calculated from the cross product of é; and &,, &, = & x é,, is perpendicular to both
the unit tangent &, and unit normal e, and is called the unit binormal vector to the

curve as the parameter ¢ changes.

normal ” The vectors &;,, é,, &, are called a moving

plane . OSCllllating triad along the curve 7(t) because the unit vec-
) plane

tors &;, eé,, &, generated a localized right-handed
coordinate system which changes as the parame-

ter ¢t changes. The plane which contains the unit
#(t) rectifying

: tangent e; and principal normal &, is called the
plane

osculating plane. The plane containing the unit



binormal &, and unit normal &, is called the normal plane. The plane which is per-
pendicular to the principal normal e, is called the rectifying plane. Let #(t*) denote
the position vector to a fixed point on the given curve and let ¥ = zé; +yés + zé3
denote the position vector to a variable point in one of these planes. One can then

show . .
The osculating plane can be written (7 — 7(t*))- &, =0

The normal plane can be written (7 —r(t*))- & =0 (7.15)
The rectifying plane can be written (7 —#(t*))- e, =0

The equations of the straight lines through the fixed point 7(¢*) and having the

directions of é;, e, or e, are given by

(F—7(t*)) x & =0 Tangent line
(F— 7(t")) x é, =0 Line normal to curve (7.16)
(7 — 7(t*)) x &, =0 Line in binormal direction

Let us examine the three unit vectors e,, e, and e, and their derivativgs WitAh
respect to the arc length parameter s. One can calculate the derivatives d dit’ d desb
de,

S

and with the aid of the triple scalar product relations

— —

A (BxC)=B-(CxA)=C-(AxB)

It has been demonstrated that d det =reé, and & = & x &,, consequently one finds
S
that
dé, . dé, dé . . dé, . . dé,
ds —etXK ds X e, = € X +Kre, X €, = € X ds (717)

Take the dot product of both sides of equation (7.17) with the vector &, and use the
above triple scalar product result to show

This result shows that the vector &, is perpendicular to the vector %. By differ-

entiating the relation e, - &, =1 one finds that

~ déb déb ~ ~ déb
L2E0 L 2R —9¢8, - —2 —0
e ds * ds e e ds
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which implies that the vector ? is also perpendicular to the vector e,. These two
S

results show that the derivative vector ? must be in the direction of the normal

S
vector e,. Hence, there exists a constant K such that

dey )
— =Ke, 7.18
s e (7.18)

where K is a constant. By convention, the constant K is selected as —7, where 7 is

called the torsion and the reciprocal o = % is called the radius of torsion. Taking the

dot product of both sides of equation (7.18) with the unit vector e, gives
deéy

- (7.19)

T=1(8) = —¢&,

The torsion is a measure of the twisting of a curve out of a plane and is a measure
of how the osculating plane changes with respect to arc length. The torsion can be
positive or negative and if the torsion is zero, then the curve must be a plane curve.
The three vectors &,, &,, &, form a right-handed system of unit vectors and so one

can write e, = &, x &,. Differentiating this relation with respect to arc length gives

de, . dé dé . . . . . . .
de = ép X ﬁ+ﬂ X € = € XK€, —Te, X & = —Keé&, +T¢, (7.20)
s

ds ds

These results give the Frenet!-Serret? formulas

@_Ké

ds "

e _ & (7.21)
ds

de, . R

ds =T € K €t

Using matrix notation3, the Frenet-Serret formulas can be written as

o 0 0 =& 8,
dd_';b =10 0 -7 &, (7.22)
dd% -k 1T 0 €,

Recall that if B is a vector which rotates about a line with angular velocity @,

then CZ—? = & x B. One can use this result to give a physical interpretation to the
Frenet-Serret formulas. One can write

@_@ﬁ_ eﬁ— ﬁé X € =0 X e where *—feﬁé
dt  ds dt g T g T e CERE

L Jean Frédéric Frenet (1816-1900) A French mathematician.
2 Joseph Alfred Serret (1819-1885) A French mathematician.

3 See chapter 10 for a description of the matrix notation.



This is interpreted as showing the vector é; rotates about a line through e, with
angular velocity &. If the curvature x = 0, then & is also zero and so the tangent

vector &; is not rotating and consequently the curve is a straight line. Similarly, one

can write
dey, deyds _ & ds dsé X € dsé X &, =w x & where dse
- = -7 = —7— =T— =w W=T
7 Ay L 7 S t a <t b b dt ¢

and this result is interpreted as meaning the vector &, is rotating about the e,
direction with angular velocity &. If the torsion r = 0, then there is no rotation
of the binormal vector and so the curve remains a plane curve in the plane of the
normal and tangent vectors.

It is

dt

Example 7-4 Determlne how to calculate the curvature x of a space curve.
Solution Use the fact E = k&, so that |42| = k, since &, is a unit vector. Let
7 =7(t) = z(t) & +y(t) & + 2(t) &3 denote the position vector to a point on the space
curve where ¢ represents some parameter. If the arc length parameter s is used, then
dF  dFdt 1 di
s T dids I A
is a unit tangent vector to the curve and the derivative of this vector with respect
to arc length s gives
d*F  deé, .
@ = g = K€,
Taking the dot product of this vector with itself gives

*r A7 R R
= (wen) - (wén) = & = [ (5)2 + [y (5) + " ()]
where e d g o
oo dzds  , ds R
d?s d ds
ey ot Y 2 G e 92
) =) g T g

2
2" (t) — x/(s)%

and solving for z”(s) one finds z”(s) = The derivatives for y”(s) and

2'(s) are calculate in a similar fashion.
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Example 7-5. Determine how to calculate the torsion 7 of a space curve.

—

Solution The derivative Z—T = & is a unit tangent vector to the space curve and
S

er_de

ds?  ds )

to the arc length parameter gives

= keé,. Calculating the third derivative of the position vector with respect

d37 dén+d/€é (ré é)+d/€é e fe2é+dﬁé
bl —e,=r(Té, —K — e, = - ——©€n
ds3 ds ds b t ds b P ds

Use the properties of the triple scalar product with
v (d*7  d37 R R R 9 A dk
E . <@ X ﬁ) = € <I€en X [I‘%’Teb — K e+ % en]> (723)

together with the cross products

&, x &, = &, &, X & = — &, &, x &, =0
dF <¥F d37

and show equation (7.23) simplifies to il Gl

Using the result from the previous example that % = [2”(s)]* + [y (s)]? + [¢"(s)]* one

A (d&PF &7
@”Gﬁxaﬁ
[ (s)]* + [y (s)]* + [2" ()]

which can also be expressed as the determinant

= & - [k*1& +K° &) = k’T

can write

Example 7-6. Velocity and Acceleration.

A physical example illustrating the use of the unit tangent and normal vectors
is found in determining the normal and tangential components of the velocity and
acceleration vectors as a particle moves along a curve. If # denotes the position

vector of the particle, 7 its velocity, and @ its acceleration, then

U=

7 L dv . . . dF dF <d5>2
— a= = V=00V = — = )

pre Pl pri (7.24)

where s is the arc length along the curve. Using chain rule differentiation gives

L dr drds
U= = —— = €.

dt  ds dt



Analysis of this equation demonstrates that the velocity vector v is directed along

the tangent vector at any time ¢ and has the magnitude given by v = % which

represents the speed of the particle.
The derivative of the velocity vector with respect to time t is the acceleration

and
CdE L dv  dé

=e€e— +—v.

e~ tdt ' dt
From the Frenet-Serret formula and using chain rule differentiation, it can be shown

ST

that the time rate of change of the unit tangent vector is
de, déds v,

dt  ds dt  p"
Substituting this result into the acceleration vector gives

a = dt € P n-
The resulting acceleration vector lies in the osculating plane. The tangential compo-

nent of the acceleration is given by %, and the normal component of the acceleration

is given by ﬁ

Surfaces .
A surface can be defined

(i) Explicitly 2= f(z,y)

(i7) Implicitly F(z,y,2) =0

(ii) Parametrically x=z(u,v), y=yuv), z=z(u,v)

)
)
)
(iv) As a vector 7 =7(u,v) =z(u,v) & +y(u,v) € + z(u,v) &3
or F=7(r,y) =ré& +yeéx+ f(z,y)e3
(v) By rotating a curve about a line.

Here again it should be noted that the parametric representation of a surface is not
unique.

If the functions used to define the above surfaces are continuous and differ-
entiable functions and are such that the functions defining the surface and their
partial derivatives are all well defined at points on the surface, then the surfaces
are called smooth surfaces. If the surface is defined implicitly by an equation of the
form F(z,y,2) =0, then those points on the surface where at least one of the partial
derivatives 2L, %—5, 9L is different from zero are called regular points on the surface.
If all of these partial derivatives are zero at a point on the surface, then that point

is called a singular point of the surface.
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To represent a curve on a given surface defined in terms of two parameters « and

v, one can specify how these parameters change. For example, if

7 =7(u,v) = z(u,v) & +y(u,v) € + z(u,v) &3 (7.25)

defines a given surface, then

(i)

(i)

(iii)

One can specify that the parameters v and v change as as a function of time
t and write u = u(t) and v = v(t), then the position vector ¥ = 7(u,v) becomes a

function of a single variable ¢
7= 7(t) = z(u(t), v(t) &1 + y(u(t), v(t) & + z(u(t), v(t)) &, a<t<b

which sweeps out a curve lying on the surface.
If one specifies that v is a function of u, say v = f(u), this reduces the vector
7(u,v) to a function of a single variable which defines the curve on the surface.

This surface curve is given by
7 =7(u) =z(u, f(u) e +y(u, f(uv)) e + 2(u, f(u)) &3

An equation of the form g(u,v) = 0 implicitly defines v as a function of v or v as
a function of u and can be used to define a curve on the surface. The equation
g(u,v) =0, together with the equation (7.25), is said to define the surface curve
implicitly.

Consider the special curves

7 =7 (u, vp) vp constant

7 =7 (ug, v) up constant

sketched on the surface for the values
up € { a,a+ h,a+2h,a+ 3h,...}
Vo 6{ ﬁaﬁ+kaﬁ+2kaﬁ+3k’ }

where o, 3, h and k have fixed constant values. These special curves are called
. C or or

coordinate curves on the surface. The partial derivatives u and E evaluated
u v

at a common point (ug,vg) are tangent vectors to the coordinate curves and the

0 0
Cross product a—T X a—T produces a normal to the surface.
u v



For example, consider the unit sphere
7(u, v) = cosusinv €; + sinusinv €y + cosv é;
where 0 < <27 and 0 < v < 7. The curves 7(ug, v) for

equi-spaced constants uy gives the coordinate curves

called lines of longitude on the sphere. The curves
7(u,vo) for equi-spaced constants v, give the curves
Coordinate curves called lines of latitude on the sphere.

on sphere. A surface is called an oriented surface if

(i) each nonboundary point on the surface has two unit normals é, and —é,. By
selecting one of these unit normals one is said to give an orientation to the
surface. Thus, an oriented surface will always have two orientations.

(ii) The unit normal selected defines a surface orientation and this unit normal must
vary continuously over the surface.

(iii) Each nonboundary point on the oriented surface has a tangent plane.

(iv) If the surface is that of a solid, then the unit normal at each point on the surface
which is directed outward from the surface is usually selected as the preferred
orientation for the closed surface.

A surface S is said to be a simple closed surface if the surface divides all of three
dimensional space into three regions defined by

(i) points interior to S, where the distance between any two points inside S is finite.

(ii) points on the surface S.

(iii) points exterior to the surface S.

A smooth surface is one where a normal vector can be constructed at each point

of the surface.

The sphere

The general equation of a sphere is
P4y o+ Py +yz+6=0

where a, 3,y and ¢ are constants. This is a simple closed surface with outward normal
defining its orientation. It is customary to complete the square on the z,y and =

terms and express this equation in the form

(o8 e () + () =T

After completing the square on the z,y and z terms, the following cases can arise.
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projectins onto planes
x=0,y=0 and z=0

Figure 7-4.

Sphere centered at origin and projections onto planes z =0, y =0 and z = 0.

r2 >0, then r is radius of sphere centered at (—%, —

1 0=190, then 0 is radius of sphere centered at (—%, -

—r?2 <0, then no real sphere exists

In the case the right-hand side of equation (7.26) is negative, then a virtual sphere
is said to exist. A sphere centered at the point (zg,yo, 20) wWith radius » > 0 has the
form

(z—20)” + (y —90)* + (2 — 20)> =17 (7.27)

The figure 7-4 illustrates a sphere and projections of the sphere onto the z =0, y =0
and z = 0 planes.

b= A sphere with constant radius » > 0 and cen-

tered at the origin can also be represented in the

parametric form

x = x(¢,0) = rsinb cos ¢,

y =y(¢,0) = rsinf sin ¢, (7.28)

| Y
' z=2(¢,0) =1rcosb

where 0 < ¢ < 27 and 0 < § < 7. These parameters

e

are illustrated in the accompanying figure. Note

that when ¢ is held constant, one obtains a coordinate curve representing a line of



latitude on the sphere given by A = Z — 6 and when ¢ is held constant, one obtains
a coordinate curve representing some line of longitude on the sphere.

The representation 7 = 7(¢,0) = rsinfcospeé; + rsinfsingé, + rcosf és is a vector
representation for points on the sphere of radius r with 7(¢o, ) a curve of longitude
and 7(¢,6y) a line of latitude and these curves are called coordinate curves on the

surface of the sphere. The vectors g—; and % are tangent vectors to the coordinate
curves. The cross product g—; X % produces a normal vector to the surface of the

sphere.

The Ellipsoid
The ellipsoid centered at the point (zg, 30, 20) is represented by the equation

(z— 20)2

c2

(v — 1‘0)2 + (y — y0)2

a? b2 =1

+ (7.29)

and if o
a=b>c itis called an oblate spheroid.

a=b<c itis called a prolate spheroid.

a=b=c it is called a sphere of radius a.

b
SN

N
7
)

Al

i
ilal
8!
i

/]

Bes
y
(3

I
|

By s

q

Ny
N

i
y

W

(i
i
i

-1

Prolate spheroid

Oblate spheroid

Figure 7-5. Oblate and prolate spheroids.

The ellipsoid can also be represented by the parametric equations

T — xg = acos b cos @, Y — Yo = bcosfsin @, z— 29 =csinf (7.30)

where —Z <6 < % and —7 < ¢ < w. The figure 7-5 illustrates the oblate and prolate

spheroids centered at the origin.
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Figure 7-6. Elliptic paraboloid

The Elliptic Paraboloid
The elliptic paraboloid centered at the point (zg,yo, 20) is described by the equa-

tion , ,
(z — o) (y — vo) 2= %0
= 31
a? + b2 c (7.31)

It can also be represented by the parametric equations

T — To = a\/ucosv, Y — Yo = by/usinv, Z— 20 =cu (7.32)

where 0 < v < 27 and 0 < u < h. The elliptic paraboloid centered at the origin is
illustrated in the figure 7-6.

The Elliptic Cone

The elliptic cone centered at the point (zq, 5o, 20) is represented by an equation

having the form
(v — 1‘0)2 (y— y0)2 _ (2 — Z0)2
CL2 + b2 - C2

A parametric representation for the elliptic cone is given by

(7.33)

T — Ty = aucosv, Yy — Yo = businwv, Z— 2y =cu

for 0 <v <27 and —h <wu < h. The elliptic cone centered at the origin is illustrated
in the figure 7-7.



The position vector # = 7(u,v) = aucosvé; + businv é; + cués describes a point on
the surface centered at the origin and the curves #(ug,v), 7(u,vo) define the coordinate
curves. The partial derivatives of # with respect to v and v are tangent vectors to
the coordinate curves and these vectors can be used to construct a normal vector to

the surface.

Figure 7-7. Elliptic cone

The Hyperboloid of One Sheet

The hyperboloid of one sheet centered at the point (zg,v0,20) and symmetric

about the z—axis is given by the equation

(z — x0)? i (y — w0)” _ (2 — 20)? —1 (7.34)
a? b2 c? ‘

It can also be represented using the parametric equations
T — Tg = acosu coshv, Yy — Yo = bsinwu coshw, z — 29 = csinhv (7.35)

where 0 < u <27 and —h < v < h. Here h is usually selected as a small number, say
h = 1 as the selection of h as a large number gives a scaling difference between the
parameters and distorts the final image.
The Hyperboloid of Two Sheets

The hyperboloid of two sheets centered at the point (zg, o, 20) and symmetric

about the z—axis is describe by the equation

(z — 1‘0)2 (y — y0)2 + (z — 20)
B a? B b2 c2

—1 (7.36)
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It can also be represented by the parametric equations
T — Tg = acos v sinhu, Yy — Yo = bsinv sinhw, z — 29 = ccoshu (7.37)

where 0 < v <27 and 0 < u < h, with both ¢ > 0 and ¢ < 0 producing a surface with
two parts. Here again the selection of h should be of the same magnitude or less
than v or else the final image gets distorted. The hyperboloid of one sheet and some
hyperboloids of two sheets are illustrated in the figure 7-8. Note in this figure that
the axes z, y and z have undergone various permutations. These permutations show
that the axis of symmetry for the hyperboloid of two sheets is always associated with
the term which has the positive sign. In a similar fashion one can do a permutation
of the symbols z, y and z in the equation describing the hyperboloid of one sheet to
obtain different axes of symmetry.

Hyperboloid of two sheets

Hyperboloid of one sheet

2 2 2
o Yzl q
a2‘|’b2 2

Figure 7-8. Hyperboloid of one sheet and several hyperboloids of two sheets.

In a similar fashion one can perform a permutation of the symbols z,y and z to
give alternative representations of any of the surfaces previously defined.

One can use the parametric equations to define a position vector 7 = #(u,v) from
which the coordinate curves #(ug,v) and 7(u,vy) can be constructed. The partial
derivatives of #(u, v) with respect to v and v produce tangent vectors to the coordinate
curves and these tangent vectors can be used to construct a normal vector to each
point on the surface.



The Hyperbolic Paraboloid
The hyperbolic paraboloid centered at the the point (g, o, 20) is described by

the equation

Z— 20 (55 - 550)2 (y - y0)2
- _ 7.38
. T T (7.38)

This surface is saddle shaped and can also be described using the parametric

equations

u2 'U2
T —xo = U, Y —Yo =0, Z—Z0=C<—§+b—2> (7.39)

where —h < u < h and —k < v < k for selected constants h and k. These parametric
equations can be used to construct the two-parameter surface #(u,v) from which the
coordinate curves and normal vector can be constructed.

It is left as an exercise to show that under a rotation of axes and scaling using

the equations

r—T . - .
. 0 =T cosf — ysinb, Y byo = Zsinf + g cos 0, .

Z— 20

Il
t|

with 6 = 7/4, the hyperbolic paraboloid can be represented z = zy.

2

Figure 7-9. Hyperbolic paraboloid.

Surfaces of Revolution

Any surface which can be created by rotating a curve about a fixed line is called
a surface of revolution. The fixed line about which the curve is rotated is called the
axis of revolution. Some examples of surfaces of revolution are the sphere which is

created by rotating the semi-circle 22 +y? =2, —r <2 <r and y > 0 about the y =0
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axis. A paraboloid is obtained by rotating the parabola y = 22, 0 <z < xy about the
x =0 axis.

The general procedure for determining the equation for representing a surface of
revolution is as follows. First select a general point P on the given curve and then
rotate the point P about the axis of revolution to form a circle. This usually involves
some parameter used to describe the general point. One can then determine the
equation of the surface by eliminating the parameter from the resulting equations.

Example 7-7. A curve y = f(x) for a < 2 < b is rotated about the z—axis.
Find the equation describing the surface of revolution.

=0 x=0>b Solution A general point P on the given

Yy y = f(:l:) curve, when rotated about the zr—axis pro-

ta | duces the circle 2 + 22 = r2, where r = f(z)

is the radius of the circle. Eliminating the

P VW parameter r gives the equation of the surface
v = of revolution as y* + 2* = [f(x)]?

]

Example 7-8. The curve y = f(2) for a < z < b is rotated about the z—axis.

Find the equation describing the surface of revolution.

Solution A general point P on the given

curve is rotated about the z—axis to form
, , y—1£(z)
the circle 22 + y? = r? where r = f(2) is the
radius of the circle. Eliminating » between : x
these two equations gives the equation for

the surface of revolution as z? + y? = [f(2)]? z “

Example 7-9. A curve described by the parametric equations z = z(t), y = y(t),
z = z(t) for ty <t <ty, is rotated about the line

T—Xo Y—Yo <2 — 20

by b b

where b = by &, + by &5 + by é3 is the direction vector of the line. Find the equation of

the surface of revolution.



Solution In the figure 7-10 the point P represents a general point on the space curve.
Let the coordinates of this point be denoted by (x(t*),y(t*), z(t*)) where to < t* <t
and ¢* is held constant. Construct the vector #» from the origin to the point P and
construct the position vector 7y from the origin to the fixed point (x¢,vo,20) on the

axis of rotation. A unit vector in the direction of the axis or rotation is described
by

. 1> biée;+byex+bszes
ep = Tb =
|b] /b3 + b3 + b3

where ép- ég = B? + B2 + B2 = 1. Also construct the vector 7p — 7, from the point

= Bl él + BQ ég + Bg ég (740)

(20,90, 20) to the point P as illustrated in the figure 7-10.

P (my'yvz)

N (20,%0,20)

axis of rotation

Figure 7-10. Space curve revolved about line to form surface of revolution.

Consider a line perpendicular to the axis of rotation and passing through the
point P. Denote by @ the point where this line intersects the axis of rotation. The
distance s from the point (g, 3o, 20) to the point @ is given by the projection of the
vector 7p — 7y onto the unit vector eg. This projection gives the distance

S:éB'(FP—’r_‘b) (741)
The point @ can be described by the position vector

TQ ’Fg—{—SéB (742)

The distance from P to Q represents the radius of the circle of revolution when the

point P is revolved about the axis of rotation. This distance, call it R, is given by
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the magnitude of the vector 7r — 7o and one can determine this distance from the
dot product relation
R* = (Fp —7q) - (Fp — 7Q) (7.43)

Construct the unit vector e4 pointing from the point @ to the point P by expanding
the equation
o _ TP—To _Tp—Tg
A7 Fp — 7ol R

(7.44)

The unit vector é- which is perpendicular the unit vectors é4, and ép can be con-
structed using the cross product

éc = éA X éB (7.45)

Note that when the point P is revolved about the axis of rotation, the circle generated
lies in the plane of the vectors e, and éc and a point on this circle can be described
using the equation

7 =7¢g+ Rcosf e, + Rsinfec, 0<60<2r (7.46)

Recall that the point P represents a general point on the space curve and so the
vector in equation (7.46) is really a function of the two variables ¢ and ¢ and one

can express the equation (7.46) as the two parameter surface described by
7 =7(t,0) =7¢g + Rcosf ey + Rsinfec, 0<60<2r (7.47)

where the vectors 7o, é4 and éc are all calculated in terms of the parameter ¢+ and
can be constructed using the equations (7.40), (7.41), (7.42), (7.43), (7.44), (7.45).
That is, to construct the surface of revolution, one can construct a circle for each
value of the space parameter ¢ varying between two fixed values, say to <t <t,.

An alternative method for constructing the circles of revolution of each point P
on the space curve for ¢, <t <t is as follows. First, assume P is fixed and construct
the sphere centered at the point (zg,yo, z0) which passes through the point P. This
sphere has a radius given by r = |7'p —7,| and this radius is a function of the parameter
t* used to describe the point P. The equation of the sphere centered at (zo,yo, 20)
and passing through the point P is given by

(z—20)®+ (y —90)* + (z — 20)* =17 (7.48)



Next construct the plane which passes through the point P and is perpendicular to
the axis of rotation. The equation of this plane is given by

(F—7p)-é5=0 o  (e—a(t)Bi+(y—y(t")Bat (z—2(t)Bs=0  (7.49)

This plane is the plane of rotation of the point P and it intersects the sphere in the
circle described by the point P as it moves around the axis of rotation. To obtain the
equation for the surface of revolution one must eliminated the parameter ¢* from the

equations (7.48) and (7.49). This elimination is not always an easy task to perform.

Ruled Surfaces

A surface 7 = #(u,v) or z = f(z,y) or F(z,y,2) =0 is called a ruled surface if it has
the following property. Through each point on the surface it is possible to draw a
straight line which lies entirely on the surface. For example, consider the set of all
straight lines which pass through a fixed point V and which intersect a fixed curve
C, which is not a straight line through V. The surface generated is called a general
cone with the point V called the vertex of the cone, the curve C being called the
directrix of the cone and the lines on the surface of the cone are called the generating
lines. Some example cones are illustrated in the figure 7-11.

4 general right circular
cone cone

Figure 7-11. A cone is an example of a ruled surface.

Another example of a ruled surface are general cylindrical surfaces which can be
described as a collection of straight lines all parallel to a given direction.
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In general, a ruled surface can be thought of as set of points created by moving
a straight line. One way of creating the equation of a ruled surface is to consider
two curves where both curves are defined in terms of a parameter ¢ and represented
by the position vectors #(t) and 7, (t) as illustrated in the figure 7-12.

Figure 7-12. Generating a ruled surface using two curves.

For a fixed value of the parameter ¢, one can draw a straight line between the two
points 71 (t) and 7»(¢) as illustrated in the figure 7-12. If # is the position vector to a

general point on this line it can be represented by the equations
F=tu) = (1— W) +uat)  —uo < u < ug (7.50)

where v is a parameter and v, is some specified constant . Note that when u = 0,
then 7 =, and when u =1, ¥ = #,. As the parameter ¢ changes the line sweeps out
a surface.

Ruled surfaces can be observed on cylinders, cones, hyperboloids of one sheet, as
well as elliptic and hyperbolic paraboloids. Ruled surfaces have been studied since
the time of the early Greeks and many architectural structures can be described as

ruled surfaces.



Surface Area
The position vector

7 =7(u,v) =x(u,v) €1 + y(u,v) & + z(u, v) &3 asu<f, y<v<d (7.51)

defines a surface in terms of two parameters v and v. The family of curves #(u,vp),
with vy taking on selected constant values, defines a set of coordinate curves on the
surface. Similarly, the family of curves 7 (ug,v), with v, taking on selected constant
values, defines another set of coordinate curves. The vector 47 is a tangent vector to
the coordinate curve 7(u,vy) and the vector % 1S a tangent vector to the coordinate
curve 7(up,v). If at every common point of intersection of the coordinate curves

#(uo,v) and 7(u,vo) one finds that 4 . o = 0, then the coordinate curves are

(u07U0)
said to form an orthogonal net on the surface.
The vector

dr' = — du+ — dv (7.52)
u v

lies in the tangent plane to the point 7(u,v) on the surface and one can say that
the vector element di defines a parallelogram with vector sides %du and %dv as
illustrated in the figure 7-13.
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curves

Figure 7-13. Defining an element of area on a surface.

Define the element of surface area dS on a given surface as the area of the elemental

parallelogram formed using the vector components of d. Recall that the magnitude
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of the cross product of the sides of a parallelogram gives the area of the parallelogram

and consequently one can express the element of surface area as

as =| —du X ?dv |=| @ % | dudv (7.53)

Using the vector identity
(AxB)-(CxD)=(A-C)B-D)—(A-D)B-C)

with A = :g—andB D_g— one finds

O (0 or\_ (o o (or o\ (or or\ (or or
81} ou % ov)  \odu Ou ov ov) \ou v ou Ov

Define the quantities
or oF  [(0x\>  [(Oy\> [0z\°
2= =) * (o) +(5n)
8?}97‘ 8x8x+8y8y+%% (7.54)
ou v OJudv OJudv Oudv

_OF OF [0z dy 92\°
G‘%'a“(%) *(%) “(5)

ds =| @ X — | dudv =/ EG — F? dudv (7.55)

Alternatively one can write

%%@

3

S

[SH ]

then one can write

e, 8y ey
or % o oz oy 0=
— | o 0 0

Ou  Ov |5 by b

v ov v
_(%y0z 9yOz\ .  (0xdz 020r\ .  (Oxdy Ozdy\ .
~ \Judv  Ovdu ¢ oudv Oudv 2 Judv Ovou s

and the magnitude of this cross product is given by

2 2 2
:\/@@_@%) (om0 0y (aly Do) g

or or

ou x v oudv Ovou Judv Oudv Judv Ovou

Expanding the equation (7.56) one finds that the element of surface can be repre-
sented by the equation (7.55). To find the area of the surface one need only evaluate

the double integral

B 6
Surface Area = / / VEG — F? dvdu (7.57)
a Jy



which represents a summation of the elements of surface area over the surface be-

tween appropriate limits assigned to the parameters v and v.

Note that the vectors N = or X or and —N = or X or are both normal vectors
ou Ov ov  Ju
to the surface ¥ = #(u,v) and

or  or or  or
ou Ov ou Ov

&n =t =k —
@ X & VvVEG — F?
ou Ov

are unit normals to the surface.
In the special case the surface is defined by 7 = 7(z,y) = z &, + yés + z(z,y) & one

can show the element of surface area is given by

S — drdy dx dy

RECT 9z\” 02\’
() ()

Here the surface element dS is projected onto the zy-plane to determine the limits

of integration.
In the special case the surface is defined by ¥ = 7(z, 2) = z &, + y(x,2) & + zé3 one

can show the element of surface area is given by

drdz drdz

:|én-é1|: o 2 2
y dy
1 A -

* <3$> * <5Z>

Here the surface element dS is projected onto the zz-plane to determine the limits

as

of integration.
In the special case the surface is defined by 7 = #(y, 2) = z(y, 2) & +yés + zé3 the

element of surface area is found to be given by

dydz dydz

:|é”'é2|: az\” az\”
(@) (5

In this case the surface element dS is projected onto the yz-plane to determine the

as

limits of integration.
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Arc Length

Consider a curve u = u(t), v = v(t) on a surface ¥ = #(u,v) for to <t < t;. The

element of arc length ds associated with this curve can be determined from the vector

element
L oF,oF
dr = E du + 9 dv
using
or or or or
2 _ gz gz [ 97 or N il i
ds® =dr - dr <8u du + 50 dv) <6u du + 50 dv) (758)

ds® =F du® + 2F dudv + G du®

where E, F, G are given by the equations (7.54). The length of the curve is then given
by the integral

2

b du du dv dv\ 2
= | th = / EF{— 2F —— +G [ — ) dt 7.59
s =atcleng o \/ <dt> LT <dt> (7.59)

where the limits of integration ¢, and ¢; correspond to the endpoints associated with
the curve as determined by the parameter t.
The Gradient, Divergence and Curl
The gradient is a field characteristic that describes the spatial rate of change of
a scalar field. Let ¢ = ¢(z,y, 2) represent a scalar field, then the gradient of ¢ is a
vector and is written
0o . 0o . oler

grad¢:£el+a—ye2+£é3.

Here it is assumed that the scalar field ¢ = ¢(z,y, 2) possesses first partial derivatives

(7.60)

throughout some region R of space in order that the gradient vector exists. The
operator
0 . 0 . 0 .
V—ael‘i'a—yeg—i-&eg (761)
is called the “del ”operator or nabla operator and can be used to express the gradient
in the operator form

0 . 0 . J .
gradQS:VqS: <£el+8_ye2+£e3> (25 (762)

Note that the operator is not commutative and V¢ # ¢V.
If 7=3(x,y,2) =vi(z,y, 2) &1+ va(x,y, 2) & + v3(z,y, 2) &3 denotes a vector field with
components which are well defined, continuous and everywhere differential, then the

divergence of 7 is defined
. 0 0 0
divey = S22 4 22 4 O

or a—y + E (7.63)



Using the del operator V the divergence can be represented

. 0 . 0 . 0 . . . .
dlvﬁ:V-ﬁ:(—el+—e2+—e3)-(v1e1 +U2€2—|—’L)3€3)
ox oy 0z

8’01 6’02 6’03

or oy T ox

(7.64)
divi=V.7=

Again make note of the fact that the del operator is not commutative and V-4 # - V.
If the divergence of a vector field is zero, V-7 = 0, then the vector field is called

solenoidal.
If 7=3(x,y,2)=vi(z,y, 2) &1+ va(x,y, 2) & + v3(z,y, 2) &3 denotes a vector field with

components which are well defined, continuous and everywhere differential, then the
€ e e3

curl or rotation of ¢ is written* curlv = Vx v =curlt =V x v = g—x % % which
V1 v2 U3

can be expressed in the expanded determinant form?®

e € e3
curlt =Vxv=curle=vxo=|& 2 2
oz oy 0z

U1 V2 V3

2 0 92 9 0 9
:él oy 0z | — é2 ox Oz + é3 ox Oy (765)
U2 V3 V1 V3 v Vo
o o 6’03 6’02 R 6’03 8’01 R 6’02 8’01 R
curlv =v === - == (= == M
! Y < dy 0z ) e < or 9z ) * oz Oy e

If the curl of a vector field is zero, curld = V x ¥ = 0, then the vector field is said to

be irrotational.

Example 7-10. Find the gradient of the scalar field ¢ = 2%y + zzy* at the
point (1,1,2).
Solution Using the above definition show that

grad ¢ = Vo = (2xy + 2y°) &1 + (22 + 2xy2) &y + xy° é3

and gradQS :4é1+5é2+é3
(17172)

4 The curl of U is sometimes referred to as the rotation of U and written rot U.

5 See chapter 10 for properties of determinants.
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Example 7-11. Find the divergence of the vector field given by
U= zyzé; +yz? ey + zoy? és

Solution By definition

. 0 0 0
divi=V. -7 = <—é1 +—yé2+—zé3> : (:Eyzél +y22ég+zxy2é3)

ox 0 0
divi =V -7 =yz + 22 + x>
[ |
Example 7-12. Find the curl of the vector field ¥ = zyzeé; + y22 &, + zay? é;
Solution By definition
e e é
1 o 0 0 o, O 5 % & %
curlo =Vxov=| — — — | = é Y 2 - oz 0z O x Y
Y Y Jor Oy 0z el yz2  zay? ¢ ryz  zwy? + s Yz yz>
xyz  yz?  zay?
curlv =V x ¥ = (2zyz — 2yz) é; — (2y* — xy) &y — xzé3
[ |

Properties of the Gradient, Divergence and Curl
Let u = u(z,y,2) and v = v(z,y,2) denote scalar functions which are continuous

and differentiable everywhere and let 4 = A(z,y,2) and B = B(z,y,z) denote vector
functions which are continuous and differentiable everywhere. One can then verify
that the del or nabla operator has the following properties.
(i)  grad (u+v) = gradu + gradv or V(u+v) = Vu + Vo

) grad (uwv) = ugradv +vgradu or V(uv) = u Vv + v Vu
(iii)  grad f(u) = f'(u) gradu or V(f(u)) = f'(u) Vu

)

)

lgradu| = [Vu| = \/(%)2 + <g—Z>2 + <%>2

If a vector field is irrotational curl F = 0, then it is derivable from a scalar
function by taking the gradient, then one can write F = F(z,y, z) = gradu(z, y, 2),
or F = Vu. The vector field F is called a conservative vector field. The function
v from which the vector field is derivable is called the scalar potential.

V- (A+B)=V-A+V-B ordiv(A+ B)=divA + divB

Vx(A+B)=VxA+VxBor curl (A +B)=culA +curl B
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<l
2
IS

2 2 2
The operator V? = 922 + ; + % is called the Laplacian operator.
) Vx(VxA)=V(V-A)-V324
) V x (Vu) = curl (gradu) =0 The curl of the gradient of u is the zero vector.
(xvi) V-(Vx A) =div(curl A) =0 The divergence of the curl of A is the scalar zero.
ii)  If a vector field F(z,y, 2) is solenoidal, then it is derivable from a vector function
A = A(z,y, z) by taking the curl. One can then write F = curl A and hence div F = 0.

The vector function 4 is called the vector potential from which F is derivable.

(xviii)  If fis a function of uy,us, ..., u, Where u; = u;(z,y,2) for i =1,2,...,n, then
grad f = Vf—ﬁVul%—ﬁV 2+ +ﬁVun
Ouy ou,

Many properties and physical interpretations associated with the operations of

gradient, divergence and curl are given in the next chapter.

Example 7-13. Let # = z &, +yé,+ zé3 denote the position vector to a general
point (z,y,z). Show that

grad (r) = grad |F] = —F = é,

where &, is a unit vector in the direction of 7.
Solution Let r = |F| = /22 + y2 + 22, then

or or or .

grad (r) = grad |F| = £é1 + a—yég + 3, &
where o 1
PR TR
x r
or 1
a—; =5 @y + 272y = %
or 1
or — (a2 +y? +22)_1/222 _Z
0z 2 r

Substituting for the partial derivatives in the gradient gives

grad (r) = grad |F| =
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Example 7-14. Let # = z &, +yé,+ z &3 denote the position vector to a general
point (z,y,z). Show that

1 1 1 1 1
grad(;) = gradﬁ = —T—Qgrad (r)=——=

where &, is a unit vector in the direction of 7.
Solution Let r = [7| = /22 + y2 + 22 so that 1 = (22 + y*> + 22)~1/2. By definition

d(l)_g 1 é_{_g 1 é_{_g 1 é
grar_ﬁxrlayr282T3

where 5 /1 .
O\ _ L2 2 2\—3/2 __*
ox <T> 2($ Ty ) (22) 73
9 (1 _ Lo, 2 2\—3/2 _ Y
a—y<;>——§($ +y°+27) (23/)——T3
O (1N _ 1 , 2 2\—3/2 _ "7
&(?)“5@ TSR =0

Substituting for the partial derivatives in the gradient gives

1 1 o 1 /7 1 R
grad(—):gradT:—L:—— ) == —gradr = —— &,
r |7 r3 r? r

Example 7-15. Let # = z &, +yé,+z &3 denote the position vector to a general
point (z,y,2) and let r = |7|. Find grad (+").
Solution By definition

grad(r”):V(T"):éél a—,r:luég—{—éég

where oo 5

é —nT”_la—; = nr”_lg =" 2

or™ 0

a nr" ! " nr”_lg =nr" 2y

oy oy T

or™ 0
so that



Example 7-16. Let # = zé, +yé, + zés denote the position vector to a
general point (z,y,z) and let r = |7]. Find grad f(r) where f = f(r) is any continuous
differentiable function of r.

Solution By definition

_of . af. | of,
graduf(r)-— ga;Gl +-E£;€Q +‘EE;83
where 9F df 9
_Yor T
dr  dr Ox f(r)r
of _dfor _ ., \Y
8y_dT8y_f(T)r
of _dfor _ 0%
g_draz_f(r)r
so that

grad £ () = f'(r) 37 = /(1) &,

Compare this result with the result from the previous example.

Example 7-17. If ¢ = ¢(x,y,2) is continuous and possess derivatives which
are also continuous, show that the curl of the gradient of ¢ produces the zero vector.
That is, show

curl(grad ¢) = V x (V¢) =0

Solution The function ¢ is differentiable so that

¢ . 0¢ . 09 ..
grad¢:v¢:6_iel+6_i82+8_fe3’

and the curl of this vector is represented

0 0 0
curl(grad ¢) =V x (V¢) = ' 9z 9y 02
9¢  9¢  0¢
oz oy 0z

(PP PN (PP 9PN . (% P\ _-
curl(grad ¢) =é; <m - azay> e <ag;az B aw:;;) e <6x6y B ay&v) -0

e € é3'

because the mixed partial derivatives inside the parenthesis are equal to one another.

117



118

Example 7-18.  Show that V x (Vx 4A) = V(V-A4) - V%4
Solution Calculate V x 4 using determinants to obtain

e € e3

-l 9 9
VxA= Ox Oy Oz
A A A,

(0Ay A\ (04 04N, (04 04
Oy 0z ! ox 0z 2 ox oy 3

One can then calculate the curl of the curl as

€ €2 €3
- 9 9 e
V x (V X A) = oz oy 0z (766)
<%_8A2> (8A1 _%) <8A2 _8A1>
oy 0z 0z ox ox oy

The &, component of V x (V x A) is

o [0 (04 oMY 0 (04 AN, [PAy PA P4 0
! Oy \ Ox oy 0z \ 0z ox M ox oy  0Oy? 022 0x 0z

2
By adding and subtracting the term aaAl to the above result one finds the &

$2
component can be expressed in the form
. 0%?A,  0%A,  0°A 0 (0A; 0As 0Aj
el{[_&zQ Oy2 _822]+%<8:E+8y+8z>} (7.67)

In a similar fashion it can be verified that the &, component of V x (V x A) is

2 2 2
A {[ 024y 94, 6A2]+ 0 <6A1+5A2+3A3>} (7.68)

AN or2 9y 0922 Ay \ Oz oy 0z

and the é; component of V x (V x 4) is

A 0%2A3  0%?A;  0%A; 0 (0A1 O0Ay 0A;
83{[_8552 ooy 822]+&<8:E+8y+82>} (7.69)

Adding the results from the equations (7.67), (7.68), (7.69) one obtains the result

—

Vx(VxA)=V(V-A)-V24 (7.70)

Directional Derivatives
Let # = 7(s) denote an arbitrary space curve which passes through the point

P(z,y, ) of the region R, where the scalar function ¢ = ¢(z,y, 2) exists and has all first-

order partial derivatives which are continuous. Here the space curve is expressed
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in terms of the arc length parameter s, where s is measured from some fixed point
on the curve. In general, the scalar field ¢ = ¢(zx,y,2) varies with position and has
different values when evaluated at different points in space. Let us evaluate ¢ at
points along the curve # to determine how ¢ changes with position along the curve.
The rate of change of ¢ with respect to arc length along the curve is given by

A6 _00ds _0pdy 00z

ds Oxds Oyds 0zds
@:<3¢A 09 .. 3¢A>‘<d:£A dy . dzA>

ds %el+8_yeQ+§e3 £e1+£e2+£e3

d dr .

e R
where the right-hand side is to be evaluated at a point P on the arbitrary curve #(s)
in R. The right-hand side of this equation is the dot product of the gradient vector
with the unit tangent vector to the curve at the point P and physically represents
the projection of the vector grad ¢ in the direction of this tangent vector. Note that
the curve 7(s) represents an arbitrary curve through the point P, and hence, the unit
tangent vector represents an arbitrary direction. Therefore, one may interpret the
derivative 9 = grad ¢ - € as representing the rate of change of ¢ as one moves in
the direction €. Here the derivative equals the projection of the vector grad ¢ in the

direction €. Such derivatives are called directional derivatives.

(Directional derivative) The component of the gradient ¢ = ¢(x,y,z) in
the direction of a unit vector é = cosaé&; + cos3éx + cos~y ész is equal to the
projection V¢ - & and is called the directional derivative of ¢ in the direction é.
The directional derivative is written as

dé

=grad ¢-€ = V¢ &
ds
dp . 09 09

— @&

=<%el+a—yez+az

(7.71)
3> - (cosa &, + cos B éz + cos~é3)

where s denotes distance in the direction €. If é_ &,, is a unit normal vector to
o
a surface, the notation a—¢ =grad ¢ - &, is used to denote a normal derivative
n

to the surface.

The directional derivative is a measure of how the scalar field ¢ changes as you move
in a certain direction. Since the maximum projection of a vector is the magnitude

of the vector itself, the gradient of ¢ is a vector which points in the direction of
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the greatest rate of change of ¢. The length of the gradient vector is |grad ¢| and
represents the magnitude of this greatest rate of change.
In other words, the gradient of a scalar field is a vector field which represents

the direction and magnitude of the greatest rate of change of the scalar field.

Example 7-19. Show the gradient of ¢ is a normal vector to the surface
¢ = ¢(x,y,z) = ¢ = constant.

Solution: Let #(s), where s is arc length, represent any curve lying in the surface
é(x,y,2) = c. Along this curve the scalar field has the value ¢ = ¢(z(s),y(s), 2(s)) = ¢
and the rate of change of ¢ along this curve is given by

A6 _00dr  00dy 00d> _de _

ds Oxds Oyds 0Ozds ds

dg B

or :gradQS-d—T:graqu-ét:O.
ds ds

The resulting equation tells us that the vector grad ¢ is perpendicular to the unit
tangent vector to the curve on the surface. But this unit tangent vector lies in the
tangent plane to the surface at the point of evaluation for the gradient. Thus, grad ¢
is normal to the surface ¢(x,y,z) = c. The family of surfaces ¢ = ¢(x,y,2) = ¢, for
various values of ¢, are called level surfaces. In two-dimensions, the family of curves
¢ = ¢(x,y) = ¢, for various values of ¢, are called level curves. The gradient of ¢ is a

vector perpendicular to these level surfaces or level curves. n

Example 7-20. Find the unit tangent vector at a point on the curve defined
by the intersection of the two surfaces

F(r,y,z)=c; and G(z,y,z2)= ca,

where ¢; and ¢, are constants.
Solution: If two surfaces FF = ¢; and G = ¢, intersect in a curve, then at a point
(20,0, 20) common to both surfaces and on the curve one can calculate the normal

vectors to both surfaces. These normal vectors are
VF =grad F and VG =grad G

which are evaluated at the point (x¢,y0,20) common to both surfaces and on the
curve of intersection of the surfaces. The cross product

(VF) x (VG)



is a vector tangent to the curve of intersection and perpendicular to both of the
normal vectors VF and VG. A unit tangent vector to the curve of intersection is

constructed having the form form

_ VFx VG
- |[VF x VG| .

€

Example 7-21. In two-dimensions a curve y = f(z) or ¥ = 2 &, + f(x) é; can be
represented in the implicit form ¢ = ¢(z,y) =y — f(x) = 0 so that

0 0 -
grad<f>=a—i’é1+a—jé2=—f’<x)él+é2=1v

is a vector normal® to the curve at the point (z, f(x)). A unit normal to this curve is

given by
& — —f/($) él + ég
" 1+ [f'(2)]?
— N / A
The vector T = ar_ é; + f'(z) & and unit vector &, = et fw)e are tangent to
dz 1+ [f(2)]?

the curve and one can verify that e, - & = 0 showing these vectors are orthogonal.

Applications for the Gradient

In two-dimensions, let e, = cosaé, +sina e, denote a unit vector in an arbitrary,
but constant, direction a and let ¢ = ¢(x,y) denote any scalar function of position.
At a point (zo,y0), the directional derivative of ¢ in the direction a becomes

@—gradqﬁ- éa:—¢cosa+—¢sina

ds ox oy

and the magnitude of this directional derivative changes as the angle o changes. As
the angle o varies, the maximum and minimum directional derivatives, at the point

(x0,70), occur in those directions o which satisfy

d [dqﬁ] _ 99 ¢

o | 2s sina + —— cosa = 0. (7.72)

Oz oy

Note there exists two angles o lying in the region between 0 and 27 radians which
satisfy the above equation. These directions must be tested to see which corresponds

to a maximum and which corresponds to a minimum directional derivative. These

6 Always remember that there are two normals to a curve, namely €,, and — €,,,
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angles specify the directions one should travel in order to achieve the maximum (or
minimum) rate of change of the scalar ¢.

A physical example illustrating this idea is heat flow. Heat always flows from
regions of higher temperature to regions of lower temperature. Let T(z,y) denote a
scalar field which represents the temperature T at any point (z,y) in some region R
within a material medium. The level curves T'(z,y) = T, are called isothermal curves
and represent the constant “levels”of temperature. The vector grad T, evaluated
at a point on an isothermal curve, points in the direction of greatest temperature
change. The vector is also normal to the isothermal curve. Fourier’s law of heat
conduction states that the heat flow ¢ [joules/cm?sec] is in a direction opposite to

this greatest rate of change and
qd= —kgrad T,

where k [joules/cm—sec—deg C] is the thermal conductivity of the material in which

the heat is flowing.

Example 7-22. In two-dimensions a curve y = f(z) can be represented
in the implicit form ¢ = ¢(x,y) = y — f(x) = 0 so that
0 0 . . =
grad (JS: a—iél + a—jég = —f/($)81 + €2 =N

is a vector normal to the curve at the point (z, f(z)). A unit normal vector to the

curve is given by
. —f'(z) &1 + &
L+ [f'(2)]?

Another way to construct this normal vector is as follows. The position vector #

describing the curve y = f(z) is given by 7= z &;+ f(z) &; with tangent j—; = &+ f'(x) éy.
~ 12 ~
The unit tangent vector to the curve is given by &, = %. The vector é;
x
is perpendicular to the planar surface containing the curve and consequently the
vector és x &; is normal to the curve. This cross product is given by
/ A~ ~
Gax b= A Bt & o
L+ [f'(2)]?
and produces a unit normal vector to the curve. Note that there are always two
normals to every curve or surface. It is important to observe that if N is normal to

a point on the surface, then the vector —N is also a normal to the same point on



the surface. If the surface is a closed surface, then one normal is called an inward

normal and the other an outward normal.
[ |

Maximum and Minimum Values

The directional derivative of a scalar field ¢ in the direction of a unit vector &

has been defined by the projection

% =grad ¢ - €.
ds

Define a second directional derivative of ¢ in the direction ¢ as the directional deriva-
tive of a directional derivative. The second directional derivative is written

d*¢ = grad [%

T ds] -€=grad [grad ¢ -€]-¢€. (7.73)

Higher directional derivatives are defined in a similar manner.
Example 7-23. Let ¢(z,y) define a two-dimensional scalar field and let
€, = cosa €] +sinaé,
represent a unit vector in an arbitrary direction a. The directional derivative at a

point (zg,y0) in the direction &, is given by

@ =grad ¢- €, = —¢cosoz+—¢sinoz,

ds ox oy

where it is to be understood that the derivatives are evaluated at the point (zo, yo).

The second directional derivative is given by

¢ a (). s
dsQ_ga ds «

& 0 (8¢ +a¢‘in ‘ +g 0 +a¢, .
—d52 = _a,lt _(9,1? COS (¥ —ay S Q| COS ay _(9,1? COS v —ay SIn & | S1n &«
2 2¢ *¢ . ¢ .

@ = @cos a+28:z8y Sin & cos o + a—stln Q.

[}
Directional derivatives can be used to determine the maximum and minimum

values of functions of several variables. Recall from calculus a function of a single
variable y = f(r) has a relative maximum (or relative minimum) at a point =z, if for

any z in a neighborhood of z, and different from =z, the inequality f(z) < f(xo) (or
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f(x) > f(xg)) holds. The determination of relative maximum and minimum values of
a differential function y = f(x) over an interval (a,b) consists of
1. Determining the critical points where f/(z) = 0 and then testing these critical
points.
2. Testing the boundary points x = a and x = b.
The second derivative test for relative maximum and minimum values states
that if z, is a critical point, then
1. f(z) has the maximum value f(zo) if f”(z¢) <0 (i.e., curve is concave downward
if the second derivative is negative).
2. f(r) has a minimum value f(zo) if f”(z9) > 0 (i.e., the curve is concave upward if
the second derivative is positive).

The above concepts for the relative maximum and minimum values of a func-
tion of one variable can be extended to higher dimensions when one must deal with
functions of more than one variable. The extension of these concepts can be accom-
plished by utilizing the gradient and directional derivatives.

In the following discussion, it is assumed that the given surface is in an explicit
form. If the surface is given in the implicit form F(z,y, z) = 0, then it is assumed that
one can solve for z in terms of z and y to obtain z = z(x,y). By a delta neighborhood
of a point (zg,10) in two-dimensions is meant the set of all points inside the circular
disk

No(6) ={z,y | (z —z0)* + (y —y0)* < 6% }.

The function z(z,y), which is continuous and whose derivatives exist, has a relative
maximum at a point (zg,yo) if z(z,y) < z(zo,y0) for all =,y in a some § neighborhood
of (zg,10). Similarly, the function z(z,y) has a relative minimum at a point (zg,yo) if
2(x,y) > z(z0,y0) for all 2,y in some § neighborhood of the point (zg,yo). Points where
the surface z = z(x,y) has a relative maximum or minimum are called critical points

and at these points one must have

0z 0z
£_0 and 8_y_0

simultaneously. Critical points are those points where the tangent plane to the
surface z = z(z,y) is parallel to the z,y plane. If the points (z,y) are restricted to a
region R of the plane z = 0, then the boundary points of R must be tested separately

for the determination of any local maximum or minimum values on the surface.
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The problem of determining the relative maximum and minimum values of a
function of two variables is now considered. In the discussions that follow, note
that the problem of determining the maximum and minimum for a function of two
variables is reduced to the simpler problem of finding the maximum and minimum
of a function of a single variable.

If (x9,y0) is a critical point associated with the surface z = z(z,y), then one can
slide the free vector given by é, = cosaé; +sinaé, to the critical point and construct
a plane normal to the plane »z = 0, such that this plane contains the vector é,. This
plane intersects the surface in a curve. The situation is depicted graphically in the
figure 7-14

At a critical point where 22 =0 and 2—; =0, the directional derivative satisfies

dz ) z 0z .
— =grad z- €, = —cosa+ —sina=0

ds ox oy

for all directions «.

Curve of intersection

& Surface with plane

z=z(=,y)

€a

o &x (mano)

. <,

Figure 7-14. Curve of intersection with plane containing é,,.

Here the directional derivative represents the variation of the surface height =
with respect to a distance s in the &, direction. (i.e., measure the rate of change



126

of the scalar field » which represents the height of the curve.) To picture what the

above equations are describing, let
r =g+ SCos and Y =1 + Ssina

represent the equation of the line of intersection of the plane » = 0 with the plane
normal to z = 0 containing é,. The plane containing &, and the normal to the plane

z = 0 intersects the surface z(z,y) in a curve given by
z=z(z,y) = z(xo + scosa, yo + ssina) = z(s).

The directional derivative of the scalar field z(z,y) in the direction « is then

dz 0z 0z .
= — COSQ + — sin .

ds Oz oy

Observe that the curve of intersection z = z(s) is a two-dimensional curve, and
the methods of calculus may be applied to determine the relative maximum and
minimum values along this curve. However, one must test this curve of intersection
corresponding to all directions a.

One can conclude that at a critical point (z,yo) one must have % =0 for all «.
If in addition % > 0 for all directions «, then z; = z(zg,y) corresponds to a relative
minimum. If the second derivative % < 0 for all directions «, then zy = z(z0, yo)
corresponds to a relative maximum.

Calculate the second directional derivative and show

d*z 9%z 0%z | 0%z .
= ——cos“a—+ 2 SIn . COS @ + ——= sin” .

ds? ~ 912 Oz Oy Oy?

The sign of the second directional derivative determines whether a maximum or
minimum value for z exists, and hence one must be able to analyze this derivative
for all directions a. Let

0%z 0%z 0%z

A:— = = —
0x? B Oz Oy ¢ Oy?

represent the values of the second partial derivatives evaluated at a critical point
(z0,70). One can then express the second directional derivative in a form which is
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more tractable for analysis. Factor out the leading term and then complete the

square on the first two terms to obtain

d2
d_”;:Acos2a+2Bcosasina+C’sin2a
s
B C
o 2 s . o 2
=A {cos a+2Acosasma+ Asm oz] (7.74)
B . \° (AC-B? _,
=A <cosoz+zsma> +7A2 sin” | .

Figure 7-15. Saddle point for z(zg,yo)

One can now make the following observations:

1. If AC — B? = z,,2yy — (244)% = 0, then in those directions o which satisfy cosa +
B sina = 0, the second derivative vanishes. For all other values of «, the second
derivative is of constant sign, which is the same sign as A. If the above conditions
are satisfied, then the second derivative test for a maximum or minimum fails.

2. If AC —B? = 2,,24y — (244)? <0, then the second derivative is not of constant sign,
but assumes different signs in different directions «. In particular, for the special
case a =0 one finds % = A and for o satisfying cosa + £ sina = 0 there results

2z A(AC - B?) _,

= ———  “gin“a.

ds? A2
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Hence, if A > 0, then A(AC — B?) is negative and alternatively if A < 0, then
A(AC — B?) is positive. In either case, the second derivative has a nonconstant
sign value and in this situation the critical point (zg, o) is said to correspond to
a saddle point. Such a critical point is illustrated in figure 7-15.

3. If AC—B? = z,,2y, — (244)% > 0, the second derivative is of constant sign, which is
the sign of A.
(a) If 4 >0, % > 0, the curve z = z(s) is concave upward for all o, and hence

the critical point corresponds to a relative minimum.

(b) If 4 <0, 22 < 0, the curve z = z(s) is concave downward for all a, and

therefore the critical point corresponds to a relative maximum.
Example 7-24. Find the maximum and minimum values of
z=z(z,y) =2 +y* — 2z + 4y
Solution: The first and second partial derivatives of z are
0%z 0%z B 0%z

0z 0z
Ox TS oy yt+a Ox2 ¢ Oy ’ Ox Oy 0

Setting the first partial derivatives equal to zero and solving for = and y gives the
critical points. For this example there is only one critical point which occurs at
(r0,90) = (1,—2). From the second derivatives of z one finds A =2, B=0,C =2 and
AC — B? = 4 > 0, and consequently the critical point (1, —2) corresponds to a relative
minimum of the function.

The use of level curves to analyze complicated surfaces is sometimes helpful. For

example, the level curves of the above function can be expressed in the form
z=z(z,y) = (x — 1)2 + (y + 2)?> — 5 = k = constant.

By assigning values to the constant k one can determine the general character of the
surface. It is left as an exercise to show these level curves are circles which are cross

section of the surface known as a paraboloid.

Lagrange Multipliers
Consider the problem of finding stationary values associated with a function

f = f(z,y) subject to a constraint condition that g = g(z,y) = 0. Recall that a necessary



129

condition for f = f(z,y) to have an extremum value at a point (a,b) requires that the

differential df =0 or

_of of . _
df = Gy do+ 5, dy="0. (7.75)

Whenever the small changes dz and dy are independent, one obtains the necessary
conditions that

of _ of _
£_0 and ay_()

at a critical point. Whenever a constraint condition is required to be satisfied,

then the small changes dx and dy are no longer independent and one must find the
relationship between the small changes dz and dy as the point (z,y) moves along the

constraint curve. From the differential relation dg = 0 one finds that

dg:@dzz%—@dy

ox oy =0

must be satisfied. Assume that g—g #£ 0, then one can obtain

_9g
dy = a—agxd:z
Ay

(7.76)

as the dependent relationship between the small changes dz and dy.

Substitute the dy from equation (7.76) into the equa-

Vg .
. \\ tion (7.75) to produce the result
constraint -\V f L oron oro
condition > SN level df = 5~ <—f—g — —f—g> dx = (7.77)
1 ! . Ooxrdy Oy Ox
AN curves v

gley)=0 p

h
\
%X

Figure 7-17.

Maximum-minimum problem|

with constraint.

3 A&

\\\ f:CI 1 \\\
< f:CQ\\\
f:C3 \

f=cq

NN that must hold for an arbitrary change dx. This

gives the following necessary condition. The critical
points (z,y) of the function f, subject to the con-

straint equation g(z,y) = 0, must satisfy the equa-

tions
0fdg _0f 09 _
Jrdy Oy oz (7.78)
9(x,y) =0
simultaneously.
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The equations (7.78) can be interpreted that when a member of the family of
curves f(z,y) = c = constant is tangent to the constraint curve g(x,y) = 0, there results

the common values of

dy - ofog ofdy
= ar ~ 9 =Y
dx 8ly 5% Oxr 0y Oy ox

One can give a physical picture of the problem. Think of the constraint condition
given by g = g(x,y) = 0 as defining a curve in the z,y-plane and then consider the
family of level curves f = f(x,y) = ¢, where ¢ is some constant. A representative
sketch of the curve g(z,y) = 0, together with several level curves from the family,
f = c are illustrated in the figure 7-17. Among all the level curves that intersect the
constraint condition curve g(z,y) = 0 select that curve for which ¢ has the largest or
smallest value. Here it is assumed that the constraint curve g(z,y) = 0 is a smooth
curve without singular points.

If (a,b) denotes a point of tangency between a curve of the family f = ¢ and
the constraint curve g(z,y) = 0, then at this point both curves will have gradient
vectors that are collinear and so one can write V f + AV g = 0 for some constant \
called a Lagrange multiplier. This relationship together with the constraint equation
produces the three scalar equations

of dg
o Froa ™0 arog orog
of i )\@ 0 oxr dy Oy ox (7.79)
oy 0
9(z,y) =0.

Lagrange viewed the above problem in the following way. Define the function

where f(z,y) is called an objective function and represents the function to be max-
imized or minimized. The parameter X is called a Lagrange multiplier and the
function g(z,y) is obtained from the constraint condition. Lagrange observed that a

stationary value of the function F, without constraints, is equivalent to the problem
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of stationary values of f with a constraint condition because one would have at a
stationary value of F the conditions

oF _0f

ox Oz A%
oF  Of
— .81
5 =55 " 299 ay —0 (7.81)
OF . ..
N = g(z,y) =0 The constraint condition.

These represent three equations in the three unknowns z,y, A that must be solved.
The equations (7.80) and (7.81) are known as the Lagrange rule for the method of
Lagrange multipliers.

o vf o The method of Lagrange multipliers can be
applied in higher dimensions. For example,
consider the problem of finding maximum

gz ,2) =0 and minimum values associated with a func-
h(5,5,7) =0 tion f = f(z,y,2) subject to the constraint
conditions g(z,y,2) = 0 and h(z,y,2) = 0. Here
the equations g(z,y,2) = 0 and h(z,y,2) = 0
describe two surfaces that may or may not
intersect. Assume the surfaces intersect to
give a space curve.

The problem is to find an extremal value of f = f(z,y,2) as (z,y,2) varies along
the curve of intersection of surfaces ¢ = 0 and h = 0. At a critical point where a
stationary value exists, the directional derivative of f along this curve must be zero.
Here the directional derivative is given by % = Vf - &, where &; is a unit tangent
vector to the space curve and Vf = grad f denotes the gradient of f. Note that if
the directional derivative is zero, then Vf must lie in a plane normal to the curve of
intersection.

Another way to view the problem, and also suggest that the concepts can be
extended to higher dimensional spaces, is to introduce the notation z = (z, 22, z3) =
(z,y,2) to denote a vector to a point on the curve of intersection of the two surfaces

g(z1,z2,23) = 0 and h(xy, x,23) = 0. At a stationary value of f one must have

OF g+ 2L gy + 2L

o s oe; drs =grad f-dz =0

df =
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This implies that grad f is normal to the curve of intersection since it is perpendicular
to the tangent vector dz to the curve of intersection. At a stationary point, the
normal plane containing the vector grad f also contains the vectors Vg and Vh since
dg = gradg-dz = 0 and dh = gradh - dZ = 0 at the stationary point. Hence, if these

three vectors are noncollinear, then there will exist scalars A\; and X\, such that

at a stationary point. The equation (7.82) is a vector equation and is equivalent to

the three scalar equations

of dg oh of 0g oh

- - = —— 4+ A=+ A=— =0
9z " Mag T Mgy 70 zy Oz | 20m;

of dg oh of dg oh

— 4+ A=+ XA— =0 —_— _Z = =
oy + 1(93/ + 283/ or 0xa A 0xa o 0z 0
of dg oh of Jg oh
& —{—)\1& +>\2& =0. 8,1?3 +>\1 8,1?3 +>\2(9$3 =0.

depending upon the notation you are using. These three equations together with
the constraint equations g = 0 and h = 0 gives us five equations in the five unknowns
r,y,2, A1, A2 that must be satisfied at a stationary point.

By the Lagrangian rule one can form the function
F= F(fa Y, =z, >\1a >\2) = f(fa Y, Z) + Alg(xa Y, Z) + >\2h(xa Y, Z)

where f(x,y,z) is the objective function, g(z,y,2) and h(x,y,z) are the constraint
functions and A\, Ao are the Lagrange multipliers. Observe that F has a stationary

value where

OF 0Of dg oh B

9 or —|—>\1(9 +>\2£ 0

OF 0Of dg oh B

(9—3,/ (9_y —|—>\1(9 )\Qa_y 0

OF 0Of dg oh

- 2 7 - = 7.83
0z 82+>\182+>\28z 0 ( )
a—F =g(x,y,2) =

a>\1 _g ’y’ -

oF

a—>\2 —h(.I,y,Z) =0

These are the same five equations, with unknowns z,y, z, A1, A2, for determining the

stationary points as previously noted.



Generalization of Lagrange Multipliers

In general, to find an extremal value associated with a n-dimensional function
given by f = f(z) = f(z1,22,...,2,) subject to k constraint conditions that can be
written in the form g¢;(z) = gi(21, 22,...,2,) =0, for i =1,2,..., k, where k is less than
n. It is required that the gradient vectors Vg;,Vgs,..., Vg, be linearly independent
vectors, then one can employ the method of Lagrang(z multipliers as follows. The
Lagrangian rule requires that the function F = f + ZAigi can be written in the

=1
expanded form

Lagrange multipliers

F(Z;X)=Ff+A1g1+A2g2+ T Akgk
2 V i

objective .
£ i3 constraint
uncrion  fuynpctions

which contains the objective function f, summed with each of the constraint func-
tions g;, multiplied by a Lagrange multiplier );, for the index i having the values
i=1,...,k Here the function F and consequently the function f has stationary values

at those points where the following equations are satisfied

SF =0, fori=1,...,n

i (7.85)
a—F—O for j=1 k

a)\]_ ) ]_ AR |

The equations (7.85) represent a system of (n+ k) equations in the (n+ k) unknowns
T, %o, ..., Tn, A1, A, ..., A\, fOr determining the stationary points. In general, the sta-
tionary points will be found in terms of the \; values. The vector (zg, o) where z, and
Mo are solutions of the system of equations (7.85) can be thought of as critical points
associated with the Lagrangian function F(z,)) given by equation (7.84). The re-
sulting stationary points must then be tested to determine whether they correspond
to a relative maximum value, minimum value or saddle point. One can form the

Hessian™ matrix associated with the function F(z;)\) and analyze this matrix at the

7 See page 318 for definition of Hessian matrix.
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critical points. Whenever the determinant of the Hessian matrix is zero at a critical
point, then the critical point (Zg, \o) is said to be degenerate and one must seek an
alternative method to test for an extremum.
Vector Field and Field Lines

A vector field is a vector-valued function representing a mapping from R™ to
a vector V. Any vector which varies as a function of position in space is said to
represent a vector field. The vector field V = V (z,y, z) is a one-to-one correspondence
between points in space (z,y,z) and a vector quantity V. This correspondence is
assumed to be continuous and differentiable within some region R. Examples of
vector fields are velocity, electric force, mechanical force, etc. Vector fields can be
represented graphically by plotting vectors at selected points within a region. These
kind of graphical representations are called vector field plots. Alternative to plotting
many vectors at selected points to visualize a vector field, it is sometimes easier to
use the concept of field lines associated with a vector field. A field line is a curve
where at each point (x,y,z) of the curve, the tangent vector to the curve has the
same direction as the vector field at that point. If 7= x(t) & + y(t) & + 2(t) &3 is the
position vector describing a field line, then by definition of a field line the tangent

dr o) + W, + 42 63 evaluated at a point ¢, must be in the same direction

vector 4 =
as the vector Vo = V(x(ty),y(to), 2(to). If this relation is true for all values of the
parameter ¢, then one can state that the vectors 4 and V must be colinear at each

point on the curve representing the field line. This requires

dr  dx dy . dz . R R R
% — Eel + d_:,;GQ + %ei’) = k[vl(xayaz) €1 + VQ(‘rayaZ) €3 + Vg(fE,y,Z) 83]

where k is some proportionality constant. Equating like components in the above

equation one obtains the system of differential equations

dx dy dz
E - le(x;y,Z); E — k‘Vg(ZE,y,Z), % - k‘Vg(l?,y,Z)

which must be solved to obtain the equations of the field lines.
Surface Integrals

In this section various types of surface integrals are introduced. In particular,

surface integrals of the form

//f(x,y,z)d§, //ﬁ-d§, ///ﬁxd§,
R R R



are defined and illustrated. Throughout the following discussion all surfaces are
considered to be oriented (two-sided) surfaces.

Consider a surface in space with an element of surface area dS constructed at
some general point on the surface as is illustrated in figure 7-16.

/—;‘

L

Figure 7-16. Element of surface area.

In the representation of various vector integrals, it is convenient to define vector
elements of surface area dS whose magnitude is dS and whose direction is the same
as the unit outward normal é, to the surface. Define this vector element of surface
area as dS = é,dS which can be considered as the limit associated with the area
AS = &, AS.

Normal to a Surface

If e, is a normal to a smooth surface, then —e, is also normal to the surface.
That is, all smooth orientated surfaces possess two normals. If the surface is a
closed surface, there is an inside surface and an outside surface. The outside surface
is called the positive side of the surface. The unit normal to the positive side of a
surface is called the positive normal or outward normal. If the surface is not closed,
then one can arbitrarily select one side of the surface and call it the positive side,

therefore, the normal drawn to this positive side is also called the outward normal.
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If the surface is expressed in an implicit form F(z,y,z) = 0, then a unit normal
to the surface can be obtained from the relation:

grad F'

lgrad F|

If the surface is expressed in the explicit form z = z(z,y), then a unit normal to

the surface can be found from the relation
9z A

5 grad [z(z,y) — 2] _ % + g—z@a — €3 (7.86)

" lgrad [2(z,y) — 2| \/1+(§—§)2+<3—§>2

Surfaces can also be expressed in the parametric form

J?ZJT(U,’U), y:y(u,v), Z:Z(’LL,’U),

where v and v are parameters. The functions z(u,v), y(u,v), and z(u,v) must be such
that one and only one point (u,v) maps to any given point on the surface. These
functions are also assumed to be continuous and differentiable. In this case, the

position vector to a point on the surface can be represented as

7 =7(u,v) = x(u,v) e + y(u,v) € + z(u, v) &s.

The curves
7(u, v) and 7(u, v)
v=Constant u=Constant
sweep out coordinate curves on the surface and the vectors
or or
ou’ ov

are tangent vectors to these coordinate curves. A unit normal to the surface at a

point P on the surface can then be calculated from the cross product of the tangent

or

vectors tangent vectors -

and 9° evaluated at the point P. One can calculate the

unit normal

8, = g_: . % .
ou X ovl
It should be noted that if the cross product
or  or | o
90 = 9 # 0,

the surface is called a smooth surface. If at a point with surface coordinates (ug,vo)
this cross product equals the zero vector, the point on the surface is called a singular

point of the surface.



Example 7-25. The parametric equations

T = acosusinv, Yy = asinusinw,

with 0 <u < 27 and 0 < v < 7, represent the surface of a sphere of radius a. These

Z = aCcosv

parametric equations were obtained from the geometry of figure 7-18.

a cCos v

o

a sin v cos uw

v asinvsin u
a

=Y

U N\ | asin v

=
@

Figure 7-18. Surface of a sphere of radius a.

The position vector of a point on the surface of this sphere can be represented

by the vector

7(u,v) = acosusinvé; + asinusinv é; + acosv €.

For vy, and vy constants, the curves #(up,v), 0 < v < m, are meridian lines on the

sphere while the curves 7#(u,vy), 0 < u < 27, are circles of constant latitude. The

tangent vectors to these curves are found by taking the derivatives

or

— = —asinusinv é; + acosusinv é,

ou

or . ) .

50 = G Ccos1uCcosv €] + asinucosvés —a
v

From these tangent vectors, a normal vector to the surface is constructed by taking

a cross product and
or  or

N:%X£

sinv és.
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It can be verified that a unit normal to this surface is

1,
é, = = —r.
a

That is, the unit outer normal to a point P on the surface of the sphere has the
same direction as the position vector 7 to the point P.

Example 7-26. If the surface is described in the explicit form z = z(z,y) the

position vector to a point on the surface can be represented
T=7(z,y) =r8& +yé +z(r,y) e

This vector has the partial derivatives

o _ +%é and or_ ¢ +%é
oxr oz ® ﬁy_28y3

so that a normal to the surface can be calculated from the cross product

g oF or | g o 0z,
Oz 8y_01g_§_5$13y23
dy
A unit normal to the surface is
N —g—iél—g—;é2+é3

én:|ﬁ|: 5 :’I’Lwél—{—nyég—{—nzég
9z\2 0z
\/(B_x) +<@> +1

where n,,n,, n, are the direction cosines of the unit normal. Note also that the vector

9z 4 9z 4. _ &
R 8wel+8y82 €3

€npx =
2
Y&+ (5)

is also normal to the surface.
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Example 7-27.  Consider a surface described by the implicit form F(z,y, z) = 0.
Recall that equations of this form define z as a function of » and y and the derivatives

of z with respect to x and y are given by

%—_Fx—_%_i and %—_Fy—_%_g
ﬁx_Fz_%—Z Oy_FZ_%—Z

Substituting these derivatives into the equation (7.86) and simplifying one finds that
the direction cosines of the unit normal to the surface are given by

OF OF OF

oz _ Oy Oz
ny =

Jorre (Y e e et et () e oy

Tangent Plane to Surface
Consider a smooth surface defined by the equation

7 =7(u,v) = z(u,v) e +y(u,v) €2 + z(u, v) &3

In order to construct a tangent plane to a regular point # = 7 (ug, vo) where the surface
coordinates have the values (ug, vy), one must first construct the normal to the surface

at this point. One such normal is

- or or
N = —T X —T :N1é1+N2é2+N3é3
ou Ov
The point on the surface is
T = z(uo, Vo), Yo = y(uo, vo), 20 = 2(uo, Vo)

which can be described by the position vector 7y = #(ug,v9). If 7 represents the
variable point

F=xe +yeés+ ze3

which varies over the plane through the point (¢, o, 20), then the vector ¥ — 7, must
lie in the tangent plane and consequently is perpendicular to the normal vector N.
One can then write

—

(7"—=170) N =0 (7.87)

as the equation of the plane through the point (z,yo,20) which is perpendicular to
N and consequently tangent to the surface. In equation (7.87) one can substitute

any of the normal vectors calculated in the previous examples.
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The equation of the line through the point (x¢,yo, 20) Which is perpendicular to
the tangent plane is given by
7F=7y+ AN (7.88)

where ) is a scalar. The equation of the line can also be expressed by the parametric
equations
$:$0—|—>\N1, y:y0+>\N2, Z:ZO+>\N3 (789)

where again, the normal vector N can be replaced by any of the normals previously
calculated.

Element of Surface Area

Consider the case where the surface is given in the explicit form z = z(z,5). In

this case, the position vector of a point on the surface is given by
7 =7(z,y) =xeé; +yés+ z(x,y) &3. (7.90)

The curves

(z,y) and  7(z,y)

y= Constant z=Constant
are coordinate curves lying in the surface which intersect at a common point (z,, 2).
The vectors
or 0z or . 0z

—:é1+—é3 and = ey + —ej3

oz oz dy dy
are tangent to these coordinate curves, and consequently the differential of the po-

sition vector

lies in the tangent plane to the surface at the common point of intersection of the
coordinate curves. This differential is illustrated in figure 7-19.

Consider an element of area AA = Az Ay in the xy plane of figure 7-19. When this
element of area is projected onto the surface z = z(z,y), it intersects the surface in an
element of surface area AS. When projected onto the tangent plane to the surface
it intersects the tangent plane in an element of surface area AR. These projections
are illustrated in figure 7-19(c).
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é3 é'n,
T
y 2 AR
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Law . A
(e) Ay

Figure 7-19. Element of surface area and element parallelogram.

In the limit as Az and Ay tend toward zero, AR approaches AS and one can define
dR = dS, where the element of area dR lies in the tangent plane to the surface at the
point (z,y, z). In the limit as Axr and Ay approach zero, the element of area is defined
as the area of the elemental parallelogram defined by the vector di" and illustrated in
figure 7-19(b). The area of this elemental parallelogram can be calculated from the
cross product relation

. . e e é
<g—; d:z:) x <g—; dy> _lar o %—wzx = <—% &) — g—Zég + é3> dx dy. (7.91)
0 dy o dy

The area of the elemental parallelogram is the magnitude of the above cross product,

as—dar— 1+ () 4 (22 e (7.92)
T Ox oy vy '

and can be expressed
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Given a surface in the explicit form z = z(x,y), define the outward normal to the
surface ¢(z,y,2) = z — z(x,y) = 0 by

9z A 9z & -
R grad ¢ ai €1~ 3y e + 83

= |grad (;5| \/1+ 8z z)

(7.93)

From equations (7.92) and (7.93), obtain the vector element of surface area

dS = é,dS = —%él —%ég—i- és3 | dxdy.
ox oy

Taking the dot product of both sides of the above equation with the unit vector é;

gives
dedy  dxdy

&5 en]  cosy

|65 €y|dS =dxdy  or  dS= (7.94)

with an absolute value placed upon the dot product to ensure that the surface area
is positive (i.e., recall that there are two normals to the surface which differ in sign).
In equation (7.94), the element of surface area has been expressed in terms of its
projection onto the xy plane. The angle v = v(z,y) is the angle between the outward
normal to the surface and the unit vector és;. This representation of the element of
surface area is valid provided that cosy # 0; That is, it is assumed that the surface
is such that the normal to the surface is nowhere parallel to the zy plane.

We have previously shown that for surfaces which have a normal parallel to the
zy plane, the element of surface area can be projected onto either of the planes z =0
or y = 0. If the surface element is projected onto the plane z = 0, then the element
of surface area takes the form

dg — v dz (7.95)
| €1 &,
and if projected onto the plane y = 0 it has the form
dg — _ddz (7.96)
|&s - &,

If the element of surface area dS is projected onto the » = 0 plane, the total

s=[[os= [ eer

where the integration extends over the region R, where the surface is projected onto

surface area is then

the z = 0 plane. Similar integrals result for the other representations of surface area.



Example 7-28. Find the surface area of that part of the plane
o(x,y,2) =2x4+2y+2—-12=0

which lies in the first octant.

Figure 7-20. Surface area of plane in first octant.

Solution The given plane is sketched as in figure 7-20.

The unit normal to the plane is

6 — grad ¢
" grad ¢|

és.

Wl

2, 2.
—e — e
3 1737

The projection of the surface element dS onto the z = 0 plane produces

By summing dz dy over the region where x >0, y > 0, and = + y < 6, one obtains the
limits of integration for the surface area. The surface area is determined from the
integral

=06 y=6—2z 6 3 6
s= [ [ saray= (a6 -wyar=-30-02[ =50
z=0 Jy=0 0 2 0

If the element of surface area is projected onto the plane y = 0, there results

B dr dz —§dd
T ey 6, 2%

as
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and the limits of summation are determined as dr and dz range over the region

r >0, z>0, and 2z + z < 12. This produces the surface integral
=6 z=12—2x 3 6 3
S = / —dxdz:/ —(2)(6 — x) dx = 54.
=0 z2=0 2 0 2

Similarly, if the element dS is projected onto the plane = = 0, it can be verified that

a5 — W& 30,
|é1 - &, 2

and the surface area is given by

Element of Volume
In a general (u,v,w) curvilinear coordinate system the (z,y, z) rectangular coor-

dinates of a point are given as functions of (u,v,w) and written

x = z(u,v,w), y =y(u,v,w), z = z(u,v,w)

so that the position vector to a point P can be written

7 =7 (u,v,w) = x(u, v, w) & +y(u,v,w) & + z(u,v,w) &3
or g

9° is tangent to the coordinate curve 7 = #(u, vy, wo), the vector 2
97 g tangent to the

The vector &
tangent to the coordinate curve 7 = #(ug, v, wo) and the vector -

coordinate curve 7 = 7(ug, vg, w). Unit vectors to the coordinates curves are

or or or
&y = ‘?;; ’ & = g; ’ &y = aa?:'
|50 | |5 | o
The magnitudes hy, h,, h,, defined by
oF oF oF
hu il - hv =153 b w — |3
|8u| |8v| |8w

are called scaled factors. The vector change

a7 = O 1+ O 4 27 o = oy du &1 + hy dv & + hoy oo &4
ou ov ow



can be thought of as defining an element of volume dV in the shape of a parallelepiped
with vector sides A = h,du &, B = h,dv & and C = h, dw é;. The volume of this

parallelepiped is given by
dV = |A- (B x C)| = |(hydu &1) - ((hy dv é3) X (hy dw &3)| = hyhyhy, dudodw

In rectangular coordinates (z,y, z) one finds h, =1, h, = 1, and h, = 1 and the element
of volume is dV = dzdydz.
In cylindrical coordinates (r, 6, z) where z = rcosf,y = rsiné, z = z one finds
h, =1, hg =7 and h, =1 and the element of volume is dV = rdrdfdz
In spherical coordinates (p, 0, ¢) where z = psinf cos ¢,y = psinfsin ¢, z = pcosf, one
finds h, =1, hy = p, hy = psind and the element of volume is dV = p*sin0dpdfde
These elements of volume must be summed over appropriate regions of space in
order to calculate volume integrals of the form

[[[ sz sigae, [[[ 60 raranaz [[] 560.0.0) 5 smodpasas

Surface Placed in a Scalar Field

If a surface is placed in a region of a scalar field f(z,y,z), one can divide the
surface into n small areas
ASy, ASs,...,AS,.

For n large, define f; = fi(xs, s, 2z:) as the value of the scalar field over the surface
element AS; as i ranges from 1 to n. The summation of the elements f;AS; over all i
as n increases without bound defines the surface integral

[[ w205 = [[ 10,208 = tim 3 5w 20aS (7.97)
R R =1

where the integration is determined by the way one represents the element of surface
area dS. The integral can be represented in different forms depending upon how the

given surface is specified.

Surface Placed in a Vector Field

For a surface S in a region of a vector field F = F(z,y, z) the integral

//ﬁ-d§://ﬁ-énds (7.98)
R R
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represents a scalar which is the sum of the projections of F onto the normals to the
surface elements. If the surface is divided into n small surface elements AS;, where
i=1,...,n. Let F; = F(x;,y;,2) represent the value of the vector field over the ith
surface element. The summation of the elements

—

over all surface elements represents the sum of the normal components of F; multi-

plied by AS; as i varies from 1 to n. A summation gives the surface integral
tw 3" F a8 = [[Fa8. (7.99)
=1 R

Again, the form of this integral depends upon how the given surface is represented.
Integrals of this type arise when calculating the volume rate of change associated
with velocity fields. It is called a flux integral and represents the amount of a

substance moving across an imaginary surface placed within the vector field.

//ﬁxdg
R

represents a vector which is obtained by summing the vector elements F; x AS; over

The vector integral

the given surface. The fundamental theorem of integral calculus enables such sums

to be expressed as integrals and one can write
lim Y " F; x AS; = //ﬁ x dS. (7.100)
=1 R

Integrals of this type arise as special cases of some integral theorems that are devel-
oped in the next chapter.

Each of the above surface integrals can be represented in different forms de-
pending upon how the element of surface area is represented. The form in which
the given surface is represented usually dictates the method used to calculate the
surface area element. Sometimes the representation of a surface in a different form

is helpful in determining the limits of integration to certain surface integrals.
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Example 7-29.  Evaluate the surface integral / / F-dS, where S is the surface
R

of the cube bounded by the planes

and F is the vector field F = (22 4 2) &1 + (zy — 2) 62 + (z + y) &3
Solution The given surface is illustrated in figure 7-21.

D

X

Figure 7-21. Surface of a cube.

The given surface is piecewise continuous and thus the surface integral can be
broken up and written as the sum of the surface integrals over each face of the cube.
The following calculations illustrates the mechanics involved in evaluating this type

of surface integral.

(i) On face ABCD the unit normal to the surface is the vector 7 = &, and z has the

value 1 everywhere so that

L 1o 11 1 3
//F-dS://F-ﬁdS://(1+z)dydz:/(1+z)dz:
£ 0 Jo 0 Jo 0 2

(ii) On face EFGO the unit normal to the surface is the vector 7 = — &, and z has

the value 0 everywhere so that

L 1o 1,1 1 1
//F-dS://F-ﬁdS://—zdydz:/—zdz:——
£ o Jo o Jo 0 2
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(iii) On face BFGC the unit normal to the surface is the vector 7 = &, and y has the
value 1 everywhere so that

L 1ol 11 14 1
//F-dS://F-ﬁdS://(x—z)dxdz:/—dz—/zdz:()
£ o Jo o Jo 0o 2 0

(iv) On face AEOD the unit normal to the surface is the vector # = —é, and y has
the value 0 everywhere so that

L 1o 1 .1 1 1
//F-dS://F-ﬁdS://zdzd:c:/zdz:—
£ o Jo o Jo 0 2

(v) On face ABFE the unit normal to the surface is the vector 7 = é;and z has the

value 1 everywhere so that

o 1o 11 1 1
//F-dS://F-ﬁdS://(:E+y)dxdy:/ —dy+/ ydy =1
/s o Jo o Jo 0o 2 0

(vi) On face DCGO the unit normal to the surface is the vector 7 = —é; and z has

the value 0 everywhere so that

1 1 1 1
//ﬁ-d§:/ / ﬁ-ﬁdsz/ / —(z+y)dedy = —1
B 0 0 0 0

A summation of the surface integrals over each face gives
N | 1 3
F.dS=>-= S41-1="C.
[/ 45 =3 -S04+ y
R

Example 7-30. Evaluate the surface integral // f(z,y,2)dS, where S is the
R

surface of the plane
Gx,y,2)=2x4+2y+2—-1=0

which lies in the first octant and f = f(z,y, ) is the scalar field given by f = zy=.
Solution The given surface is sketched in figure 7-22. The unit normal at any point

on the surface is
& — grad G
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The element of surface area dS is projected upon the zy plane giving

dx dy

B |é3én|

as

= 3dxdy

2x+2y=1

Figure 7-22. Plane 2z + 2y + z =1 in first octant.

On the surface z = 1-2x—2y, and therefore the surface integral can be represented
in terms of only » and y. One finds

4/ fz,y,2)dS = 4/:I:yz &,dS

=3 [v=i—e 2. 2. 1.
:/ / zy(l — 2z — 2y) |:_el‘|‘_92+_e3:| 3dzx dy
3 (3%
=(2€;+2é + €3) / / (zy — 22%y — 2xy?) dx dy
o Jo

Integrate with respect to y and show

// Flw,y,2)dS = (281 + 28 + &) /5 [%:p(% I xz(% et %x(— _ x)s] dz
R

0

Now integrate with respect to z and simplify the result to obtain

R 1 . . .
//f(:z:,y,z) ds = @(Qel-l-Qeg-l- é3)
R

Copyright 2012 J.H. Heinbockel. All rights reserved
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Example 7-31. Evaluate the surface integral / / F xdS, where S is the plane

27 4 2y + 2z — 1 =0 in the first octant and F = 2 &, + yé, + z és.

//ﬁxd§://ﬁx &, dS
R R

and from the previous example

Solution Here

As in the previous example, the element of surface area is projected upon the zy
plane to obtain dS = 3dx dy. Therefore,

€, € €3

Fxe,=|x y =z (y—22)é1 — =(x —22)éy+ —(x — y) &3
2 2 1
3 3 3

and the surface integral is

//ﬁxd§: él//(y—Qz)d:cdy—ég//(x—Qz)dxdy+2é3//(:z—y)d:zdy.
R R R R

Here the element of surface area has been projected upon the zy plane and all
integrations are with respect to z and y. Consequently, one must express z in terms
of 2 and y. From the equation of the plane, the value of z on the surface is given by

z =1 -2z — 2y and the surface integral becomes

//ﬁxdgz 1%1/2/2 (5y + 4x — 2) dy dz
o Jo
R

—é2/2/2 (5z + 4y — 2) dydx
o Jo
+2é3/2/2 (z —y)dydz.

o Jo

These integrals are easily evaluated and the final result is

1 1
//deS———e1+ 682_{_@83
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Summary
When a surface is represented in parametric form, the position vector of a point
on the surface can be represented as
7 =7(u,v) = z(u,v) & +y(u,v) € + z(u,v) &3
where
z = z(u,v), y=y(u,v), z = z(u,v)

is the parametric representation of the surface. The differential of the position vector

7 =7(u,v) 18

L or or = -

and this differential can be thought of as a vector addition of the component vectors
Sy = 2 du and S, = 2 dv which make up the sides on an elemental parallelogram
having area dS lying on the surface. The vectors §; and S, are tangent vectors to the
coordinate curves 7(u, v2) and #(uy,v) where u; and v, are constants. A representation
of coordinate curves on a surface and an element of surface area are illustrated in
the figure 7-23.

The unit normal to the surface at a point having the surface coordinates (u,v),
can be found from either of the cross product relations

oF o OF oF o oF

A u ov A ov ou

€n = T —orT . a_F’ OT  &n = Fror i . @’ (7.102)
ou ov ov ov

The above results differing in sign. That is, &, and —e&, are both normals to the

surface and selecting one of these vectors gives an orientation to the surface.

Example 7-32. Find the unit normal to the sphere defined by
r=rcos¢sing, y=rsingsinf, z=rcosf

Solution Here

or . : . o
20 =rcos¢cosf e +rsingpcosfé; —rsinfeés
or P o
(9_<;5 = —rsin¢sinfé; + rcos¢psinf é
and the cross product is
aﬂ aﬂ é1 é2 é3
8—2 X é =| rcospcosd rsingcosd —rsind| = & (r?sin® 0 cosd) + é2(r?sin? fsin @) + &3(r? sin b cos )

—rsingsinf  rcos¢sinb 0
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One finds

or or

96 X 55| = r*sin@ so that a unit vector to the surface of the sphere is

€, =sinfcos¢p e + sinfsin ¢ &y + cos b é3

|
For 7 a position vector to a point on the surface, the element dr lies in the

tangent plane to the surface at the point determined by the parameters v and v. The
element of surface area dS is also determined from the differential element 47 and is
given by the magnitude of the cross products of the vectors S; and S, representing
the sides of the elemental parallelogram which defines the element of surface area.

This element of surface area is calculated from the cross product

or or
_X_

ds = ou Ov

dudv

Figure 7-23.

Coordinate curves on surface and elemental parallelogram.

Using the dot product relation
(AxB)-(CxD)=(A-C)B-D)—(A-D)B-C)

one can readily verify that

or or
_X_

ou Ov

= VEG - F2, (7.103)




where

|3

B OF 0T (00\ ()P, (02’
- Ou Ou  \Ou ou ou
or 0r Oxdr OJydy 0z0z

an'(% 8u8v+8u8v+£5

G = ﬁ . & = % + @ + % ’
v Ov \Ov v o)
Then the surface area can be represented in the form

S = / V EG — F?dudv, (7.104)
R’LL’U

where the integration is over those parameter values v and v which define the surface.
The various surface integrals can also be represented in terms of the parameters

v and v. These integrals have the forms

//fxy, )dS = //f (u, ), y(u, v), 2(u, 0))VEG — F2 &, dudv

(7.105)
and // (z,y,2)-dS = // y(u,v) é,VEG — F?dudv.
Example 7-33. A cylinder of radius e« and height » has the parametric

representation » = z(6,2) = acos, y = y(6,2) = asinf, 2z = z(0,2) = 2z, where the
parameters § and z, are illustrated in figure 7-24, and satisfy 0 <9 <27 and 0 < z < h.

=l .
a do

Figure 7-24.
Surface area in cylindrical coordinates.

A point on the surface of the cylinder can be represented by the position vector

7 =7(0,z) =acosf e +asinféy + ze3.
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The coordinate curves are
The straight-lines, (6y,z2), 0<z<h

and the circles, (6, z2), 0 <6 < 2,

where 6, and z, are constants. The tangent vectors to the coordinate curves are
given by
or o R or .
%:—asmHel%—acosHeg and &Z €3

Consequently, we have E = a2, F =0, and G = 1. The element of surface area is then
=VEG — F2d0dz = adfdz. The surface area of the cylinder of height & is therefore

h 27
S = / / adfdz = 2mah.
o Jo

Volume Integrals

The summation of scalar and vector fields over a region of space can be expressed
by volume integrals having the form

// Fey,2)dV  and /// Fla,y, 2)dV,
\% \%

where dV = drdydz is an element of volume and V is the region over which the
integrations are to extend.
The integral of the scalar field is an ordinary triple integral. The triple integral

of the vector function F = F(z,y,z) can be expressed as
fffﬁdV =& [[[ Fi(z,y,2)dV + & [[[ Fa(z,y,2)dV + é; [[[ F3(z,y,z)dV, (7.106)
v % % v

where each component is a scalar triple integral.
Whenever appropriate, the above integrals are sometimes expressed

(i) in cylindrical coordinates (r, 6, z), where x = r cos,y = rsin6, z = z and the element
of volume is represented dV = rdrdfdz

(ii) in spherical coordinates (p, 6, ¢) where = = psinf cos ¢, y = psinfsin g, z = pcos and

It

the element of volume is dV = p?sin@dpdpdf.

(iii) in curvilinear coordinates (u,v,w) where z = z(u,v,
or
ou

VY = uvw)z:z(u,v,w)
,,,_.'

and the element of volume is given by® dV = ) du dv dw where

7 =x(u,v,w) e + y(u, v, w) e + z(u, v, w) é3

8 See pages 143 and 156 for details.



Example 7-34. Evaluate the integral /// f(z,y, z)dV, where f(z,y,2) = 6(z+y),
v

dV = drdydz is an element of volume and V represents the volume enclosed by the
planes 2z 4+ 2y +2 =12, =0, y =0, and z = 0. The integration is to be performed
over this volume.

Solution

The figure on the left is a copy of the
figure 7-20 with summations of the element
dV illustrated. From this figure the limits of
integration can be determined. The volume
element is dV = dxdydz is placed at the gen-

eral point (z,y,2) within the volume. This

volume element can be visualized as a cube
inside the volume. Summation of these cu-
bic elements aids in determining the limits of integration for the integral to be
calculated. If this cube is summed in the z-direction, a parallelepiped is produced.
This parallelepiped has lower limit z = 0 and upper limit z = 12 — 2z — 2y. If the
parallelepiped is summed in the y-direction, then a triangular slab is formed with
lower limit y = 0 and upper limit y = 6 — 2. Summing the triangular slabs in the
z-direction from z = 0 to x = 6 gives the limits of integration in the z-direction. At
each stage of the summation process, the volume element is weighted by the scalar
function f(z,y,2) giving the integral /// f(x,y,2)dV. From all this summation one
v

can verify the above integral can be expressed.

=6 y=6—x z=12—-2x—2y
///f(x,y,z)dV:/ / / 6(x +y)dzdydx
i z=0 y=0 z=0
6 6—x
:/ [/ 6(x+y)(12 — 22 — 2y) dy| dx
0 0

6
= / (432 — 3622 + 42%) dr = 1296
0

This integral is calculated by first integrating in the z-direction holding the other
variables constant. This is followed by an integration in the y-direction holding =
constant. The last integration is then in the z-direction.
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Example 7-35. Evaluate the integral ///ﬁ(:c,y, 2)dV, where
v

—

F=xé +zyés+ é3

and dV = dzdydz is a volume element. The limits of integration are determined from

2 y=4, =0, and z = 4.

the volume bounded by the surfaces y =z
Solution From figure 7-25 the limits of integration can be determined by sketching an
element of volume dV = dzx dy, dz and then summing these elements in the z—direction
from z = 0 to z = \/y to form a parallelepiped. Next sum the parallelepiped in the
z—direction from z =0 to z = 4 to form a slab. Finally, the slab can be summed in

y—direction from y = 0 to y = 4 to fill up the volume.

Figure 7-25.

Volume bounded by y = 22, and the planes y =4, z =0 and 2z =4

One then has

. y=4 z=4 =y
///F-dV:/ / / (ré1 +xyéy + €3)drdzdy
o y=0 J2z=0 z=0

4 4 T
_ / / / 261 + 2y 6y + &5] dudady
0 0 0

Perform the integrations over each vector component and show that

. 128 64

//F-dV:16é1+—é2+—é3
3 3

1%



Volume Elements Revisited
Consider the volume element dV = dxzdydz from cartesian coordinates and intro-

duce a change of variables
r=z(u,v,w), y=ylu,v,w), z=z(u,v,w)

from an z,y, z rectangular coordinate system to a u,v,w curvilinear coordinate sys-

tem. One finds the vector
7 =7(u,v,w) =xz(u,v,w) e +y(u,v,w) & + z(u, v, w) €3

is the position vector of a general point within a region determined by the restrictions

placed upon the u,v,w variables. The surfaces
7(u,v,wg), T(u,ve,w), 7(ug,v,w)
are called coordinates surfaces and the curves
7(uo, vo, w),  7(ug,v,wo), 7(u,vo,wo)
are called coordinate curves. The coordinate curves represent intersections of the

coordinate surfaces. The partial derivatives

or or or
ou’ ov’ Ow

represent tangent vectors to the coordinate curves and the quantities

or
ow

or
ov

or
ou

hu: ) v ) hw:

are called scale factors associated with the tangents to the coordinate curves. These

scale factors are used to calculate unit vectors

_lor é_laf' é_laf’
~ hy OU’ Y hy U’ Y By Ow

€y
to the coordinate curves. If these unit vectors are all perpendicular to one another
the coordinate system is called an orthogonal coordinate system. The differential
or or or

drzadu%—%dv%—%dw
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represents a small change in 7. One can think of the differential dr as the diagonal

of a parallelepiped having the vector sides

or or or
% du, % d’l), a:nd % d’UJ

The volume of this parallelepiped produces the volume element dV of the curvilinear
coordinate system and this volume element is given by the formula

@ . <8T X ﬁ)‘ du dv dw.
ou

v = v ow

This result can be expressed in the alternate form

AV = IJ(‘“’Z)I du dv dw,

U, UV, W

where one can make use of the property of representing scalar triple products in

terms of determinants to obtain
9z 9z Oz '

U, UV, W

The quantity J <i:g”§}> is called the Jacobian of the transformation from z,y, z co-
ordinates to u,v,w coordinates. The absolute value signs are to insure the element
of volume is positive.

As an example, the volume element dV = drdydz under the change of variable

to cylindrical coordinates (r, 6, z), with coordinate transformation

x=ux(r,0,z)=rcosf, y=y(r,6,z)=rsind, z=2z2(r0,z) =z

cos —rsinf 0
has the Jacobian determinant |J <x’g’j>| = |sinf rcosf 0| =r which gives the
T
o 0 0 1

new volume element dV = rdrdf dz.
As another example, the volume element dV = dx dydz under the change of vari-

able to spherical coordinates (p,0,¢), where

r=x(p,0,¢) = psinfcosp, y=uy(p,0,¢)=psindsing, z=2(p,0,¢)=pcost

Ty sinfcos¢ pcosfcos¢ —psinfsing
one finds the Jacobian J< ’g’ >| = |sinfsing pcosfsing psinfcos¢ | = p?sinf
p: 0,0 cos 6 —psinf 0

giving the new volume element dV = p?sind dp d¢ df.

Verification of the above results is left as an exercise.



Cylindrical Coordinates (r,0, z)

The transformation from rectangular coordinates (z,y, z) to cylindrical coordi-
nates (r, 6, z) is given by

x =ux(r,0,z) =rcosb, y=1y(r,0,z) =rsinb, z=2(r,0,z) ==z

so that a general position vector is given by 7= #(r,0,z) = rcosfé; +rsinf é; + zé3 In
cylindrical coordinates the coordinate surfaces are

7(r9,0,2) =rgcosfé; +rgsinf ey +zé; a cylinder

7(r,00,z) =rcosfy &, +rsinfyés +zé&3 a plane perpendicular to z—axis

7(r,0,z0) =rcosf & +rsinfeé; + zpés a plane through the z—axis

These surfaces are illustrated in the figure 7-26.
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Figure 7-26.

Coordinate surfaces and coordinate curves for cylindrical coordinates (r, 6, 2).

The coordinate curves are

7(r0,60,2), lines perpendicular to plane z =0
7(00, 20), lines emanating from the origin

7(ro, 0, z0), circles of radius ry in the plane z = z

or or or
The vectors a—T = cosfé&; + sinf é,, 8_2 = —rsinflé; + rcosfé,, 877: = &3 are
T
tangent vectors to the coordinate curves and the vectors
or 107 . . or
er26—:20059é1+sin9é2, égz;a—gz—sinGél%—cosGeg, ezza—Z: és (7.107)

159
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are unit vectors tangent to the coordinate curves, where é,-é, =0, &, - &, = 0 and
ég-é. =0. The unit vector &, = &, x &, produces the triad system {é,, &, e.} so that
the cylindrical coordinate system is a right-handed orthogonal coordinate system.

The unit vectors are sometimes expressed in the matrix® form

cos 6 —sinf 0
€. = | sinf |, €y = cosf |, e, =10
0 0 1

In the cylindrical coordinate system the element of volume is given by dV = r dr d@ dz
and the element of surface area is dS = rdf@ dz. The direction e, is called the radial
direction, the direction ey is called the azimuthal direction and the direction e, is
called the vertical direction.
Spherical Coordinates (p,0, ¢)

The transformation from rectangular coordinates (z, y, z) to spherical coordinates

(p, 0, ) is given by the equations
w=2(p,0,0) = psinfcosd,  y=ylp,0,¢) = psinfsin o, 2= 2(p,0,6) = pcosh
and the general position vector is given by
7 =7(p,0,¢) = psinfcos e + psinfsinp ey + pcosh és

In this coordinate system the coordinate surfaces are
F(pUa 0, ¢)7 a Sphere x° + y2 + 22 = pg
7(p,00,$), a cone z?+y*=tan? 02>

7(p,0,¢0), a plane through the z—axis y = ztan¢

The coordinate curves in spherical coordinates are obtained from the intersection of

the coordinate surfaces and can be represented by

7(po, 0o, ¢), circles of latitude
7(po, 0, ¢o), meridian curve

7(p, 00, ¢0), lines through the origin

These coordinate surfaces and coordinate lines are illustrated in the figure 7-27.

9 See chapter 10 for a discussion of the matrix calculus.
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Figure 7-27.

Coordinate surfaces and coordinate curves for cylindrical coordinates.

The partial derivative vectors

oF
a_T — Sinfcos &, + sinf sinéy + cos b &3
0
or . o o
2 =pcosfcospe; + pcoshsingp ey — psind e
or e . .
(9_<;5 = — psinfsin¢p e + psinf cos P €,
are tangent vectors to the coordinate curves and the scaled vectors
. or . . o ;
€, :a_p =sinfcos ¢ €, + sinfsin ¢ s + cos b é3
107 R A PR
&g ==20 =cosfcospe; + cosfsinges —sinf é; (7.108)
1)
1
&y :psin9 = —sin¢ ey + cos ¢ e,

are unit vectors tangent to the coordinate curves. The spherical coordinate system

is a right-handed orthogonal coordinate system because

e, e =0, e, e, =0, €g- ey =0, €, X € = €4

The above unit vectors are sometimes expressed in the matrix form!° as the column

vectors.
sin @ cos ¢ cos 6 cos ¢ —sing
e, = | sinfsing |, €9 = | cosfsing |, €y, = | cos¢
cos 6 —sind 0

10" See chapter 10 for a discussion of matrices.
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The element of volume in spherical coordinates is given by dV = p2sin8dfd¢dp
and the element of surface area is dS = p? sin 0 df d¢, with p constant. The direction
é, is called the radial direction, the vector &, is called the polar direction'! and the

direction e, is called the azimuthal direction.

Example 7-36. For F = (z—z)é1+ (y — ) és + (2 + = + y) &3, let S denote the

surface enclosing the volume V bounded by the hemisphere 22 + 32 + 22 =1, z > 0,
and the plane z = 0. Calculate (i) I; = // V. Fdv (ii) I = // F-é,dS

v s
Solution Show V- F = div F' = 3 and use spherical coordinates with dV = p?sin@ dpd¢de,

and show
w/2 2w 1
I, = / / / 3p*sin@dpdpdh = 2r
0=0 Jp=0Jp=0

Break the surface integral I, into an integration I,,,.. over the hemisphere and
an integral I,,,.. surface integral over the plane z = 0. On L. use dS = sinfdfdg
and &, =xé& +yé, + 263 with F- &, =22+ y2 + 22 = 1. One finds

27 w/2
Lipper = / / sinfdfdp = 2w
=0 Jo=0

On the plane z = 0, use dS = dady and &, = —és with F-é, = —(z+z+y)| =—(z+y)
z=0
so that
1 V1—z2
Ilou}er = / / —(,17 + y) dydil? =0
r=—1 y:—m

and consequently Iy = Iper + liower = 2.

Example 7-37. Let S denote the surface of the hemisphere 22 +32+22 =1, 2 >0

and let C denote the curve 22 + 32 = 1 lying on the surface S. Calculate the integrals

(i) Igz//(turlﬁ-éndS (i) I4z/ﬁ-dF
S C

where F = yé; + (22 + 2x) & + 2yz é3

Solution One finds curl F = &; and on the hemisphere &, = zé; + yé, + zé3, so that

curl F - &, = 2. Let dS = Adxd%/ _ dvdy and show
|és- &, z
1 Vi—z? 1
13:/ / dydm:2/ V1—z?der=mn
—1Jy=— 122 1

1 The angle 0 is called the polar angle or zenith angle and the angle ¢ is called the azimuthal angle.
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To evaluate the line integral let

x = cosf, y=sinf with de = —sinfdf, dy = cosfdb

27
14:/ﬁ-sz/(y—z)d:z%—(Qx—y)dyz/ [—sin® 0 + 2 cos? @ — sinf cos 0] df =
C C 0

Note that z=0 on C.
[}

Example 7-38. Evaluate the flux integral I = / / F -dS where the vector field
s

is given by F = F(z,y,2) = 26, + yé, + zé3 and S is the surface of the unit sphere
224y + 22 =1

Solution Transform to spherical coordinates where the position vector to a point of
the unit sphere is

T=x€ +yéy+ ze3 =sinfcos¢ & +sinfsing €, + cosh €3

for 0 < ¢ <27 and 0 <0 < 7. An element of surface area in spherical coordinates is
dS = sinf dfd¢ and a unit normal &, to the surface of the unit sphere is in the same

direction as the vector 7 above so that one can write
€, =sinfcos ¢ €1 +sinfsin¢ €y + cosb é3
Substituting these values into the flux integral one obtains
N 27 ™
I= // F.-¢&,dS = / / [cos O(sin O cos ¢) + (sinf sin ¢)(sin  sin ¢) + (sin O cos ¢) cos ] sin O dOdo
g ¢=0 Jo=0
Evaluating the inner integral, holding ¢ constant gives
27
I= / ésin2<z>d<z>
o 3

which can be integrated to obtain the value I = %ﬁ
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Exercises
2 2 2 2 2 2
. N Y z x - T Yy
» 7-1.  Sketch the given surfaces (4) 2t ET 2 (i7) 2tE = a ¢> b>c
. y: 22z 22 22y
» 7-2.  Sketch the given surfaces (i) =+ = == (1)) =+ =Z,a>b>c¢
a? b c a? b2

» 7-3. Sketch the given surfaces defined by the parametric equations

2 2
) i v
N
2 2
g i v
(i1) T — T =u, Y—1yYo =", z—zozc<¥—b—2>

» 7-4. The curve 7 = 7(t) = acoswt &, +asin wt &+ Bt €3, where «, 3 and w are constants,
describes a circular helix of radius a. For this space curve calculate the following
quantities.

(a) The unit tangent vector e,
) (d) The curvature &
(b)) The unit normal vector &,

o (e) The torsion vV
(¢) The unit binormal vector e,

» 7-5. If 7 =#(t) denotes a space curve, show that the curvature is given by

where ' = 4 denotes differentiation with respect to the argument of the function.

» 7-6. If ¥ = 7(z) = ve, + y(z) e, is the position vector describing a curve in the
z,y—plane, show that the curvature is given by

ly"|
(14 (y)?)3/2

where ' = £ denotes differentiation with respect to the argument of the function.

» 7-7.
S L A
(a) For i =#(s) the position vector of a curve, show that 75 X gz = e
S S
i 27

(b) For 7 =#(s) the position vector of a curve, show that X 1
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» 7-8. If ¥ = #(t) denotes a space curve, show that the torsion can be calculate from

the relation
,,,—_»/ . (,,,—_»// % ,,,—_»/N)

V = (,,,—_»/ . ,,,—_»/)(,,,—_»// . ,,,—_»//) _ (,,,—_»/ . ,,,—_»//)2
where prime ’ = 4 always denotes differentiation with respect to the argument of
. o di (A A,
the function. Hint: Show e <@ X @> = Kk*V

» 7-9.
(a) Find the curvature of the straight line 7 = 7(t) = &, + & + &3 + (7T&, +2&, — 3&;)t

(b) Find the torsion of the plane curve 7 = #(z) = z &, + 22 &,

» 7-10. For 7 = #(t) the position vector of a curve, show that
|7 x 7" = k|7'|?,  where ' = %
» 7-11.  Find the directional derivative of ¢ in the specified direction, at the given
point.
(i)  ¢=vy%2%2+2°2, P(1,1,1), 3é, —2é,+6é;
(il)) ¢ =y, P(2,1,—1) 5é; —4éy+20é;3
(iil) ¢ =ay* +y2°, P(1,-1,0), 2&, —5é&y, —14é;,
(iv) ¢ = x%y* +y2le, P(1,1,1), é;+2é+2e3
> 7-12.

(i) Let ¢ = 2%y define a two-dimensional scalar field. Find the directional derivative
of ¢ at the point (2,+/3) in the direction e, = cosae; +sinaé,
(ii) In what direction « is the directional derivative a maximum?

(iii) In what direction « is the directional derivative a minimum?

d [, [dF d*F L (dF  d3F

» 7-14. Prove that Ax (BxC)+ B x (CxA)+C x (AxB)=0

» 7-15.  Discuss the critical points of the function

z=z(z,y) = %xz)’ + %yz)’ + %xQ - ng —2r 4+ 2y
» 7-16. Show that the Frenet-Serret formulas may be expressed in the form
de; . dée, . . de, . .
E:wxet, E:wxeb, s =w X e,

by finding the vector &. Hint: Let & = aé; + gé, +vé, and examine the above cross

products to solve for o, 3, and 7.
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» 7-17. Let 7#(s) denote the position vector of a space curve which is defined in terms
of the arc length s.

(a) Show that the equation of the rectifying plane can be written as

d?7(s0)
dx?

(7(s) = 7(s0)) - =0

(b) Show that the equation of the osculating plane can be written as

dF(So) % dQF(So)

[#(s) = #(s0)] - | 2 e

(c) Show that the equation of the normal plane can be written as

dr'(s0)

[7(s) = (s0)) -

=0

» 7-18. Show that the direction cosines (¢1, /5, f3) of the normal to the surface
7= 7(u,v) are given by

dy 9z 9z Oz oz Oy

ou ou ou ou ou ou

9y 9z 0z Oz 9z Oy

0 = Qu du by = v v fq = 1 0v Qu
D ) D ) 3 D ;

where

D=+EG - F?.

» 7-19.  Show that the direction cosines (¢,/,,¢3) of the normal to the surface
F(x,y,z) =0 are given by

OF %_F OF
(=292 =% p=0z
H’ H' 3 H’

where ) ) )
oF oF oF
2 il - _
= <ax> * <ay> * <a> |
» 7-20. Show that the direction cosines (¢1, /5, f3) of the normal to the surface
z = z(x,y) are given by

_o: _ o2 1
=22 f=- 3=
1 H ' 2 o’ 3 o’

where



» 7-21. Find a unit normal vector to the cylinder x? + 3 = 1
» 7-22. Find a unit normal vector to the sphere 2% +¢* 4+ 22 =1
» 7-23. Find a unit normal vector to the plane ax + by + cz =d

» 7-24. Evaluate the surface integral [[z?yzdS over the cylinder z* +¢? =1 lying in
R

the first octant between the planes z =0 and » = 2.

» 7-25. Evaluate the surface integral [[zyzdS where integration is over the upper

R
half of the sphere 22+ 9% + 22 =1 in the first octant.

» 7-26. Evaluate the surface integral [[F -dS, where F = zé&, + zé, and S is the
R

surface of the cylinder 22 + y? = 1 between the planes » =0 and z = 2.

» 7-27.  Evaluate the surface integral [[ F-dS, where F = 2&, +2é; + zyé; and S is
I

the upper half of the sphere 22 + 32 + 22 = 1 lying in the first octant.

» 7-28. Evaluate the surface integral [[ F-dS, where F = &; and S is the upper half
R
of the sphere 22 + 2 + 22 = 1.

» 7-29. Evaluate the surface integral [[ F x dS, where F = (2+y)éi+22é:—yé;
and S is the surface of the plane » = 1?Where 0<z<land0<y<1.
» 7-30. Show that any curve on a surface defined by the parametric equations
x=z(u,v) y=ylu,v) z=2z(u,v)
has an element of arc length given by
ds? = E du® + 2F dudv + G dv?,

where E, F, G are defined by the equations (7.54).

» 7-31.
(a) Show that when the curve z = f(z), o < z < 21, is rotated 360° about the z-axis,

the surface formed has a surface area
27 T
S:/ / I (P dr do
0 g

(b) The curve z = f(z) = &£z for 0 < 2 < R is rotated 360° about the » axis. Find the

surface area generated.
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» 7-32. Consider a circle of radius p < a centered at z = a > 0 in the xz plane.

parametric equations of this circle are

xr—a=pcosh, z=psind, 0<0<2m,

If the circle is rotated about the z-axis, a torus results.

(a) Show that the parametric equations of the torus are

x=(a+pcosh)cosp, y=(a+pcosh)sing, z=psind,

(b) Find the surface area of the torus.
(c¢) Find the volume of the torus.

0<¢<2m

The

» 7-33. Calculate the arc length along the given curve between the points specified.

(a) y=u, p1(0,0), p2(3,3)

(b) x=cost, y=sint, 0<t<27

(¢) x=t, y=2, z=2t p1(0,0,0),
(d) y= a?, p1(0,0), p2(2,4)

> 7-34.

(a) Describe the surface # = ué; +vé, and sketch some coordinate curves on the

surface.

(b) Describe the surface 7 = vcosué; +vsinueé, and sketch some coordinate curves on

the surface.

(c) Describe the surface # = sinucosvé; + sinusinvé, + cosués and sketch some coor-

dinate curves on the surface.

(d) Construct a unit normal vector to each of the above surfaces.

» 7-35. Evaluate the surface integral I = //ﬁ -dS, where F =4y é; + 4(z + 2) &, and

s
S is the surface of the plane » +y + 2z =1 lying in the first octant.

» 7-36. Evaluate the surface integral I = //ﬁ -dS, where F = 22&, + y2éy + 22 &5

s
and S is the surface of the unit cube bounded by the planes 2 =0, y =0, z =0 and

r=1 y=1 z=1.



» 7-37. Evaluate the surface integral I = // f(z,y,2)dS, where f(z,y,2) =2(z + 1)y
s

and S is the surface of the cylinder 22 +y?> =1, 0 < z < 3, in the first octant.

» 7-38. Evaluate the integral I = //ﬁ -dS, where F = (z+z)é1 4 (y+2) &y — (x+7) &3
s

and S is the surface of the sphere 22 + 32 + 22 = 9 where z > 0.

» 7-39. Evaluate the surface integral I = //ﬁ -dS, where F =4y é; + 4(z + z) &, and

s
S is the surface of the plane z + y + z = 1 which lies in the first octant.

» 7-40. (Lagrange multipliers)

Lagrange multipliers are used to help find the maximum or minimum values as-
sociated with functions of several variables when the variables are subject to certain
constraint conditions. The following is a two-dimensional example of finding the
minimum value of a function when the variables in the problem are subject to con-
straints. Let D denote the distance from the origin (0,0) to a point (z,y) which lies
on the line z +y +2=0. Let F(z,y) = D?> = 22 + y? denote the square of this distance.
The mathematical problem is to find values for (z,y) which minimize F(z,y) when
(x,y) is constrained to move along the given line. Mathematically one writes

Minimize F(z,y) =2*+y?

subject to the constraint condition G(z,y)=2z+y—-2=0.

The point (z,y), where F has a minimum value, is called a critical point.
(a) Show that at a critical point VF is normal to the curve F = constant and VG is
normal to the line G = 0.
(b) Show that at a critical point the vectors VF and VG are colinear. Consequently,
one can write
VF +AVG =0

where ) is a scalar called a Lagrange multiplier.
(c) Show that at a critical point which minimizes F, the function H = F+\G, satisfies

the equations
OH

oH OH _ . OH _
o

% =" By

Calculate these equations and find the point (z,y) which minimizes F.

0, 0.
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» 7-41. (Lagrange multipliers)
Use Lagrange multipliers to

Minimize w=uw(z,y,2) = 2>+ y> + 22,
subject to the constraint conditions: gz, y,2)=x+y+2—-6=0

hz,y,z) =3x+5y+72—34=0

» 7-42.  Given the vector field F = (22 +y — 4) &, + 3zy &, + (222 + 2°) é3. Evaluate the

I:é/(Vxﬁ)-dg

over the upper half of the unit sphere centered at the origin.

surface integral

» 7-43. Evaluate the surface integral //13 -dS, where F = 22&, + (y+6) & — zé3 and

S
S is the surface of the unit cube bounded by the planes z =0, y = 0, z = 0 and
r=1 y=1 z=1.

> 7-44.
(a) Show in the special case the surface is defined by 7 = 7(z,y) = v &, + yés + 2(z,y) &;
the element of surface area is given by

2 2
gs = =y (22N da dy
| &, - és] ox

(b) Show in the special case the surface is defined by 7 = 7(z, 2) = v &, +y(z,2) s+ 2z &;

Q3|Q3
Q| N

the element of surface area is given by

2 2
as— ¢ (99 (Y gpas
| &, - & ox z

(c) Show in the special case the surface is defined by 7= #(y, 2) = 2(y, z) & +y & + 2 &;

Q

the element of surface area is given by
2 2
as= W (20) 4 (2 aya
| &, - é1] dy 0z

» 7-45. Given n particles having masses my,mso,...,m,. Let 7, i = 1,2,...,n de-

note the position vector describing the position of the ith particle. Find the vector

describing the center of mass of the system of particles.
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ou [N
QN
oo
wlw]l

» 7-46. Show that (4 x B)-(C x D) =

» 7-47. Let F = F(z,y,2) and G = G(z,y, z) denote continuous functions which are

everywhere differentiable. Show that

F

(a) VF+G)=VF+VG (b) V(FG)=FVG+GVF (o) V <_> _GVF - FVG

G G*

» 7-48. (Least-squares)

(a) Assume that (zi,41), (2,92),--, (¥;, %), -, (z§,yn) are N known distinct data
points that are plotted in the z,y plane along with a sketch of the straight
line

y=azx+f

where o and 3 are constants to be determined. The situation is illustrated in
figure 7-28.

7

(21,91) -

Figure 7-28. Linear least-squares fit.

Each data point (z;,y;) has associated with it an error E; which is defined as the
difference between the y value of the line and the y value of the data point. For
example, the error associated with the data point (z;,y;) can be written

E; = Ei(a, B) = {y of line} — {y of data point}

E; = Ei(a, B) = (az; + 8) — yi-
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Find the error associated with each data point and then square these errors and sum
N
them to obtain the quantity ZEE called the sum of the errors squared. The “best

=1
"linear least squares fit to all the data points is defined as the line which minimizes
the sum of the errors squared. This requires finding those values of o and g which

minimize the sum of the errors squared given by

N N
E(a,B) =Y E}=> (az;+8-y)*, tohave a minimum value
=1 =1

(a) Show that the best linear least-squares fit requires that the coefficients o and g

be chosen to satisfy the equations

N vy — (Zf\il f'«“z) (Zf\il yz>
A
(2X102) (Sw) - (D) (S @)
A :

N N 2
where A:NZ:U?— (le> .

=1 =1
(b) Given the data points

a =

(1,10), (2,4), (2.5,6), (3,12), (3.5,5), (4, 10)

Find the best linear least-squares fit. Hint: Construct a table of values of the

form

2

4 4 4 4
> im1 T dim1Yi die1 5‘712 > im1 Tili

(c) Plot the least squares straight line and the data points.



Chapter 8
Vector Calculus 11

In this chapter we examine in more detail the operations of gradient, divergence
and curl as well as introducing other mathematical operators involving vectors.
There are several important theorems dealing with the operations of divergence and
curl which are extremely useful in modeling and representing physical problems.
These theorems are developed along with some examples to illustrate how powerful
these results are. Also considered is the representation of the many vector operations
and their use when dealing with a general orthogonal coordinate system.

Vector Fields

Let F(z,y,2) = Fi(z,y,2) & + Fy(z,y, 2) é3 + F3(z,y, z) & denote a continuous vector
field with continuous partial derivatives in some region R of space. A vector field
iS a one-to-one correspondence between points in space and vector quantities so by
selecting a discrete set of points {(z;,v;,2)}|i = 1,...,n, (5,45,2) € R} one could
sketch in tiny vectors each proportional to the given vector evaluated at the selected
points. This would be one way of visualizing the vector field. Imagine a surface
being placed in this vector field, then at each point (z,y,2) on the surface there is
associated a vector F(z,y,z). This is another way of visualizing a vector field. One
can think of the surface as being punctured by arrows of different lengths. These
arrows then represent the direction and magnitude of the vectors in the vector field.
The situation is illustrated in figure 8-1.

O i\\\\\\\
\\k\\\ .

Figure 8-1. Representation of vector field F(z,y, z) at a select set of points.
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Another way to visualize a vector field is to create a bundle of curves in space,
where each curve in the bundle has the property that at every point (z,y,2) on any
one curve, the direction of the tangent vector to the curve is the same as the direction
of the vector field F(z,y, z) at that point. Curves with this property are called field
lines associated with the vector field F(z,y, z). Let 7= zé&, +yé, +zé3 be a position
vector to a point on a field line curve, then di = dx &, + dy &, + dzé3 is in the direction
of the tangent to the curve. If the curve is a field line, then one can write di = oF,
where o is a proportionality constant. That is, if the curve is a field line, then the

vectors dF and F are colinear at all points along the curve and one can write
drf =dré; +dyeés + dzés = aFy(r,y, z) € + aFy(x,y, 2) € + aFs(x,y, 2) €3

where o is some proportionality constant. By equating like components in the above
equation, one obtains

dx B dy B dz
Fl(xayaz) Fg(f,y,Z) Fg(.I,y,Z)

=« (8.1)

The equations (8.1) represent a system of differential equations to be solved to obtain

the representation of the field lines.

Example 8-1. Find and sketch the field lines associated with the vector field

—

V=V(y)=B-2)4-y)é +(6—2°)(4+y°)é
Solution If ¥ =z e, +yeé, describes a field line, then one can write
dF = dzé1 + dyéy = aV(z,y) = a3 — z)(4 — y) &1 + a(6 — z2)(4 + 1°) &

where « is a proportionality constant. Equating like components one can show that
the field lines must satisfy

dz = (3 —2)(4 —y), dy = (6 — 22)(4 + y?)

or one could write

dx B dy .
B-2)(d-y)  (6-2?)(d+y?) (82)

Separate the variables in equation (8.2) to obtain

6—x2d 4—y
r=—>=
3—x 4 + y2

dy



and then integrate both sides to obtain

6 — 2 4—y
dr = d 8.3
/3—:;: v /4+y2 Y (8:3)

Use a table of integrals and evaluate the integrals and then collect all the constants

of integration and combine them into just one arbitrary constant C to obtain the
result
3z + %xQ +3In|z — 3| = 2tan"*(y/2) — %ln(él +9%)+C (8.4)

The equation (8.4) represents a one-parameter family of curves which describe the
field lines associated with the given vector field. Assign values to the constant ¢ and
sketch the corresponding field line. Place arrows on the curves to show the direction
of the vector field.
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i |\, ig;@éﬁgﬁ/ﬁf%@%ﬁﬁj{/ i
i i kA A @ d e g o ; /‘< Al < o <‘frj./;-“f‘f
s N\ i e
i anr AN // FAiE i,
AR AR i
A AAA TS a /%4//////ff/ / e //?/.//4?, Sl
iy s e AT AT
o VAN A wf«fﬁ”ﬁfﬁf’//f/fﬁ i
(a) (b) (c)
Figure 8-2.
Vector plot and field lines for V(z,y) = (3 —2)(4 —y) &1 + (6 — 2)(4 + 3°) &,

The figure 8-2 illustrates three graphs created by a computer. The figure 8-2(a)
represents a vector field plot over the region —2 < z <2 and —2 < y < 2. The figure
8-2(b) is a graph of the field lines associated with the vector field with arrows placed
on the field lines. The figure 8-2(c) is the vectors of figure 8-2(a) placed on top of
the field lines of figure 8-2(b) to compare the different representations.

Divergence of a Vector Field

The study of field lines leads to the concept of intensity of a vector field or the

density of the field lines in a region. To visualize this, place an imaginary surface
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in a vector field and try to determine how the vector field punctures this surface.
Let the surface be divided into n small areas AS; and let F; = F(x;,v;,2) denote
the value of the vector field associated with each surface element. The dot product
F;-AS; = F;- &,AS; represents the projection of the vector F; onto the normal to the
element AS; multiplied by the area of the element. Such a product is a measure of
the number of field lines which pass through the area AS; and is called a flux across

the surface boundary. The total flux across the surface is denoted by the flux integral

p= lim ZF AS; _//F ds = //F é,dS (8.5)

AS —»O i=1

The surface area over which the integration is performed can be part of a surface
or it can be over all points of a closed surface. The evaluation of a flux integral
over a closed surface measures the total contribution of the normal component of
the vector field over the surface.

The term flux can mean flow in some instances. For example, let an imaginary
plane surface of area 1 square centimeter be placed perpendicular to a uniform
velocity flow of magnitude V4, such that the velocity is the same at all points over
the surface. In 1 second there results a column of fluid V; units long which passes
through the unit of surface area. The dimension of the flux integral is volume per
unit of time and can be interpreted as the rate of flow or flux of the velocity across
the surface.

In the above example, the flux was a quantity which is recognized as volume rate
of flow. In many other problems the flux is only a definition and does not readily have
any physical meaning. For example, the electric flux over the surface of a sphere
due to a point charge at its center is given by the flux integral // E -dS, where E is

the electrostatic intensity. The flux cannot be interpreted as ﬂlcz)w because nothing
is flowing. In this case the flux is considered as a measure of the density of the field
lines that pass through the surface of the sphere.

The value for the flux depends upon the size of the surface that is placed in
the vector field under consideration and therefore cannot be used to describe a
characteristic of the vector field. However, if an arbitrary closed surface is placed

in a vector field and the flux integral over this surface is evaluated and the result is
Flux

fV lume’ By

letting the volume and surface area of the arbitrary closed surface approach zero, the

divided by the volume enclosed by the surface, one obtains the ratio o
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ratio of % turns out to measure a point characteristic of the vector field called

the divergence. Symbolically, the divergence is a scalar quantity and is defined by
the limiting process

[[F-dS

div F = lim £ = li Flux

Ry Flux
aze AV auzg Volume

(8.6)

Consider the evaluation of this limit in the special case where the closed surface
is a sphere. Consider a sphere of radius ¢ > 0 centered at a point Py(x,vo, 20) situated

in a vector field

—

F :F)(f,y,Z) :Fl(x,y,z)él+F2(:E,y,z)é2+F3(:E,y,z)é3.

Express the sphere in the parametric form as
T = xg + €sinf cos ¢, 0
Y = yo + €sinfsin ¢, 0<0<m
z = zp + €cost

then the position vector to a point on this sphere is given by
7 =70, ¢) = (x0 + e sinfcos ¢) & + (yo + esinfsin @) & + (20 + € cosf) &3
The coordinate curves on the surface of this sphere are
(0o, ¢) and 7(0,¢0) 6o, constants

and one can show the element of surface area on the sphere is given by
or  or

dS =| 70 > 90 | d0dp = \/EG — F2dfd¢ = ¢*sin0 df do

A unit normal to the surface of the sphere is given by

o oF

. 06 X 9 . A 0 i b 5
&, — Ta‘f = sinf cos ¢ €; + sinfsin ¢ &, + cos h é3
T T
20 X 94

The flux integral given by equation (8.6) and integrated over the surface of a sphere

can then be expressed as

(p://ﬁ.dgz//ﬁ-éndb“
R R

=27 O0=m .
= / / F(xo + esinf cos ¢, yo + esinfsin ¢, zg + € cos §) &,¢ sin O dd .
=0 Jo=0
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Treating the vector function F as a function of ¢, one can expand F in a Taylor’s

series about € = 0, to obtain

- o dF & d?F & d°F
F=F - 4 ... 8.7
(w0, 0, 20) + € o taias T (8.7)

where all the derivatives are to be evaluated at ¢ = 0. Substituting the expressions

for the unit normal and the Taylor’s series into the flux integral produces
o=cpo+ S+t + -

where

T 27
Ho Z/ / F (0,30, 20) - €, sin 0 dg df

/ /2“ dF
M1 =

27 d2
MQZ/O . e

plus higher order terms in e. The vector F(zo, o, z) is a constant and an evaluation

- &, sin 0 dop do

e=0

- &, s 0 ddo,
e=0

of the integral defining po produces po = 0. To calculate the second integral defining
w1 observe that the chain rule for functions of more than one variable produces the
result . .

aF _of os  oF 0y  OF 0

de Oz 0e Oy Oe 0z Oe

dF _9F oOF OF

g " or sin 6 cos ¢ + a—y51n951n<;5+ Eco&@

This result can be expressed in the component form

dF | [0F L OR o\ .
T = <Esm€cos¢+a—ys1n951n¢+50%9> €

e=0

+ aism@cosqﬂ— ai51n951n<;5+ aicos@
ox oy 0z

ox oy 0z

F: F: F:
+ <Qsin9c:os¢+ Qsin@sinqﬂ— Qcos@) €3
e=0

where all the derivatives are to be evaluated at ¢ = 0. Evaluating the integrals defining

u1, produces

4 (oR n oF, n OF;
=37\ "oz oy 0z

The flux integral then has the form

4 3<8F1 OF,  OF;

=37 o oy 0z

e=0

>+e4,u2+65,u3+---



where the derivatives are to be evaluated at e = 0. The volume of the sphere of radius
e centered at the point (g, o, 20) is given by 3we* and consequently the limit of the

ratio of % as e tends toward zero produces the scalar relation

JIF s OF, OF, OF
e R 017 2 3
div K = Al‘l/IBO AV Oz + oy + 0z

AS—0

(8.8)

e=0

Recalling the definition of the operator Vv, the mathematical expression of the diver-

gence may be represented

d]VﬁZVﬁ: gél—i—gég—i—gég (F1é1+F2é2+F3é3)
ox oy 0z
OF,  OF, OF
Oz * oy * 0z

(8.9)

Example 8-2. Find the divergence of the vector field
F(x,y,2) = 22yé; + (2® + y22) &y + zyz &3

Solution: By using the result from equation (8.9), the divergence can be expressed

.= L O(x? o(z? 2 0
divF =V -F= (:Ey)+ (@ +yz)+ (xyz):2xy+22+xy:3xy+22
ox oy 0z

The Gauss Divergence Theorem

A relation known as the Gauss divergence theorem exists between the flux and
divergence of a vector field. Let F(xz,y,z) denote a vector field which is continuous
with continuous derivatives. For an arbitrary closed sectionally continuous surface S

which encloses a volume V, the Gauss’ divergence theorem states

/V/ divﬁdvz// V-ﬁdV:é/ﬁ-d§:é/ﬁ.énds_ (8.10)

which states that the surface integral of the normal component of F summed over
a closed surface equals the integral of the divergence of F summed over the volume
enclosed by S. This theorem can also be represented in the expanded form as

oF, 0F, OF . A X X
/// < a; + 6; + 6;;3) drdydz = //(F1 & + ey + F3é3)- €,dS, (8.11)
v s

where e, is the exterior or positive normal to the closed surface.
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The proof of the Gauss divergence theorem begins by first verifying the integrals

oF 1€1 - €,

] - é/F is
s

OF: 5 - 6, dS.

///—3dV é/Fgeg ds

The addition of these integrals then produces the desired proof. Note that the
arguments used in proving each of the above integrals are essentially the same for
each integral. For this reason, only the last integral is verified.

Let the closed surface S be composed of an upper half S, defined by z = 2z (2, y)
and a lower half 5; defined by z = z(z,y) as illustrated in figure 8-3. An element
of volume dV = dxdydz, when summed in the z—direction from zero to the upper
surface, forms a parallelepiped which intersects both the lower surface and upper
surface as illustrated in figure 8-3. Denote the unit normal to the lower surface by
é,, and the unit normal to the upper surface by é,,. The parallelepiped intersects
the upper surface in an element of area dS, and it intersects the lower surface in an
element of area dS;. The projection of S for both the upper surface and lower surface

onto the zy-plane is denoted by the region R.

&3
én2
dSo
~1 So
_ S
as - KM
& BN
% :
u
N "o o T
Q /)
Figure 8-3. Integration over a simple closed surface.
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An integration in the z-direction produces

///%dzd:cdy: //Fg(:v,y,z)
\% R

_ //Fg(x,y,zg(x,y))dxdy—//Fg(x,y,zl(x,y))d:ﬂdy.
R R

z2(2,y)

dx dy

z1(z,y)

The element of surface area on the upper and lower surfaces can be represented by

On the surface S5, dS, = Adxc{
es3 - en2
On the surface S, ds, = M
—es3- enl

so that the above integral can be expressed as

\%4 S5 o 2

which establishes the desired result.

Similarly by dividing the surface into appropriate sections and projecting the
surface elements of these sections onto appropriated planes, the remaining integrals
may be verified.

Example 8-3. Verify the divergence theorem for the vector field

—

F(.I,y,Z) = Q,Iél — 3yé2 —|—4Zé3
over the region in the first octant bounded by the surfaces
2z =%+ y?, z=4, =0, y=0

Solution The given surfaces define a closed region over which the integrations are
to be performed. This region is illustrated in figure 8-4. The divergence of the given
vector field is given by

.o L 9F, OF, OF
dlvF:V-F:al+ 24+ 22 292-34+4=3,
ox oy 0z

and thus the volume integral part of the Gauss divergence theorem can be deter-
mined by summing the element of volume dV = dzdydz first in the z—direction from

the surface z = 2 +4? to the plane z = 4. The resulting parallelepiped is then summed
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in the y—direction from y = 0 to the circle y = V4 — 22 to form a slab. The slab is

then summed in the z—direction from z =0 to z = 2.

Figure 8-4. Integration over closed surface area defined by S; U S, US; U S;.

The resulting volume integral is then represented

B =2 py=vVid—zx? ,z=4
// div FdV = / / / 3dzdydx
i =0 y=0 z=z2+y2

2 VA4—x2
:/ / 3[4 — (2% +y?)) dy dx
o Jo
2

1 Vi—z2
= / 3(4y — 2%y — §y3) dx
0

0

2
:/ (8 — 22%)\V/4 — 22 dx = 6.
0

For the surface integral part of Gauss’ divergence theorem, observe that the surface
enclosing the volume is composed of four sections which can be labeled S;, Ss, Ss, S4
as illustrated in the figure 8-4. The surface integral can then be broken up and

written as a summation of surface integrals. One can write

é/ﬁ.d§://ﬁ.d§+//ﬁ.d§+//ﬁ-d§+//ﬁ-d§,

S1 Sa Ss Sy

Each surface integral can be evaluated as follows.
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On S, z=4, é,=é3, dS=dxdyand

2 V4—z2 2
//F-dS:// 16dyd:c:16/ V4 — 22 dx = 16m.
0o Jo 0
S1

On S, y=0, &,=—@&,, dS=dzrdz and

//ﬁ-dgz//—3ydxdz:0.
Sa

On S;, =0, é&,=—&, dS=dydzand

//ﬁ-dgz//—2xdydz:0.
S3

On S, the surface is defined by ¢ = 22 4+ 4% — 2 = 0, and the normal is determined

from
. gradQS B 2$é1+2yé2 — ég i Q,Iél —|—2yé2— ég

&y = - _ ,
lgrad ¢| Va2 +y?) +1 Viz+1

and consequently the element of surface area can be represented by

is= Y Ty

B |én'e3|

One can then write

//ﬁ-dgz//ﬁ-éndS://(4x2—6y2—4z)d:£dy
S4 S4 S4

- //(4:;;2 — 6y% — 4(z% + 9?)) dx dy

Sy
2 VA—2? 2 10
:// —10y2dyd:c:—/ —y3
o Jo o 3

2
1
= 30\/(4—552)3(1:5:—1077.

0

Va—x?
dr

0

The total surface integral is the summation of the surface integrals over each
section of the surface and produces the result 67 which agrees with our previous
result.

Sometimes it is convenient to change the variables in a surface or volume inte-

gral. For example, the integral over the surface S, is not an integral which is easily
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evaluated. The geometry suggests a change to cylindrical coordinates. In cylindrical
coordinates the following relations are satisfied:

z=rcosf, y=rsinf, z=z>+y>=r2

T=x€ +yéy+ ze3 =rcosfe +rsinféy + 12 ey

E=1+4r*, F=0, G=r?

B 2rcosf e, + 2rsinf e, — es

e, =
V14 4r?
., 4r2 cos? @ — 612 sin? 6 — 4r2
F.e,= ) dS = r\/1+ 4r2 drdf.
V1 4+ 4r2

The integral over the surface S, can then be expressed in the form

z 2

//ﬁdgz/ / (4cos® 0 — 6sin? 0 — 4)r> drdf = —107.
o Jo

Sy

Physical Interpretation of Divergence

The divergence of a vector field is a scalar field which is interpreted as represent-
ing the flux per unit volume diverging from a small neighborhood of a point. In the
limit as the volume of the neighborhood tends toward zero, the limit of the ratio of
flux divided by volume is called the instantaneous flux per unit volume at a point or
the instantaneous flux density at a point.

If F(z,y,z) defines a vector field which is continuous with continuous
derivatives in a region R and if at some point Py of R, one finds that

div F > 0, then a source is said to exist at point F.

div F <0, then a sink is said to exist at point P,.

div F =0, then F is called solenoidal and no sources or sinks exist.

The Gauss divergence theorem states that if div F = 0, then the flux ¢ = [[ F-dS

over the closed surface vanishes. When the flux vanishes the vector field isS called
solenoidal, and in this case, the flux of the vector field F into a volume exactly equals
the flux of the field F out of the volume. Consider the field lines discussed earlier
and visualize a bundle of these field lines forming a tube. Cut the tube by two plane

areas S; and S, normal to the field lines as in figure 8-5.



field lines

Figure 8-5. Tube of field lines.

The sides of the tube are composed of field lines, and at any point on a field
line the direction of the tangents to the field lines are in the same direction as the
vector field F at that point. The unit normal vector at a point on one of these field
lines is perpendicular to the unit tangent vector and therefore perpendicular to the
vector F' so that the dot product F - &, = 0 must be zero everywhere on the sides of
the tube. The sides of the tube consist of field lines, and therefore there is no flux
of the vector field across the sides of the tube and all the flux enters, through S;,

and leaves through S,. In particular, if F is solenoidal and div F = 0, then

//FdS+// ﬁ.d§+// F.d§=0 or //F-d§:—//ﬁ-d§
Sides Sa
S1 S1 So

If the vector field is a velocity field then one can say that the flux or flow into S,
must equal the flow leaving S,.

Physically, the divergence assigns a number to each point of space where the
vector field exists. The number assigned by the divergence is a scalar and represents
the rate per unit volume at which the field issues (or enters) from (or toward) a point.
In terms of figure 8-5, if more flux lines enter S; than leaves S,, the divergence is
negative and a sink is said to exist. If more flux lines leave S, than enter S, a source
is said to exist.

Example 8-4. Consider the vector field

Fe o h M, (z,y) # (0,0), k a constant

/QTQ +y2 €1 /.172+y2

A sketch of this vector field is illustrated in figure 8-6.

V=
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!

Figure 8-6. Vector field V =

e + — &, k>0 constant.

kx ky
\/wQ +y2 \/wQ +y

Observe that the magnitude of the vector field at any point (z,y) # (0,0) is given
by |V| = k. In polar coordinates (r,6), where z = rcos and y = rsin6, the vector field
can be represented by

—

V =k(cosfe; +sinféy).

Thus, on the circle »r = Constant, the vector field may be thought of as tiny needles
of length |k|, which emanate outward (inward if & is negative) and are orthogonal to
the circle » = constant. The divergence of this vector field is

ky? ka? B

divV=vVvV.V= CESREE + 2

where r = /22 + 2. The divergence of this field is positive if ¥ > 0 and negative if
k < 0. If the vector field V represents a velocity field and k > 0, the flow is said to
emanate from a source at the origin. If k < 0, the flow is said to have a sink at the

origin.

Green’s Theorem in the Plane

Let C denote a simple closed curve enclosing a region R of the xy plane. If M(x,y)
and N(z,y) are continuous function with continuous derivatives in the region R, then

Green’s theorem in the plane can be written as

gﬁcM(x,y) dz + N(z,y) dy = // <%—JZ - %—f) d dy, (8.13)
R



where the line integral is taken in a counterclockwise direction around the simple

closed curve C which encloses the region R.

To prove this theorem, let y = y2(z) and y = 3, (z) be single-valued continuous

functions which describe the upper and lower portions C, and C; of the simple closed

curve C in the interval z; <z <z, as illustrated in figure 8-7(a).

y=y3z(z)

W om

(a) (b)

e=x2(y)

I
> c
C1 4
y=v1 ()
= =
ﬂ’l m2 1 1

Figure 8-7. Simple closed curve for Green’s theorem.

The right-hand side of equation (8.13) can be expressed

M z2 ry2(2) [ T2
—//a—d:zdy:—/ / a—dyd:c:—/ M(x,y)
s ay T y1(z) ay T

:/ [M(z,y1(z)) — M(z,y2(x))] dz

y2(x)

y1(x)

T2

— [ M@y (@) de + / M2 () da

1

= M(x,y1(z)) de + M(x,y2(z)) de = é M(x,y) dz.

Cl CQ

dx

(8.14)

Now let z = z,(y) and = = x,(y) be single-valued continuous functions which

describe the left and right sections C3 and C, of the curve C in the interval y; < y < ys.
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The remaining part of the right-hand side can then be expressed

N y2 re2(y) 9N Y2
/ a—d:zdy:/ / a—d:zdy: N(z,y)
(9:5 y1 z1(y) (9:5
R
Y2

x2(y)
dy

Y1 z1(y)

:/ [N(z2(y),y) — N(z1(y), v)] dy
. (8.15)

Y2 Y1

= N(z2(y),y) dy + N(z1(y),y) dy

Y1 Y2
— [ N dy+ [ N dy=p Ny dy
Cs Cy C
Adding the results of equations (8.14) and (8.15) produces the desired result.
Example 8-5. Verify Green’s theorem in the plane in the special case

M(z,y)=2*+y*  and  N(z,y) =y,

where C is the wedge shaped curve illustrated in figure 8-8.

Y
A
circle
x=a cos 6
Cg y=—a sin 6
C2

/4

(0,0) c1 (a0 -

Figure 8-8. Wedge shaped path for Green’s theorem example.

Solution The boundary curve can be broken up into three parts and the left-hand

side of the Green’s theorem can be expressed

¢Md:£+Ndy: Mdx + Ndy + Mdx + Ndy + Mdx + Ndy.
C Cl CQ CS
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On the curve C;, where y =0, dy =0, the first integral reduces to

a 3
Md:z+Ndy:/ 2 de =L
c 0 3
On the curve C,, where

T = acosb, y = asind, 0<6<L

the second integral reduces to

w/4
Md:z+Ndy:/ —a? - asinfdf + a®sinf cos - a cos 6 d
0

Cs
w/4 3 w/4
= a®cosf — a—cos39
0 0
3 \/5 a? \/5
L G | ) iy |
D3 ( 1
s (5vV2 2
—u _z
12 3
On the curve C;, where y = z, 0 < z < ¥4, the third integral can be expressed as

0
2
Md:E+Ndy:/ 2x2dx+x2dx:—£a3.
2 L 1

Adding the three integrals give us the line integral portion of Green’s theorem

1 5v2 2 2 a® (V2
M Ndy=-a*+a® | 22 - | - 22> = — [ 22 —1 ).
ﬁ dz + N dy 50 +a (12 3> 1 3 (2 )

The area integral representing the right-hand side of Green’s theorem is now

which is

evaluated. One finds
ON oM

WY By

//(aN al‘;) dwdy= [[ ~ydyda

The geometry of the problem suggests a transformation to polar coordinates in order

and

to evaluate the integral. Changing to polar coordinates the above integral becomes

w/4 pa w/4 3 9
/ / (rsinf)(rdrdf) = —— singdg = & <£_1> )
0 0
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Solution of Differential Equations by Line Integrals
The total differential of a function ¢ = ¢(z,y) is

do = %d +?d (8.17)

When the right-hand side of this equation is set equal to zero, the resulting equation
is called an exact differential equation, and ¢ = ¢(z,y) = Constant is called a primitive
or integral of this equation. The set of curves ¢(z,y) = C = constant represents a
family of solution curves to the exact differential equation.

A differential equation of the form

M(x,y)dz+ N(z,y)dy =0 (8.17)

is an exact differential equation if there exists a function ¢ = ¢(x,y) such that

¢ ¢

Frie M(z,y) and EM

= N(z,y).

If such a function ¢ exists, then the mixed second partial derivatives must be equal

and
9%¢ _8M_M_ 9%¢ _ON _
dxdy oy Y oydx ox 7

Hence a necessary condition that the differential equation be exact is that the partial

(8.19)

derivative of M with respect to y must equal the partial derivative of N with respect
to z or M, = N,. If the differential equation is exact, then Green’s theorem tells us

that the line integral of M dz + N dy around a closed curve must equal zero, since

¢Md:c+Ndy_// <6—N—8—M> drdy =0 because ON _ oM (8.19)
dy ox dy

For an arbitrary path of integration, such as the path illustrated in figure 8-9,

the above integral can be expressed
b Mdr+ Nay= [ Mzn(e)) do+ No,n(@) dy
C To

+ /wo M(x,y2(x)) dz+ N(z,y2(z)) dy =0



Co (z,y)

v=v2(=) [N\

(z0,v0)

C1

y=y1(=)
! >

xQ T

Figure 8-9. Arbitrary paths connecting points (zq,yo) and (z,y).

Consequently, one can write
/ M(z, 41 (2)) dz + N(z, y () dy = / M(z, ya(x)) dz + N(z, yola)) dy. (8.20)

Equation (8.20) shows that the line integral of M dx + Ndy from (z¢, ) to (z,y) is
independent of the path joining these two points.

It is now demonstrated that the line integral

(z,y)
/ M(z,y) dz + N(z,y) dy
(

Zo 7y0)

is a function of z and y which is related to the solution of the exact differential
equation M dx + Ndy = 0. Observe that if Mdx + Ndy is an exact differential, there
exists a function ¢ = ¢(z,y) such that ¢, = M and ¢, = N, and the above line integral

reduces to

(z,y)

(xO 7y0)

(z,y) (z,y)
/ %d:v%—%dy:/ dp = ¢
(z0,90) 0T dy (0,v0)

Thus the solution of the differential equation M dz + N dy = 0 can be represented as
é(x,y) = C = Constant, where the function ¢ can be obtained from the integral
(z,y)

& y) — B0, yo) = / M(z,y) dz + N(z,y) dy. (3.22)

(xO 73/0)

Copyright 2012 J.H. Heinbockel. All rights reserved
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Since the line integral is independent of the path of integration, it is possible to

select any convenient path of integration from (x¢, o) to (z,v).

(x,y)

(may())

Figure 8-10. Path of integration for solution to exact differential equation.

[lustrated in figure 8-10 are two paths of integration consisting of straight-line seg-
ments. The point (zg,y0) may be chosen as any convenient point which guarantees
that the functions M and N remain bounded and continuous along the line segments
joining the point (x¢,y) to (z,y). If the path C; is selected, note that on the segment
AB one finds y = y is constant so dy = 0 and on the line segment BE one finds z is
held constant so dz = 0. The line integral is then broken up into two parts and can
be expressed in the form

Y

(x,y) x
/ d6 = é(z,y) — blzo, yo) = / M(z, yo) dz + / N(z, y) dy, (8.23)
( xg Y

*0,Y0) 0

where z is held constant in the second integral of equation (8.23). If the path C; is
chosen as the path of integration note that on AD = is held constant so dr = 0 and
on the segment DE y is held constant so that dy = 0. One should break up the line
integral into two parts and express it in the form

(z,y) Yy T
/( d6 = d(a,y) — Sz, yo) = | N(zo,y)dy + / M(z, y) d, (8.24)

*0,Y0) Yo

where y is held constant in the second integral of equation (8.24).

Copyright 2012 J.H. Heinbockel. All rights reserved
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Example 8-6. Find the solution of the exact differential equation
(2zy — y*) dz + (2 — 2zy) dy = 0

Solution After verifying that M, = N, one can state that the given differential
equation is exact. Along the path ¢, illustrated in the figure 8-10 one finds

xT

o(x,y) — d(xo,y0) = / (2zyo — y3) dx + /y(xQ — 2zy) dy

Zo Yo

Yy
+ (2y — zy?)

xr
= (5'32y0 - y%x)

Zo

= (z%y — ) — (xdyo — Toy).

Yo

Here ¢(z,y) = 2%y — zy? = Constant represents the solution family of the differential
equation. It is left as an exercise to verify that this same result is obtained by

performing the integration along the path C, illustrated in figure 8-10.

Area Inside a Simple Closed Curve.

A very interesting special case of Green’s theorem concerns the area enclosed by
a simple closed curve. Consider the simple closed curve such as the one illustrated
in figure 8-11. Green’s theorem in the plane allows one to find the area inside a

simple closed curve if one knows the values of z,y on the boundary of the curve.

Ody R

” /

T] T2

Figure 8-11. Area enclosed by a simple closed curve.
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In Green’s theorem the functions M and N are arbitrary. Therefore, in the
special case M = —y and N = 0 one obtains

gﬁ —ydr = // dxz dy = A = Area enclosed by C. (8.25)
C
i)

Similarly, in the special case M =0 and N =z, the Green’s theorem becomes

¢ rdy = // drdy = A = Area enclosed by C. (8.26)
c
B

Adding the results from equations (8.25) and (8.26) produces

2A = ¢ zdy —ydx
C
(8.27)

or A:%¢xdy—yda:://dxdy:Area enclosed by C.
c
R

Therefore the area enclosed by a simple closed curve C can be expressed as a line
integral around the boundary of the region R enclosed by €. That is, by knowing
the values of  and y on the boundary, one can calculate the area enclosed by the
boundary. This is the concept of a device called a planimeter, which is a mechanical
instrument used for measuring the area of a plane figure by moving a pointer around

the surrounding boundary curve.

Example 8-7.

Find the area under the cycloid defined by z = r(¢ —sin¢), y = r(1 — cos¢) for
0<¢ <27 and r >0 is a constant. Find the area illustrated by using a line integral
around the boundary of the area moving from A to B to C to A.

Solution
y C Let BCA and the line AB denote the bounding curves of
the area under the cycloid between ¢ = 0 and ¢ = 27. The area
X . . .
| N 5. is given by the relation
A B

1 1
A:—/ (:Edy—yd:z)+—/ (zdy — ydx),
2 cy 2 Cy

where C; is the straight-line from A to B and C, is the curve



B to C to A. On the straight-line C; where y = 0 and dy = 0 the first line integral has

the value of zero. On the cycloid one finds

x=r(p—sing) y=r(1—cos¢)
dx =r(1— cos ¢) do dy = rsin¢deo
and ¢ varies from 27 to zero. By substituting the known values of  and y on the
boundary of the cycloid, the line integral along C, becomes
0

2A = r(¢p —sing) rsinpde — r(1 —cos @) r(1 — cos @) do

27
27
or 2A:r2/ [1—2cos¢+cosQ¢+sin2¢—qﬁsinqﬂ do
0
24 =12 [2¢ — 2sin¢ + P cos d — sin@ly"
2A = 6772

Hence, the area under the curve is given by A = 3772,

Change of Variable in Green’s Theorem
Often it is convenient to change variables in an integration in order to make
the integrals more tractable. If z,y are variables which are related to another set of

variables u,v by a set of transformation equations
x = x(u,v) y=y(u,v) (8.28)

and if these equations are continuous and have partial derivatives, then one can

calculate

_ Ox ox Oy dy
dx = ™ du + 5 dv dy = 5 du + 50 dv. (8.29)

It is therefore possible to express the area integral (8.27) in the form

1
/ dx dy :—¢xdy—yd:ﬂ
2Jc

R
1 oy oy ox oz
// dr dy = 2@:5(% v) [% du + E» dv] —y(u,v) [a du + 0 dv] (8.30)
R

1 oy ox oy oz
B 2@ [xau _yﬁu] du+ [ZE(% _y(%] dv-

where R is a region of the z,y-plane where the area is to be calculated.
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1/ oy Ox 1/ 0y ox 5
Let M(u,v) = —< T Y ) and N(u,v) = 5( T =Yg ) and apply Green’s
theorem to the integral (8.30). Using the results
oM 1 0%y oz Oy 0%x Oy Ox d ON 1 0%y ox Oy _ 02%x _ @8_36
v 2 mauav %8_u_ dudv  Ov du u 2 mavau ou o 8v8u Ou v

one finds

<(9N (9M> Ig—z g—ZI_ﬁxﬁy axﬁy_J<x,y> (8.31)

ou ov T Qudv Ovdu U, v
where the determinant J is called the Jacobian determinant of the transformation

from (z,y) to (u,v). The area integral can then be expressed in the form

A://dxdy://J(x’y> du dv, (8.32)
U, v
R u,v

where the limits of integration are over that range of the variables u,v which define

the region R.

Example 8-8. In changing from rectangular coordinates (z,y) to polar coordi-
nates (r,6) the transformation equations are

x =x(r,0) =rcosf y=1y(r,0) =rsinb,

and the Jacobian of this transformation is

0 .

J <~’Uay> | —SZ o | cos 6 sin 6 |
— pr— 8:1/‘ 8y pr— o ‘. 3 pr—
U, v " o rsinf rcos6

and the area can be expressed as

//d:vdy = //Tdrd@ (8.33)
Ray R,g

which is the familiar area integral from polar coordinates.

|
In general, an integral of the form / / f(x,y)dxdy under a change of variables
Ry
r = x(u,v), y = y(u,v) becomes //f x(u,v), y(u,v)) J<%> dudv, where the integrand

is expressed in terms of u and v and the element of area da dy is replaced by the new
element of area J ( ) du dv.



The Curl of a Vector Field

Let F = F(z,y,2) = Fi(z,y,2) & + Fy(z,y, 1) e + F3(z,y,2) & denote a continuous
vector field possessing continuous derivatives, and let P, denote a point in this vector
field having coordinates (z¢,yo, 20). Insert into this field an arbitrary surface S which
contains the point Py and construct a unit normal e, to the surface at point P,. On
the surface construct a simple closed curve C which encircles the point By. The work
done in moving around the closed curve is called the circulation at point P,. The
circulation is a scalar quantity and is expressed as

gﬁ F - d7 = Circulation of F around C on the surface S,
e,

where the integration is taken counterclockwise. If the circulation is divided by

the area AS enclosed by the simple closed curve C, then the limit of the ratio

Circulation
~ Area
F in the direction é, and is written as

as the area AS tends toward zero, is called the component of the curl of

gﬁﬁ-df
(curl F)- &, = lim “¢— .

Al (8.34)

To evaluate one component of the curl of a vector field F at the point Py(zo, o, 20),
construct the plane z = z, which passes through P, and is parallel to the xy plane.
This plane has the unit normal &, = é; at all points on the plane. In this plane,
consider the circulation at Py due to a circle of radius e centered at P,. The equation

of this circle in parametric form is
r=u1x9+ecosh, y=1yg+esinh, z=z

and in vector form 7 = (zg + ecosf) & + (yo + esinf) é; + z; 3. The circulation can be

expressed as
— 2m —
I=QQF-dir= / F(xg+ecosf,yg + esinb, zp) [—esinf & + e cosf &3] df.
C 0

By expanding F = F(xo + ecosf, yo + esinb, zo) in a Taylor series about e = 0, one finds

o . dF 2 2F
F(zg+ ecosf,yg + €sinb, zg) = F(xo, Yo, 20) + e— + car 4
de 2! de?

where all the derivatives are evaluated at e = 0. The circulation can be written as

I:¢ﬁ-dF:€M0+€2M1+€3M2+“‘,
c
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where )
MOZ/ Fo - dg, Fy = F(x0, Y0, 20)
0

27 g1
dFr -
H1 = e dg
27 1 d2F .
H2 = /O g %

where all the derivatives are evaluated at e = 0 and d¢ = (—sinfé;, + cos6 &,)df. The

vector F, is a constant and the integral p, is easily shown to be zero. The vector

CZ—F evaluated at e = 0, when expanded is given by
€

dF _9F  OF . (OR . OF _ \ .
E_%COSH+8—y51n9_ <E0059+a—y61n9> €
or ory . .

+<EC%9+ 9y sm@) €

oF3 ory . .
+ <E cos 6 + 3y sm@) és,

where the partial derivatives are all evaluated at e = 0. It is readily verified that the

_(or_on
=7\ or oy )

integral p; reduces to

The area of the circle surrounding P, is we?, and consequently the ratio of the circu-
lation divided by the area in the limit as ¢ tends toward zero produces

0F, OF

(CUI'IF)'egza—a—y.

(8.35)

Similarly, by considering other planes through the point Py which are parallel to the

rz and yz planes, arguments similar to those above produce the relations

=~ . _O0F OF; sy . OF3  OF

(curl F)- ég = P e and (curl F')- & = 9y 5 (8.36)
Adding these components gives the mathematical expression for curl . One finds
the curl F can be written as

- 0F3 0Fy\ . 0Fy O0F3\ . 0F, 0F1\ .
1F=|——-— e — - ) .
e <8y 82) el+<82 (9:5) 82+<(9:E 8y> e (8:37)
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The curl F can be expressed by using the operator V in the determinant form

= = € € & 0Fs; OF: 0F; OF oF, OF
-V |0 0 0| _ a3 221 a3 Ty a2 0L
cwl F=VxF=\3 3z €l Jdy 0z J= el dr 0z I+ &l Jr Oy ) (8:38)
o F, F

Example 8-9. Find the curlof the vector field
F =22yé; + (22 + 1°2) éo + dayz é3

Solution From the relation (8.38) one finds

€; € €3
0 92 9
ox oy 0z
2%y 2?49’z dzyz

curl F =

curl F = (4zz — y?) &) — dyz é; + (22 — 22) &s.

Physical Interpretation of Curl

The curlof a vector field is itself a vector field. If curl F = § at all points of a
region R, where F is defined, then the vector field F is called an irrotational vector
field, otherwise the vector field is called rotational.

The circulation gﬁ F - di about a point P, can be written as

C
¢ﬁ-df:¢ﬁ-d—rds:¢ﬁ-étds
C c ds C

where C is a simple closed curve about the point P, enclosing an area. The quantity
F - &, evaluated at a point on the curve C, represents the projection of the vector
F(z,y,z), onto the unit tangent vector to the curve ¢. If the summation of these
tangential components around the simple closed curve is positive or negative, then
this indicates that there is a moment about the point P, which causes a rotation.
The circulation is a measure of the forces tending to produce a rotation about a given
point Py. The curl is the limit of the circulation divided by the area surrounding P,
as the area tends toward zero. The curl can also be thought of as a measure of the
circulation density of the field or as a measure of the angular velocity produced by
the vector field.

Consider the two-dimensional velocity field V = Vyé;, 0 < y < h, where V,
is constant, which is illustrated in figure 8-12(a). The velocity field V = V&, is
uniform, and to each point (z,y) there corresponds a constant velocity vector in the
é, direction. The curlof this velocity field is zero since the derivative of a constant

is zero. The given velocity field is an example of an irrotational vector field.
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Yy Y .
A VZVO &, A V—yel o<y<h
T -
E— .
R I
— —>
I X o X
— o =

(a) (b)

Figure 8-12. Comparison of two dimensional velocity fields.

In comparison, consider the two-dimensional velocity field V = yé&;, 0 < y < h,
which is illustrated in figure 8-12(b). Here the velocity field may be thought of as
representing the flow of fluid in a river. The curlof this velocity field is

€ € e3
cuer:VxV:aa—x % a% = — é3.
Y 0 0

In this example, the velocity field is rotational. Consider a spherical ball dropped
into this velocity field. The curl V tells us that the ball rotates in a clockwise direction
about an axis normal to the zy plane. Observe the difference in velocities of the water
particles acting upon the upper and lower surfaces of the sphere which cause the
clockwise rotation.

Using the right-hand rule, let the fingers of the right hand move in the direction
of the rotation. The thumb then points in the — &; direction.

The curltells us the direction of rotation, but it does not tell us the angular
velocity associated with a point as the following example illustrates. Consider a basin
of water in which the water is rotating with a constant angular velocity & = wy és.
The velocity of a particle of fluid at a position vector 7 = zé; + yeé, is given by

e € e
V=dx7=|0 0 wo|=—woye + woxés.
T Y 0
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The curl of this velocity field is

e € €3
) — y —| O 9 o | = &
curll V=VxV=| 5 By 52 | = 2wo €.
—woy —wor O

The curltells us the direction of the angular velocity but not its magnitude.

Stokes Theorem

Let F = F(z,y, z) denote a vector field having continuous derivatives in a region
of space. Let S denote an open two-sided surface in the region of the vector field.
For any simple closed curve C lying on the surface S, the following integral relation

holds
//(curlﬁ)-dgz//<Vxﬁ>-éndS:¢ﬁ-dF, (8.39)
S S ¢

where the surface integrations are understood to be over the portion of the surface
enclosed by the simple closed curve C lying on S and the line integral around C is in
the positive sense with respect to the normal vector to the surface bounded by the
simple closed curve C. The above integral relation is known as Stokes theorem.! In

scalar form, the line and surface integrals in Stokes theorem can be expressed as

/ / (curl F .dS = / / curl F - e, dS
oF; 0Fy\ . oF, OF3\ . oFy, OFy\ . .
// K———z) oLt <E‘E> &+ <E_a—y> ] ‘&ndS (840)

and ¢FdF:¢F1dx+ngy+F3dz,
c c

where é,, is a unit normal to the surface S inside the closed curve C. In this case the
path of integration C is counterclockwise with respect to this normal. By the right-
hand rule if you place the thumb of your right hand in the direction of the normal,
then your fingers indicate the direction of integration in the counterclockwise or

positive sense.

! George Gabriel Stokes (1819-1903) An Irish mathematician who studied hydrodynamics.
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Example 8-10. Tllustrate Stokes theorem using the vector field
F = yz e + x22 &y + zy &3,
where the surface S is a portion of a sphere of radius r inside a circle on the sphere.

The surface of the sphere can be described by the para-

metric equations.
r=rsinfcos¢p, y=rsinfsing, z=rcosb

for » constant, 0 < 6 <7 and 0 < ¢ < 2r. The position vector

to a point on the sphere being represented
7 =7(6, ) = rsinfcos &, + rsinfsingéy + rcosf és (r is constant)

From the previous chapter we found an element of surface area on the sphere can

be represented

dsS = % X g—; didp = \/EG — F2d0d¢ = r?sinf df d¢ (r is constant) (8.41)
The physical interpretation of dS being that ’ ﬁzmi"m‘w
T df i)
it is the area of the parallelogram having the §i>
sides 95 d0 and 9% d¢ with diagonal vector o
¥
L or or
d’l" = % d9 + a_¢ d¢ rin6dé

If one holds 0 = 6, constant, one obtains a circle C on the sphere described by
7 =7(¢) =rsinfycosp e + rsinfysingpés +rcosbpés, 0<¢ <2rw (8.42)

A unit outward normal to the sphere and inside the circle C is given by

0<¢<2m

8.43
0<0<6b ( )

€, =sinfcos ¢ €y + sinfsin ¢ & + cos b €3,

The vector curl F is calculated from the determinant

& &y &3

= P P 8
cul F =V X F=\|5 3 2
yz  x2®  ay
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The left-hand side of Stokes theorem can be expressed

//curlﬁ-dgz//curlﬁ- éndS:// [$(1—22)sin9(:os¢+(22—z)cos@] r?sin 6 df do
S S S

27 0o
= / / [7sin® @ cos® (1 — 27 cos ) + (r? cos® § — rcos® 0)] r?sin 6 df de
0

27 .3
:/ I—z [4(—1+ cos® 6y) — 3r(—1+ cos* 6)
0

0
+ 16(2 + cos f) cos® ¢ sin’ <§O> — 6rcos® ¢sint Oy | do

// curl F - dS =mr® cos Oo(—1 + 7 cos b) sin® O
S

The right-hand side of Stokes theorem can be expressed
¢ ﬁ-df’z¢ yzdr + 22 dy + zy dz
C c

Substitute the values of z,y, 2 on the curve C using
& =7 sin 8y cos ¢, y=rsinfysing, 2 =rcosf
de = — rsinfysingdg, dy—=rsinfycosd, dz =0
The right-hand side of Stokes theorem then becomes

¢ F.dr :¢ [yz(—rsin by sin ¢) + z2°(r sin by cos ¢) + 2y(0)] do
C C
27
= / [ sin 6 sin ¢(r cos O) (—rsin by sin ¢) + (rsin by cos ) (r? cos® fy) (r sin by cos ¢)| d¢
0

=713 cos 0y (—1 4 7 cos B ) sin? B

Proof of Stokes Theorem

To prove Stokes theorem one could verify each of the following integral relations

//(@@a én_@ég.én> dSzgéFldx
Oy c
OF, . . OF, . .
//(—83 en—gel n) dS:éngy (8.44)
//<%é1 i PYOP ) dszgﬁFsdz.
ox c

Then an addition of these integrals would produce the Stokes theorem as given by
equation (8.40). However, the arguments used in proving the above integrals are

repetitious, and so only the first integral is verified.
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p

Figure 8-13. Surface S bounded by a simple closed curve C on the surface.

Let 2z = z(z,y) define the surface S and consider the projections of the surface
S and the curve C onto the plane z = 0 as illustrated in figure 8-13. Call these
projections R and C,. The unit normal to the surface has been shown to be of the
form
0z . 0z .
&, = Ty (8.45)

RNCRO)

. 1
8, & = Oy , 8, 63 = (8.46))

The element of surface area can be expressed as

0z 02\2
dS =14/1 — ) dxd
5 \/ +<3~’E> +<3y> S

and consequently the integral on the left side of equation (8.44) can be simplified to

oFy . OF, P OF, 0z OF
[[ (Ger en-Ttes ) as = // (Fa-7)wn 6
S

the form



Now on the surface S defined by z = z(z,y) one finds F| = Fi(x,y,2) = Fi(z,y, 2(z,y))
is a function of z and y so that a differentiation of the composite function F;, with

respect to y produces
or(z,y,z(x,y)) OF1 O0F 0z

9 = o 9> 0y (8.48)
which is the integrand in the integral (8.47) with the sign changed. Therefore, one
can write

0F 0= OF; 08,25,
// <— 92 0y 8y> / dz dy (8.49)
s

Now by using Greens theorem with M(z,y) = Fi(x,vy,z2(z,y)) and N(z,y) = 0, the
integral (8.49) can be expressed as

// OF (z y, ))dg;dyZ/C Fl(x,y,z(:v,y))dfﬂ:/CF1(:v,y,z) dx (8.50)

P

which verifies the first integral of the equations (8.44). The remaining integrals in

equations (8.44) may be verified in a similar manner.

Example 8-11. Verify Stokes theorem for the vector field
F =32"yé +a’yé, + zés,

where S is the upper half of the sphere 22 +¢? + 22 = 1.

Solution The given vector field has the curl vector

€1 € €3

o o) o) 2\ -

9% oy 02 = (2zy — 3x°) é3
322y 2%y 2

curl F =V x F =

The unit normal to the sphere at a general point (x,y, z) on the sphere is given by
€, =1xe; +yés+ ze3

and the element of surface area dS when projected upon the zy plane is

dedy  dvdy

dsS =——
€, €3 z
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The surface integral portion of Stokes theorem can therefore by expressed as

//curlﬁdgz//(2xy—3x2)é3-éndS://(2xy—3x2)d:Edy
S S S

1 y=+v1—2x2 1 4v/1—22
= / / x(2y — 3z) dydx = / z(y* — 3xy) ‘ dx
1y T2 1 i

:/_11{55 [(1—:52)—3:5\/1—:52} —x[(l—x2)+3x\/1—x2}}dzz¢
:/ —622 \/1—x2d:£———

For the line integral portion of Stokes theorem one should observe the boundary

of the surface S is the circle

x = cosf y =sinf z=0 0<6<2m.

Consequently, there results

¢ﬁ-dfz¢3x2ydx+x2ydy+zdz
c c

27
:/ —3 cos? fsin? 0 df + cos® 951n9d9——%r.
0

Think of the unit circle 22 + y? = 1 with a rubber sheet over it. The hemisphere
in this example is assumed to be formed by stretching this rubber sheet. All two-
sided surfaces that result by deforming the rubber sheet in a continuous manner are

surfaces for which Stokes theorem is applicable.

Related Integral Theorems

Let ¢ denote a scalar field and F a vector field. These fields are assumed to be
continuous with continuous derivatives. For the volumes, surfaces, and simple closed
curves of Stokes theorem and the divergence theorem, there exist the additional

integral relationships

///curleV // Vx Fdv = //eandS (8.51)
///graqudV // VdV = /¢endS (8.52)
// &, x grad ¢dS = // &, x grad ¢dS = — //grad¢ x dS = ¢<bdr. (8.53)



The integral relation (8.51) follows from the divergence theorem. In the diver-
gence theorem, substitute F = H x ¢, where C is an arbitrary constant vector. By

using the vector relations

divF=V.F=V.-(HxC)=C-(VxH) and (8.54)

— — —

F-é,=HxC)-é,=H - (Cxé,)=C-(é,xH) (triple scalar product),

the divergence theorem can be written as
[ffdiv (H xC)dV = [[[C-(Vx H)dV = [[(HxC)-&,dS = [[C-(&,x H)dS (8.55)
\% \% S S

Since C is a constant vector one may write

é-//vXﬁdV:é-//énxﬁds. (8.56)
% s
For arbitrary ¢ this relation implies

// VxﬁdV://énxﬁdS. (8.57)
|4 S

In this integral replace H by F ( H is arbitrary) to obtain the relation (8.51).

The integral (8.52) also is a special case of the divergence theorem. If in the
divergence theorem one makes the substitution F = ¢ C, where ¢ is a scalar function
of position and C is an arbitrary constant vector, there results

//div ﬁdV:/V//V(¢é)dV:/V/ C‘-VquV:é/C*QSdg. (8.58)

\%

where the vector identity V(¢ C) = (V¢)-C +¢(V x C) has been employed. The relation
given by equation (8.58), for an arbitrary constant vector C, produces the integral
relation (8.52).

The integral (8.53) is a special case of Stokes theorem. If in Stokes theorem one

substitutes F = ¢ C, where C is a constant vector, there results

//(curlﬁ)-d§://vX(¢é)-éndsz//(v¢xé)-énds
S S S
:é/(énxv¢)-5d82§éé¢df.

(8.59)
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For arbitrary C, this integral implies the relation (8.53). That is, one can factor
out the constant vector € as long as this vector is different from zero. Under these

conditions the integral relation (8.53) must hold.

Region of Integration

Green’s, Gauss’ and Stokes theorems are valid only if certain conditions are
satisfied. In these theorems it has been assumed that the integrands are continuous
inside the region and on the boundary where the integrations occur. Also assumed
is that all necessary derivatives of these integrands exist and are continuous over the
regions or boundaries of the integration. In the study of the various vector and scalar
fields arising in engineering and physics, there are times when discontinuities occur
at points inside the regions or on the boundaries of the integration. Under these
circumstances the above theorems are still valid but one must modify the theorems
slightly. Modification is done by using superposition of the integrals over each side
of a discontinuity and under these circumstances there usually results some kind of
a jump condition involving the value of the field on either side of the discontinuity.

If a region of space has the property that every simple closed curve within the
region can be deformed or shrunk in a continuous manner to a single point within
the region, without intersecting a boundary of the region, then the region is said
to be simply connected. If in order to shrink or reduce a simply closed curve to a
point the curve must leave the region under consideration, then the region is said
to be a multiply connected region. An example of a multiply connected region is
the surface of a torus. Here a circle which encloses the hole of this doughnut-shaped
region cannot be shrunk to a single point without leaving the surface, and so the
region is called a multiply-connected region.

If a region is multiply connected it usually can be modified by introducing imag-
inary cuts or lines within the region and requiring that these lines cannot be crossed.
By introducing appropriate cuts, one can usually modify a multiply connected re-
gion into a simply connected region. The theorems of Gauss, Green, and Stokes are
applicable to simply connected regions or multiply connected regions which can be

reduced to simply connected regions by introducing suitable cuts.

Example 8-12. Consider the evaluation of a line integral around a curve in a
multiply connected region. Let the multiply connected region be bounded by curves
like Cy, Cy,...,C, as illustrated in figure 8-14(a).



Ay Co A y C
I‘l :
= X = X
(a) (b)
Figure 8-14. Multiply-connected region.

Such a region can be converted to a simply connected region by introducing cuts
I';, i = 1,...,n. Observe that one can integrate along C, until one comes to a cut,
say for example the cut I'; in figure 8-14. Since it is not possible to cross a cut, one
must integrate along I'; to the curve C;, then move about ¢; clockwise and then
integrate along T'; back to the curve Cy. Continue this process for each of the cuts
one encounter as one moves around Cy. Note that the line integrals along the cuts
add to zero in pairs (i.e. from Cy to C; and from C; to C, for each i =1,2,...n), then

one is left with only the line integrals around the curves Cy, C4,...,C, in the sense
illustrated in figure 8-14(b).

Green’s First and Second Identities

Two special cases of the divergence theorem, known as Green’s first and second
identities, are generated as follows.

In the divergence theorem, make the substitution F = ¢V¢ to obtain
// Vﬁde///V(@ZJVQS)dV://¢V¢-d§://¢g—idS (8.60)
|4 |4 S S
¢

where B = V¢ - &, is known as a normal derivative at the boundary. Using the

relation

V(§Ve) = V3o +Vy - Ve
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one can express equation (8.60) in the form

// YV2p+ Vip - Vo) dV = //¢v¢ ds = //¢—ds (8.61)

This result is known as Green’s first identity.
In Green’s first identity interchange ¢ and ¢ to obtain

// 6V + Vo - Vi) dV://¢V¢-d§=//¢g—zdS (8.62)

Subtracting equation (8.61) from equation (8.62) produces Green’s second identity

/// (6926 — 9V26) dV = // 57— V). 563
// (6V2 — §V29) dV = //<¢,__¢ )

Green’s first and second identities have many uses in studying scalar and vector

or

fields arising in science and engineering.

Additional Operators

The del operator in Cartesian coordinates

0 0 0
v_£81+8_y82+8_e3 (864)

has been used to express the gradient of a scalar field and the divergence and curl of
a vector field. There are other operators involving the operator V. In the following
list of operators let A denote a vector function of position which is both continuous
and differentiable.

1. The operator 4 -V is defined as

e . . . 0 . 0 . 0 .
A'VZ(A181+A282+A383)' —e1 + —ey+ —es3
ox oy 0z
0 0 0

= Al% +A26—y +A3&

Note that A -V is an operator which can operate on vector or scalar quantities.
2. The operator A4 x V is defined as

él €9 €3
A Ay As
0

oz oy 0z

0 d\ . 0 0\ . 0 0
<A & _A36_y> e + <A3£ —A1£> e + <A16—y _A2(9,17>

This operator is a vector operator.

(8.65)

—

AxV =

(8.66)
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3. The Laplacian operator V2 = V-V in rectangular Cartesian coordinates is given
by
0 0 0 0 0 0 0? 0? 0
2 v . Y. Yo Y4 Y. Yo _ Y v v
Vo= <a$ e + 3y e + 5, €3> <a$ e + 3y e + 92 e3> 922 + By + 5.2 (8.67)

This operator can operate on vector or scalar quantities.

One must be careful in the use of operators because in general, they are not
commutative. They operate only on the quantities to their immediate right.

Example 8-13. For the vector and scalar fields defined by

B=ayzé +(x+y)és+(z—1)é3=Bi1é + Baéy + By &y
A=2%6 +ayéy +y?é3 = A1 &+ Ar & + As &
and ¢ = 2%y% + 2yz

evaluate each of the following.

() V24 (d) (AxV)o
Solution
(a)
- _ OB OB OB
_ 27 - 277
(A-V)B= =z &E%—xyay Y P
0B 0B 0B
— 2 (2214 92 4 PN
=7 <a L s 2t s e3>
+ 9B, +aBQé +aB3é
xry dy 1 y 2 By 3
0B, . 0B . 0B3 .
+y2<8—zlel+6—2262+6—;e3>

0z oy ox 0 oy
0 0 0 0 0 0
= <A2(9_ - A38_> By + <A38_ —A1&> By + <A18_ - A28_> Bs
_ O(xyz) 5 0(zyz) 20z ty)  H0@+y) 20(z — ) xya(z — )
0z 4 oy ox 0z oy ox

= 2%y* —y*zz +y° + 2y
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(c)

= 2 PE 92
VA= —(a®é+ayér+y’es) + 5 (z° e +ayér +y’es) + ——(z° & +ayes + y° é3)
ox oy 0z
= 2€1+2é3
(d)
- 50 50 0 50 0
(Ax D)o = (arg? — 5o+ P50 — 250 ea+ (25 —oyl) e
where —¢ = 2zy% + y22, % = 2yx? + 122, % = 2xyz
ox oy 0z

and (AxV)p= (20222 — 22%y° — 122?) &,
+ (2zy* 4+ 1222 — 223y2) &,

+ (2zty + 2327 — 2223 — xy?2?) &3

Relations Involving the Del Operator

In summary, the following table illustrates a variety of relations involving the
del operator. In these tables the functions f, g are assumed to be differentiable scalar
functions of position and A, B are vector functions of position, which are continuous
and differentiable.

The V operator and differentiation

1. (f 9)=Vf+Vg or grad(f+g)=gradf+ gradg
2. V- (A+B)=V-A+V-B or div(A+B)=divA +divB
3. Vx(A+B)=VxA+VxB or cul(A+B)=culd+culB
4. V(fA) = (Vf)- A+ f(V-A)
5. X (fA) = (Vf) x A+ f(V x A)
6. V.- (Ax B)=B(VxA)—A(V x B)
7. (AxV)f=AxVf
8. For f = f(u) and u = u(z,y, 2), then Vf = %Vu
9. For f = f(uy,ug,...,u,) and u; = us(z,y,2) for i =1,2,...,n, then
Vf—a—fVu1+§—fV 2t +§—i%n
10. Vx(AxB)=V(V-A)—-B(V-A)
11. V(A -B)=Ax(VxB)+Bx (VxA)+(BV)A+ (AV)B
12. Vx(VxA)=V(V-A)-V4
0? 0? 0?
13. V-(Vf):V2f:a$‘£+ay‘£+az‘£
14. V xVf)=0 The curl of a gradient is the zero vector.

15. V. (VxA)=0 The divergence of a curl is zero.



The V operator and integration

16. // VfdV = //f é,dS Special case of divergence theorem
v s

17. // VxAdV = // é, x AdS Special case of divergence theorem

v s
18. gﬁ di x A = //(én x V) x AdS Special case of Stokes theorem

c

s
19. gﬁ fdi = // dS x Vf Special case of Stokes theorem
c
s

Vector Operators in curvilinear coordinates

In this section the concept of curvilinear coordinates is introduced and the rep-
resentation of scalars and vectors in these new coordinates are studied.

If associated with each point (z,y, z) of a rectangular coordinate system there is
a set of variables (u,v,w) such that z,y,z can be expressed in terms of u,v,w by a
set of functional relationships or transformations equations, then (u,v,w) are called
the curvilinear coordinates? (z,y, z). Such transformation equations are expressible
in the form

xr = x(“? /U’ w)’ y = y(“? /U’ w)7 = Z(“? /U’ w) (8'68)

and the inverse transformation can be expressed as
u=u(r,y,z), v=v(r,y 2 w=uw(yz2) (8.69)

It is assumed that the transformation equations (8.68) and (8.69) are single valued
and continuous functions with continuous derivatives. It is also assumed that the
transformation equations (8.68) are such that the inverse transformation (8.69) ex-
ists, because this condition assures us that the correspondence between the variables
(x,y,z) and (u,v,w) is a one-to-one correspondence.
The position vector
F=x6é +yéy+ zé3 (8.70)

2 Note how coordinates are defined and the order of their representation because there are no standard repre-
sentation of angles or directions. Depending upon how variables are defined and represented, sometime left-hand
coordinates are confused with right-handed coordinates.

213



214

of a general point (z,y,2) can be expressed in terms of the curvilinear coordinates
(u,v,w) by utilizing the transformation equations (8.68). The position vector #, when

expressed in terms of the curvilinear coordinates, becomes
7 =7(u,v,w) = z(u,v,w) & +y(u,v, w) & + 2(u, v, w) €3 (8.71)

and an element of arc length squared is ds?> = d7- di. In the curvilinear coordinates
one finds 7 = 7(u, v, w) as a function of the curvilinear coordinates and consequently

di = = du+ S dv + — dw. (8.72)
u v w

by

or or or or or or
=, _’: 2 — —_ —_ . — RN —
dr - dr = ds 9 u du du + 90 Do du dv + 90 Do du dw
or or or or or or
a2 -7 hd 8.73
+ 9 Du dvdu + 50 9o dvdv + 9 Bw dv dw ( )
or or or or or or
+%-£dwdu+%-%dwdv%—%-%dwdw.
The quantities
o or oo _or o
= ou Ou g1z = ou Ov g13 = ou Ow
or or or or or or
_ - - . = . 8.74
g21 ov Ou g22 ov Ov J23 ov Ow ( )
_or or _or or _or or
a1 = ow Ou a2 = ow Ov Ja3 = ow Ow

are called the metric components of the curvilinear coordinate system. The metric
components may be thought of as the elements of a symmetric matrix, since g;; = g,
i,j = 1,2,3. These metrices play an important role in the subject area of tensor
calculus.

The vectors 42, 9&. 92 used to calculate the metric components g;; have the
following physical interpretation. The vector = 7(u, ¢z, c3), Where u is a variable and
v = co, w = c3 are constants, traces out a curve in space called a coordinate curve.
Families of these curves create a coordinate system. Coordinate curves can also be
viewed as being generated by the intersection of the coordinate surfaces v(z,y, z) = c2

and w(z,y, 2) = c3. The tangent vector to the coordinate curve is calculated with the



partial derivative 2. Similarly, the curves 7 = 7(c1,v,c3) and 7 = 7(c1, c2, w) are coor-

dinate curves and have the respective tangent vectors - and 2Z. One can calculate

the magnitude of these tangent vectors by defining the scalar magnitudes as

or

or
M= h= gl e =h= |5,

oF
ha = hu = | 5. (8.75)

The unit tangent vectors to the coordinate curves are given by the relations

1 07 107 1 07
3, = — 28 8, = — 2L By = — . 8.76
€ hl ou ¢ hg ov € h3 ow ( )
The coordinate surfaces and coordinate curves may be formed from the equations

(8.68) and are illustrated in figure 8-15

’F(Cl,C;g,’U)) u(:n,y,z):cl

v(z,y,2)=Cc2

F(Cl a'U’CB)

F('U',C2’c3) w(m7y7z):C3

Figure 8-15. Coordinate curves and surfaces.

Consider the point u = ¢;, v = ¢2, w = c3 in the curvilinear coordinate system. This

point can be viewed as being created from the intersection of the three surfaces
u=u(z,y,2)=c
v="uv(x,y,2) =ca
w = w(z,y,2) = c3
obtained from the inverse transformation equations (8.69).
For example, the figure 8-15 illustrates the surfaces v = ¢; and v = ¢, intersecting

in the curve 7 = 7(cy, co, w). The point where this curve intersects the surface w = cs,

iS (Cla C2, 63)‘
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The vector grad u(z,y, z) is a vector normal to the surface u = ¢;. A unit normal
to the u = ¢; surface has the form

- grad u

“ Jgrad u|’
Similarly, the vectors

B, = grad v ’ and B, = grad w
lgrad v| lgrad w|

are unit normal vectors to the surfaces v = ¢y and w = ¢3.
The unit tangent vectors é,, é,, &, and the unit normal vectors E,, E,, E.,
are identical if and only if g;; = 0 for i # j; for this case, the curvilinear coordinate

system is called an orthogonal coordinate system.

Example 8-14. Consider the identity transformation between (z,y,z) and
(u,v,w). We have u =z, v =y, and w = z. The position vector is

'F(.I,y,Z) :xél +yé2+2é37

and in this rectangular coordinate system, the element of arc length squared is given

by ds? = dx? + dy?® + dz%. In this space the metric components are

1 0 0
g =110 1 0],
0 0 1

and the coordinate system is orthogonal.

Tz
zZ =c3 /1\83
é]_ €2
=Y
LY
\/\w .
T
Yy==c2

Figure 8-16. Cartesian coordinate system.
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In rectangular coordinates consider the family of surfaces
Tr = Cq, Yy = Ca, Z = C3,

where cy, co, c3 take on the integer values 1,2,3,.... These surfaces intersect in lines
which are the coordinate curves. The vectors

grad x = €, grad y = €9, and grad z = &5

are the unit vectors which are normal to the coordinate surfaces. The vectors

or or @'
N N 0z

:e3

can also be viewed as being tangent to the coordinate curves. The situation is
illustrated in figure 8-16.

Example 8-15. In cylindrical coordinates (r, 9, z), the transformation equations
(8.68) become

x=x(r,0,z) =rcosf
y=1y(r,0,z) =rsind
z=2(r,0,z) ==z

and the inverse transformation (8.69) can be written

r=r(z,y,2) = Va2 +y>?

0=0(x,y,2)= arctan 2
T

z=z(x,y,2) = z.

where the substitutions v = », v = ,w = 2z have been made. The position vector
(8.70) is then

7 =7(r,0,z) =rcosfeé +rsinf ey + ze;.

The curve

7 =7(c1,0,c3) = cicosf e + cysinf és + c3és,

where ¢; and c3 are constants, represents the circle 2% + y? = ¢? in the plane z = ¢3

and is illustrated in figure 8-17. The curve

7 =7(c1,02,2) = €1 CO8Co €1 + €1 8incy €9 + 2 €3
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represents a straight line parallel to the z-axis which is normal to the zy plane at
the point r = ¢;, 6 = c,. The curve

7 =7(r,co,c3) = rcoscy € + rsincg € + c3 é3

represents a straight line in the plane z = ¢3, which extends in the direction 0 = c,.

Figure 8-17. Cylindrical coordinates.

The tangent vectors to the coordinate curves are given by

oF
a = cosfé; +sinf e,

or

oF

8_2 = —rsinfé; + rcosfé,
or A

0z 0

and are illustrated in figure 8-17. The element of arc length squared is

ds® = dr? + r2d#* + dz*

) |

and the metric components of the space are

gij(

0

,r.2

0

O O =
_ o O



Observe that this is an orthogonal system where ¢g;; = 0 for i # j. The surface
r = c; is a cylinder, whereas the surface 6§ = ¢, is a plane perpendicular to the zy
plane and passing through the z-axis. The surface »z = c; is a plane parallel to the

xy plane. The cylindrical coordinate system is an orthogonal system.

Example 8-16. The spherical coordinates (p, 6, ¢) are related to the rectangular

coordinates through the transformation equations
x=x(p,0,p) = psinf cos ¢

y=y(p,0,¢) =psinfsin¢
z=2z(p,0,$) = pcosb

which can be obtained from the geometry of figure 8-18.

F(p,Cz,C,?,)

Figure 8-18. Spherical coordinate system.

The position vector (8.70) becomes
7 =7(p,0,¢) = psinfcospeé; + psinf sin ¢ &y + pcosh és,
and from this position vector one can generate the curves

F:F(ClaCQaQS)a F:F(Claev C3)a F:F(p’ 62’63)’
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where ci, ¢, c3 are constants. These curves are, respectively, circles of radius ¢, sin c,,
meridian lines on the surface of the sphere, and a line normal to the sphere. These
curves are illustrated in figure 8-18. The surfaces r = ¢1, 0 = ¢o, and ¢ = c3 are,
respectively, spheres, circular cones, and planes passing through the z-axis.

The unit tangent vectors to the coordinate curves and scale factors are given by

e, =sinflcosgpe; +sinfsinp e, + cosb es, hi="h,=1
€9 = cosfcos ey + cosfsin ¢ ey —sinf és, ha =hg =p
€y, = —singe; + cos ¢ ey, hs = hg = psin6.

The element of arc length squared is
ds* = dp* + p* d? + p*sin® 0 d¢p?,

and the metric components of this space are given by

1 0 0
gij=(0 p? 0 :
0 0 p?sin®f

Note that the spherical coordinate system is an orthogonal system.

Example 8-17.
An example of a curvilinear coordinate system which is not orthogonal is the

oblique cylindrical coordinate system (r,6,7) illustrated in figure 8-19

[e)
/'r'sinﬂ %cosa/

x

Figure 8-19. Oblique cylindrical coordinate system.
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The transformation equations (8.68) are obtained from the geometry in figure 8-19.

These equations are
T = rcosf

y =rsinf 4 1ncos o
z =7nsina,
which for a = 90° reduces to the transformation equations for cylindrical coordinates.
The unit tangent vectors are
e, =cosfé; +sinfeéy
€y = —sinf &y + cosf ey

e, = cosa ey +sinaes,

and the metric components of this space are

1 0 sin @ cos «
Gij = 0 r? 7 cos f cos a
sinfcosa  rcosfcosa 1

Orthogonal Curvilinear Coordinates

The following is a list of some orthogonal curvilinear coordinates which have
applications in many different scientific investigations.

Cylindrical coordinates (r,6, z) :

xr =rcosf 0<60<2m
y =rsinf r>0
z=2z —0o<z<00
ds® = hi dr? + hg do* + hi dz? (8.77)
h.=1, hg=7r, h,=1
h2 0 0
9ij = 0 hz 0
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Spherical coordinates (p, 0, ¢) :

x = psinf cos ¢, p>0
y = psinfsin ¢, 0<¢p<2r
z = pcosb, 0<o0<n
ds® = h? dp® + hj d6* + b3 d¢” (8.78)
h,=1, hg=p, hy=psinf
20 0
gij = 0 hz 0
2
0 0 R
Parabolic cylindrical coordinates (£, 7, 2) :
x=£&n, —00 < € <00
1
y:§(£2—172), —00 < 2 <00
z =z, n>0
ds* = hg de? + h% dn? + h? dz? (8.79)
hn:hgz\/n2+£2, h,=1
h? 0 0
Gij = 0 h% 0
0 0 &
Parabolic coordinates (£,7, ¢) :
& = £ncos ¢, £20, n=0
y = &nsin ¢, 0<o<2rm
1
z= 5(52 -n°)
ds? = h? de? + h% dn® + hi dep? (8.80)
he = hy = V/n? + €2, he =&n
h? 0 0
9i;=10 hl 0
0 0
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Elliptic cylindrical coordinates (§,7, z) :

x = cosh&cosn, £E>0
y = sinh&sinn, 0<n<2m
z =z, —00 < z < 00
ds® = hi d&* + b2 dn® + h? dz2? (8.81)
he = hy = \/sinh2£ + sin? 7, h,=1

hg 0 0
Gij = 0 h% 0
0 0 A2

Elliptic coordinates (£, 7, ¢) :

z=y/(1-n?)(-1cos¢p, -1<n<1
y=vV([1-n?)(& -1)sing, 1<E<o0
z =&, 0<¢<27
ds® = hi d§* + hl dn® + h d¢? (8.82)

2 _ 2 2 _ 2
b=y = e = V@ DI
0

2o
Gij = 0 h% 0
0 0 hi

Transformation of Vectors

A vector field defined by
"Z( = "Z((:Ea Y, Z) = Al(x’ Y, Z) él + AQ(x’ Y, Z) é2 + A3(x’ Y, Z) é3

represents a magnitude and direction associated to each point (z,y, 2) in some region
R or three dimensional cartesian coordinates. This vector field is to remain invariant
under a coordinate transformation. However, the form used to represent the vector
field will change. For example, under a transformation to cylindrical coordinates,

where

x =rcosf y=rsinf z =z, (8.83)

the above vector can be represented in terms of the unit orthogonal vectors e,, &g, é.

in the form
A=A(r0,2)=A.(r,0,2) &+ Ag(r,0,2) & + A.(r, 0, 2) &.. (8.84)
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Here the quantities 4;, A5, A3 represent the components of the vector field 4 in rect-
angular coordinates, and A,, Ag, A, represent the components of the same vector
field A when referenced with respect to cylindrical coordinates. The unit vectors

é,, &, e, are orthogonal unit vectors and hence
A -6, =416, -6 +Ar65- 6, +As85- &, = A,
= Component of A in the &, direction
A-&g=A181- &g+ Ayéy- &+ Azés- &g = Ay
— Component of 4 in the &, direction
A e, =A18 6,4+ Aréy- 6,4+ A363- 6, = A,

= Component of A in the é. direction.

These equations can be expressed in the matrix form as follows:

Ar él : ér é2 : ér é3 : ér Al
Ag | = e1-e -8 e-& || A]. (8.85)
Az él : Az é2 : éz é3 : éz A3

For example, it is known that the unit vectors in cylindrical coordinates are

o

€, =cosfé; +sinf e,y
€y = —sin9é1 +C089é2

€, = €3,

and consequently the matrix (8.85) can be expressed as

A, cosf sinf O A
Ag | = | —sinf cosf 0 As | . (8.86)
A, 0 0 1/ \ A4,

Equation (8.86) illustrates how to represent the vector field components A,., 4q, A,
of cylindrical coordinates, in terms of the components A;, A,, A3 of rectangular coor-
dinates. In using the above transformation equation, be sure to convert all z,y, z co-
ordinates to r,, » cylindrical coordinates using the transformation equations (8.83).

Note also that the coefficient matrix in equation (8.83) is an orthonormal matrix.



Example 8-18. Express the vector

—

A :2yé1+2é2+2$é3

in cylindrical coordinates.
Solution The rectangular components of A are A; = 2y, A, = z, As = 2z, and from
equation (8.86) the cylindrical components are

A, =2ycosf + zsinf

Ag = —2ysinf 4 zcos b

A, =2z,

where the variables z,y, z must be expressed in terms of the variables r, 0, z. From the
transformation equations from rectangular to cylindrical coordinates one finds

r=rcosf, y=rsinfh, z==z

so that
A, =2rsinfcosf + zsin 6
Ag = —2rsin? 6 + zcos 6
A, = 2rcosf

and the vector 4 in cylindrical coordinates can be represented as

A=A(r0,2)=A,é, +Ag&g+ A, é..

General Coordinate Transformations

In general, a vector in rectangular coordinates
A=A ¢ + Az ey + Az e

can be expressed in terms of the orthogonal unit vectors e,, &,, &, associated with
a set of orthogonal curvilinear coordinates defined by the transformation equations
given in equation (8.68). Let the representation of this vector in the orthogonal

curvilinear coordinates system be denoted by

—

A:X(u,v,w):Auéu+Avév+Awéw,
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where A,, A,, A, denote the components of A in the new coordinate system and
are functions of these coordinates. The transformation equations from rectangular

coordinates to curvilinear coordinates is represented by the matrix equation

A, & -6, 6.8, 6&5-8,\ (A
A, | = &6, -6, e384 || A (8.87)
Au} él : éu} é2 : éu} é3 : éu} A3

which is derived by taking projections of the vector A onto the u,v and w directions.

Let us find the representation of the gradient, divergence and curlin a general
orthogonal curvilinear coordinate system. Recall that the gradient, divergence, and

curlin rectangular coordinates are given by

99 ¢ . 99 .

grad¢:£el+a—ye2+&e3
. = OF 0F, O0OF;3
F =
div 8x+8y+8z
= (O0Fy OFy)\ OF, 0F3)\ . OF, OFy\ .
CurlF_(@y_8z>el+<8z_8:5>82+<8x_8y>e3'

Gradient in a General Orthogonal System of Coordinates
In an orthogonal curvilinear coordinate system, let the vector grad ¢ have the
representation
grad ¢ = A, €, + Ay, €, + Ay €y

By using the matrix equation (8.87), the component A, in the curvilinear coordinates

1S
graqu-éu:Au:%él-éu%—%ég-éu%—%ég-éu.

ox oy 0z
By employing equations (8.75) and (8.76), this result simplifies and

1 (090 0¢ 0 0¢ 0 10
¢ox 040y 090z 1 0¢

A= 9000 Tayou T 920u| o

(8.88)

In a similar manner, it can be shown that the other components have the form

1
gradqﬁ-éU:AU:—% and grad ¢ - €, = Ay
hg (91)

_19¢
N h3 (9w

Thus the gradient can be represented in the curvilinear coordinate system as

10 10 10
3

ot g (8.89)



Since o o o dpOu  dpOv 9 O
N ~ N u ( w N
e Tyt e <a£+%£+%£> €
0pou 0pdv Ip ow\ .
<8u8y+808y+8w8y>82

doou  dvon 000w
Oudz Ovdz Ow oz s

equation (8.89) can be expressed in the form

_ _ v, . v, 99
V¢ = grad ¢ = Vuau + Vo 50 + Vuw B (8.92)

Equation (8.92) suggests how the operator V can be expressed in a general curvilinear
coordinate system. In a general curvilinear coordinate system (u,v,w) one finds the

operator V has the form

3} 0 0
V= Vua + Vv% + Vw%. (8.91)

Divergence in a General Orthogonal System of Coordinates

To find the divergence in an orthogonal curvilinear system, the following rela-

tions are employed:
Vu=—e,, Vv =—e,, Vw = —é, (8.92)

which are special cases of the result in equation (8.89). Equations (8.92) imply

6, = &, X &y = hahs (V) x (Vo)
év = éw X éu = hlhg(Vw) X (V’LL) (893)
6w = &y X &, = hiha(Va) x (Vo)

Example 8-19. Derive the divergence of a vector which is represented in the
generalized orthogonal coordinates (u,v,w) in the form

F = ﬁ(u,v,w) =F,e,+ F,¢é,+ F,é,.
Solution: By using the properties of the del operator one finds

—

V-F =V(F,é,) +V(F, &)+ V(F,é,). (8.94)
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The first term in equation (8.94) can be expanded, and

V(F,&,) =V(F,) - é,+ F,V(&,)

— hiaa% + F,V]hahs(Vv) x (V)] (See egs. (8.89) and (8.93))
= hilaai“ + Fu{V(h2h3) - [(Vv) x (Vw)] + hahsV - [(Vv) x (Vw)]},

where properties of the del operator were used to obtain this result. With the result
div (grad v x grad w) = 0, so that

1 OF,

€y

V(F,&,) = T F,V(hghs) - e (See eq. (8.93)
| OF,  F, 0(hohs) 1 O(hohsF,)

- h_l ou hihohs  Ou - hihsahs ou (See €q. (889))

Similarly it can be verified that the remaining terms in equation (8.94) can be

expressed as

V(F, &) 1 O(hihoFy)

- h1h2h3 (91)
) 1 8(hhoFy)
F,e,) = .
and V(Fy éy) hihahe o
Hence, the divergence in generalized orthogonal curvilinear coordinates can be ex-
pressed as
- a 1 [8(hshsFEy)  O(hihsF,)  d(hihaFy)
F=V.F= 8.95
d]V v h1h2h3 ou + ov * ow ( )
]

Curl in a General Orthogonal System of Coordinates

Our problem is to derive an expression for the curlof a vector F which is repre-
sented in the generalized orthogonal coordinates (u,v,w) in the form

—

F = F(u,v,w)=F, &, +F,&,+ F, &,
one can write
curl F =V x F =V x (F,é,)+V x (F,&,) +V x (F,&,). (8.96)

The first term in equation (8.96) can be expanded by using properties of the del

operator and
V x (F,&,) =V x (F,hyVu) (See eq. (8.89))

= V(Fuh1) x Vu+ F,hV x V.
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Since curl grad v = 0, the above simplifies to

V x (F,&,) = V(Fyhy) x %
1
_[roEm) Lo LR, ] &
hl a’LL v hg 81} v h3 aw v hl
_ L AR, 1 A(Fm)
hlh:’, ow v hlhg ov v

In a similar manner it may be verified that the remaining terms in equation (8.96)

can be expressed as

1 O(Fhy) . 1 8(Fyhs) .
Vx(Fve) = o= S T e g o
1 a(thi’:) ~ 1 a(thi’:) &

Fu)Au): u
and  Vx (Fy @w) = g Tl — e =

Hence, the curlof a vector in generalized curvilinear coordinates can be represented

in the form 1 [8(Fyhs) O(Fyhy)
- wh3) vlt2) | 4
VxF = h2h3[ BN ow ]e“
1 a(Fuhl) a(thi’)) A
+ hihs [ ow  Ou e (90
1 a(thQ) a(Fuhl) A
+ hihs [ du v o

Equation (8.97) can also be represented in the determinant form as

hl éu h2 év h3 éu}
) 0 0

Ju v ow
Fohy  Fyhy Fyhs

a ! (8.98)

F =
VX Iy hahs

The Laplacian in Generalized Orthogonal Coordinates
Using the definition V2¢ = VV¢ and the relation for the gradient given by equa-

tion (8.89) and show that

1006, + 102 16‘1“]. (.99)

vv¢:v|:h_1aeu+h_26’l) €, E%ew

The result of equation (8.95) simplifies equation (8.99) to the final form given as

5, 1 0 (hoh3 8¢\ _ O (hihs 0¢ 0 (hihy 99
v ¢_h1h2h3 [au hi Ou) Qv \ hy Ov ow \ hy Ow)/|’ (8.100)

The equation V2U =0 is known as Laplace’s equation.
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Example 8-20.

The Laplacian in rectangular coordinates (z,y, z) is given by

0?U  0°U  0?U

VU =
0x? * Oy? * 022

(8.101)
The Laplacian in cylindrical coordinates (r,0, z) is given by

10 (00 18U 5

VU_’F@’F "or r2 002 +822

QU 19U | 18U 90U

vy =2 2 S0
or? +r or +T2 002 * 072

(8.102)

The Laplacian in spherical coordinates (p, 0, ¢) is given by

L0 (00N 1 9 ory 1 g
vU_/)2(9p P ap +p251n989 Sme@@ +p251n208¢2
VQU_OQ_U+26_U+L(92_U+COt98_U+ 1 82_U

92 T pap 2 on P2 90 " 2sin20 092

(8.103)

Special cases of the Laplace equation V2U = 0 are easy to solve.
1. If y = 2 = 0 in rectangular coordinates, the Laplace equation, with Laplacian
2
(8.101), reduces to v _ 0. One integration produces o _ Ci, where Cy is

2
a constant of integrgéon. Another integration gives U = dglx + Co, wWhere Cy is
another constant of integration.

2. If # = 2 = 0 in cylindrical coordinates, the Laplace equation, with Laplacian
(8.102), reduces to %d% <rcfl—g> = 0. An integration of this equation gives chi_g =
C1, where (1 is a constant of integration. Separate the variables in this equations
and integrate again to show the solution of the special Laplace equation is given
by U = C;Inr + Cs, where C, is another constant of integration.

3. If = ¢ = 0 in spherical coordinates, the Laplace equation, with Laplacian

8.103), reduces to L de—U = 0. An integration of this equation gives
p? dp
pQCfl—Z = (1, where C; is a constant of integration. Separate the variables and

9 4 ¢, where C, is another constant

perform another integration to show U = =2

of integration.
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Exercises

» 8-1. Sketch some level curves ¢ = k for the given values of k and then find the
gradient vector.
(i) ¢=4do—2y, k=-2,-1,0,1,2
) ==y, k=-2,-1,0,1,2
(iii)) o¢=2"+y* k=0,1,9,25
) ¢=92+4y*, k=0,36,72

» 8-2. Find the gradient vector associated with the given functions and then evaluate
the gradient at the points indicated.
(i) ¢=4x—2y, (4,9),(0,0),(—4,-9)
() o=ay,  (0,1),(=1,0),(0,~1),(1,0), (1,1), (~1,1), (~1,~1), (1, ~1)

(iil)  o=2+v* (1,0),(3,4),(0,1),(=3,4),(—1,0), (=3, —4), (0, —1), (3, —4)

(iv)  ¢=92"+4y% (2,0),(0,3),(-2,0),(0,-3)

» 8-3. Find a normal vector to the given surfaces at the point indicated and describe
the surface.
(i) 4z+3y+62=13 P(1,1,1)
(ii) 2 +y*+22=9 P(1,2,2)

(iii)) z—-22—y*=0 P(3,4,25)

(iv) z=uay P(2,3,6)

» 8-4. Discuss the critical points associated with the function z = z(z,y) = zy. Graph

the level curves z = k, where k = —2, —1,0,1,2 and describe the surface.

» 8-5. Find the unit tangent vector at the point P(3,2,6) on the curve of intersection
of the surfaces
2+ y? + 2% =49, and r+y+z=11

» 8-6. Let r denote the magnitude of the position vector 7=z é; +yé, + zés.
(i)  Show that V(r") = nr"=27
(i)  Show that V(lnr) = %
(iii)  Show that V (f(r)) = f/(r)Z, where f is differentiable.
)

(iv) Does the result in part (iii) check with the solutions given in parts (i) and (ii)?



232

» 8-7. Find the minimum distance between the lines defined by the parametric

equations
Li: z=7—-1, y=-174+16, z=217-2

» 8-8. Find the minimum distance from the origin to the plane z +y+ 2 =1

» 8-9. The special symbol 2 is used to denote the normal derivative of a function
¢ on the boundary of a region R. The normal derivative is defined

%:gradqﬁ-én:VqS-én,
dn

where e,, is the unit exterior normal vector to the boundary of the region. Find the
normal derivative of ¢ = 23y + zy? on the boundary of the regions given.
(i)  The unit circle 22 +y% =1
(i)  The ellipse & + %4 =1
(iii)  The square with vertices (0,0), (1,0), (1,1), (0,1)

» 8-10. Find the critical points associated with the given functions and test for
relative maxima and minima.
(i) z=@-2°+@y-3)
(i) z=@-2°-(y-3)

(iii) 2=—-(r—2)?—(y—3)?

» 8-11. Let u(z,y, z) denote a scalar field which is continuous and differentiable. Let
r=x(t),y = y(t) and z = z(t) denote the position vector of a particle moving through
the scalar field. Show that on the path of the particle one finds

du dr
i (grad u) - e

> 8-12. Let f(x,vy,z,t) denote a scalar field which is changing with time as well as
position. Let z = x(t),y = y(t) and z = 2(t) denote the position vector of a particle
moving through the scalar field. Show that on the path of the particle

& _ ar | of
gr = erad D)t g
. dr dy dz . .
In hydrodynamics, where T dd represents the velocity of the particle, the
above derivative % is called a material derivative and is represented using the nota-
tion %‘: Note that the material derivative represents the change of f as one follows

the motion of the fluid.
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» 8-13. A force field F is said to be conservative if it is derivable from a scalar
potential function V such that
F = +grad V.

One uses either a plus sign or a minus sign depending upon the particular application
being represented.

Consider the motion of a spring-mass system which oscillates in the z-direction.
Assume the force acting on the mass m is derivable from the potential function
V = Lka?, where k is the spring constant. Use Newton’s second law (vector form)

and derive the equation of motion of the spring-mass system.

> 8-14. (Divergence of a vector quantity )
Let

—

F(.I,y,Z) = Fl(xayaz) él —{—FQ(QT,y,Z) é? —{—Fg(i?,y,Z) é3

denote a vector field and consider a volume element AzAyAz located at the point

(x,y,2) in this vector field.

(a) Use the first couple of terms of a Taylor series expansion to calculate the vector
field at

C G
. = D H
(i) F(z+Az,y,2) Az
ii) F x,y+ Ay, z B
( ) z F
= A
(iti) F(x,y,z+ Az) LJ_”J A Ay E ¥

(b) Use the results in part (a) and calculate the flux over the surface of the cubic
volume element AV = Az AyAz and then divided by the volume of this element
in the limit as the volume tends toward zero.

» 8-15. Determine whether the given vector fields are solenoidal or irrotational
(i) F = (2zyz — 2°) &1 + xzéy + (2%y — 222) &3
(ii) F = & + (2%y — y?2) & + (y2° — 22
(iii) F =2zyé; + (2% — 2yz) &y — % &3

Z) ég
(iv) F =2x(z—y)éy + (y° —yx?) éy + (222 — 2?) é3
» 816. Show that div (curl F) =0

» 8-17. Show that curl (grad ¢) =0
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» 8-18. For 7=uzé; +yé; + 263 and r = |7] show

» 8-19. Show that the vector field V¢ is both solenoidal and irrotational if ¢ is a

scalar function of position which satisfies the Laplace equation V2¢ = 0.

» 8-20. Show that the following functions are solutions of the Laplace equation in
two dimensions.
(i)  o=a-4
(il)) ¢ =322y —y?

(iii)) ¢ =1In(2? +4?)

» 8-21. Verify the divergence theorem for F = zyé; + y*&é, + zé; over the region
bounded by the cylindrical surface 22 + 3> = 4 and the planes z = 0 and » = 4.
Whenever possible, integrate by using cylindrical or polar coordinates. Find the
sections of this surface which has a flux integral.

> 8-22.
(i) Verify Green’s theorem in the plane for

M(z,y)=2*+y* and N(z,y) =y,

where C is the closed curve illustrated in the figure.
(ii) Use line integration and appropriate values for M and N in Green’s theorem to
determine the shaded area of the attached figure.

» 8-23.  Verify Stokes theorem for F' = yé; over that portion of the unit sphere in
the first octant. Hint: Use spherical coordinates.

» 8-24. Verify the given differential equations are exact and then use line integrals
to find solutions.
(i) oy +y?)de+ (2 +22y)dy =0
(il)  (32%y + 22y?) do + (2% + 2y2® +2)dy =0



» 8-25. Use line integrals to find the area enclosed by the given curves.
(i) Theellipse, z=acost y=bsint, 0<t<2m.
(i)  The circle, z=cost y=sint, 0<t< 2.

(iii)  The unit square whose boundaries are z=0,z=1,y=0,y = 1.

» 8-26. Verify the divergence theorem in the case F = zé; +yé, + zé5 and S is the

surface of the sphere z2 + 32 + 22 = a?. Hint: Use spherical coordinates.

» 8-27. Calculate the flux of the vector field F = z &; entering and leaving the volume
enclosed by the two spheres 22 +y*> + 22 =1 and z? +y* + 2* = 4. Does the Gauss
divergence theorem hold for this volume and surface?

» 8-28. Calculate the flux of the vector field F = y ¢, entering and leaving the volume
enclosed by the two cylinders 2% + y* =1 and 2? +y* = 4, bounded by the planes
z =0 and z = 2. Does the Gauss divergence theorem hold for this volume and surface?

> 8-29.
Let S denote the surface of a rectangular parallelepiped with unit surface normals

+é;,+ &, +¢é; and write the surface integral

I://ﬁ-d§: ﬁ.d§+/ ﬁ.d§+/ ﬁ.d§+/ ﬁ.d§+/ ﬁ.d§+/ 7.ag
g Sl SQ S3 S4 SS SG

as a summation of the flux over the six faces of the parallelepiped. Calculate the
above flux integral for F = yé; + zé; + zés
(iii) Consider a unit cube with one vertex at the origin. Calculate the flux entering

or leaving each face of the cube. Sum these fluxes and comment on your result.

» 830. Let FF = M(z,y) &+ N(z,y) & and use 7 = zé, +yé, to represent the position
of the curve ¢ and show Green’s theorem in the plane can be represented in either
of the forms

(a)géﬁ-dfz//(vXﬁ)-égd:cdy or (b)gﬁc(ﬁxég)-énds://v-(ﬁx é3), dzdy
R R

where &, is a unit outward normal to the boundary curve C.

Hint: Use triple scalar product.
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» 8-31. Let # denote a position vector to a general point on a closed surface S,
which encloses a volume V. Evaluate the surface integral

//F-dgz//F-éndS
S S

» 8-32. The Gauss Theorem Let 7 denote the position vector from the origin to a

general point on a closed surface S. Show that

// é, - FdS B {0, if the origin is outside the closed surface S
s

r3 47, if the origin is inside the closed surface S

Hint: Use the divergence theorem and when the origin is inside S, construct a small

sphere of radius e about the origin.
» 8-33. For F =222¢6; +ayzé6, +yzés and ¢ = xyz?2, calculate V(d)ﬁ)

» 8-34. For A, B vector fields and f a scalar field, verify each of the following:
— (grad f) x A + fcurl A

curl (A x B) = A(div B) — B(div A) + (B -V)A — (A -V)B

— (grad f) - A+ fdiv 4

—B-cwl A— A -curl B

» 8-35. Evaluate the line integral

1
A:—¢:L‘dy—yd:c
2Jc

around the triangle having the vertices (0,0), (b,0) and (¢, h) where b, ¢, h are positive

constants. Evaluate this integral using Green’s theorem in the plane.

» 8-36. Evaluate the integral
I://(Vxﬁ)-d§,
s

where F = (y — 2x) é; + (3z + 2y) & and S is the surface of the cone

T =ucosv, y = usinv, z=ufor0<u<9and 0<v<2r.

Hint: If you use Stoke’s theorem be sure to note direction of integration.
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» 8-37. Let F =xzé, +yé, +zé; and evaluate the surface integral

I://ﬁ-d§,
S

where S is the surface enclosing the volume bounded by the planes z =0, y =0, 2z =0
and 2z + 3y + 42 = 12 Hint: The volume of a tetrahedron having sides a, b and c is
given by V = tabc.

» 8-38. Use Stokes theorem to evaluate the integral
I= 55 F-dF, where F =yé; +2zé+ (dy +2z) &3
C

and C is the simple closed curve consisting of the line segments

PP+ PoPs+ P3Py
connecting the points Py(0,0,0), P»(1,1,0), and P3(0,0,2+2).

» 8-39. Let v = @(x,y, z,t) denote the velocity of a fluid having densityp = p(z,y, 2, t).
Construct an imaginary volume of fluid V enclosed by a surface S lying within the
fluid.

a) Show the mass of the fluid inside V is given by M = /// p(z,y, z,t)dV

(

(b)

(c)

(d) Use the divergence theorem to show / / / % gy — _ / / P dS = — / / V(o) dV
)

(e) Since V is an arbitrary volume show that V.J + E = 0, where J = p#. This

Show the time rate of change of mass is — // % dv

Show the mass of fluid leaving V per unit of time is given by 6;\;[ = // pvU -7 dS

equation is known as the continuity equation of fluid dynamics.

» 8-40. In parabolic cylindrical coordinates (¢,7, z), find
(a) The unit vectors &, ¢,, é,
(b) The metric components g;;
» 8-41. In the paraboloidal coordinates (¢,7, ¢), find

(a) The unit vectors &g, é,, &,

(b) The metric components  g;;
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» 8-42. In cylindrical coordinates (r, 6, z), show that

9 9 9
or o0 oz
F, rFy F,

- S 1
curl F =V X F = —
,

e rey €,
0

» 8-43. In cylindrical coordinates (r, 6, z), show that

— . )
divF—v.F=1 [Q(TFT) + %(Fe) + 5(7"&)]

r

» 8-44. In cylindrical coordinates (r, 6, z), show that

0 10 0
gradu:Vu:—uér+— Ya uéz

or a0 T as
» 8-45. In cylindrical coordinates (r, 6, z), show that

Viy=--2 7«@ _|_i62_u_|_82_u
u_rar or r2 002 022

» 8-46. In spherical coordinates (r, 6, ¢), show that

e. reéy rsinfey
) 9 2

20 96
F, rFy rsinfFy

» 8-47. In spherical coordinates (r, 6, ¢), show that

. — — 1 a 2 . a .
_U.F— e S = (r<inOF 9 F
divF =V F Tand [ . (T smOFr) + e(rsm@ b) + ] (r ¢):|

» 8-48. In spherical coordinates (r, 6, ¢), show that

Qug, 1 10ug L Oug
or o0 "’ rsin? 6 0¢ ¢
» 8-49. In spherical coordinates (r, 6, ¢), show that
bl L0 (a0u, 10 (L ouy 1 O
Viu= " +T251n989 sin 6 *
» 8-50. Show that
(a) In cylindrical coordinates (r,0, z), the element of volume is dV = r dr dfdz.
(b) In spherical coordinates (r,, ), the element of volume is dV = r? sin dr d¢ df.

(¢) In a general orthogonal curvilinear coordinate system (u,v,w), the element of

volume can be expressed as dV = hyhyhy, dudv dw.
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» 8-51. Show in a general orthogonal coordinate system div (gradv x gradw) = 0

» 8-52. For &, &, &; independent orthogonal unit vectors (base vectors), one can
express any vector A as
A=A & +Ayéy + Az ég,

where A,, As, A5 are the coordinates of A relative to the base vectors chosen.

(a) Show that these components are the projection of A onto the base vectors

and

A=(A-&)é;+ (A é&)éy+ (A &3)eés.

(b) By selecting any three independent orthogonal vectors,E1, Ey, E3, not nec-

essarily of unit length, show that one can write

. A E,\ = A By \ = A By \ =
A= L B+ | 2 B+ | =—2 | E,.
E., E, Ey-Ey Es-E3

Consequently,

are the components of 4 relative to the chosen base vectors E;, Es, Es.

» 8-53. 'T'wo bases Ei, E,, E5 and E', E2, E® are said to be reciprocal if they satisfy
the condition .

1 ifi=j

0 ifi#j

(i.e., A vector from one basis is orthogonal to two of the vectors from the other

basis). Show that if E, Ey, E3 is a given set of base vectors, then

E,Eﬂ':{

. 1 - = . L . L
E'=_—EyxE E?=_—E3xE E?=_—E;xE
vV 2 3 Vv 3 1, vV 1 2
is a reciprocal basis, where V = E; - (E, x E3) is a triple scalar product and represents

the volume of the parallelepiped having the basis vectors for its sides. Show also

that B'. (B2 x B%) = %
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» 8-54. Let E;, Ey, E3 and E', E? E® be a system of reciprocal basis. (See previous
problem).

(a) If A = A'E, + A%E, + A3E; find the components A', A%, 43 of A relative to the base
vectors Eq, Es, Es5.

(b) If A = A\E' + A;E? + A3E? find the components A;, Ay, A3 relative to the basis
E',E? E3. The numbers A? are called the contravariant components of A and the
numbers 4; are called the covariant components of A.

(c¢) Using the notation

— —

E;-Ej = gij = gjis and E'-El =g" =g,

where E,, E,, E5 and E!, E?, E® is a reciprocal system of basis, show that
3 4 3
A = Z gikAk and A= Z 9ir Ak,
k=1 k=1

where i is called the free index and % is a summation index. Here ¢ are called
3

the conjugate metric components of the space and satisfy Zgijgj’“ = oF is the
j=1
Kronecker delta.

(d) Show that

g11 g12 913 911 912 913
g21  9g22 Gg23 921 922 923 =
931 932 g33 931 932 933

» 8-55. Show that in an orthogonal curvilinear coordinate system (u,v,w), the vec-

O O =
O = O
_ o O

3
) or Y gig’t =6f
j=1

tors oF oF oF
. 7 Or OF
(E1, Eq, E3) = <£,%,%>
and (51,52,53) = (grad u, grad v, grad w)

are a reciprocal system of basis.



Chapter 9
Applications of Vectors

The use of vectors in mathematics, physics, engineering and the sciences is
extensive. The applications presented within these pages have been selected mainly
from the study areas of physics and engineering.

Approximation of Vector Field

The Kriging! method is a numerical method to approximate a quantity using
a statistical weighting of known data values. The Kriging method can be used to
approximate many different kinds of quantities. The following illustrates an ap-

plication for the approximation of a vector field using interpolation. The weighted

average associated with a set of data values {Q1, Q2,Qs,...,Q,} is defined
0= w1Q1 + w2 +w3Q3 + -+ w,Qp 9.1)
wi + wy +wz + Wy
where wy, ..., w, are the assigned weighting factors. Note that if all the weights equal

unity, then equation (9.1) reduces down to a regular average of the given data values.

The following discussion illustrates how the Kriging method can be used to
approximate a vector field in the neighborhood of known points and known vectors
associated with these points. Note that the discussion presented can be generalized
and made applicable to any quantity Q = Q(z,y, z) which is a function of position
that one wants to approximate.

Given a finite number of known vectors

—

Fi=F(z1,y1,21), Fa = F(22,y2,22), -+, Fr = F (0, Yn, 2n)
which are associated with the known points (z1,%1,21),..., (Tn, Yn, 2n). It is assumed
that these known vectors are associated with a vector field F = F(z,y, z), but we
don’t know the form for F. In order to approximate the representation of the vector
field F = F(z,y,2) in some neighborhood of the known points (z;, i, 2), i = 1,...,n
and known vectors at these points one can proceed as follows. In order to use the

known data values to estimate the value of F = F(z,y,2) at a general point (z,y, 2)
one can define the distances

! Danie Gerhardus Krige(1919- ) A South African geologist and mining engineer.
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di =v/(z — 1) + (y —y1)* + (2 — 21)?
dy =v/(z — 2)% + (y — 12)% + (2 — 22)?

(9.2)

dn :\/($ - $n)2 + (y - yn)2 + (Z - Zn)2
of a general point (z,y, z) from each of the known data points. It is then possible to
use these distances to construct the weights

wy = d2d3d4"'dn, wo = d1d3d4...dn, ws :d1d2d4...dn, W, :dldg"'dn_l (93)

Note that to form the weight w;, for some fixed value of i in the range 1 < i < n,

one can form a product of all the distances H dj = dydads - - -di—1d;diq1 - - d,, and then
j=1
remove the term d; from this product to form the weight w; = didads - - -d;_1d;i1 - - dp.

A shorthand notation to represent the above weights is given by the product formula

w; = H dj where dj = \/(x - xj)Q + (y — yj)2 + (Z _ Zj)2 (9‘4)

for j =1,2,3,...,n. The vector F at the interpolation position (z,y, z) is then approx-
imated by the weighted average
. w1ﬁ1+w2ﬁ2+"‘+wnﬁn

F=F(z,y,2)= 9.5
(@,y,2) w; +wz + -+ wy (9:5)

Observe that if (z,y,2) = (2,9, 2) for some fixed value of i in the range 1 < i < n,
then d; = 0 and equation (9.5) reduces to the identity F(z;,y;,z) = F;. The Kriging
method examines the distances between the coordinates of the known quantities and
the selected interpolation point (z,y, z). It then forms weights where points closest
to the interpolation point have the highest weight. This can be seen by writing the
coefficients of the vectors in equation (9.5) in the form
1

d;

1
2T
j=1 7

so that the smaller the d; # 0, the higher the weighting coefficient. If d; = 0, then
all the coefficients with index different from i are zero so that an identity with the

Coef ficient; =




known value at i occurs. This approximation method is an interpolation method
associated with the given data values and is known as a weighted prediction method.
A modification of the above method is obtained as follows. The Kriging weights

can be generalized by requiring the coefficients in equation (9.6) to have the form

1

B
Coef ficient; = d; 8 >0 a constant (9.7)

n

2

and then adjusting the parameter 3 to achieve some kind of desired result.

Q\Q|>_‘

Spherical Trigonometry

The figure 9-1 illustrates three points A, B, C on the surface of a unit sphere with
a great circle passing through any two of the selected points. This forms a spherical
triangle. Let «,3,~v denote the angles? at the points A, B,C and let a,b, c denote the
length of the sides opposite these angles. On a circle of radius r the arc length s
swept out by an angle 6 is given by s = 7. The sphere being a unit sphere dictates
that the arc lengths « = ZB0C, b = ZA0C, ¢ = ZA0B. One of the basic problems in
spherical trigonometry is to find a relation between the angles o, 3,7 and the sides of
arc lengths a, b, c of a spherical triangle. The following illustrates how vectors can be

employed to find such relationships.

ZN

Figure 9-1. Spherical triangle with unit vectors é4, ép, éc

2 The angles are the same as the angles between the tangent lines to the great circles.
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Define the unit vectors é,4, ég, &- from the center of the unit sphere to the points
A, B, C on the surface of the sphere and observe that by using the definition of a cross
product and dot product one obtains
|éa X éc| =sinb, |é4 x ég| =sinc, éc X eég| =sina
(9.8)
€4 €c =cosb, €4 - ég =cosc, éc - ég =cosa
Note that since the sphere is a unit sphere the angles a,b, c are given respectively by
the arcs Bo, ac and as or arcs opposite the vertices A, B, C.
The angle between two intersecting planes is called a dihedral angle. The dihe-
dral angle can be calculated from the unit normal vectors to the intersecting planes.
In figure 9-1 , let

éB X éC:sina éogc, éA X éC:Sinb éOACa éA X éB:SinC éOAB (9.9)

define the unit vectors eppc, épac, €oap Which are perpendicular to the planes defin-
ing the dihedral angles a,3,7. The cross product relations given by the equation
(9.8) together with the unit normal vectors can be used to calculate the cosines
associated with the angle «, 3,~v. One finds that

€oBC - €0aB = cos [3, €0BC * €pAC = COs7, €0AC - €0AB = COS (9.10)

and with the aid of equations (9.9) one can write

|[(ép x éc)-(€éa x ép)]
|éB X éc||éA>< éc|

cosy = (9.11)

with similar expressions for the representation of cosa and cos 3. The relation (9.11)
can be simplified using the dot product relation (6.32) which is repeated here

(AxB)-(CxD)=(A-C)B-D)—(A-D)B-C) (9.12)
The numerator in equation (9.11) can then be expressed

(éB X éc) . (éA X éc) :(éB . éA)(éC . éc) - (éB : éc)(éc : éA) (9 13)
=cosc —cosacosb '
The results from equations (9.8) and (9.13) show that the equation (9.11) can be
expressed in the form

cosc = cosa cosb + sina sinb cosy (9.14)



Using similar arguments associated with the representation of cosa and cos3, one
can show
cosb =cos c cosa + sin ¢ sina cos 8
(9.15)
cosa =cosb cosc + sinb sinc cos a
The equations (9.14) and (9.15)) are known as the law of cosines for the spherical
triangle ABC.

Replace the dot product in equation (9.11) by a cross product and show

|(ep x ec) x (ea x &)

MY TS X ec|[ea x e (9.16)
The cross product relation (6.30), repeated here as
(,Ixé)x(éxﬁ):é[ﬁ-(ffxé)}—ﬁ[é-@xé)} (9.17)

can be used to simplify the numerator of equation (9.16). One can use properties of

the scalar triple product to write
(ép X €éc)x (éax éc)=éexléc-(eép X éc)l— éc|és-(ép x éc)]
=éalep-(ec x &c)] — éc[éa-(ep X éc)] (9.18)
=—éc[és-(ép x éc)]
so that
[(ep x éc) x (éa x ec)| = éa-(ep x &c)
The triple scalar product relation shows that
sin v sina sinb =|é4 - (&g x &c)|
sina sinb sine =|ép - (& x é4)] (9.19)
sinf sinc sina =| éc - (84 x ép)]
and the scalar triple product relation implies that

sina sinb sinc = sin 3 sinc sina = sin+y sina sinb (9.20)

Divide each term in equation (9.20) by sina sinb sinc to show

sina  sinf  sinvy

— = 9.21
sina sin b sinc ( )

which is known as the law of sines from spherical trigonometry.
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Velocity and Acceleration in Polar Coordinates
In polar coordinates (r,#) one can employ the orthogonal unit vectors

K y
e
. €2 ° e,
A « . A €e &,
e, =cosfé; +sinfé,y _ (9.22)
) @ C2 (] x
ég = —sin9é1 +C089é2 c1 S
unit circle circle with radius r

to represent the position of a moving particle.
If in two-dimensional polar coordinates the position vector of a moving particle
is represented in the form
r=ré,
where r, § and consequently, é,., & are changing with respect to time ¢, then the

velocity of the particle is given by

L dr  de, dr,
V== —i—dter (9.23)

Differentiate the vectors in equation (9.22) with respect to time ¢ and show

de, do do do

i :—smH%el%—cosH%eg:%eg (9.24)
Qe 0o oo |
at T T T Ty o

The first equation in (9.24) simplifies the equation (9.23) to the form

dr’ do . dr . DA P
E_r$e9+$er—rer+7“9ee (9.25)

U=

where "= %. Here v, = 7 is called the radial component of the velocity and the term
vg = rf is called the transverse component of the velocity or tangential component of

the velocity. The speed of the particle is given by
o=l = /()2 + 72

which represents the magnitude of the velocity.
The acceleration of the particle is obtained by differentiating the velocity. Dif-
ferentiate the equation (9.25) and show

v d*F .de, .. -d ey d, - .
@ aE g e i g rf)e

=#(0&9) + &, + rf(—0 &) + (rf + i) &

a =

@ =i —r(0)%) &, + (rf + 276) &g



Here the radial component of acceleration is (7 —r(6)?) and the transverse component
of acceleration or tangential component is (ré+27'“9). The magnitude of the acceleration

is given by

0 = [d) = /(7 = r(6)2)2 + (rf + 2062
Velocity and Acceleration in Cylindrical Coordinates

In rectangular (z,y, z) coordinates the position vector, velocity vector and accel-

eration vector of a moving particle are given by

U=T=xe; +yeéy+ z€3
L dr dx . dy . dz
EaTas T aet gt
L dr d*F d%x d?y . dQZA
T aE Tt e

Upon changing to a cylindrical coordinates (r, 8, z) using the transformation equations
T =1cosb, y =rsinb, z=2z

one can represent the position vector of the particle as

7 =rcosf e +rsinfes+ zé;3 (9.26)
. . Y Yo
Using the orthogonal unit vectors
(l * 6 - Z)
oF
e, :—T20059é1+sin9é2 =
or Y
107 . A . L &
& =55 = —sinfé; + cosf e o N\ = (9.27)
T o~
. or . iy <’ ep
eZ =— = e —~
0z ’ e,

obtained from equations (7.107), the position vector of a moving particle can be

expressed in cylindrical coordinates as
F=reé . +ze, (9.28)

To obtain the velocity vector in cylindrical coordinates one must differentiate equa-
tion (9.28) with respect to time ¢ to obtain

L dr o dr . de, dz .
’U—&—ger—{—’r?—{—gez (929)

247



248

since &, changes with time, but &, = é; remains constant. From equation (9.27) one
can calculate the derivatives

dé,n__‘. 9d9 i 9d9 ﬁA

T sin i €1 + cos i €y = L &y

d &g d9 do . do .

20 o e - 9.30
L cos 0 dt —sinf— i €9 L &y ( )
deé,

dt =V

as these derivatives will be useful in simplifying any derivatives with respect to time
of vectors in cylindrical coordinates. The equations (9.30) allows one to obtain the
result

L @' dr . . @ . dz

VT T T e

which can also be represented in the form

T=7é& +r0& + 26,
where the dot notation is used to represent time differentiation. Here v, = 7 is the
radial component of the velocity, vy = r6 is the azimuthal component of velocity and
v, = # 1s the vertical component of the velocity.

The acceleration in cylindrical coordinates is obtained by differentiating the

velocity. Differentiate the equation (9.31) with respect to time ¢ and show

Jzﬁzﬁ:i[ﬁé P +dZA]

at de i |at T a0 ¢
drde, d*r . df d ey d*0 dr df d’z .
:ﬁ 0t +Eer+7ﬂ$?+ T €+dtdt €+d?ez
drd@eeJr@é —r<d9> o +Td29é€+drd9€€+c12_zé (9.32)
dt dt a2 " dt " dt? dt dt 2 ¢

_ dQ_T _ ﬁ ’ é _|_ @ _|_ 2@@ _|_ @ é
e " \& e Pl aa) e &
a = —r(0)?) e, + (rf + 2/0) &g + 3 &.

d2
a2

where "= 4 and "=

with respect to time ¢. In calculating the derivatives in equation (9.32) make note

are shorthand notations for the first and second derivatives

that the results from equation (9.30) have been employed.



Velocity and Acceleration in Spherical Coordinates
Upon changing to spherical® coordinates (p, 8, ¢) the transformation equations
are

x = psinf cos ¢, y = psinfsin ¢, z = pcosf

and consequently the position vector describing the position of a moving particle is
given by
7 = psinfcos¢ e, + psinfsing ey + pcosbés (9.33)

Using the unit orthogonal vector é,, &y, 5 in spherical coordinates obtained from

the equations (7.102) and having the representation

. or S A
€, :a_T =sinf cos ¢ €, + sinf sin ¢ é; + cos b e3
I
10r A o o
€g =—— =cosfcospeé; +coslsingpé, —sinf ey (9.34)
= p 00
Yy . 1 B . A .
7(c1,0,c3) €e _pSiD9 - = SanSGl + COSQSGQ

the position vector # can be expressed in spherical coordinates by the equation
F=pé, (9.35)

In order to obtain the first and second derivatives of equation (9.35) with respect
to time ¢ it is necessary that one first differentiate the equations (9.34) with respect

to time t. As an exercise show that the derivatives of the equations (9.34) can be

represented A A A
ddip :aa(-;,, % aajsp sz_f - % G + Sineilz_f G
ddie :aaze % %Ze Z—f = —% e, + cos 9(2—? & (9.36)

One can then differentiate equation (9.35) and show the velocity in spherical coor-

dinates has the form

3 Note (p, 0, (;5) gives a right-handed coordinate system, whereas the ordering (p, o, 9) gives a left-handed

coordinate system. Be aware that European textbooks, many times use left-handed coordinate systems.
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Lo dr dép dp .

VS TP a T
do do . dp . (9.38)
<$eg+bln95 ¢> +Eep

=pe,+ p0 &g + p¢sm€é¢
Here v, = p is the radial component of the velocity, vy = pé 1S the polar component of
velocity and v, = pq'S sinf 1S the azimuthal component of velocity.

Differentiating the velocity with respect to time gives the acceleration vector

dv  d*7 d

a:E = e} dt (pep+p9e9+p¢sln9e¢> (9.3
d de, dé d dé '
n +pe,+ (P@W + dt(pe) € + (P¢Sln9)ﬁ + (P¢51n9) €y

Substitute the derivatives from equation (9.36) into the equation (9.38) and simplify
the results to show the acceleration vector in spherical coordinates is represented

__dv d2_' N2 D A
+ (pf + 2p0 — p($)? sin 6 cos 0) &g (9-39)
+ (psin @ + 2pd sin O + 2pf¢ cos 6) és
d d?

where "= <4 and "= is the dot notation for the first and second time derivatives.

dt dt?

In spherical coordinates an element of volume is given by dV = r2sin6 drdf d¢

Introduction to Potential Theory

In this section some properties of irrotational and/or solenoidal vector fields are
derived. Recall that a vector field F = F(x,y, z) which is continuous and differentiable
in a region R is called irrotational if curl F = V x F' = (0 at all points of R and it is
called solenoidal if divF = V- F =0 at all points of R.

Some properties of irrotational vector fields are now considered. If a vector field
F is an irrotational vector field, then V x F = 0 and under these conditions the
vector field F is derivable from a scalar field ¢ = ¢(z,y,2) and can be calculated by

the operation*

L. ) ) B )
F = F0,,2) = File,,9) 84 Fa(e 0, 2) ex+ Fa(o,y,2) 60 = Vo = grad 6 = 50 e+ 50 a0t 06,

Note that it you have a choice to solve for three quantities

Fl(xayaz)’ FQ(xayaZ)’ Fg(.I,y,Z)

4 Sometimes F = —grad ¢. The selection of either a + or - sign in front of the gradient depends upon how
the vector field is being used.



or to solve for one quantity ¢ = ¢(z,y, ), then it should be obvious that it would be
easier to solve for the one quantity ¢ and then calculate the components Fi, s, F3 by
calculating the gradient grad ¢. The function ¢, which defines the scalar field from
which F is derivable is called the potential function associated with the irrotational
vector field F.

In a simply-connected® region R, let F define an irrotational vector field which
is continuous with derivatives which are also continuous. The following statements
are then equivalent.

1. Vx F =cul F =0 and the vector field F is irrotational.

2. F = V¢ =grad ¢ and F is derivable from a scalar potential function ¢ = ¢(z, v, 2)
by taking the gradient of this function.

3. The dot product F - dF = d¢, where d¢ is an exact differential.

4. The line integral W = f,i? F - di is the work done in moving through the vector
field F between two points P, and P,, and this work done is independent of the
curve selected for connecting the points P, and P,.

5. The line integral ¢) F - d7 = 0, which implies that the work done in moving
around a simple cloged path is zero.

If a vector field F = F(z,y,z) = Fi(z,y, 2) &1 + Fy(z,y, 2) & + F3(z, y, z) &5 is derivable
from a scalar function ¢ = ¢(z,y,2) such that F = grad ¢ = V¢ (sometimes F is
defined as the negative of the gradient due to a particular application that requires
a negative sign), then F is called a conservative vector field, and ¢ is called the
potential function from which the field is derivable. Set F = grad ¢, and equate the

like components of these vectors and obtain the scalar equations

_9¢ _ 99 _ 99
Fl(xayaz)_a'xa Fg(f,y,Z)— aya Fg(f,y,Z)— aZ‘
These equations imply that
Fodr=ve di=2% v+ 94y 4+ 92 4. — ag (9.40)
ox oy 0z

is an exact differential. Consequently the statement 2 implies the statement 3.
If F = grad ¢, then the line integral flfﬁ - dr is independent of the path of
integration joining the points P, and P,. To show this, let P (x1, 31, 21) and Py (z2, 32, 22)

5A region K where a closed curve can by continuously shrunk to a point, without the curve leaving the region,

is called a simply-connected region.
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denote two points in the simply connected region R of the vector field F. The work
done can be expressed by performing a line integral of the equation (9.40) to obtain

Py (w2,y2,22) P Ps
W= Fodi= | Vé-di=| dp=ol
Py (x1,y1,21) Py Py
Py (x3,y2,22) . (9'41)
or W = F - di = ¢(x2,y2, 22) — ¢(x1, Y1, 21)
Py (x1,y1,21)

which implies that the work done depends only on the end points P, and P, and is
thus independent of the path which joins these two points. Thus statement 2 above
implies statement 4. Note that this result does not necessarily hold for multiply
connected regions.

The line integral given by equation (9.41) being independent of the path of

integration which joins P, and P, can be expressed as

/ﬁ-df:/ F . dr, (9.42)
Cl CQ

where the integral on the left is along a path C; and the integral on the right is along
a path Cy, where both paths go from P, to P, as illustrated in figure 9-2.

= P2 (x2,y2,z2)
C-2
4 b

Py (x1,Y1,21)

Figure 9-2. Paths of integration.

The integral (9.42) can be expressed in the form

55 F.di =0, (9.43)
C

where the closed path C goes from P, to P, along the path C; and then from P, to P,
along the path C,. The curves ¢, and C, are arbitrary so that the work done in going
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around an arbitrary closed path is zero. Note that Stokes’ theorem, with V x F =0,
implies that the line integral around an arbitrary simple closed path is zero.

To show that statement 2 implies statement 1, let F = grad ¢ = V¢. In this case
it is readily verified that

e & 5| =0 (9.44)
o2} (o2} o2}

13

curlﬁVXﬁVXVQS‘ax 9y 9z

The relation (9.41) establishes that in a conservative vector field the line integral
between any two points is independent of the path of integration. In this case one

can write
Pays)
/ F - di = 8z, . 2) — (0, 90, 20), (9.45)

Po(20,Y0,20)
and this line integral is independent of the path of integration which joins the two
end points. The function ¢ can be evaluated from F by selecting the special path of
integration which is the piecewise smooth curve constructed from straight line seg-
ments parallel to the coordinate axes. This special path of integration is illustrated

=z
Po(xo,y0,20)
y 1
ax

Pl (m!y()sz())

in figure 9-3.

P(ws'ysz)

-

P2 (msysz())

Figure 9-3. Straight line segments connecting end points of integration.

Along the sectionally continuous straight-line paths of integration illustrated in fig-

ure 9-3 the line integral (9.45) can be expressed in the component form as

P P
/ FdF:/ Fl(.l?,]/,Z)dl?‘i‘FQ(fE,]/,Z)dy—{—Fg(.I,y,Z)dZ:QS(.I,y,Z)—¢($0,y0,20)-
Py Py
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The line integral (9.45) can be expressed as the sum of the line integrals along the
straight line paths PyP,, P, P, PP illustrated in figure 9-3, where

Along Py Py, one finds dy=dz=0, y=1vo, 2= 2
Along P, P,, there exists the conditions dx =dz =0, z = 2, = held constant

Along P,P, use dx=dy =0, v and y both held constant.

This produces the integral

P . T Y z
/ F-dF:/ Fi(x, 90, 20) d:ﬂ+/ Fy(x,y, z0) dy+/ Fs(z,y,z)dz
o 20

Py o (9.46)
- ¢($ Y,z ) (an Yo, ZO
If F is irrotational, then V x F =0 which implies that
O _OF,  OR _0F OB _om 047
0z oy 0z ox oy ox

This hypothesis leads to the result F = grad ¢ = V¢ or its equivalence

0o 0o 0o

- @R ZL_pm.
ox oy 0z 3

To demonstrate this take the partial derivatives of both sides of the equation (9.46)

and show 96 v oy )  ORy )
v _r 2\T, Y, 20 / 3\, Y, 2
Oz 1(55,3,/0,20) + LO O dy+ w0 O dz
% o ZaFg(,I,y,Z) 9.48
9y Fy(x,y, z0) + /ZO 7(%/ dz ( )
¢

& = Fg(f,y,Z)-

Use the results from equation (9.47), to simplify the first set of integrals and find

a¢ o yaFl(xayaZO) /Z aFl(xayaZ)
O = Fl(fayOaZO) + LO ay dy+ w Oz dz

y z
= Fl(xay()a ZO) + Fl(xaya ZO)
Yo

= Fl(fayOaZO) +F1($aya20) _Fl(fayOaZO) +F1($,y,25) - F1($,y,2§0)
= Fl(xayaz)'

+F1($,y,2)

20

Similarly, the relations of equations (9.47) can be used to simplify the second integral
of equation (9.48) and one can show



a¢ _ i aFQ(xayaZ)
ay —FQ(xayaZ0)+LO 9z dz

= Fg(f,y,Z[)) +F2(.17,y,2)

= Fy(x,y, 20) + Fa(x,y, 2) — Fa(z,y, 20)

= Fy(x,y, 2).
Thus, from the hypothesis that V x F' = 0, one finds that F = grad ¢ = V¢. Conse-
quently, one can say that an irrotational vector field is derivable from a potential

function ¢.
Example 9-1. Show that
F=2+z2)é + (2zy+2%) 6+ (2yz+x)és

is an irrotational vector field and find the corresponding potential function from

which F is derivable. X R X

€1 €2 €3

0 0 9
oz y 0z

(V' +2) (zy+2z°) (2yz+2)

hence F is irrotational. Two methods of finding the corresponding potential function

Solution: It is readily verified that curl F = o =0 and

are as follows.
Method 1 By line integral integration, where the path of integration consists of

the straight-line segments illustrated in figure 9-3, one can show

T Y z
6(2, 9, 2) — b0, Yo, 20) = / (52 + 20) da + / (2ay + 22) dy + / (292 + ) dz
o Yo Z0

y ) z
+ (yz° + x2)
Yo

= (:Ey2 +yz? + xz) — (:Eoyg + yozg + x020)

= (ygx + z02) |+ (x4 + 23y)

Zo

20

where in the second integral x is held constant and in the third integral both z and

y are held constant. The resulting integral implies
d(x,y, 2) = xy® +y2° + x2.

Method 2 The components of the relation F = grad ¢ produce the scalar equations

2 2
a y I a y 9 a y

Integrating the first equation with respect to z, the second equation with respect to

y and the third equation with respect to z produces

¢ =y*z + 2z + fi(y, 2), ¢ =y*z+ 22y + fo(z, 2), ¢ =xz+4 2y + f3(z,y)
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where fi, fo, f3 are arbitrary functions which have been held constant during the
partial differentiation process. Now add the first and second equations, add the first
and third equation and add the second and third equations to obtain

20 =2zy* + vz +yz> + fi + fo

20 =xy® 4+ 2x2 +y2® + f1 + [

20 =zy” + x2 + 2y2° + fo + f3

In order that these three equations be the same, require that
fi+ f2 =z2+y2, fi+ fs = zy® + 2, fot fs=zy® + a2 (9.49)

Now solve the equations (9.49) for f,, f» and f; to show that
fr=2%, f2=wz, fs = xy?,
The potential function can then be expressed as
¢ = 2y + 2z + y22.

Observe that any constant can be added to this potential function to obtain a more

general result, since the derivative of a constant is zero.

Solenoidal Fields
A vector field which is solenoidal satisfies the property that the divergence of the

vector field is zero. An alternate definition of a solenoidal vector field is obtained

from Gauss’ divergence theorem

// v-ﬁdvz//ﬁ-d§. (9.50)
|4 S

If V-F =0, then [[F-dS =0 which implies that the total flux, through the simple
s

closed surface surrounding the volume V, is zero.

It has been shown that an irrotational vector field is derivable from a potential
function. An analogous result holds for solenoidal vector fields. That is, if F is a
solenoidal vector field which is continuous and differentiable, then there exists a vector
potential V such that ' = VxV = curl V. However, this vector potential is not unique,

for if V is a vector satisfying F = curl V, then the vector potential V* = V + V¢, where



¥ is any scalar function, is also a vector satisfying F = curl V*. This result is verified
by using the distributive property of the curl since

F =curl V* = curl (V + Vo) = curl V + curl (Vi) = curl V. (9.51)

together with the fact that curl (Vi) = curl grad ¢ = 0.

Since the vector potential V is not uniquely determined, it is only necessary to
exhibit one vector potential of F. Toward this end make note of the fact that F can
be expressed in the form

ﬁ:Flél +F2é2+F3é3:V><‘7
_ %_% & + %_% & + %_% é (9.52)
oy 0z ! 0z Ox 2 Ox oy 3
Show that if the component V3 = 0, then the components of F must satisfy the
equations
Vs oy oVy  0V;

e FQ:E’ FS:E_G—y' (9.53)

An integration of the first two equations in (9.53) produces

=

V1=/ Fydz + fi(z,y)

o (9.54)

V2 :_/ F1d2+f2(xay)a
20

where f;, fo are arbitrary functions which are held constant during the partial differ-

%. The functions f; and f, must be

entiation processes used to calculate % and —-
selected in such a way that the last equation in (9.53) is also satisfied for all values
of z,y, and z. Substitution of equations (9.54) into the last equation of (9.53) informs

us that

oV  OVy * OF, * OFy ofs 0f1

—_— - =- —dz — —dz+ == — —

ox oy 5 0T 2 0¥ ox oy (9.55)
(B omy g o on |
N 2 \ 0T oy ox oy

Now by assumption, F is a solenoidal vector field and consequently

. OF, OF, O0F;
divF = 5 + 9y + s =0.

We therefore can write

0F, n OFy OF;
ox oy 0z
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and thereby simplify the integral (9.55) to the form

oo [or, o o
Ozx oy 5 02 or oy 056)
0 0 :
:F3(x’yaz)_F3($,y,Zo)+£—i‘
ox oy

This equation tells us that if f;, f, are selected to satisfy

Ofs  0fi
o ay —Fg(f,y,ZO),

then the last equation of (9.53) is satisfied. One choice of f; and f, which satisfies

the required condition is f;(z,y) = 0 and
falew) = [ Faloy o) o

For the special conditions assumed, the constructed vector potential V has the com-
ponents

Vlz/ FQ(xayaZ)dZ
20

V2 = _/ Fl(.I,y,Z) dZ+/ Fg(fE,y,ZQ) dx (957)
Z0 Zo

Vs =0.
Other vector potential functions may be constructed by utilizing different assump-
tions on the components of V and performing similar integrations to those illus-

trated. Alternatively one could add the gradient of any arbitrary scalar function to
the vector potential V and obtain other potential functions V* =V + V.

Example 9-2.

By Newton’s inverse square law, the force of attraction between two masses m;
and ms, is given by
———8, (9.58)

where G = 6.6730 (10)~*m3kg 's~2 is called the gravitational constant, p is the dis-
tance between the center of mass of each body and e, is a unit vector pointing along
the line connecting the center of mass of the two bodies. The force is an attractive
force and so the direction of &, depends upon which center of mass is selected to
sketch this force.



| =S

This force is derivable from the potential function

6=%  where  p= e+ P+ G-
is the distance between the two masses and k£ = Gmymsy is a constant. In the above
relation the coordinates of the center of mass of the bodies 1 and 2 are respectively
Py (z1,91,21) and Py(x,y, z). The quantity k is a constant, and &, is a unit vector with
origin at P, and pointing toward P,. The force of attraction of mass m; toward mass
ms is calculated by the vector operation F = —grad ¢. To calculate this force, first
calculate the partial derivatives

0p _ 0 0p _ —k(z—z1)

Oz Opdx  p? p

9p _9¢0p _ —ky—w)
oy  Opody p* p
00 _900p _ —h (2= =)

0z 0Opdz  p? p

and then the gradient is calculated and one obtains

- k — — — k
F:—grad¢:—2 (55 Zﬂl)é1+(y yl)é2+(z Zl)é3 :—Qép

p p p p

Here 7 = z &, +yé,+zé3 is a position vector for the point P, and 7, = x; & +y; €3+ 21 é3
is a position vector for the point P1. The vector 7~ is a vector pointing from P; to
P, and the vector % = ¢, is a unit vector pointing from P, to P,. Here the vector
field is called consg;;a:;ill/e since the force field is derivable from a potential function.
The potential function for Newton’s law of gravitation is called the gravitational
potential. By using the relation F = +grad¢ one obtains the force of attraction of

mass msy toward mass m;.
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Example 9-3. Multiply both sides of Newton’s second law F = ma = moy by
% and then integrate from Py(zo, yo, 20) to P(z,y,2), to obtain
P P — P 2 =
= = dr d*7 dr
F.di=| F-Zdt= S
/po a /P a ¢ /P e dr
P =\ 2 P
md (dr md ,_ o
_ [ ma faryT L, [ ma ¢ 9.59
rala) =L, a0 059
- mV2 P my? B mV?
2 |p, 2 Ip 2 p,

which states that the work done in moving from P, to P, equals the change in kinetic
energy. Now if F is derivable from a potential function ¢ such that F = —V¢, then

P P

P_) P
/F-df: —V¢dF:/ —d¢ = —¢
PO PO PO

Equating the results from equations (9.59) and (9.60) and rearranging terms shows
that

= QS(anyOaZO) - QS(.I,y,Z) (960)
Py

m m
¢(x0a Yo, ZO) + _VQ(an Yo, ZO) = ¢($, Y, Z) + _VQ(:E’ Y, Z) (961)
2 2

This equation states that the sum of the kinetic energy and the potential energy has
a constant value. A result which is known as the principal of conservation of energy.
As a result, any force fields which are derivable from potential functions are called

conservative force fields.

Example 9-4. If F is a solenoidal vector field, then div F = 0 and one can write
F = curl V for some vector potential V. Consider an arbitrary region enclosed by a
surface S and then select a simple closed curve C on this surface which divides the

surface into two regions, call these regions S; and S,. The flux through this volume

// ﬁ-d§://ﬁ-d§1+//ﬁ-d§2:///divﬁdvzo
S S1 Sa Vv

which implies that
//ﬁ-d§1:—//ﬁ-d§2
Sl SQ

is given by



By Stokes’ theorem

//F-dgl://(VXV)-dglzgﬁV-dF
Sl Sl C
//ﬁ-dggz//(VxV)-dggzgé _Var
C
SQ SQ

where the negative sign is due to the relative directions associated with the line

and

integrals relative to the normals é,, and e,, to the respective surfaces S; and Ss.
That is, Stokes theorem requires the line integral around the closed curve C be in
the positive direction with respect to the normal on the surface. When the above
integrals are added, the result is the net flux through an arbitrary closed surface is

Z€To.

Two-dimensional Conservative Vector Fields
If corresponding to each point (z,y) in a region R of the plane z = 0, there

corresponds a vector
F = F(x,y) = M(z,y)é, + N(z,y)és, (9.62)

a vector field is said to exist in the region. Further, this field is said to be conservative

if a scalar function of position ¢(z,y) exists such that

0 0 . . =
gradqﬁza—ié1+a—jég:M(:U,y)e1+N(:c,y)e2:F. (9.63)

The scalar function ¢ is called a potential function for the vector field F. (Again,
note that sometimes F = —grad ¢ is more convenient to use.) The vector F is also
referred to as an irrotational vector field and is derivable from the scalar potential

function ¢ which satisfies

0 0
a—i =M and a—j =
Differentiating these relations produces
926 oM 9 0N
Ox Jy oy Ooyoxr Oz
so that a necessary condition that F = M &, + N &, be a conservative field is that
oM _oN
oy ox

An equivalent statement is that curl F = 0.

N.

(9.64)
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Definition: (Equipotential curves) If F = F’(m,y) is a
given conservative vector field with potential ¢(x,y), then
the family of curves ¢(x,y) = c are called equipotential

curves.

By selecting a constant value ¢ and graphing the equipotential curves
op=c¢, o¢=c+1, oPp=c+2,...,

one can determine by the spacing of these curves an estimate of the field intensity
In a given region.

The equipotential family of curves ¢(z,y) = c satisfies the differential equation

1)) 1))
dp=2Ldr+ P ay=o0
¢ Ox . oy 4 (9.65)

or M(x,y)dz+ N(x,y)dy = 0.
If this differential equation is exact, then it can be expressed in the form

_ 99,90, _
do = axd$+ 3y dy = M(z,y)dx + N(z,y) dy

and using the figure 8-10, its solution may be expressed as a line integral in either

of the forms

x Y
oz, y) = / Mz,yo)de+ | N(z,y)dy=c

o o (9.66)
or o(x,y) = M(x,y)dx + N(zg,y)dy =
(2.) / (2,y) da / (20,) dy = ¢

depending upon the straight-line path of integration from P, to P. At any point (z,y),
except singular points, where M and N are undefined, there is a tangent vector and
a normal vector to the point (z,y) on the curve ¢(z,y) = c¢. The vector F = F(z,y) lies
in the direction of the normal to the curve since grad ¢ = F is a vector normal to
é(z,y) = c at the point (z,y)

Field Lines and Orthogonal Trajectories

Field lines are lines or curves such that at each point on these curves the direction
of the tangent vector to the curve is the same as the direction of the vector field at
that point. An orthogonal trajectory of a family of plane curves is a curve which
intersects every member of the family at right angles. The set of all curves which

intersect every member of ¢(z,y) orthogonally are called the orthogonal trajectories



of the family. Let ¢(z,y) = ¢* denote the family of orthogonal trajectories to the
family of equipotential curves ¢(x,y) = c¢. The family of curves v(x,y) = ¢* describes
the field lines associated with the vector field F. That is, every orthogonal trajectory
of the family of equipotential curves ¢(z,y) = ¢ has a tangent vector which lies along
the same direction as the vector F (same direction as the normal to ¢(z,y) = ¢.) If
7 = 7(x,y) defines a field line, then d7 points in the direction of vector field so that the
slope of the field lines are in direct proportion to the components of F. If dF = kF,
where £ is some constant, then one can write dzé, +dyeés = k[M(x,y) & + N(z,y) &) or
after equating like components

de dy B
This gives the differential equation which defines the field lines. An equivalent
statement is that d7 x F = 0, where 7 is the position vector to a point on the field

line curve +(z,y) = c.

Example 9-5. Show that the vector field

ﬁ :M($,y)é1+N($,y)é2:xé1 +yé2
is conservative and sketch the equipotential curves and field lines associated with
this vector field.
Solution: The vector field is conservative, since curl F = 0. If ¢(x,y) = ¢ is a family
of equipotential curves, then d¢ = grad¢ - di = F - di = 0 produces the differential

equation of the equipotential curves and one can write
dp=Mdx+ Ndy=20 or do =xzdx +ydy =0.
By integrating this equation, there results the equipotential curves

sep=5 4L =
which are circles centered at the origin.

If 7 is the position vector to a point on a field line, then d7 is in the direction of
the tangent to the field line and must have the same direction as the vector field F
so that one can write dF = kF', where k is a proportionality constant. Equating like

components one then finds the differential equation describing the field lines as

de  d de  d
A7 = dzé) + dyés = kFy 6, + kFyéy or — =Y or &Y _p
Fy Fy x Yy
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This differential equation is derived by requiring the direction of the vector field
at an arbitrary point (z,y) have the same direction as the tangent to the field line
curve which passes through the same point (z,y). An integration of the differential

equation defining the field lines produces
Inz=Ilny+Inc

or the family curves defining the field lines is given by

<

d)(f,y) = - = ka

X
where k is an arbitrary constant.
The equipotential curves and field lines associated with the given vector field
F = zé&, +yé, are illustrated in figure 9-4. In two dimensions, the vector fields are
best visualized by sketches of the equipotential curves and field lines. In sketching
the vector fields be sure to distinguish the field lines from the equipotential curves by
placing arrows at various points on the field lines. These arrows indicate the direction

of the vector field at various points.

Figure 9-4. Equipotential curves and field lines for F = zé; +yé,




Vector Fields Irrotational and Solenoidal
If in addition to being conservative, the two-dimensional vector field given by

F = M(z,y)é; + N(z,y)e, is also solenoidal and

. - OM ON
divF = v + o 0,

then

(i) The equipotential curves ¢(z,y) = ¢, ¢ constant, are obtained from the exact

differential equation

dp = gradg¢ -di or qu:%d:ﬂ%—g—jdy:O or d¢=M(z,y)de+ N(z,y)dy=0

(ii) The family of field lines (=, y) = ¢*, ¢* constant, are obtained from the differential
equation
dr d_y B

P = kF — k - N M dy =
di = kF or Y- N or dr+ Mdy=10

The solution of the differential equation defining the field lines is easily obtained
since it also is an exact differential equation. The solution can be represented as a

line integral in either of the forms

x Y
Wa,y) = / N (a2, yo) da + / M(z,y)dy = ¢
o i (9.68)
or Plzy) = / Ny de+ [ M(zo,y)dy=rc,

Yo
depending upon the choice of the path connecting the end points. These curves
represent the field lines associated with the vector field F, where

a—dj——N and 8_1/):

= M.
ox Jy

It follows that if the vector field is both irrotational and solenoidal, then the equipo-
tential curves ¢(x,y) = c and the field lines ¥ (x,y) = ¢* are such that

9 _ %% and 9 _ _ov

or Oy oy Oz’ (9-69)

These equations are called the Cauchy—Riemann equations. In vector form these

equations may be expressed as

grad ¢ = (grad ¢) x és.
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That is

00, 06, O0b. 0P,
grad ¢ = e e, + 9y €&y = 3y e e é,. (9.70)

Differentiate the Cauchy—Riemann equations (9.69) and show

& _ % and Po__ 0%

822 Oyox o2~ Oz oy (9.71)
Addition of these equations produces the Laplace equation
Po 09
2 = — _— =
Vg = 922 T 0y 0. (9.72)
Similarly, it can be shown that
Py %9 Py 99
ﬁ_&zay and 8—3,/2_81,/(9:5
so that by addition
Py 0
2 = — _— =
V=Gt g =0 (9.73)

Hence, both ¢ and v are solutions of Laplace’s equation.

Definition: (Harmonic function) Any function which is
a solution of Laplace’s equation V3w = 0 and which has
continuous second-order derivatives is called a harmonic

Junction.

Orthogonality of Equipotential Curves and Field Lines
To show that the equipotential curves ¢ = ¢; and the field lines ¢ = ¢* are
orthogonal, consider the dot product of the vectors normal to these curves at a

common point of intersection. These normal vectors are

s, L9, o, W,
grad ¢ = o e + 3y & and grad ¢ = o e+ 3y €5
and their dot product produces
090y D¢ Oy
grad ¢ grad ¥ =5 50 T By oy

With the use of the Cauchy-Riemann equations it can be shown that this dot prod-
uct is zero. Thus the vector grad ¢ is perpendicular to the vector grad ¢ and the

equipotential curves and field lines are orthogonal.



In various branches of science and engineering, the quantities ¢ and ¢ have many
different physical interpretations. For example, in fluid dynamics, the velocity field
is derivable from a velocity potential ¢, and the field lines are called streamlines. In
the study of heat flow, the heat flow vector is derivable from a potential ¢ which rep-
resents temperature and the equipotential curves ¢ = Constant are called isothermal
curves (curves of constant temperature.) The field lines associated with this vector
field are termed heat flow lines. In the study of electric and magnetic fields the
potential functions from which these fields are derivable are termed, respectively,
the electric and magnetic field potentials. The field lines associated with these po-
tentials are called lines of electric and lines of magnetic force. Usually the harmonic
functions ¢ and ¢ are expressed as the real and imaginary parts of a function of a
complex variable.

Laplace’s Equation

For F = F(z,y, z), a vector field which is both irrotational and solenoidal, then F
satisfies
curl F =0 and div F = 0. (9.74)

It has been shown that for these circumstances F is derivable from a scalar potential
function ®. In particular, F' = grad ® = V ®. Hence, ® must be a solution of Laplace’s
equation V2® = 0. That is,

div F = div (grad®) = V- (V®) = V2® = 0.

In expanded form the Laplace equation is expressed

0? 0? 0?
2p = —+ 4+~ P =
v <8:E2 * 0y? * 822> 0
9*®  9*¢  9*D 0

or V20 =
0x? * Oy? * 022

This partial differential equation has many physical applications associated with it
and arises in many areas of science, physics and engineering. The Laplace equation
can be expressed in different forms depending upon the coordinate system in which
it is represented.
Three-dimensional Representations

In a rectangular right-handed (z,y, z) system of coordinates, the Laplace equation
is expressed as

o’U  9*U  0*U
(9,132 + (9y2 + (9252 _Oa U_ U(.I,y,Z) (975)

VU =
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In a cylindrical (r, 6, z) coordinate system, the Laplace equation takes the form

0’U 10U 10°U 0%*U
vy24Y 29v oU oYU
 Or? +T(97“ +T2 002 + 022

=0, U=U(r0,z) (9.76)
and in a spherical (p, ), ¢) coordinate system, the Laplace equation is represented has
the form

0?U 20U 1 0°U cothoU 1 0*U

=2 - 47 4 ——
VU = 6p2 +pap +p2 562 + p2 o0 +pQSiD296¢2

=0, U=U(p,0,6)  (9.80)

Two-dimensional Representations

In a two-dimensional (z,y) coordinate system the Laplace equation is represented

0*U  0*U

In a polar (r,6) coordinate system the Laplace equation becomes

0?U 190U 10%*U

2 _ - -
VU=%2 T T ap

—0, U=U(r0) (9.79)

In spherical coordinates, where there is symmetry with respect to the variable ¢, the
Laplacian is represented

9 2
0°U 20U 1 0%U N cot § OU _0 U=Ul(p,0) (9.80)

vir=22 429 4 297 -
0p? + p Op + p? 00? p? 06 ’

One-dimensional Representations

In one-dimension, the Laplace equation becomes

2
U =0, U=U(z) rectangular
dz?
d*U 1dU 1d au
d*U 2dU 1 d [ ,dU .
i " pdp T pdp <p dp) v V=0l spherica

Three-dimensional Conservative Vector Fields
Analogous to what has been done in studying two-dimensional vector fields, one
can state that if a three-dimensional vector field

—

F:ﬁ($,y,2):Fl(.I,y,Z)él—{—FQ(.I,y,Z)éQ—{—Fg(.I,y,Z)ég

is derivable from a potential function ¢(z,y, z) such that F = grad ¢,, then the family

of surfaces ¢(z,y,2) = ¢ are called equipotential surfaces. The differential equation



satisfied by the equipotential surfaces is obtained by differentiating ¢(z,y,2) = ¢ to
obtain the exact differential

dp=—dx+ —~dy+ -— =0
¢ ox dy YT, (9.82)

or Fidr+ Fody+ Fydz=F -di =0

The solution of this differential equation may be obtained by line integration meth-
ods.

The field lines associated with the vector field F are those curves which are
everywhere tangent to the field vectors. The direction of the field lines are in direct
proportion to the components of F and thus the differential equation satisfied by the
field lines is dF = kF', where k is a proportionality constant. Equating like components
produces the equations

dx B dy B dz
Fl(xayaz) Fg(f,y,Z) Fg(.I,y,Z)

oy (9.83)

which is equivalent to the statement that di x F = 0 since d7 has the same direction
as F. Another way of picturing this is to let # denote the position vector to a point
(z,y,2) on a field line. The differential element d7 will then be in the direction of
the tangent to the field line which, by definition, is also in the same direction as F
at the common point (z,y, z). Thus, d7 = kF, where k is a proportionality constant.
This equation can be written in the component form as

df =dré) +dyeés +dzés =k [Fi(z,y,z) €1 + Fa(x,y,2) €+ F3(z,y, 2) €3] .

Equating like components produces the differential relation (9.83). Geometrically,
the field lines defined by equation (9.83) are orthogonal to the equipotential surfaces
defined by equation (9.82). That is, grad ¢ is perpendicular to the tangent element
dr.

A solution of the differential system (9.83) consists of two independent relations

or integrals of the form
Ml(xayaz) =C a’nd M?(’Iayaz) = C2,

which represents two families of surfaces having ¢, and ¢, as parameters. The field
lines are the curves of intersection of these two family of surfaces, and these curves

(field lines) are called a two-parameter family of curves, where the constants ¢; and
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co are the two parameters. Two methods for obtaining independent integrals of
equations (9.83) are now presented.

Theory of Proportions

From the theory of proportions one can make use of the following result:

For constants o, 3, 7, not all zero, one can write

de dy dz adx+fBdy+ydz

F R F  oF +8F +F

In many instances one can choose appropriate values for the constants a, 3, v to
construct equations which can be easily integrated to produce a family of surfaces
representing a solution of the differential equations. Using the method of propor-
tions, by trial and error, one tries to construct two independent family of solutions.
Consider one surface from each family. These surfaces intersect and the curve of

intersection defines a field line. The two family of surfaces intersect in a family of
field lines.

Example 9-6. Find the field lines associated with the vector field
F=F(zy,z2) =yé +x6é + 263

Solution The field lines are obtained from the differential equations

de _dy _ dz
Y r  z

(9.84)

In this equation make note that an addition of the numerators and denominators of
the first two fractions produces an exact differential and

de+dy dz  d(z+y)

T+y z r+y

In this new equation the variables are separated and then an integration produces
In(z +y) = Inz +Ine; where Inc,; is selected for the constant of integration in order to
simplify the algebra. This result can be expressed as

T+Yy

p(z,y, 2) = c1

and represents one family of solution surfaces. Return to the equations (9.84) defin-
ing the field lines and observe that from the first two fractions one can write

dr _ dy

y oz



This is an equation where the variables can be separated and then an integration
produces another independent family of surfaces
$2 y2

M2(~’Uayaz) = o 9 = Ca.

Hence the field lines are the intersection of the family of cylindrical surfaces, defined

by hyperbola with rulings parallel to the z-axis, with the family of planes z+y—c;z = 0.
|

Method of Tangents.

Observe that if the field lines are defined as the intersection of two families of
surfaces

Ml(xaya Z) =C a’nd M?(xaya Z) = C2,

then by differentiation one obtains

Oy Oy I _

&Ed +a—d +a—dz grad pp -dir =0
In a similar fashion one can show

5M2 Oz Opia o S

By dx +a—yd +(9 dz = grad ps - dr = 0.

Note that at a point (z,y,z) on a curve of intersection of two surfaces u; = ¢; and
u2 = co, the tangential direction dr = dx é; + dy é, + dz é; is the same as the direction
of the field line at that point. Therefore d7 must be proportional to F. At the
common point (z,y,z) on both surfaces the gradient vectors grad p; and grad p, are
perpendicular to the surfaces pu; = ¢; and py = ¢ respectively. These vectors must
therefore be perpendicular to the vector field F at this common point. Consequently,
one can write grad p; - F =0 or

O

I O

e Bt g Pt G R =0
and similarly grad ps - F =0 or
p2 Opz Opz
Fi Fy F3; =
o 1Ty 2T =Y

These equations are the basis for the method of tangents. One tries to find, by using
a trial and error method, two vector functions V = grad p; and W = grad ps such that
V.F=0and W-F =0. Then the equations

V.di=gradp-di=0 and W -dF =grad ps-di =0

are exact differential equations which are easily integrated. From these integrations
one finds two independent family of surfaces p; = ¢; and py = c,.
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Example 9-7. The field lines of the vector field F = F(z,y,2) = y &, + x &, + zé3

are determined from the differential system

1 1 T+
Vi=-  Va=- %:—(2w
z z z

so that V- F = 0. One can then construct the exact differential equation

—

1 1
7odr="Ltawy ey 21V
z z

22

dz =grad p1 -dr =dpu; =0

from which to determine
r+y
y4

Mlz :Cl

Similarly, by using trial and error, one can show that the functions
Wi=x Wy = —y W3 =0
are such that W - F = 0. This produces the exact differential equation
W - di = zdz — ydy = grad ps - di = dus = 0

which is easily integrated. One finds that

$2

#:——ﬁzc
2Ty o T

Note also that the trial and error method might produce all kinds of results. For
example, let
1 1 1

P1:§Z P2:—§Z P3:§($_y)’

then one can show P - F = 0. Consequently,
1 1 1 .
P.dr= izd:z: - izdy + 5(:5 —y)dz =grad ps - dF = duz =0 (9.85)

is an exact differential which can be integrated. The equation (9.85) implies that

Ous 1 Ous 1 ps 1
or 9% oy 9% 9z 2($ v)
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and an integration of each of these functions produces

1
H3 = §$Z+f(y,2«')

1
H3 ==Yz + g(x, 2)

1
H3 = 5('17 —y)Z + h(.l?,y),

where f(y, 2), g(z, 2), h(z,y) are treated as constants of integration during the integra-
tion of partial derivatives. One finds that by selecting

1 1
f=—§y27 9= 5oz, h=0

there results the family of surfaces
JE— 1 JE—
H3 = 5(55 —y)z=c3

At first glance it appears that ps = c3 is a solution family different from p; = ¢;

and ps = co. However, from p; = ¢; there results

r+y

C1
which can be substituted into us to produce

L 5 2
M3—2Cl($ y)

Hence the solution p; = Constant reduces to the solution p, = Constant. When
one of the surfaces pu; = ¢;, (i = 1 or 2) has been obtained, this known solution
may be used to determine the second surface. The known solution can be used to
eliminate one of the variables in the differential system and thereby reduce it to a
two-dimensional equation which theoretically can be solved. Three-dimensional field
lines are in general more difficult to obtain and illustrate than their two-dimensional
counterparts. .
Solid Angles

A cone is described as a family of intersecting lines. A right circular cone is an

example which is easily recognized, however, this is only one special kind of a cone.
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A general cone is described by a line having one point fixed in space which is free to

rotate. The figure 9-5 illustrates two cones which differ from a right circular cone.

Figure 9-5. Cones generated by moving line about fixed point.

Consider a sphere of radius » and use the origin of the sphere to
construct a cone which intersects the sphere and cuts out an area
S on the surface as illustrated in the accompanying figure. The
area S on the surface of the sphere of radius » will be proportional
to r? since S is some fraction of the total surface area 47r2. The

S

ratio % is therefore a dimensionless ratio and the quantity Q= =
.

,
is called the solid angle subtended at the center of the sphere by the

cone. The solid angle is a measure of how large an object appears to be when viewed

from the origin of the sphere. Solid angles are measured in units called steradians®

(abbreviated sr) and by definition 1 steradian is the solid angle represented by the

surface area of a sphere equal to the radius of the sphere squared. For example, if

the area S in the accompanying figure equals r2, then the solid angle subtended at

the center of the sphere is said to be 1 steradian. The total solid angle about the

center of the sphere being 47 steradians.

For a given oriented surface make the following constructions.
(i) A position vector # from the origin to the point on the oriented surface.

(ii) An element of surface area dS at the terminus of the vector 7.

(iii

A unit normal &, to the surface at the terminus of the vector 7.

(iv) A sphere of radius r = || centered at the origin 0.

6 The solid angle is really dimensionless and sometimes the terminology of steradians is not used.
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( v) A unit sphere about the origin.
(vi) Connect the points on the boundary of dS to the origin and form a cone which

will intersect both the unit sphere and the sphere of radius r.

(vii) Use the dot product given by &, -7 =rcosf to find the angle § between the unit

normal to the surface and the position vector .

An example using the above constructions is illustrated in the figure 9-6. In
the figure 9-6, the cone, constructed using the boundary of the element of surface
area dS, intersects the sphere of radius » to produce an element of surface area dQ.
The element of surface area dQ can also be thought of as the projection of dS onto
the sphere of radius r. This projection is given by dQ2 = cos§dS where 6 is the angle

between the normal to the surface and the position vector 7.

sphere of
radius |’I_’"|

unit
sphere

Figure 9-6. Solid angle as surface area on unit sphere.

The solid angle subtended at the origin does not depend upon the size of the sphere

about the origin and so one can write

do _dR a
(1)2 - 2 2

&, T

Using the result &, -7 =rcosf or cosf = one obtains

en-rdszr-dS

d€) = cos0dS =

r

where dS = &, dS is a vector element of area.
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Consider the special surface integral

dQ &, -7 7-dS
[ o= ] 5 =[] Sutas=[] "
S S S S

where the surface S encloses a bounded, closed, simply connected region. Surface

integrals of this type represent the total sum of the solid angles subtended by the
element dS, summed over the surface S. For the solid angle summed about a point
0’ outside the surface, the resulting sum of the solid angles is zero. This is because
for each positive sum +dw there is a corresponding negative sum —dw, and these add
to zero in pairs. If the solid angle is summed about a point 0 inside the surface,
the resulting sum is not zero. Here the sum of the areas dw on the unit sphere,
subtended by the elements dS, do not add together in pairs to produce zero but
instead give the total surface area of the unit sphere which is 4r steradians. From

these discussions one obtains the following
// o — // 7 ;i§ _ {0 if origin is outside closed surface (0.86)
s s

r 47 if origin is inside closed surface

This result is utilized in the study of inverse square law potentials and is known as

Gauss’ theorem.

Example 9-8. Find the solid angle subtended by a right circular cone of radius
r and height h.

Solution Let tan 6, = # and construct a sphere of radius » which intersects the circular
cone to form a spherical cap. On this spherical cap construct a ring-shaped element
of area where the thickness of the ring is ds = rdf and this element of thickness is
rotated about the cone axis to form a ring as illustrated in the figure 9-7.

ds =ring-shaped element of area

dS = (+d8) (27 sin 8) =272 sin 8 dO@

Figure 9-7. Area of spherical cap using ring-shaped element of area.
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This produces an element of area
dS = (rdf)(27rsinf) = 27r?sin 6 d for 0<6<6,

The total surface area of the spherical cap is obtained by a summation of the ring
elements to produce the integral

0o
S = / 27mr? sin df = 27r? [— cos 9)]80 = 2772(1 — cos fp)
0

The solid angle subtended by this right circular cone is therefore

S
Q= 2= 27 (1 — cos b))

Potential Theory

Potential theory is concerned with the solutions of Laplace’s equation V?u = 0,
which satisfy prescribed boundary conditions. Two important problems of potential
theory are the Dirichlet problem and the Neumann problem.

The Dirichlet problem deals with finding a solution U of Laplace’s equation
throughout a region R such that U takes on certain pre assigned values on the bound-
ary of the region R.

The Neumann problem is concerned with obtaining a solution of Laplace’s equa-

tion in a region R such that on the boundary of R, the normal derivative

6_U =grad U - e,
on

has prescribed values. Here e, is the unit outward normal to the boundary of the
region R.

In obtaining a solution to a Dirichlet or Neumann problem in an infinite region
there is the additional requirement that U satisfy certain conditions far from the
origin.

Velocity Fields and Fluids

Let V denote the velocity field of a fluid in motion and let p(z,y, z,t) denote the
density of this fluid. Place within the fluid an arbitrary closed surface and consider
an element of surface area dS on this surface. Let the mass of fluid flowing in a

normal direction across this element of surface, in a time interval At, be denoted by
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AM. Tt is assumed that the velocity is the same at all points over the tiny element
of surface area. In a time interval At, the amount of fluid which crosses the element
dS is given by AM = pV - &,dSAt. The total mass of fluid flowing out of the volume
V bounded by the surface S is given by

AM:At// pV-d§:At// div (pV) av.
S v

Also the total mass of the fluid enclosed within the volume ¥ bounded by S can be

M= / / / pdv. (9.87)
\%

The rate of change of the mass with time is

/// % 1. (9.88)

Hence, in a time interval At, the amount of fluid in the volume V diminishes by the

M= —At /v/ / % qv. (9.89)

The amount of fluid flowing out of the arbitrary volume is equated to the amount

represented as the integral

amount

of fluid decreasing within the volume to obtain

At// div (pV)d :—At///apdv
. ///[dw o)+ 2 av o

For an arbitrary volume V within the fluid, the relation (2.42) must hold and con-

(9.90)

sequently

dp
EerlV( V) =0. (9.91)

This equation is called the continuity equation of hydrodynamics which can also be
expressed in the form

% +Vp-V+pVV =0. (9.92)

The first two terms on the left-hand side of this last equation represents the time

rate of change of the density p, that is,

dp  Op
= TV V. (9.93)



If % — 0, then the fluid is an incompressible fluid, and the velocity field is solenoidal.

If the fluid flow is also irrotational, then V is derivable from a potential function
® called the velocity potential of the fluid flow. The potential function must be a
solution of Laplace’s equation. The field lines associated with the velocity field V

produce a family of curves which are termed streamlines.

Heat Conduction

In the basic equations describing heat conduction in materials, the following
assumptions and terminology are employed:
1. Let T = T(z,y,2,t) denote the temperature (°C) at a point (z,y,z) within the
material at time ¢.
2. Heat flow within the material is denoted by the vector ¢ having units [q] = ﬁ
3. Heat flows from regions of higher temperature to regions of lower temperature
and the direction of heat flow is in the direction of the greatest rate of change

of the temperature. Expressing this as a mathematics statement, we write
qd=—kgrad T, (9.94)

J o and is called the

cim-sec-°
thermal conductivity of the material. Since the gradient of temperature points

where k is a proportionality constant having units of

in the direction of increasing temperature, the negative sign in the relation (9.94)
indicates that heat is flowing in the direction of decreasing temperature.

4. The symbol ¢ is used to denote the specific heat of the material which is a
measure of the heat capacity per unit mass of material. The specific heat ¢ is
measured in units g%

5. The symbol p is used to denote the density of the material [5].

6. The total amount of heat in an arbitrary volume V bounded by a closed surface
H = /// cpT dV, (9.95)
v

If an imaginary closed surface S enclosing a volume V is placed within a body in

S is given by

where H is in joules.

which heat is flowing, then the heat flux across this surface is given by the integral

// cjd§:// 7 e,dS (9.96)
S S
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which by the divergence theorem can be expressed in the form

// g-dS = /// div 7dV. (9.97)
S v

Substituting the heat flow given by equation (2.46) into equation (2.49) produces

// g-dS = —// kdiv (grad T) dV, (9.98)
S

1%

the relation

which depicts the total amount of heat leaving the arbitrary volume V enclosed by S.
From equation (2.47), one can calculate the rate of change of decreasing heat within
the volume. Such a change is given by

_oH —/ o v (9.99)

ot P ot
y

and must equal the change given by the flux integral (2.50). Equating these quan-
tities produces the relation

/v// [cp%—z — kdiv (grad T)] dV =0 (9.100)

which must hold for any arbitrary volume V within the material. Since the volume

is arbitrary, it is required that the integrand be identically zero and write

oT ) cp0T  O°T O0°T O°T cp OT 9
- = = = —— =VT 101
Py kdiv (grad T) =0 — O 92 + 0y + 52— & BT \Y (9.101)

This result is known as the heat equation.

For steady-state temperature distributions, write 2& = 0, and consequently equa-
tion (9.101) reduces to Laplace’s equation.

In the study of heat flow the level curves T(z,y,z) = ¢ are called isothermal
surfaces, and the field lines associated with the heat flow ¢ within the material are
called heat flow lines.

Two-Body Problem

Newton’s law of gravitation states that two masses m and M, are attracted

toward each other with a force of magnitude €=M where G is a constant and r is the

r2

distant between the masses. Let M represent the mass of the Sun and m represent
the mass of a planet and assume that the motion of one mass with respect to the



other mass takes place in a plane. Construct a set of z,y axes with origin located at
the center of mass of M. Further, let e, = cosfé; +sinf e, denote a unit vector at the
origin of our coordinate system and pointing in the direction of the mass m. One can

then express the vector force of attraction of mass M on mass m by the equation

GmM . (9.102)

F=-"3

To find the equation of motion of mass m with respect to mass M, use Newton’s

second law. Let 7 = re, denote the position vector of mass m with respect to our

origin. The equation of motion of mass m is determined from Newton’s second law
and is ) .
GmM | asr dv

From this equation it can be shown that the motion of mass m can be described as

F=-—
r2

a conic section. In order to accomplish this, let us review some facts about conic
sections.

Recall that a conic section was defined as a locus of points P(z,y) such that the
distance of P from a fixed point (or points), called a focus, is proportional to the
distance of P from a fixed line, called the directrix. The constant of proportionality
is called the eccentricity and is denoted by the symbol e. If € = 1, a parabola results;
if 0 < € < 1, an ellipse results; if ¢ > 1, a hyperbola results; and if ¢ = 0, the conic

section is a circle.

(a) AY directrix (b)
y
™ A
P(x,y) Y, - ]
P=2qe D b=a+/ 1—e2 |
™ D P(ms'y)
o (2,0) . ~ | o
o / i
rcos @
ﬁ.—)‘t—q
~ q | q I a a I
Figure 9-8. Parabolic and elliptic conic sections.
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With reference to figure 9-8, a conic section is defined in terms of the ratio % = e,
where OP = r, and  PD = 2¢ — rcosf. From this ratio, solve for the radius » and

obtain the representation
p

"= 1+ ecosf’

(9.104)

where p = 2¢e. Equation (9.104) is the equation of a conic section. The following
terminology is applied to the variables and parameters in this equation:
1. The angle 6 is called the true anomaly associated with the orbit.
2. The symbol a is introduced to denote the semi-major axis of an elliptical orbit.
The symbol a can be shown to be related to r,p and e.
3. The quantity p is called the semiparameter of the conic section and is illustrated
in figure 9-8. Note that when # has the value /2, then r = p.
An important relation connecting the parameters p, a and e is obtained from
equation (9.104) by setting ¢ equal to zero. This gives

. p
r =
1+e¢

=qg=a(l—¢) which implies p=a(l—é). (9.105)

In order to demonstrate that the motion of mass m with respect to mass M
is a conic section, show that the magnitude r of the position vector  satisfies an

equation having the exact same form as equation (9.104).

Kepler’s Laws

Johannes Kepler”, an astronomer and mathematician, discovered three laws con-
cerning the motion of the planets. He discovered these laws from experimental data
without the aid of calculus or vector analysis. Newton, using calculus, verified these
laws with the model for the inverse square law of attraction. These three laws are
now derived.

To derive Kepler’s three laws one can make use of the following vector identities:

FX&=ré&xeé=0 (9.106)
. o
%(Fx %) =7 X ZTQ (9.107)
6 - ddi’“ ~0 (9.108)
&, x (& x %) = _ddé;tr (9.109)

" Johannes Kepler (1571-1630), German astronomer and mathematician.



Note that the Newton law of gravitation implies that the derivative given by equation
(9.107) is zero. That is, if

e T TN T T2
27 d d GM ;
then  x d—t;" == <F d—i) =57 x & =0. (9.110)

An integration of this equation produces the result

7 X % — h = Constant (9.111)

Recall that the vector H = #x m# is defined as the angular momentum. The quantity
h=LH =7x % appearing in equation (9.111) is called the angular momentum per
unit mass. Equation (9.111) tells us that the angular momentum is a constant for

the two-body system under consideration. Since & is a constant vector, it can be

verified that i s o .
—<6xﬁ>:d—:xﬁz——érx <F><—T>

dt 72 dt

GM x[ 8 x<dér+dré>]
= T 35 ©r e, r 5 ©r

r \ dt dt (9.112)
— _GMé, x <ér X @>

di
dé,

= GM=".

Note that the result (9.112) was obtained by making use of the equations (9.106)
and (9.109). An integration of the result (9.112) gives us the relation

Txh=GMé,+C, (9.113)

where C is a constant vector of integration. Using the triple scalar product formula

it is readily verified that

or
h* = GMr + Crcos¥, (9.114)

where ¢ is the angle between the vectors ¢ and 7. In the equation (9.114) one can

solve for r» and find

p
=L 9.115
" 14 ecosf’ ( )
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where p = h?/GM and e = C/GM. This result is known as Kepler’s first law and implies
that all the planets of the solar system describe elliptical paths with the sun at one
focus.

Kepler’s second law states that the position vector 7 sweeps out equal areas in
equal time intervals. Consider the area swept out by the position vector of a planet
during a time interval At. This element of area, in polar coordinates, is written as

dA = 17"207/9
2

and therefore the rate of change of this area with respect to time is

dA 1 ,df
_ 1 0df

dt 2 dt
It has been demonstrated that the angular momentum per unit mass h = 7 x @

is a constant. For # = rcosfé; + rsinfé,, the angular momentum has components

which can be calculated from the determinant

B & é, &
X % = T COS 0 r §in 0 0
—rsinff +rcos@ rcosfd +7rsinf 0

h=7

By expanding the above determinant and simplifying one can verify that

, do

h=r = é;3 = h é3 = Constant (9.116)
which in turn implies
dA 1 ,do .
B pa— . A1
=3 @ 1S a constant (9.117)

This result is known as Kepler’s second law. Analysis of this second law informs us
that the position vector sweeps out equal areas during equal time intervals.

The time it takes for mass m to complete one orbit about mass M is called the
period of the motion. Denote this period by the Greek letter . Note that equation
(9.117) tells us that when 72 is small 9 becomes large and, conversely, when 2 is
small 72 becomes large. The resulting motion is for planets to move faster when
they are closer to the Sun and slower when they are farther away. Express equation

(9.117) in the form dA = 1hdt and integrate the result from ¢ =0 to t = r, to show

A=, (9.118)
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where A is the area of the ellipse and 7 is the period of one orbit. The area of an
ellipse is given by the formula A = 7rab, where a is the semi-major axis and b = av/1 — €2

is the semi-minor axis. Equation (9.118) can therefore be expressed in the form
A=ra*\/1—-¢€ = gT

from which the period of the orbit is

2 2
T = 7;:1 V1—e2

With the substitutions

_e? _
l-e=, adp=am
the period of the orbit can be expressed
2ma’/? , 4r2a?
_ _ , 9.119
Ve, o eI (9.119)

This result is known as Kepler’s third law and depicts the fact that the square of
the period of one revolution is proportional to the cube of the semi-major axis of
the elliptical orbit.

Planets, comets, and asteroids have either elliptic, parabolic or hyperbolic orbits
about the sun.

Vector Differential Equations
A homogeneous vector differential equation, such as
d*y | dy

W%—aa%—ﬁgj:ﬁ (9.135)

where o and g are scalar constants is solved by first solving the homogeneous scalar
differential equation ,

%%—a%%—ﬁyzo (9.137)
The solution of the homogeneous differential equation is called the complementary
solution and is expressed using the notation y.. By assuming an exponential so-
lution y = e* and substituting it into the homogeneous equation one obtains the
characteristic equation

M4+ar+8=0 (9.136)
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There are three cases to consider.

Case 1 The roots of characteristic equation (9.136) are real and unique. If 7,7,
are these roots, then the scalar homogeneous differential equation (9.137) has
the fundamental set of solutions {e™?, ™!} and the general of equation (9.137)is
ye = cre"t + coe™t where ¢; and ¢, are arbitrary scalar constants.

Case 2 The roots of the characteristic equation (9.136) are real and equal, say
r1 = 5. In this case the fundamental set of solutions is given by {e™?,te™*} and
the general solution of equation (9.137) is y. = c1e™? + co te’* where ¢; and ¢, are
arbitrary scalar constants.

Case 3 The roots of the characteristic equation (9.136) are complex roots, say
r1 = a4+ b and ro = a — ib. In this case the fundamental set of solutions can be
represented in the form {e@T®)* ¢(a=®)1 or one can make use of Euler’s equation
e = cosbt +isinbt and take appropriate linear combination of solutions to write
the fundamental set of solutions in the form {e* cosbt, e** sinbt}. The general so-
lution to the scalar homogeneous equation can then be expressed in either of the

forms
y :Cle(a+ib)t + C2e(a—ib)t

or ye =€ (cy cos bt + ¢y sin bt)
where ¢; and ¢, are arbitrary constants.

If {y1(t),y2(t)} is a fundamental set of solutions to the homogeneous scalar differ-
ential equation (9.137), then

Ve = C1y1(t) + C2ya(t) (9.138)

where ¢, and & are arbitrary vector constants, is the representation of the general
solution to the vector differential equation (9.135). Substitute equation (9.138) into
equation (9.135) and show there results the vector equation

dyy dy2

a (T8 o gy ) b (L8 a® gy, =6 (9.139)
A\ ae T TP ) T g T Y TP T '

Observe that if ¢, and ¢, are arbitrary independent vectors, then in order for equation
(9.139) to be satisfied, the scalar components of the arbitrary vectors ¢ and & must
equal zero.

The solution of the nonhomogeneous vector differential equation

il A a; + 87 =F(t) (9.125)



where o and g are scalar constants is obtained by first solving the homogeneous

equation
d?ij dy
a2 +a— + By =0
given by equation (9.138) and then ﬁndmg any particular solution ¢, = #,(t) which
satisfies ,
T dyp
a2 +a i +ﬁyp_F()

The general solution to the vector differential equation (9.125) is then given by
¥ ="9c+¥p=Cry1(t) + Caya(t) + ¥p(t) (9.126)

Example 9-9. Solve the vector differential equation

d*g dy
o) + 2« d—i + 327 = sin 3t &3 (9.133)

Solution First solve the homogeneous vector differential equation
7"+ 20y + 3% (9.128)

If § = Gy (t) + Gaya(t) is the general solution of equation (9.128), then y,(t) and ys(t)
must be independent solutions of the scalar differential equation

d2

dy
TR —+ﬁ y=0 (9.129)

This is an equation with constant coefficients. The general procedure to solve a
differential equation with constant coefficients is to assume an exponential solution
y = e*. Substituting the assumed exponential solution into the differential equation

(9.129) produce the characteristic equation
M 4+2aN+82=0 (9.130)

for determining values of A to be substituted into the assumed solution. Solving
equation (9.130) for A gives the characteristic roots

—2a £ /(2a)? — 432
2

A= = —ata? -2 (9.131)

Case 1 If o — 32 = w? > 0, then a fundamental set of solutions is given by

{e~(amw)t e=(aFw)t) and the general solution to equation (9.128) is

Zj E —(a—w)t+62€—(a+w)t
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Case 2 If o? — 3% = 0, the characteristic equation has the repeated roots A = —a. The
first root gives the first member of the fundamental set as et and using the rule
for repeated roots, the second member of the fundamental set of solutions is te=“t.
The general solution to equation (9.128) can then be expressed in the form

—

ij 1e—at+52te—at
Case 3 If o*> — 32 = —w? < 0, then the fundamental set of solutions is

{e=?tcoswt, e sinwt} and the general solution to equation (9.128) is given by

P

7= e coswt + Ere” ' sinwt

The solution to the homogeneous vector equation is then given by

— —

Yo = C1y1(t) + C2ya()
where {y;(t),y2(t)} are the functions from one of the cases previously examined.

To find a particular solution which gives the right-hand side sin3teé; examine
this function and its first couple of derivatives 3 cos3teés, —9sin3teés. The basic terms
in the set containing the function and its derivatives are the terms sin3t and cos 3¢
multiplied by some constant. One can then assume a particular solution has the
form

Yp = Yp(t) = Asin3t é3 + B cos 3t €3 (9.132)
where A, B are undetermined coefficients. Substitute the equation (9.132) into the

nonhomogeneous equation (9.133) and show there results after simplification
[6aA + (8% — 9)B] cos3t + [(3% — 9)A — 6aB] sin 3t = sin 3¢ (9.133)

Compare like terms in equation (9.133) and show A and B must be selected to satisfy

the simultaneous equations
60A + (8% —9)B =0

(% —-9)A —6aB =1

One finds )
- B=—-9 . —6a
4= (82 —9)% + 3602 b= (82 —9)2 + 3602
and so the particular solution is given by
> > _ (82 -9) . _ 6a ] .
Yp = Yp(t) = (32— 9)% + 3602 sin 3t (32— 9)2 + 3602 cos 3t| é3

The general solution can then be represented

g=ygit)=yc+¥p



Maxwell’s Equations

James Clerk Maxwell (1831-1874), a Scottish mathematician, studied properties
of electric and magnetic fields and came up with a set of 20 partial differential
equations in 20 unknowns which described mathematically how electric and magnetic
fields interact. Much later, an English electrical engineer by the name of Oliver
Heaviside (1850-1925), greatly simplified Maxwell’s equations to four equations in

two unknowns. A modern day version of the Maxwell equations in SI units® are

v.E=
€0
VXE=-— oB
3 ot (9.134)
V-B =0
. . OFE
V x B =poJ +MOEOE

In the Maxwell equations (9.134) one finds the following quantities

E =E(z,y,z,t) Electric field intensity (N/coul)
J =J(z,y,z) Total current density (amp/m?)
B =B(z,y,zt) Magnetic field intensity (N/amp-m)

p=p(z,y,z) charge density (coul/m?)

po =4m x 1077 <an1jp2> the permeability of free space

2
coul
N .m?2

€0 =8.85 x 10712 ( ) the permittivity of free space

It is left as an exercise to show that the Maxwell equations are dimensionally homo-

geneous.
Note 1: Warning! The symbols B and H occur in the study of electromagnetism.
The symbol H is used to denote magnetic fields within a material medium. It
has no name, but some textbooks call it a magnetic induction— which is wrong.
To make matters worse many textbooks interchange the roles of B and H. My
only suggestion is be aware of these conflicts and study any textbook carefully

and see how things are defined.

8 There are two popular sets of units used to represent the Maxwell equations. These two popular units are the
International System of Units or Systéme international dinites, designated SI (mks) in all languages and the
Gaussian (cgs) set of units. The main advantage of the Gaussian units is that they simplify many of the basic

equations of electricity and magnetism more so than the SI units.
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Note 2: The product pgey = C%, where ¢ =3 x (10)'° cm/sec is the speed of light.
It will be demonstrated later in this chapter that the vector fields describing E

and B of Maxwell equations are solutions of the wave equation.

Electrostatics
Coulomb’s law?® states that the force on a single test charge @ due to a single
point charge ¢ is given by

1 qQ
- 9% & 1
dmeg 12 © (9:135)
coul”
where ¢, = 8.85 x 10712 N mZ is the permittivity of free space, r is the distance

between the charges and &, is a unit vector along the line connecting the charges.
If ¢ and @ have the same sign, the force is a repulsive force and if ¢ and @ have
opposite signs, then the force is attractive.

If there are many charges q1, ¢s, . . ., ¢, at distances ry, o, ..., r, from the test charge
Q at the point (z,y,2), then one can use superposition to calculate the total force
acting on the test charge. One finds

A7 g L (0@, [ @Q. L %@, ) _
F =F(z,y,2) = E;F = Trex < 2 en + 7 e 4+t 2 e,nn> = QE (9.136)
(2,y,2) where &, , for i =1,...,n, are unit vectors pointing from
T charge ¢; to the point (z,v,2) of the test charge Q. The

qi. 4 quantity
. i
& ’ er; n
qz- - 75 _1g _ ! LaP;
.. E=FE(z,y,2) = QF(:E,y, z) = Tres ; 2 &, (9.137)
y dn

is called the electric field produced by the n-charges.

9 Charles Augustin de Coulomb (1736-1806) A French engineer who studied electricity and magnetism.



Example 9-10.
Consider the special case of a single point charge ¢ located at the origin. The

electric field due to this point charge is

8, (9.138)

where &, is a unit vector in spherical coordinates and r is the distance of a test charge
Q from the origin to the position (z,y, z). This vector field produces field lines and
the strength of the vector field is proportional to the flux across some surface placed
within the electric field. In the case where a sphere of radius » and centered at the
origin is placed within the electric field, then the flux is calculated from the surface

Flux://ﬁ-d§://ﬁ-énds (9.139)
S S

where e, = &, in spherical coordinates. Also the element of area dS in spherical

integral

coordinates is given by dS = r?sin 6 dfde é, so that equation (9.139) can be expressed

27 T
Flux://ﬁ-d§:/ [/ ! %ﬁsinede] dp =L (9.140)
£ 0 o 4meor €o

This result states that the flux is a constant no matter what size sphere is placed

as

about the point charge. If the sphere were made of rubber and could be deformed
into some other simple closed surface, the number of field lines passing through the
new surface would also be the same constant as above. This is because the dot
product E - &, selects an element of area perpendicular to the field lines and the
flux is proportional to the number of these lines. Note that if the point charge were
outside the closed surface, then the flux would be zero, since field lines entering the
surface at one point must exist at some other point and then the sum of the flux
would be zero.

One can say that if there were n-charges qi, s, . . ., ¢, inside a simple closed surface

and E; was the electric field associated with the ith charge, then E =) E; would

=1
represent the total electric field and the flux across any simple closed surface due to
this total electric field would be

//EdSZ(//EdS)ZqO (9.141)
s =l \"g =1
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If the discrete number of n-charges q¢i,...,q, were replaced by a continuous dis-
tribution of charges inside the surface, then the right-hand side of equation (9.141)
would be replaced by / / / Eﬁ dV where dV is an element of volume (meter3> and p

0

%
is a charge density (M) and the equation (9.141) would then be written

meter’
//E s = ///pdv (9.142)

Using the divergence theorem of Gauss, the equation (9.142) can also be expressed

// <v E - —) dv =0 (9.143)

If the equation (9.143) is to hold for all arbitrary simple closed surfaces, then one

as

must require that

v E=" (9.144)
€0

This is the first of Maxwell’s equations (9.134) and is called the Gauss law of elec-
trostatics.

Magnetostatics

current A moving charge produces a current and a moving
current produces a magnetic field. Consider a current
moving along a wire considered as a line. The magnetic
field created is described by circles around the wire.
The strength of the magnetic field falls off as the per-
pendicular distance from the line increases. One can
use the right-hand rule of letting the thumb point in
the direction of the current flow, then the fingers of the
right-hand point in the direction of the magnetic field
lines.
The magnetic force on a charge Q@ moving with a velocity v in a magnetic field
B is given by

Fn=Q@xB)  (coul) (:-) < N ) (9.145)

amp - m



while the electric force acting on Q is

—

F.=QE (coul ) (%) (9.146)

The total force acting on the moving charge @ is

F=F,+F.=Q(E+7xB) (9.147)

The magnetic forces can be summed over lines, surfaces or volumes. This gives
rise to a one-dimensional, two-dimensional and three-dimensional representation for
the magnetic force. In one-dimension the element of force acting on an element of
wire is dF,, = (7 x B) p;ds where p, is the charge density per unit length (coul/m)
and ds is an element of arc length. In two-dimensions the element of force acting on
a surface is dF,, = (7 x B) ps do where pg is the charge density per unit area (coul/m?)
and do is an element of area. In three-dimensions the element of force acting within
a volume is dF,, = (7 x B) pydV where py is the charge density per unit volume
(coul/m?) and dV is an element of volume. An integration gives the total magnetic

force as
F, = /(17 x B) pyds one-dimension

Fo ://(17 x B) psdo  two-dimension (9.148)

F,, = ///(17 x B) pydV  three-dimension

Example 9-11. The Maxwell-Faraday Equation

Faraday’s law!? of induction investigates the magnetic

€n

flux / B -dS across a surface!! § determined by a sim-

ple clgsed curve C. Think of a simple closed curve in space
drawn on a sheet of rubber and then hold the simple closed
curve fixed but deform the rubber surface into any kind of
continuous surface S having C for its boundary. The direc-

C

tion of the unit normal é, to the surface S is determined
by the right-hand rule of moving the fingers of the right

10 Michael Faraday (1791-1867) English physicist who studied electricity and magnetism.
1 Think of a rubber sheet across C' and then deform the sheet to form the surface S.
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hand in the direction around C so that the thumb points in the direction of the
normal. Faraday’s law, obtained experimentally, states that the line integral of the
electric field around the closed curve C equals the negative of the time rate of change

of the magnetic flux. This law can be written

. L
§ 7= -2 5.5 o
S

Here E is the electric field, 7 is the position vector defining the closed curve C, B is
the magnetic field and dS = &, do is a vector element of area on the surface S. The
Faraday law, given by equation (9.149), assumes the curve C and surface S are fixed
and do not change with time. The left-hand side of equation (9.149) is the work
done in moving around the curve ¢ within the electric field E. The right-hand side
of equation (9.149) is the negative time rate of change of the magnetic flux across
the surface S. One can employ Stokes theorem and express equation (9.149) in the

form

//VxEdS— //—dS or //

The equation (9.150) holds for all arbitrary surfaces S and consequently the inte-

VXE—{—— dS =0 (9.150)

grand must equal zero giving the Maxwell-Faraday equation

)
which is the second Maxwell equation.
]
Example 9-12. The Biot-Savart law
(z,y,2) Consider a volume V enclosed by a sur-

face S as illustrated and let J = J(2/,y/, %)
denote the current density within this vol-
ume. Let (z2/,9/,2') denote a point inside V
where an element of volume dV = da’/dy’dz’

is constructed. In addition, construct the

vectors ¥ = xé; + yé, + zé3 to a general

point (z,y, z) outside of the volume V and



7 = a2'é 4y & + 2 é; to the point (2/,%/, 2') inside the volume V. The vector 7 —

then points from the point (2’4, 2') to the point (z,y,z). The vector é = =2 is a

|

unit vector in this direction as illustrated in the accompanying figure.
The magnetic field B = B(xz,y,2) at the point (z,y,z) due to a current density
J=J(z',y,7) inside V is given by the Biot!2-Savart!? law

)
B =B(z,y,2) =2 ///v [ 7Y Z)X|§T ’")] de' dy' d2’ (9.152)

The divergence of this magnetic field is determined by calculating

/A=

In order to evaluate the divergence as given by equation (9.153) one can employ the

dv (9.153)

vector identities - . .
VX (fA)=(Vf)x A+ f(Vx A)

o . . . . (9.154)
V- (AxB)=B-(VxA)—A-(VxB)
Let B = |f _f,|3 and A = J along with the second of the equations (9.154) to
=7
show
V- (JxB)=B-(VxJ)—J-(VxB)=—-J (VxB) (9.155)

This holds because J is a function of the primed coordinates and V involves differ-

entiation with respect to the unprimed coordinates so that V x J is zero. Using the

first equation in (9.154) with f = E 14|3 one can write
=7
_ 77 1 L Lo 1
VXB :VX |(T_’_F/|2’) = |F_F/|3VX ('I"—'I"/)—('I"—'I"/) Xv<m> (9156)
One can verify that
€ €2 €3
Vx(F—-7)=| & o L |=0
(—2a') (—-vy) (-2
and if f = |7 —+|73, then Vf = afé1+%é2+g—£é3 where
of - 4 0 —3(x — ')
-2 =_3 YA WA AW _ S1\2 —
oy = =P PR P T G =

12 Jean Baptiste Biot (1774-1862) A French mathematician.
13 P elix Savart (1791-1841) A French physician who studied physics.
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In a similar fashion one can verify that

of _ =3ly—v) of _ —3(z—2')
i e i e
Using the above results verify that
1 -3 L
= — 9.157
V(=) e (2457

and show the right-hand side of equation (9.156) is zero because (7 — ') x (7 — ') = 0.
It then follows that
V-B=0

which is the third equation in the Maxwell’s equations (9.134).
n

Example 9-13. If the charge density p (coul/m?) moves with velocity 7 (m/s),
then the current density is given by J = p¢ (amp/m?). Surround the current density
field with a simple closed surface S which encloses a volume V. The flux across the
surface S is then given by

// f-d§:// f-éndS:// V-Jdv
S S 1%

where the divergence theorem of Gauss has been employed to express the flux surface
integral with a volume integral. The charge must be conserved so that the flux out
of the volume must be accounted for by the time rate of change of the charge density

within the volume so that one can write

([ 7-a5= [[[ s-rar=— [[[ pav— [[] Lav
775 a0 0159

The equation (9.158) must hold for all volumes v and consequently one must require

or

&)

v-f+—f:0 (9.159)

The equation (9.159) is know as the continuity equation for the charge density.



Example 9-14. The last Maxwell equation is hard to derive. Historically,
Ampere' showed that for straight line currents the curl of the magnetic field was

proportional to the volume current density J so that one could write

V X E = Ko j
Maxwell realized that this equation did not hold in general because it did not satisfy
the property that the divergence of the curl must be zero. Based upon theoretical
reasoning Maxwell came up with the modified equation
V x B = poJ + ugeog—]f (9.160)

where the term uoeog—f is known as Maxwell’s term for Ampere’s law. Taking the

divergence of equation (9.160) one can show

V- (V x B) =V - J + poeo 6VatE Use the first Maxwell equation and show
q . B

V- (Vx B) =uoV - J + poco (%/;0)

V- (V x B) =g [V-f+%] =0

where the continuity equation from the previous example has been employed to show
the divergence of the curl is zero. The equation (9.160) is the last of the Maxwell
equations from (9.134).

Example 9-15. If there are no charges or currents in space, then the Maxwell
equations (9.134) simplify to the form

V-E =0
. B
VXE= _6_
B} ot (9.161)
V.-B=
q OF
B = pgeg—
V Hoco—;

Use the property of the del operator that

Vx(VxA)=V(V-A4)-V324

14 André Marie Ampere (1775-1836) A French physicist, chemist and mathematician.
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and take the curl of the second and fourth of the Maxwell’s equations to obtain

V x (V x B) =V(V - E) - V2E = V x (—a—B> =D (v B) = —pen 2

_ _ OE o . 9°B
Vx(VxB)=V(V-B)- V2B =Vx <u0605> = oco5; (v X E) = —poco Gy

The first and third of the Maxwell equations require that V-E =0 and V-B =0 so
that the vector fields E and B must satisfy the wave equations

S 1 0%E _, 1 0°B
2 nd v2
c2 0t? c? Ot?

Here the product ugep = 61—2, where ¢ =3 x (10)'° cm/sec is the speed of light.

|
Exercises
» 9-1. Solve each of the one-dimensional Laplace equations
U =0 U=1U(z) rectangular
d*U 1dU 1d ( dU
ek i <r$> =0, U=U(r) polar (9.162)
U 2dU 1 d [ ,dU .
i oA T Rdp <p dp) ’ (o) spherica
» 9-2.  Verify that the velocity field V = V; cos a é—Vysina é,, Vo, @ are constants

is both irrotational and solenoidal. Find and sketch the velocity field, streamlines.
Find the velocity potential. Note that for a = 0 the flow is a parallel flow and for

s

o = % the flow is a vertical flow.

» 9-3.  Verify that the velocity field V = 2z é — 2y é, is both irrotational and
solenoidal. Find and sketch the vector field and the streamlines for 0 < =z < 2,
0 <y < 2. Also find the velocity potential. The velocity field for this type of fluid
motion can be used to describe the flow in the vicinity of a corner.

» 9-4. For the velocity field V = 2y é;, + 2z &, find and sketch the vector field and
streamlines. Find the velocity potential.



» 9-5. Consider the vector field E = % &, in polar coordinates. (a) Show this vector
field is irrotational. (b) Find a potential function ¢ = ¢(r) satisfying ¢(ry) = 0, where
ro > 0.

» 9-6. True or false, if both A and B are irrotational, then the vector F = 4 x B is

solenoidal.

» 9-7.  Show that if ¢ = ¢(z,, 2) is a solution of the Laplace equation V?¢ = 0, then
(a) Show the vector V = V¢ is irrotational. (b) Show the vector V = V¢ is solenoidal.

> 9-8.

(a) Show the velocity field V = kz

e é; + Tj—/gﬂ é, is both irrotational and

solenoidal and has the potential function @ = gln(x2+y2) and the stream function
1 g

U = ktan
o® ov 0P ov
=—and — = ——

(b) Show that 5% = By By o

(c) Express the potential function and stream function in polar coordinates and
sketch the equipotential curves and streamlines. This type of velocity field is
said to correspond to a source at the origin if £ > 0 or a sink at the origin if £ < 0.

—ky . kx

é
2 42 1+:E2+y2

and solenoidal. Find the potential and streamlines for this velocity field. This type

» 9-9. Verify that the velocity field V = - é, is both irrotational

of flow is termed a circulation about the origin of strength k.

» 9-10.  Sketch the field lines and analyze the vector fields defined by:

(a) F=yéi+uzé (d) F =2zyé + (2% —1?) &
(b) F=yé —uxé () F =(2®+y?) & + 2y é,
() F=aé +béy (f) F=aé +zeé

» 9-11. Show in polar coordinates that the Cauchy-Riemann equations can be ex-

pressed as
op _ 109
or 1o

o 10

and or  roo
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» 9-12. At all points (z,y) between the circles 2 + y* =1 and 2* + y* = 9, the vector

function F = % is continuous and equals the gradient of the scalar function
a1 Y
O (x,y) = tan e
(2,0) _
Show that / F - di is not independent of the path of integration by computing
(_270)

this line integral along the upper half and then the lower half of the circle z2? + 2 = 4.

Is the region of integration a simply-connected region?

» 9-13. Find a vector potential for

—

(a) F=2yeée +2zé (b)

&Sl

=(zx—y)é —ze;3

» 9-14. For the gravity field F = —myg é5
((a) Show that this vector field is irrotational.
(b) Find the potential function from which this field is derivable.
(c) Show that the work done in moving from a height h; to a height h, is the change

in potential energy.

> 9-15. (Conservation of Energy)
2 - )
(a) If F = me" show that £. 4 — 1,4 <dr>

dt? dt 2 dt \dt
(z,y,2) . 1 (z,y,2) 1 1
(b) Show F -dF¥ = =mv? = —muv? — —muv?
(z0,90,20) 2 (z0,90,20) (z,y,2) 2 (z0,Y0,20)

(¢c) If F is a conservative vector field such that F = —V¢, show that

v (0:0,2) ) (0:0,2)
/( Fdr —/( V- df = —/( dé = —d(z, . 2) + D0, Yo, 70)

900790720) 900790720) 900790720)

= o(x,y,2) + %va which states that
(z0,Y0,20) (%,y,2)
for a conservative vector field the sum of the potential energy and kinetic energy

(d) Show that ¢(xo, yo, 20) + %va

at point (zg,0,20) is the same as the sum of the potential energy and kinetic

energy at the point (z,y, 2).

» 9-16. A conservative vector field has the family of equipotential curves

Find the field lines and vector field associated with this potential.
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> 9-17. (Research project on orbital motion)
Assume a mass m located at a position 7 = re, experiences a central force
F=mf(r)e,

2 —
(a) Show the equation of motion is given by m% — F which can be written in the

form Z—: = f(r)e,
(b) Show that #x @ = h is a constant.
(c) Show the motion of m is in a plane and that the mass m sweeps out an area at

a constant rate. (Kepler’s law of areas).

(d) Show that in the special case mf(r) = —GT;; the mass m is attracted toward
mass M, assumed to be at the origin, and Z—: = —% é, where k = GM is a
T
constant.
- 5. de, di - deé, Lo L .
(e) Show that h =r?e, x o g =k and o x h = k( &, +¢) where €is a constant
vector.

(f) Use the results from part (e) and show
FxT-h=h?> and 7 7xh==kr(l+ecosb)

where 6 is the angle between € and 7, and consequently
2
«
=_—— . where a=-—
"7 + €ecosf “ k
Note r describes a conic section having eccentricity e.

(f) When € < 1 show an ellipse results with m having an orbital period

r f elli 2 T2 472
_areaof ellipse 27 g5 e L 4T

h/2 N/ a3k

This is known as Kepler’s third law.

T

» 9-18. (a) Find the potential associated with the conservative vector field
F = (y?cosz+ 2%) & + (2ysinz — 4) & + 322> &3

(b) Find the differential equation which describes the field lines.
» 9-19. Show that the vector field

F = (2zyz+7v) & + (222 + x) & + 2%y &3

is conservative and find its scalar potential.
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» 9-20.

A right circular cone intersects a sphere of radius
r as illustrated. Find the solid angle subtended
by this cone.

Right circular cone

intersecting sphere.

» 9-21. Evaluate / / 7-dS, where S is a closed surface having a volume V.

» 9-22. In the divergence theorem ///V Fdv = //F é,dS let F = ¢(z,y,2)C

where C is a nonzero constant vector and show / / / VodV = / ¢ e,dS

» 9-23. Assume F is both solenoidal and irrotational so that F is the gradient of a
scalar function @ (a) Show @ is a solution of Laplace’s equation and (b) Show the

integral of the normal derivative of ® over any closed surface must equal zero.

|~

» 9-24. Let 7 =&, +yé +zé3 and show V|7¥ = v|7|" %7 = v|7]" ! e where é- =

]

is a unit vector in the direction 7.

» 9-25. For T=x6 +yéy+ zeé3 and 7o = Tg €1 + Yo €2 + zg €3 show that

6|F—F0| _$—$0

ox |7 = 7
olF — 7ol y—uo
dy  |F =Tl
olF —7o|  z—2
0z |7 = 7

» 9-26. Let 7= xeé,+yeés+2eé; denote the position vector to the variable point (z,v, 2)
and let 7y = z¢ & + 1o € + 20 €3 denote the position vector to the fixed point (zg, o, 20).
(a) Show V|7 —#|” = v|F — 7|"~* ér_7, where &z, is a unit vector in the direction

7 — .
(b) Show V2|7 — 7|” = v(v + 1)|F — 7|2
(c) Write out the results from part (b) in the special cases v = —1 and v = 2.
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» 9-27. In thermodynamics the internal energy U of a gas is a function of pressure
P and volume V denoted by U = U(P,V). If a gas is involved in a process where
the pressure and volume change with time, then this process can be described by
a curve called a P-V diagram of the process. Let Q@ = Q(t) denote the amount of
heat obtained by the gas during the process. From the first law of thermodynamics
which states that dQ = dU + PdV, show that dQ = a—U dP+ [g—‘(i - P] dV and determine

whether the line integral / dQ, which represents the heat received during a time
interval At, is independent of the path of integration or dependent upon the path of

integration.

> 9-28.

(a) If z and y are independent variables and you are given an equation of the form
F(z) = G(y) for all values of z and y what can you conclude if (i) = varies and y
is constant and (ii) y varies but z is constant.

2 2

(b) Assume a solution to Laplace’s equation V?¢ = % + % 0 in Cartesian
coordinates of the form ¢ = X (x)Y(y), where the variables are separated. If the
variables z and y are independent show that there results two linear differential
equations

1 d*X 1 d*Y
}W = -\ and ?d—yQ = )\,

where )\ is termed a separation constant.

» 9-29. Evaluate the line integral I = / F . dF, where F = yzé; + 2z &, + zyé; and
c

. t 3t .
C is the curve ¥ = 7(t) = cost & + (— +sint) ey + — &3 between the points (1,0,0) and
s ™
(_L 1a3)

» 9-30. A particle moves along the z-axis subject to a restoring force —Kz. Find

the potential energy and law of conservation of energy for this type of motion.
» 9-31. Evaluate the line integral

I= / (2x + y) dx + x dy, where K consists of straight line segments
K

OA + AB + BC connecting the points 0(0,0), A(3,3), B(5,—1) and C(7,5).
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» 9-32. The problems below are concerned with obtaining a solution of Laplace’s

equation for temperature 7. Chose an appropriate coordinate system and make

necessary assumptions about the solution in order to reduce the problem to a one-

dimensional Laplace equation.

(a)

(b)

(d)

Find the steady-state temperature distribution along a bar of length L assuming

that the sides of the bar are insulated and the ends are kept at temperatures Ty
2

and T3. This corresponds to solving ZTZ; =0, T(0) =Ty and T(L) = T;.

Find the steady-state temperature distribution in a circular pipe where the inside

of the pipe has radius r; and temperature T, and the outside of the pipe has

a radius r, and is maintained at a temperature 7,. This corresponds to solving
td <rd—T> =0 such that T(ry) = Ty and T(ry) = Ts
rdr dr

Find the steady-state temperature distribution between two concentric spheres
of radii p; and ps, if the surface of the inner sphere is maintained at a temperature

Ty, whereas the outer sphere is maintained at a temperature 7,. This corresponds
to solving p%d_p p2%> = 0 such that T(p,) =Ty and T(ps) = Ts.
Find the steady-state temperature distribution between two infinite and parallel

plates z = z; and z = 2, maintained, respectively, at temperatures of 7, and T5.

» 9-33. Find the potential function associated with the conservative vector field

F = 6rzeé; + 8yés + 322 &5.

» 9-34. Newton’s law of attraction states that two particles of masses m; and m,

attract each other with a force which acts in the direction of the line joining the

two masses and whose magnitude is given by F = Gmims/r?, where r is the distance

between the masses and G is a universal constant.

(a)
(b)

If mass m, is at the origin and mass m, is at a point (z,y, z), find the vector force
of attraction of mass m; on mass ms.
If mass m; is at a fixed point Pi(x1,y1,2) and mass m, is at the point (z,y, 2),

find the vector force of attraction of mass m; on mass ms.

» 9-35. Show that u = u(x,t) = f(x—ct)+g(z+ct), £, g arbitrary functions, is a solution

0%u 1 0%u

of the wave equation — = Here f and ¢ are wave shapes moving to the left

92~ 2 92

and right.
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» 9-36. Express the Maxwell equations (9.161) as a system of partial differential
equations.

» 9-37.  Assume solutions to the Maxwell equations (9.161) are waves moving in
the z-direction only. This is accomplished by assuming exponential type solutions
having the form e!**=“Y where i is an imaginary unit satisfying i = —1.

(a) Show that E = E(z,t) = E¢e!**=%) and B = B(xz,t) = Bee!**™%" are solutions
of Maxwell’s equations in this special case.

(b) Show that By = S(él x Eg)

(¢) Show that the waves for E and B are mutually perpendicular.

» 9-38. Consider the following vector fields:

—

B a magnetic field intensity with units of amp/m
E an electrostatic intensity vector with units of volts/m
Q a heat flow vector with units of joules/cm? - sec

V a velocity vector with units of cm/sec

(a) Assign units of measurement to the following integrals and interpret the mean-

ings of these integrals:

(a) //Ed§ (b) //cj-d§ (c) //V-d§ (d) /CE-dF
S S S

(b) Assign units of measurements to the quantities:
(@) cutl H (b) divE (¢) divQ (d) divV

» 9-39. Solve each the following vector differential equations

dy d*y dy

(a) a = é1t+ égSint (b) W = él sint+ ég cost (C) a :337+ 6é3
» 9-40. Solve the simultaneous vector differential equations % = o, % = —i

» 9-41. A particle moves along the spiral r = r(f) = rpe?°*, where r, and o are
constants. If § = 0(¢) is such that = = w = constant, find the components of velocity

in the direction # and in the direction perpendicular to 7.
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» 9-42. Couloumb’s law states that the force between two charges ¢, and ¢, acts

along the line joining the two charges and the magnitude of the force varies directly

to the product of charges and inversely as the square of the distance » between the

charges. Symbolically the magnitude of this force is F = q;¢2/r? in the appropriate

system of units'®. A charge @ is called a test charge if it is located at a variable point

(z,y,2) and experiences a force from another charge q;, located at a fixed point. The

ratio of the force experienced by the test charge to the magnitude of the test charge

is called the electrostatic intensity E at the point (z,y,z) and is given by E = g. An

equivalent statement is that a unit charge has been placed at the point P and the

electrostatic intensity is the total force which acts on this test charge.

(a)

Show that a charge ¢ located at the origin produces an electrostatic intensity £
at a point (z,y,2) given by

—

= ,,’l — — A A A
E:q—g, where r =| 7| and 7F=xé& +yé; + zé;3.
T

Show that (i) E = —V% (ii) E has the scalar potential ¢ = £

.
(iii) cwl E =0 and (iv) divE = —qVQ% =0

Let ¢, denote a fixed charge located at the point Py(z1,%1,2) and let ¢ denote
another fixed charge located at the point Py(xo,ys, 22). Show the electrostatic
intensity on a test charge at (z,y, z) is given by

q17m qar2
2 .3
L] )

where r; =| r; | for i = 1,2, and 7; = (z; — ) &1 + (y; — y) é2 + (2 — 2) &s.
Show for n charges ¢;, i = 1,2, ...,n, located respectively at the points P;(z;, ys, ),

for i=1,2,...,n, the electrostatic intensity at a general point (z,y, z) is given by
= . q;
FE=— T—3'I"Z‘,

i=1 ¢

Wheref} :(:EZ—x)é1+(yz—y)ég+(zz—z)é3 and T; :|T1| fOI‘z'zl,Q,...,n.

15 1¢ charges are measured in units of statcoulombs and distance is measured in centimeters, then the force has

units of dynes.



Chapter 10
Matrix and Difference Calculus

The matrix calculus is used in the study of linear systems and systems of differ-
ential equations and occurs in engineering mathematics, physics, statistics, biology,
chemistry and many other scientific applications. The difference calculus is used to
study discrete events.

The Matrix Calculus

A matrix is a rectangular array of numbers or functions and can be expressed in

the form
ail ai12 ais e alj e A1n
a1 a9o a3 e a2j e a9,
ac| o0 - - (10.1)
;1 ;9 a;3 N Q4 N Qin
am1 Am2 ams3 e amj e Amn

where the quantities a;; for i = 1,2,...,m and j = 1,2,...,n are called the elements
of the matrix. Here the double subscript notation a;; is used to denote the element
in the ith row and jth column. A matrix with m rows and n columns is called a m
by n matrix and expressed in the form “A is a m x n matrix”. Matrices are usually
denoted using capital letters and whenever it is necessary to emphasize the elements
and size of the matrix it is sometimes expressed in the form A = (a;;)mxn. The rows
of the matrix A are called row vectors and the columns of the matrix A are called
column vectors.

For a and b positive integers, then matrices of the form R = (ro1 raa...70; ... 7an)

are called n-dimensional row vectors and matrices of the form

C1b
C2p
C= C"b = COI (Clba C2by++ 3y Ciby -+ oy Cmb) (102)
(3
Cmb
are called m-dimensional column vectors. The column notation col(cy, ..., cnp) is used

to conserve space in typesetting the m-dimensional column vector.
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Properties of Matrices

1.

Two matrices A = (aij)mxn a0d B = (b;j)mxn» having the same dimension are equal

if a;; = b;; for all values of i and j. Equality is expressed 4 = B.

. Two matrices 4 = (aij)mxn and B = (bij)mxn Of the same size can be added or

subtracted and the resulting matrices are denoted
C=A+1B where C = (Cij)an with Cij = Q5 + bij
D=A-B Where D = (dij)an Wlth dij = Q;; — bij

Here like elements are added or subtracted.

If the matrix 4 = (a;;)mxn is multiplied by a scalar g, the resulting matrix is

ﬂA = (ﬁaij)an

That is, each component a;; of 4 is multiplied by the scalar 3.

. Matrices of the same size obey the following laws.

A+B=B+ A commutative law
A+ (B+C)=(A+B)+C associative law
For a and g scalar quantities one can write the

a(A+B)= aoaA+aB
scalar distributive laws (a+B)A= oA+ pA
a(BA)= (ap)A

. The zero matrix has all zeros for elements and can be expressed in one of the

forms [0],,x, or [0] or 0 or 0.

. If the elements of the matrix A are functions of a single variable, say ¢, one can

write a;; = a;;(t) or A= A(t) = (a;5(t)) to emphasize this fact, then the derivative

dA daij
4 _ (o) 103

and the integral of the matrix A is

/ A(t) dt = < / ay (1) dt) e (10.4)

where C is a constant matrix of appropriate size. Here the derivative of a matrix

of the matrix A is given by

is obtained by differentiating each element of the matrix and the integral of
the matrix is obtained by integrating each element within the matrix and the

constants of integration are collected into a constant matrix.



Example 10-1. Find the derivative and integral of the matrix 4 = [ ! _xgx]

sinz e
Solution Taking the derivative of each element one finds

dA [ 0 1
dr ~ |cosx —2e7%
Taking the integral of each element one finds
_ T 1,2
/Adt_ [—cosx —ge_h] +c

where C = (¢;5)2x2 1s an arbitrary constant matrix.

The Dot or Inner Product

The dot or inner product of a n-dimensional row vector R and n-dimensional

column vector C, where
R=(r1,r2,73,...,75) and C = col(cy, ca,c3,...,¢p)

is a single number written as the matrix product

C1
C2 n
RC = (r1,72,73,...,70) | € | =ric1 +raca +r3es+ -+ rpep = Z TmCm (10.5)
. m=1
Cn

representing the summation of the products of the mth row vector element with the
mth column vector element, as m varies from 1 to n. In order to calculate an inner

product the row vector and column vector must have the same number of elements.

Matrix Multiplication

Let A = (aij)mxn denote an m x n matrix and let B = (b;;),x, denote a p x ¢
matrix. If the dimensions n,p have the proper size, then the matrix A can be right-
multiplied by the matrix B to produce a new matrix ¢. This matrix product is
written C = AB and this matrix product can only occur when the matrices A and B
have the proper dimensions. For the matrix product AB = A,,«,Byx, to exist it is
required that the dimension p of B must equal the dimension n of A and whenever
this condition is satisfied, then the matrices are said to satisfy the compatibility

condition for matrix multiplication to occur. If the column dimension of A does not
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equal the row dimension of B, then the matrices A and B cannot be multiplied. The
matrix product of two matrices A and B, having the proper dimensions, is written
C = AB and then one can say either

(a) A premultiplies B
(b) or B postmultiplies 4
If the row dimension of B equals the column dimension of A one can write p =n, then

the two matrices A and B can be multiplied and the resulting matrix product C has

dimension m x ¢q. This is sometimes expressed in the form
Cqu:AmX'nﬂan
where attention is drawn to the fact that the matrices satisfy the compatibility

condition for matrix multiplication. Expressing the matrices A, B and C in expanded

form one can write

€1 €2 .+« C15 v Ciq ap;; a2 ... Qip
Ca1 Caa v C25 +vv Cy G1 G2 ... Q2 biy by ... E o by
bor bz ... |bzj| ... by
Ci1 G2 «vv |G| oo Cig llea @z . ai
bnl an vee bnj cee bnq
Cm1i Cm2 +++ Cmj .o Cpgq Gml Om2 <.+ Omn o

The element ¢;; belong to the matrix product C is calculated using the elements
from the ith row vector of A and the elements from the jth column vector of B to
represent c¢;; as a dot or inner product. The ith row vector of A is dotted with the j
column vector from B and the resulting single number is called c¢;;. This inner or dot
product is defined as above, but now a double subscript notation is in use so that
one obtains

by n
J
Cij = (ai1 @iz ... apn) . = a;1b1j + azoboj + - - + @by = E a;xbr;
. k=1
by

Performing all possible inner products of the ith row vector with the jth column
vector as i varies from 1 to m and j varies from 1 to ¢ produces the product matrix
C= (Cij)qu-



L 9 3 7 8 9 10
Example 10-2. 1If A= <4 5 6) and B= |11 12 13 14 the ma-
2x3 15 16 17 18 34

trices A and B satisfy the compatibility condition for matrix multiplication and the
matrix product C = AB will be a matrix having the dimension of 2 rows and 4

columns. One can write

1 2 3 7 8 9 10
c— <z11 Ci2 €13 C14> — AB = <4 5 6) 11 12 13 14
21 C22 C23 C24 15 16 17 18

where ¢;; is the inner product of row 1 with column 1 giving
i1 = 1(7) + 2(11) + 3(15) = 74

In a similar fashion one finds
cio is the inner product of row 1 with column 2 giving
c1o = 1(8) + 2(12) + 3(16) = 80
ci3  is the inner product of row 1 with column 3 giving
c13 = 1(9) + 2(13) + 3(17) = 86
ci4 is the inner product of row 1 with column 4 giving
c1q = 1(10) + 2(14) + 3(18) = 92
cz1 18 the inner product of row 2 with column 1 giving
cor = 4(7) + 5(11) + 6(15) = 173
cy 18 the inner product of row 2 with column 2 giving
con = 4(8) + 5(12) + 6(16) = 188
ces 18 the inner product of row 2 with column 3 giving
cos = 4(9) + 5(13) + 6(17) = 203
ca4 18 the inner product of row 2 with column 4 giving
ca1 = 4(10) + 5(14) + 6(18) = 218

This gives the matrix product
7T 8 9 10
1 2 3 74 80 86 92
AB = < ) 11 12 13 14| =C= < )
4 5 6 ( 15 16 17 18) 173 188 303 218

Matrices with the proper dimensions satisfy the properties

A(B+C)=AB+ AC left distributive law
(B+C)A=BA+CA right distributive law
A(BC) =(AB)C associative law
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Example 10-3. Note that only in special cases is matrix multiplication com-
mutative. One can say in general AB # BA. Consider the matrix product of the 2 x 2

matrices given by A = <(1) f) and B = <(1) i’) . One finds

(3 (-6 Y
m=(2 ()¢ Y

which shows that in general matrix multiplication is not commutative.

and

In addition, if the matrix product of A and B produces AB = [0], this does not

mean A = [0] or B = [0]. For example, if A = <_11 _11> and B = <_11 _11>, then

=Y L) )=(00)

Special Square Matrices

one can show

There are many special matrices which have interesting properties. The following
are some definitions of special square matrices which arise in applied mathematics,
engineering, physics and the sciences.

The identity matrix

The n x n identity matrix can be expressed I = (4;;), ., Where §;; is the Kronecker
delta and defined )

1 ifi=j
6ij =

0 if i #j
This matrix is characterized by having all 1’s along the main diagonal and zero’s

everywhere else. An example of a 3 x 3 identity matrix is given by

Secondary diagonal

Main diagonal
The identity matrix has the property £

Al=TA=A (10.6)

for all square matrices A where A and I have the same dimensions.
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The transpose matrix
The transpose of a matrix A = (@ij)mxn 18 obtained by interchanging the rows and

columns of the matrix A. The transpose matrix is denote A" = (a;;)nxm. That is, if

a1 a12 cee O1n a1 a1 c.. Am1
a21 a22 ce. Q2p a2 A2 ... (M2
A= , , ‘ , then AT =
Am1 Am2 N Umn/ pmxn A1n a2n, s Amn /' pxm

Note that (AT)T = A. If AT = A, then the matrix A is called a symmetric matrix.
If AT = —A, then A is called a skew-symmetric matrix. The matrix transpose of a

product satisfies
(AB)T = BT AT, (ABC)T = CcTBT AT

so that the transpose of a product is the product of the transposed matrices in reverse
order.
Lower triangular matrices

Matrices which satisfy
A= (a;;), where a;=0 for i<y,

are called lower triangular matrices. Such matrices have zero for elements everywhere
above the main diagonal. Any example of a lower triangular matrix is given in the
figure 10-1.

3 0 0 O
1 2 0 O
A= 4 0 2 0
1 -1 -2 4

Figure 10-1. A 4 x 4 lower triangular matrix.

Upper triangular matrices

If a square matrix A satisfies
A= (a;;), where a;=0 for i>j,

it is called an upper triangular matrix. Such matrices have zero for elements every-
where below the main diagonal. An example upper triangular matrix is illustrated
in the figure 10-2.
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A=

SO O W

S O NN

S Wk =
—

Figure 10-2. A 4 x 4 upper triangular matrix.

Diagonal matrices
A matrix which has zeros for all elements above and below the main diagonal is

called a diagonal matrix. Such a matrix can be described by
D = (d;;), where d;;=0 for i#j.

Diagonal matrices are sometimes written D = diag (A1, Xz, ..., \,). The identity matrix
is an example of a diagonal matrix. Another example of a diagonal matrix is given
in the figure 10-3.

3 0 0 0
0 2 0 O
b= 0 0 5 0
0 0 0 1
Figure 10-3. Example of a 4 x 4 diagonal matrix.

Tridiagonal matrices
A matrix A satisfying
A = (a;;), where aij:{gz szji
is called a tridiagonal matrix. Such a matrix is recognized as having elements along
the main diagonal and the immediate diagonals above and below the main diagonal.
All other elements within the matrix are zero. An example tridiagonal matrix is

given in the figure 10-4.

31 0 0 O
1 2 1 0 0
A_03340
0 0 0 2 1

Figure 10-4. A 5 x 5 tridiagonal matrix.




The trace of a matrix
The trace of a n xn square matrix A is denoted Tr(A) and represents a summation

of the diagonal elements of the matrix 4. One can write
TI‘(A) = Zau‘ =ai1 +ax +aszz+ -+ apn
i=1

If matrices A and B are conformable matrices, then the trace satisfies the properties
Tr(A+ B) = Tr(A) + Tr(B), Tr(AB) = Tr(BA)

The Inverse Matrix
If A and E are square matrices such that their matrix product produces the
identity matrix, that is, if AE = EA = I, then E is called the inverse of A and the
matrix F is written
E=A"

which is read “E equals A inverse”. Thus, the inverse matrix has the property that
AATL =AtA=1T.

The inverse matrix, if it exists, is unique. This statement can be proven by first
assuming that the inverse is not unique and then showing that this assumption is
wrong. This type of proof is known as the method of reductio ad absurdum!' to
verify something is true.

For example, if A; and A, are both inverses of the matrix A, then by hypothesis
both of the statements

AAl :AlA:I and AA2 :AQA:I
must be true. Consequently, one can write
Ao = Aol = Ag(AA)) = (A2 A)A; = TA; = A,.

Hence, A, = A; = A=! and the initial assumption is wrong and so the inverse matrix

must be unique.

L' The method of reductio ad absurdum is used to prove a statement in mathematics by assuming initially that
the statement is true (or false) and then performing an analysis of this assumption (the reduction of the proposition)
to arrive at a conclusion which is obviously absurd and contradicts the initial assumption. The method of reductio
ad absurdum was used by the early Greek mathematicians as a method for proving many theorems.
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Example 10-4. For A an nxn square matrix, show that (4-1)~' = A. That is,
show the inverse of an inverse matrix is again the original matrix A.
Solution Let B = A~! so that B! = (4~!)"', then by definition of an inverse matrix
one can write
AB=AAT'=1.
Right-multiply this equation on both sides by B~! to obtain
ABB '=IB'=B""

Using the result that BB~! = I and that AI = A, this last equation simplifies to

-1

AI=A=B"'=(A4"

which establishes the result.
[}

Example 10-5. Show that (AB)~! = B-'4~'. That is, show the inverse of a
product of two matrices is the product of the inverses in the reverse order.
Solution By definition

(AB)"'(AB) =1I.

so that if one postmultiples both sides of this equation by B~! and simplifies the

results, one finds

(AB) Y (AB)B™' =IB™!
(AB)"'A(BB~')= B!, associative law
(AB)"'AI = B!
(AB)™'A=pB""!
Now postmultiply both sides of this last equation by A~! to obtain
(AB)™tAA ' =B~ 'A7!
(AB)"'1=B7'A7!
(AB)"'=pB7'A™!
which establishes the result.
|

Methods for calculating the inverse of a square matrix, if the inverse exists,
are developed in a later section. In this section, the emphasis is on definitions,

terminology and certain operational properties associated with square matrices.



Matrices with Special Properties

The following is some terminology associated with square matrices A and B.
(1) If AB= —BA, then A and B are called anticommutative.
(2) If AB= BA, then A and B are called commutative.
(3) If AB # BA, then A and B are called noncommutative.

p times

(4) If Ar = AA.A=70 for some positive integer p,
then A is called nilpotent of order p.

(5) If A2= A, then A is called idempotent.

(6) If A2=1, then A is called involutory.

(7) If AP*1 = A then A is called periodic with period p. The smallest
integer p for which AP*! = A is called the least period p.
(8) If AT = A, then A is called a symmetric matrix.
(9) If AT = —A, then A is called a skew-symmetric matrix.
(10)  If A" exists, then A is called a nonsingular matrix.
(11)  If A~! does not exist, then A is called a singular matrix.
(12) If ATA= AAT =1, then A is called an orthogonal matrix and A7 = A~

Example 10-6.
The matrix A = [_01 1

o ol[o o] [o o
—1 —1||=-1 =1|" |1 1

Example 10-7. The matrix 4 = [

is periodic with least period 2 because

2 _ 44— 0 0]_
A% = AA = - _1]_/1

and A3 = A24 — [0 0]

-1
1

e e | e B P

_11] is nilpotent of index 2 because

Example 10-8. The matrix

is idempotent because

w22 212 7]
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An orthogonal matrix
If A is an n x n square matrix satisfying ATA = AAT = I, then A is called an

orthogonal matrix, and A=! = A”. An example of an orthogonal matrix is given by

A— < cosf sin9>’ AT — <cos€ —sin9>’ AAT — T

—sinf cosf sin 6 cos 0

Example 10-9. Some examples of special matrices are:

[a1q 0 0 0
A= |02 02 00 is lower triangular
az; azz asz 0
LA41 Q42 Q43 Q44
(b1 b1z b1z bu
10 baa baz boy : :
B=1, 0 bas by J is upper triangular
L 0 0 0 by
[1 0 0
I={0 1 0 is an identity matrix which is also diagonal
0 0 1
3 v 0 0 0
a g v 0 0
T=10 a B8 v 0 is a tridiagonal matrix
0 0 a (B ~
L0 0 0 a 23
1 0 0 O
00 1 0| . e .
A=14 1 o0 o is an orthogonal matrix satisfying AA" =1
0 0 0 1
If f=f()=f(z1,22,...,2,) is a function of n-variables, then the Hessian matrix
associated with f is
O’ f O’ f . o f
8(E12 8IE1 8IE2 8IE1 8:En
oy &F . _&F
H — 8IE2 8IE1 8(E22 8IE2 8:En
0% 0% f T
Ox,, Ox1 Ox,, Oxo Ox 2



Example 10-10. Consider the fixed set of axes =,y and a set of barred axes
7,7 where the barred set of axes is rotated about the origin through an angle ¢ as
illustrated below. Consider a general point P having coordinates (z,y) with respect
the unbarred axes. This same point P has coordinates (z,7) with respect to the
barred set of axes. Let é;, é, and é;, &, denote unit vectors in the directions of the
z,y and z, g-axes respectively. The position vector 7 of the point P can be expressed
in either of the forms

1+yé

>

F:xe1+yég or =71

The transformation equations between the coordinates can be obtained by taking

the dot product of # with the unit vectors é; and e, to obtain

=261 € +yeéy- & =xcosl+ysind

>
iy

Il
S]]

7

Foey ==

2=Y

>
o>
>

Té - 9 - €y = x(—sinf) 4+ ycosh

The above transformation equations between
the (z,y) axes which have been rotated through
an angle # with respect to a fixed set of (z,y) axes
can be represented by the matrix equation

z cos sinf| |z _
x [ﬂ]_[—sme cose] |:y:| or X=AX (10.7)

where X = col(z,7) and X = col(z,y) are column

vectors. Here the coefficient matrix of the above
cos 0 sin 6 cos@ —sinf
—sinf cosf sinf  cosf ]
If one calculates the matrix product of A times it transpose AT, one finds AAT =1,

transformation is A = and its transpose matrix is AT =

the identity matrix. Matrices with this property are called orthogonal matrices.
Left-multiplication of equation (10.7) by A~! = AT gives the inverse transformation
ATX = ATAX = IX = X which can be expressed in expanded form

x| |cos —sinf| |Z
y| |sind  cosé gl

The row and column vectors which make up the rows and columns of the matrix A

are called orthogonal vectors.
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Example 10-11. Represent the given system of differential equations in matrix
form.
dy1

d d
E:yl + Y2 — y3 + sint, %:23/2%—3/3—{—00825, %:3y3+sin2t

Solution The above system of differential equations can be represented in the form
dy

o =T+ T(t) (10.8)

1 1 -1

where 7 = 7(t) = col(y1,v2,y3) denotes a column vector, A = (0 2 1 | is a co-
0O 0 3

efficient matrix and f = f(t) = col(sint, cost, sin2t) represents a variable right-hand

side to the differential system. Matrix differential equations of the form given by
equation (10.8) subject to the initial condition 7(0) = ¢, where ¢ is a constant, are

called initial-value problems.

Example 10-12. The nth order linear differential equation

dny dn—ly dn—2y d2y dy _
t)—— + a2(t)W + -+ an—Q(t)w + an—l(t)g +an(t)y =0

is converted to matrix form by defining

dy d2y dn—2y dn—ly

§=col(y, —=, ==, ..., ———a
y= Oy, G G G g 1)
and
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0
A=A(t) = : : : E : ; :
0 0 0 0 ce 1 0
0 0 0 0 ce 0 1
—an(t) —apn—1(t) —an_o2 —an—_3(t) - —a(t) —ai(t)

The given scalar equation can then be represented by the matrix equation

dy _
P A(t)y

The matrix 4 = A(t) is called the companion matrix.
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Example 10-13.

2
Represent the differential equation &y
form.

T +w?y = sin 2t in matrix
d d
Solution Let y; =y and y, = % = d—i, then

d d? d? . .
% — dtgg — dTg = —w?y +sin 2t = —w?y; + sin2t

The given scalar differential equation can then be represented in the matrix form

G _ (O LY (wm), (0
ddit? —w? 0 Yo sin 2t
or

dy I 0 1 - 0 _
d_i:Ay+f(t) WhereA:< 2 0), f(t):<sin2t> and 7 = col(yy, o)

Example 10-14.

|
Associated with the initial value problem
dy _ _ _
o = AWy + f(1), y(0)=¢ (10.9)
is the matrix differential equation
X
o A(t) X, X(0)=1I

(10.10)

where X = (2;;)nxn and I is the n x n identity matrix. Associated with the matrix
differential equation (10.10) is the adjoint differential equation

dz

dt —ZA); Z2(0)=1,  Z=(zij)nxn (10.11)

The relationship between the three differential equations given by equations (10.9),

(10.10), and (10.11), is as follows. Left-multiply equation (10.10) by Z and right-
multiply equation (10.11) by X to obtain

Z%( —ZA()X (10.12)
dz

— X =-ZA(t)X
7 (t)

(10.13)
and then add the equation (10.12) and (10.13) to obtain
dX dz d

(10.14)
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This implies that the matrix product ZX = C is a constant. If the matrix X is
nonsingular, then X—! exists, so that one can solve for Z as Z = X~'C. At time
t =0, it is required that Z(0) = I and X(0) = I so that C = I and therefore Z = x~1.

Consequently, the adjoint equation can be expressed in the form

dx—!

T —X LA, X H0o)y=1 (10.15)

Now multiply equation (10.9) on the left by X~ to obtain
_1dy 14~ 17
x5 — X ag+ X (10.16)

and then multiply equation (10.15) on the right by 7 to obtain

7=—-X"1Ay (10.17)

y=— (X9 =X"1ft) (10.18)
Integrate equation (10.18) from 0 to ¢ and show

| o waw) = [ xwiea

which produces the result

which indicates that the solution to the matrix equation (10.9) can be represented

in the form

a(t) = X (e + X (1) / X1(e)F(e) de (10.19)

n
The Determinant of a Square Matrix

A fundamental principle from probability and statistics is that if something can
be done in n different ways and after it has been done in one of these ways, a second
something can be done in m different ways, then the two somethings can be done
in the order stated in n-m different ways. If a third something can be done in p

different ways, then the three somethings can be done in n-m-p different ways. This



principle of multiplication by the number of distinct ways a thing can be done can be
extended to more than just two or three somethings.

A permutation of a set of objects represents some arrangement of the objects.
The number of different permutations of n-objects is n! (read n-factorial). This is
because there are n choices for the first position of the arrangement, (n — 1) choices
for the second position of the arrangement, (n — 3) choices for the third position of
the arrangement, etc, and these quantities are being multiplied.

A transposition is an interchanging of the positions of two objects within an
arrangement of the set of objects. In examining all possible permutations of the
integers (1,2,3,...,n) one finds these permutations can be divided into a group rep-
resenting an even number of transpositions and another group representing the odd
number of transpositions. For example, in going from (1234...) to (2134...) represents
1 transposition and going from (1234,...) to (2314...) would be two transpositions,
etc.

The determinant of a n x n square matrix 4 = (a;;) is denoted by either of the
symbols detA or | A |. The determinant is a single number given by either of the

summations
detA=| A |:Z(—1)mai1aj2ak3 . Qo column expansion

detA=| A4 |:Z(—1)ma1ia2ja3k ey row expansion

The single number det A =| A | is the sum of all possible products in which there
appears one and only one element from each row (or column) multiplied by the
appropriate plus or minus sign. The sigma sign ¥ denotes a sum over all n! permu-
tations of the numbers (1,2,3,...,n) and the integers (i, 4, k, ..., ¢) represent distinct
permutations of the numbers from the set (1,2,3,...,n). The appropriate plus or mi-
nus sign is assigned to each product within the sum and is based upon whether the
permutation (i, j, k, . .., £) is either even (+1) or odd (-1). Thatis, m = +1if (3,5, k,...,£)
represents an even number of transpositions associated with the set (1,2,3,...,n) and
m = —1 if (i,4,k,...,¢) represents an odd number of transpositions associated with
the set (1,2,3,...,n).

Example 10-15. The matrix A4 = <a“ a12> has the determinant

a21 Q22

ai; a2
| A= = +aq1a22 — a12a21
21 A22
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Here (1,2) is an even permutation of (1,2) and (2,1) represents an odd permuta-
tion of (1,2) A mnemonic device to remember this 2 x 2 determinant is illustrated by

the following figure

ai; ai2 Aais

Example 10-16. The 3 x 3 matrix A= (a21 aso (123) has the determinant

a31 az2 as3

ai; Gai2 Aais
| Al=la21 a2 ag3| = +aiiaass + a12a23a31 + a13021a32

as1 @32 a33 — 013022031 — (11023032 — (12021033
A mnemonic device to remember this 3 x 3 determinant is to append the first two
columns to the end of the matrix and draw diagonal lines through the elements to

create the following figure, where the elements on each diagonal are multiplied.

Note that the determinant of a nxn matrix has n-factorial terms and consequently
if n is large, then mnemonic devices like those above are not employed because the
calculations become cumbersome and sometimes extremely lengthy. Instead it has
been found that by using row reduction methods? the given matrix can be converted
to an equivalent upper triangular or lower triangular matrix having all zeros either
below or above the main diagonal. The determinant of these special triangular

matrices is then just a product of the diagonal elements.

Example 10-17. Find the derivative of the determinant

y=detA=|A|=

(111(75) alg(t) I
a1 (t) a2 (t)

2 Row reduction methods are considered later in this chapter.



Solution
The definition of a determinant gives the relation y = y(t) = Y (—1)"a;1(t)a;2(t)
where the summation is over all permutations of the integers (1,2). Differentiating

this relation gives
% = % (Z(—l)maﬂ(t)ajg(t)) = Z(_l)m [daz‘ilt(t) an(t) +an (1) daz';t(t)]

which has the expanded form

dan(t) dalg(t)

dt dt
a1 (t) a9 (t)

ail (t) ai12 (t)
dagl (t) da22 (t)

dt dt

dy _

dt +

Minors and Cofactors

Associated with each element a,, of a n x n square matrix A are the quantities
Mpg and Cpq called the minor and cofactor of the element Apg- The minor Mpg of an
element a,, is the determinant of the (n—1) x (n—1) matrix formed by deleting the row
and column of A which contains the element a,,. The cofactor of a,, is then defined
as cpy = (—1)P*9m,,. That is, the cofactor is the minor with the appropriate plus or
minus sign (—1)?*? which is determined by the row number p and column number ¢
of the element a,,. The matrix containing the cofactor elements c,, of a,, is written
C = (cpg)nxn and is called the cofactor matrix associated with A. The cofactor matrix
has the property that ACT = diag||A|,|A],...,|A|] = |A|I, where |A| is the determinant
of A.

a1 a2 ai3
Example 10-18. ((Minors and Cofactors) For the matrix A = [ as1  aze a9

aszyr azz2 ass
calculate the cofactor matrix C = (¢;;)sx3 and then calculate ACT.

Solution The minor of element q;; is obtained by crossing out the row and column
containing a;; and then taking the determinant of the remaining elements. One finds

a22 a23 a21 a23 a21 a22
mi1 = ) mi12 = b mi3 =
as2 ass asl ass asl as2
C11 = mi1, C12 = —mMmi12, C13 = mi3
al12 al3 all al3 alil al12
ma1 = ) ma2 = ) m23 = c21 = —m21, €22 = m22, €23 = —M23
as2 ass asl ass asl as2
Cc31 = m31, €32 = —M32, €33 = m33
al12 al3 all al3 all al12
m31 = ) m32 = ) m33 =
a22 a23 a21 a23 a21 a22
a1l a2 a3 €11 Q21 a3y Al 0 0
T _ _
ACT = | a1 az aos a2 age aszx | =1 0 |A O
azy agz ass a3 a3 ass 0 0 |4

where

325



326

|A| = det A= ail

az1  G22
az1  a32

21  G23
az2  G33

Q22  G23
az2  G33

— Q12 + a3 = aii1€11 + a12¢12 + a13¢13

In general for A, ., one can write

|A| =det A= Zaijcij or |A| =det A = Z QijCij

j=1 j=1

for the column and row expansion of a determinant. If n > 3 these methods for

calculating a determinant are ill advised as the method is very time consuming.

Properties of Determinants

Many of the properties of determinants are associated with performing elemen-

tary row (or column) operations upon the elements of the determinant. The three
basic elementary row operations being performed on determinants are
(i) The interchange of any two rows.

(ii) The multiplication of a row by a nonzero scalar «

(iii) The replacement of the ith row by the sum of the ith row and o times the jth

row, where i # j and « is any nonzero scalar quantity.

The following are some properties of determinants stated without proof.

. If two rows (or columns) of a determinant are equal or one row is a constant

multiple of another row, then the determinant is equal to zero.

. The interchange of any two rows (or two columns) of a determinant changes the

numerical sign of the determinant.

. If the elements of any row (or column) are all zero, then the value of the deter-

minant is zero.

. If the elements of any row (or column) of a determinant are multiplied by a scalar

m and the resulting row vector (or column vector) is added to any other row (or
column), then the value of the determinant is unchanged. As an example, take
a 3 x 3 determinant and multiply row 3 by a nonzero constant m and add the

result to row 2 to obtain

a b c a b c
d e fl=|d+mg) (e+mh) (f+mi)].
g h i g h i

. If all the elements in a row (or column) are multiplied by the same scalar ¢, then

the determinant is multiplied by ¢. This produces



ail a12 A1n a1l ai2 A1n
qai1;  qag2 qQin | = 4 | Q41 G2 Ain | -
an1 an2 Ann an1 an2 Ann

6. The determinant of the product of two matrices is the product of the determi-
nants and |AB| = |A||B].

7. If each element of a row (or column) is expressible as the sum of two (or more)
terms, then the determinant may also be expressed as the sum of two (or more)

determinants. For example,

a1 +bin az - ai, a1 aiz2 -+ Qln bii aia - Qin

ain+bin a2 0 aim |[=|an a2 o G |t b a2 aip

an1 + bnl an2 Qnn an1 an2 Qnn bnl an2 Gnn

8. Let ¢;; denote the cofactor of a;; in the determinant of A. The value of the
determinant |A| is the sum of the products obtained by multiplying each element

of a row (or column) of A by its corresponding cofactor and

n

|A| =ai1ci + - - + QinCin = Z“ikcik row expansion
k=1
n

or |Al =ajjcij + -+ anjcn; = Zakjckj column expansion
k=1

If the elements of a row (or column) are multiplied by the cofactor elements
from a different row (or column), then zero is obtained. These results can be
used to write ACT = |A|T

Example 10-19.

1 0 1 -5 5 -5
Show the matrix A= | -1 1 2 | has the cofactor matrixC=1| 2 -4 —-2].
3 2 -1 -1 -3 1

If the elements from any row (or column) of A are multiplied by their respective

cofactors, then the sum of these products gives us the determinant |A|. For example,

using row expansions one can verify
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[A] = (1)(=5) + (0)(5) + (1)(=5) = —10
Al = (=1)(2) + (1)(=4) + (2)(-2) = —10
Al = B)(=1)+ (2)(=3) + (-1)(1) = -10
and using a column expansion there results
4] = (1)(=5) + (~1)(2) + (3)(~1) = ~10
[A] = (0)(5) + (1)(—=4) + (2)(=3) = —10
Al = (1)(=5)+ (2)(=2) + (-1)(1) = —10.
Observe also that if the elements from any row (or column) are multiplied by

the cofactors from a different row (or column), then the sum of these elements is
zero. For example, row 1 multiplied by the cofactors from row 2 gives

(1)(2) 4+ (0)(=4) + (1)(=2) = 0.
Another example is row 2 multiplied by the cofactors from row 3
(=D(=1)+ @1)(=3) + (2)(1) =0.

These results may be further illustrated by calculating the matrix product

Al 0 0
ACT =10 A 0 | =|Aldiag(1,1,1)=|A|I (10.20)
0 0 |A

Example 10-20.

Find the determinant of the matrix

1 0 0 2 6
{1 1 0 3 9—|
A=|-2 0 1 -3 -9].
0o -1 0 2 1
1 0o 1 4 12

Solution: Utilizing property 4, one can multiply any row by a constant and add the
result to any other row without changing the value of the determinant. Perform the

following operations on the above determinant: (a) subtract row 1 from row 5 (b)



multiply row 1 by two and add the result to row 3, and (c) subtract row 1 from row
2. Performing these calculations produces

1 0 0 2 6
0 1 0 1 3

lAl=[0 0 1 1 3.
0 -1 0 2 1
0 0 1 2 6

Now perform the operations: (a) add row 2 to row 4 and (b) subtract row 3 from
row 5. The determinant now has the form

1 0 0 2 6
01 0 1 3
[Al=]0 0 1 1 3|.
00 0 3 4
000 1 3

Observe that the row operations performed have produced zeros both above and
below the main diagonal. Next perform the operations of (a) subtracting twice row
5 from row 1, (b) subtracting row 5 from row 2, (c¢) subtracting row 5 from row 3,

and (d) subtracting row 5 from row 4. These operations produce

1 0 0 0 0
01 0 0 0
Al=l0 0 1 0 0.
00 0 2 1
00 0 1 3

By expanding |A| using cofactors of the first rows and associated subdeterminants,

there results
2 1

A=} §|=s
A much more general procedure for calculating the determinant of a matrix A
1s to use row operations and reduce |A| = det(A) to a triangular form having all zeros

below the main diagonal. For example, reduce A to the form:

ai; Gai2 Aais ... Q1n
0 a2 a3 a9on,

|A| = det(A) = 0 0 azz ... asp|.
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The determinant of A is then obtained by multiplying all the elements on the main

diagonal and

|A| = det(A) = a11022 ...0npn — Ha“
i=1

Rank of a Matrix

The rank of a m x n matrix A is denoted using the notation rank(A4). The rank of
the matrix A is a real number defined as the size of the largest nonzero determinant
that can be formed using the elements of A. If A = (aij)mxn, one can show that the
maximum possible rank(A) is the smaller of the numbers m and n.
Calculation of the Inverse Matrix

The following illustrates some methods for calculating the inverse of a square
matrix if such an inverse exists. Previously it has been shown that if C is the cofactor
matrix of A, then

ACT = |A|L (10.21)

By multiplying this equation on the left by A=! and dividing by |A|, one can verify
the result

1
A l=_—_CT. 10.22
] ( )

as a formula for calculating the inverse matrix. Define the transpose of the cofactor
matrix CT to be the adjoint of A. The notation AdjA is used to denote the adjoint
matrix. Using this definition, the above results can be expressed in the form

(Adj A)A = AAdjA) = [AT  or  A'= |17|Adj A (10.23)

If Ais an n xn square matrix and the determinant satisfies det A = |A| =0, then
A is called a singular matrix. If A is singular, then the inverse matrix does not exist.
If det A = |A| # 0, then A is called a nonsingular matrix, and the inverse matrix A—!

exists under these conditions as can be discerned by examining the equation (10.23).

Example 10-21.

Find the inverse of the matrix 4 = [_13 Z] )

Solution: The cofactor matrix associated with A is given by C = [ 4 and

-2 1




O P
Adja=C _[3 1].

This gives |A| = 10 so that A is nonsingular and the inverse is given by

A7 =
10

4 =2
3 1

] As a check, verify that AA~'=1T

Elementary Row Operations

A very useful matrix operation is an elementary row operation performed on a
matrix. These elementary row operations can be used to obtain a wide variety of
results.

An elementary row matrix £ is any matrix formed from the identity matrix
I = (6;;) by performing any of the following elementary row operations upon the
identity matrix.

(a)  Interchange any two rows of I

(b)  Multiplication of a row of I by any nonzero scalar m

(c) Replacement of the ith row of I by the sum of the ith row and m times the jth
row, where i # j and m is any scalar.

An elementary column matrix E is obtained if column operations are used instead
of row operations. An elementary transformation of a matrix A is the multiplication

of A by an elementary row matrix.

Example 10-22. Consider the matrix 4 =

a b c
d e f| and the elementary
g h 1

matrices

E; where row 1 and 2 of the identity matrix are interchanged.

E> where row 1 is interchanged with row 3 and then rows 1 and 2 are interchanged.

E3 where row 1 of the identity matrix is multiplied by 3.
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E, where row 2 of the identity matrix is multiplied by 3 and the result added to row 1.

These elementary matrices can be represented

], Ey = ], E3 =

E, =

O = O
OO =
_ o O
—_= o O
OO =
O = O
O O W
O = O
_ o O

OO =
O = W
_ o O

]7 E4:

|
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Observe that multiplication of the matrix A by an elementary matrix E produces
the following elementary transformations of the matrix A.

d e f
a b ¢
g h 1

where the first two rows of A are interchanged,

d e f
g h 1

a b ¢

E1A=

E)A =

where simultaneously row 2 is moved to row 1, row 3 is moved to row 2 and row 1

is moved to row 3,

3a 3b 3c
E3A = d (& f
g h 1

where row 1 is multiplied by the scalar 3, and

EA=| d e f

g h i

a+3d b+3e c+3f]

where row 2 of A is multiplied by 3 and the result is added to row 1. Observe that
the elementary matrices E;, Fy, E3 and E; are obtained by performing elementary row
operations on the identity matrix. When one of these elementary matrices multiplies
the matrix A it has the same effect as performing the corresponding elementary row

operation on the matrix A.

Let the product of successive elementary row transformations be denoted by
EvE) - FE3EyE, = P.

Similarly, one can define the product of successive elementary column transforma-
tions by
E\EsEs---E,, = Q.

The equivalence of two matrices A and B is defined as follows. Let P and @ denote,
respectively, the product of successive elementary row and column transformations
as defined above. If B = PA, then B is said to be row equivalent to A. If B = AQ, then



B is said to be column equivalent to A. If B = PAQ, then B is said to be equivalent

to to the matrix A.

All elementary matrices have inverses and are therefore nonsingular matrices. If
A is nonsingular, then A~! exists. For A nonsingular, one can perform a sequence of
elementary row transformations on the matrix A and reduce 4 to an identity matrix.

These operations are denoted by
EyEj_1--E3EsEyA=1 or PA=1I (10.24)
Right-multiplication of equation (10.24) by A~! gives
P=FEwEy 1 EsEEy = AL (10.25)

This equation suggests how one might build a “machine” for finding the inverse
matrix of a nonsingular matrix A. Write down the matrix A, ., and append to the
right of it the identity matrix I,,»,. By doing this the identity matrix can then be
used like a “recording device,” to record all elementary row operations that are
performed on A. That is, whatever a row operation is performed upon A you must
also perform the same row operation on the appended identity matrix. The matrix
A with the identity matrix appended to its right-hand side is called an augmented
matrix. After writing down

Al (10.26)

observe that if an elementary row transformation is applied to the matrix A4, then
it is possible to “record” this transformation on the right-hand side of the equation
(10.26). For example, if F, is an elementary row transformation applied to the
augmented matrix, one obtains

EiA| By

By performing a sequence of elementary row transformations upon the aug-
mented matrix, given by equation (10.26), one can change the augmented matrix to
the form

By EoE1A| By Eo By, (10.27)

where the sequence of elementary transformations has been “recorded” on the right-
hand side of the augmented matrix. If one can choose the elementary matrices
E;, i = 1,...,k, in such a way that the left-hand side of the augmented matrix
(10.27) becomes the identity matrix, there would result the equation (10.24) on the
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left-hand side of the transformed augmented matrix. Consequently, the right-hand
side of equation (10.27) becomes an equation, which gives the inverse matrix. The

following example illustrates this “machine.”

1 0 3
Example 10-23. Find the inverse of the matrix A= | -1 1 2] .

2 -1 2
Solution Append to the matrix A the identity matrix I to obtain the augmented
matrix
1 0 3|1 0 O
-1 1 2/0 1 0. (10.28)
2 -1 2|10 0 1

Now try to select a sequence of elementary row operations with the goal of reducing
the left-hand side of the augmented matrix (10.28) to the identity matrix. Each time
an elementary row operation is applied to to the left-hand side of the augmented
matrix (10.28) be sure to “record” the operation on the right-hand side. To illustrate,
consider the following row operations applied to the augmented matrix (10.28).

e Replace row 2 by adding row 1 to row 2

e Multiply row 1 by (-2) and add the result to row 3. This produces the augmented

matrix
1 0 3 1 0 O
0 1 ) 1 1 0
0 -1 —-4|-2 0 1
Next perform the elementary row operation of replacing row 3 by adding row 2
to row 3 to get
1 0 3|1 0 0
0 1 5|1 1 0].
0O 0 1|—-1 1 1

Finally, perform the following row operations:

e Multiply row 3 by (-5) and add the result to row 2.

e Multiply row 3 by (-3) and add the result to row 1. The above row operations
produce the desired result of producing the identity matrix on the left-hand side
of the augmented matrix. The final form for the augmented matrix is

{1 0 0] 4 -3 —3]
0 1 0] 6 -4 -5
[0 0 1]-1 1 1 J
and an examination of the right-hand side of the augmented matrix gives the
4 -3 -3
inverse matrix A™! = { 6 —4 —5]|.One can readily verify that AA=! =I.
-1 1 1




Eigenvalues and Eigenvectors

Consider the operator box illustrated in the figure 10-5 where the input to the
operator box is the n x 1 nonzero column vector z = col(zy, s, ...,z,) and the output
from the operator box is the n x 1 column vector y = Az were A is a n x n nonzero
constant matrix. The operator box is said to transform the nonzero column vector
x to the column vector y by matrix multiplication. For example, if n = 3 one would

have the situation illustrated.

U1 ajx a2 @13 X1
X —> A > y= Ax Y2 | = | G21 a2 Q23 T2
Y2 aszr azz2 ass T3

Figure 10-5.
Transformation of vector z to vector y.

If there are special nonzero column vectors z such that the output y is pro-
portional to the input z, then these special vectors are called eigenvectors and the
proportionality constants are called eigenvalues. If the output y is proportional to
the nonzero input z, then the equation y = Az = Az must be satisfied, where X is the
scalar proportionality constant. If the equation Az = Az has nonzero solutions, then

one can write

Arz =Xz = Nz
(A= XI)x =[0],x1
a1l — A ai12 e A1n 1 0 (1029)
as1 a2 — A ... a2n T2 0
an1 An2 e Qpn — A Tn 0

Cramer’s? rule states that in order for this last equation to have a nonzero solution it

is required that the determinant of the unknowns =, z,, ..., z, be zero. This requires
that
a1 — A a12 e ai3
det(A — \I) = afl 2 . A i af” —0 (10.30)
a;ﬂ (17‘12 .. ann‘— A

3 Gabriel Cramer (1704-1752) A Swiss mathematician who studied determinants.
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Solving this equation for the values of \ gives the eigenvalues (A1, Ay, ..., \,) associated
with the matrix A. Substituting an eigenvalue X into the equation (10.29) enables

one to solve for the corresponding eigenvector.

Example 10-24.

Find the eigenvalues and eigenvectors associated with the matrix A = ; g)

Solution The eigenvalues and eigenvectors of the matrix A are determined by solving
the matrix equation Az = Az or

(A—)\I):z:<1;>\ 3fA> <2>:<8> (10.31)

In order for this system to have a nonzero solution for the column vector x, Cramer’s
rule requires that

det(A — AI) =0
or

1-A 4
2 3-A

Solving this equation for X gives

=(1-MNB-N-8=X-41-5=0

A+1)(A=5)=0 withroots AX=-1 and X=5

which are called the eigenvalues of the matrix A. The eigenvector corresponding to
the eigenvalue A = —1 is found be substituting A = —1 into the equation (10.31) to

(et ()G D) -6)

which gives the equation 2z; +4z, = 0 or z; = —2x,. This result specifies how the first

obtain

component of the eigenvector is related to the second component of the eigenvector
and gives x = col(xy, z5) = col(—2x,, x5) for the eigenvector. Note that z, must be some
nonzero constant in order that the eigenvector be nonzero. For convenience select the
value x5 = 1 to obtain the eigenvector = = col(-2,1). Note that any nonzero constant
times an eigenvector is also an eigenvector. To summarize what has just been done,
one can say the solution of the matrix equation (10.31), using the value A = —1,
tells us that col(—2,1) is an eigenvector of the matrix A and any constant times the
eigenvector is also an eigenvector. In a similar fashion, substitute the value A =5
into the equation (10.31) to obtain

(2722 () -G 2)(2)-0)



which implies z; = x,. This gives the eigenvector z = col(zy, z2) = col(zs, 2) where the
component x, must be some nonzero constant. Selecting the value z, = 1 gives the
eigenvector x = col(1,1). This shows that corresponding to the eigenvalue A = 5 there
is the eigenvector x = col(1,1). Note also that any nonzero constant times col(1,1) is
also and eigenvector.

Example 10-25.

Find the eigenvalues and eigenvectors associated with the matrix

2 2 2
A=110 0 4
0o -3 7

Solution The eigenvalues and eigenvectors of the matrix A are determined by solving
the matrix equation

2—A 2 2 I 0
0 -3 7T-A T3 0

In order for this system to have a nonzero solution for the column vector x, Cramer’s
rule requires that
det(A — AI) =0
or
2—X 2 2

0 -A 4
0 -3 T7T-A

= A4+ 9\2 260 +24=0

Solving this equation for A one finds the factored form
A—2)(A=3)(A—4)=0 withroots X=2, A=3, and A\=4

which are called the eigenvalues of the matrix A. The eigenvector corresponding to
the eigenvalue X = 2 is found be substituting the value A = 2 into the equation (10.32)

2—-2 2 2 T 0o 2 2 T 0
0 -2 4 i) = 0 -2 4 i) = 0
0 -3 7-2 T3 0 -3 5 T3 0

which gives the equations 2zy + 223 = 0, —229 + 423 = 0 and —3z5 + 5x3 = 0. These

to obtain

equations imply z, = z3 = 0 giving the eigenvector col(zy,0,0). Selecting the value

of z; = 1 for convenience, the eigenvector corresponding to the eigenvalue \ = 2 is
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given by col(1,0,0). Note that any nonzero constant times this vector is also an
eigenvector. Substituting the eigenvalue A\ = 3 into the equation (10.32) gives the
equations —xz; + 2wy +2w3 = 0, —3x9+423 = 0 and —3x,+4x5 = 0. These equations imply
that z, = 22y and z3 = &2,. This gives the eigenvector col(zy, 221, z1). Selecting
the value x; = 14 for convenience, one finds the eigenvector col(14, 4, 3) corresponding
to the eigenvalue A = 3. Note that any nonzero constant times this eigenvector is
also an eigenvector. Substituting the eigenvalue A = 4 into the equation (10.32)
gives the equations —2x; + 2wy + 223 = 0, —4x9 + 423 = 0 and —3xy + 323 = 0. These
equations imply that z3 = $2; and z> = 321 and so the eigenvector can be expressed
col(zy, 321, 331). Selecting the value z; = 2 for convenience gives the eigenvector

col(2,1,1) corresponding to the eigenvalue \ = 4.

Properties of Eigenvalues and Eigenvectors

The following are some important properties concerning the eigenvalues
and eigenvectors associated with an n x n square matrix A.

Property 1: If X is an eigenvector of A, then kX is also an eigenvector of

A for any nonzero scalar k.

Assume that the vector X is an eigenvector of A, so that it must satisfy
the equation AX = AX. If this equation is multiplied by a nonzero constant k
there results kAX = kAX which can be written A(kX) = A(kX) and given the
interpretation kX is an eigenvector of A.

Property 2: An eigenvector of a square matrix cannot correspond to two

different eigenvalues.

Let A1, Ao with \; # )y be two different eigenvalues of A. Assume X, is an
eigenvector of A corresponding to both A\; and ;. Our assumption implies

that the equations
AXl = >\1X1 and AXl = )\2X1

must be satisfied simultaneously. Subtracting these equations shows us that
(A1 — X2)X; = [0]. But, if Ay — Xy # 0, then this equation would imply that
X, = [0], which contradicts the fact that X; must be a nonzero eigenvector.
Hence, the original assumption must be false.

Property 3: If a matrix A has one of its eigenvalues as zero and )\ = 0,

then A is a singular matrix.
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The eigenvalues of A are determined by the characteristic equation
CO) =det (A— A1) = |A = AT| = (—1)"\" + a1 A" ' 4 -+ ap_ 1A+ ap =0

If A =0 is a root of the characteristic equation, then C(\) = det A = 0 and
consequently the matrix A is singular.
Property 4: Two matrices A and B are said to be similar if there exists
a nonsingular matrix Q such that B = Q='AQ. If the matrices A and B
are similar, then they have the same characteristic equation.
The above property is established if it can be shown that the character-
istic equation of B equals the characteristic equation of A. For @ nonsingular
and B = Q1AQ, one can write

B-X=Q 'AQ — \I
= Q'AQ - \Q'IQ
=Q (A= A)Q.

The determinant of this equation gives
C(N) =B =M= (A-AQ| = |Q7'[|A - A]Q].

But Q@' =T and |Q||Q!| =1 hence C(\) = |B — A\I| = |A — AI| and the above property
is established.

Additional Properties Involving Eigenvalues and Eigenvectors

The following are some additional properties and definitions relating to
eigenvalues and eigenvectors of an n x n square matrix A. The properties are
given without proof.

1. If the n eigenvalues \;, Xq,...,\, of A are all distinct, then there exists
n-linearly independent eigenvectors.

2. If an eigenvalue repeats itself, then the characteristic equation is said to
have a multiple root. In such cases there may or may not exit n linearly

independent eigenvectors. If the characteristic equation can be written
CO) = (A= A1) (A= Ag)™ - (A= A)™ =0

where Zle n; = n, then n; is called the multiplicity of the eigenvalue \;.
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3. If Ais a symmetric matrix and ); is an eigenvalue of multiplicity r;, then
there are r; linearly independent eigenvectors.

4. An n x n square matrix is similar to a diagonal matrix if it has n-
independent eigenvectors.

5. The set of all eigenvalues of A is called the spectrum of the matrix A.

6. The largest (in absolute value) eigenvalue of the matrix A is called the
spectral radius of A.

7. If Ais a real symmetric matrix, then all eigenvalues are real.

8. If A is a real skew symmetric matrix, then all eigenvalues are imaginary.

9. If a = max|a;;| and A is an eigenvalue of A, then |A\| < na.

10. An eigenvalue of 4 must lie within one of n circular disks whose centers

are a;, i = 1,2,...,n, and whose radii are

n
ri =y lagl;
=1

J#i

that is, the centers of these disks are determined by the elements along
the main diagonal of A, and the radius of the disk with center at a;; is
obtained by deleting a;; from the ith row and then summing the absolute
value of the remaining elements in the ith row.

11. The eigenvalues of a real matrix A satisfy:
(@) > A=) ay;="Trace(A)
=1 =1

®)  J]x =X A =det (4)
=1

(c) Z)‘z <> D ap

i=1 j=1

_V3
4 ] find matrices Q and Q!

7
4

Example 10-26. For the matrix 4 =

B

such that Q=1A4Q is a diagonal matrix.
Solution: Calculate the eigenvalues \;, A\, and eigenvectors X;, X, of the given matrix

A and show
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M =1, X;=col[v3,1] and Ao =2, X, =col[l,—v3].

Let =[x = | Y _Lo] = [ o

vectors of A for its column vectors. By definition the eigenvalues and eigenvectors

] denote the matrix containing the eigen-

satisfy the equations
AXl = )\1X1 and AX2 = )\2X2,

and these equations can be expressed using the above notation as

3 —§ Ti1 | _ AT and —§ Ti2 | _
_§ 7 Ty _ 7 T22

7 AT 7
I 1Z21 s I

| PSS
S

A2T22

>\2ZE12]

These two sets of linear equations can be represented by the single matrix equation
% —é [5511 5512] _
—§ g To1 T2

The matrix whose column vectors are n-linearly independent eigenvectors of A is

Tol  T22 0 A

T 5512] [Al 0 ] (10.33)

called the modal matrix associated with A. Here @ is the modal matrix of A. Denote
the diagonal matrix having the eigenvalues of A for the elements on the diagonal as
D = diag(\i, \2), then the equation (10.33) can be written as

AQ = QD (10.34)

Left multiplication by Q—' gives Q~*AQ = D, where

=[P g @=l[F Y] o-desan

This example illustrates that the modal matrix can be used to reduce a given matrix
to a diagonal form.

Changes of variables of the form D = Q=1AQ, for the proper choice of the ma-
trix @, is a transformation often used to produce diagonal matrices in a variety of

applications.
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Example 10-27. Find the eigenvalues and eigenvectors associated with the

matrix
-1 4 6 —6
1 4 0 2
A= —4 0 7 -8
-1 -2 0 0

Solution: The characteristic equation of A can be calculated by evaluating the de-

terminant
—1-X 4 6 —6
1 4— )\ 0 2
CN)=]A-)X|= 4 0 T\ s =A=1)A=2)(A=3)(A—4)=0.
-1 -2 0 -\

The eigenvalues are A = 1, 2, 3, 4 and each eigenvector associated with A must be a
nonzero solution vector which satisfies the equation

AX = 2X
or
—1-A 4 6 —6 1 0
1 4—X 0 2 | |za| _|O
—4 0 7T—XA =8 xz3| |0
—1 -2 0 - Ta 0

Substitute successively the values A = 1, 2, 3, 4 into this equation and each time

solve for X to obtain the eigenvectors

1 -2 -1 -2

-1 0 -1 -1
Xl - 2 9 X2 - 0 ) X3 - 1 9 X4 - 0

1 1 1 1

The modal matrix Q, is the matrix having these eigenvectors for its column vectors.
The modal matrix @ can be used to produce a diagonal matrix containing the

eigenvalues of 4 such that
Q 'AQ = D = diag(1,2,3,4).
The proof of this statement is left as an exercise. It can also be verified that
det(A) =24 and (rankA)=4.

As a final note, it should be pointed out that when one or more of the eigenvalues

of a matrix A are repeated roots, then a set of n linearly independent eigenvectors



may or may not exist. The number N of linearly independent eigenvectors associated
with an eigenvalue ); is given by the formula

N =n — (rank[A — \;1]),

where n is the rank of A.

Infinite Series of Square Matrices

In the following discussions it is to be understood that the matrix A is an n x n
constant square matrix with eigenvalues A, ..., \, which are distinct. Consider the
infinite series

S(x)=co+crx+cez®+- -+t 4+ = ZCkZEk (10.35)
k=0
and the corresponding matrix infinite series

S(A) = col + 1A+ A%+ e AP - =) AR (10.36)
k=0

where the n x n matrix A has replaced the value z in equation (10.35) and the
identity matrix has replaced the coefficient of the ¢, constant term. Convergence of
the matrix infinite series can be defined in a manner analogous to that of the scalar

infinite series. Examine the sequence of partial sums

N
Sy =) cpAk
k=0

and if limy_,., Sy exists, then the matrix series is said to converge, otherwise it is
said to diverge. It can be shown that if the series in equation (10.35) is convergent
for z = \; (i = 1,2,...,n), where ); is an eigenvalue of A, then the matrix series in
equation (10.36) is convergent.

Some specific examples of series associated with a n x n constant square matrix

A are the following.

1. The Exponential Series Corresponding to the scalar exponential series
t 2 t2 k tk

there is the exponential matrix e4? defined by the series

k
R

t2
At __ 2%
e'=T1+At+ A 2!+ +A o

o (10.37)

343
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Here A is constant so that one can differentiate equation (10.37) with respect to ¢

to obtain
i(At)_A+A2t+A3ﬁ+A4ﬁ+...+Ak o 4.
at \© )T 2! 3! (k—1)!
d 4, o 12 K tF (10.38)
E(e ) =A I+At+A§+---+AE+--- :
%(eAt) :AeAt — eAtA

The exponential matrix ¥ is an important matrix used for solving systems of
linear differential equations. The exponential matrix has the following properties
which are stated without proofs.

1. If the matrices X and Y commute, so that XY = Y X, then one can write

(10.39)

However, if the matrices X and Y do not commute so that XY # Y X, then the
equation (10.39) is not true.

2. (eX) X
3. el =1
4. eXe X =171
5. X BX — platf)X
0. X = (eX)T
2. The Sine Series Corresponding to the scalar sine series
.I3 t3 $5 t5 x2n—|—1 t2n—|—1
sm(xt) :xt_T_{_T__{_(_l) W+

there is the matrix sine series

A3 t3 A5 t5 A2n—|—1 t2n—|—1
in(At) = At — o (D) e 10.40
sin(A) TR 2n+1)! (10.40)
3. The Cosine Series Corresponding to the scalar cosine series
.IQ t2 $4 t4 xQn t2n
(xt) =1 — (=1
cos(zt) 51 + 1 +(—1) @n)! +
there is the matrix cosine series
A2 t2 A4 t4 AQn t2n
(At =T — —1\" 10.41
cos(At) TR D g (10-41)



Differentiate equation (10.40) with respect to ¢ and show

8 (At) =A — A3ﬁ + A5ﬁ +o 4 (—1)"A2”+1752—n +
at " T 2! Al (2n)!
d A2 t2 A4 t4 A2n 7§2n
— g - - . )= 4 ... 10.42
g SnAh) =4 <[ TR TR Ay e T ) (10-42)
%sin(At) =A cos(At) = cos(At) A
Differentiate equation (10.41) with respect to ¢ and show

d 9 4t3 9 t2n—1

d A3 t3 A5 t5 A2n—|—1 7§2n—|—1

— COS - _ _ - .. 1y ... 10.43

g s = -4 <At gt bt gy ) (10.43)

% cos(At) = — Asin(At) = —sin(At) A

Example 10-28. Show that if A is a constant matrix, then X (t) = eA(t—%) is a
matrix solution to the initial-value problem to solve

dX
— = AX X(to) =1
dt ) (0)

Solution Differentiate X and show d—)t( = AeAlt—t) — AX is satisfied. At the initial
time ¢ = to, one finds X (to) = e*® =1,

The Hamilton-Cayley Theorem

The Hamilton*-Cayley® theorem states that every n x n constant square matrix
A satisfies its own characteristic equation. That is, if C()\) = 0 is the characteristic
equation association with a n x n square matrix A4, then the equation C(4) = [0] must
be satisfied. This result is known as the Hamilton-Cayley theorem.

4 William Rowan Hamilton (1806-1865),Irish mathematician and physicist.
5 Arthur Cayley (1821-1895),English mathematician.

345



346

Example 10-29. The following is an example illustrating the Hamilton-Cayley

2 1
=[5 2]

then the characteristic equation associated with the matrix A is

theorem. Let

C(\) = det(A — A) =

2—-A 1
3 2—A

|:>\2—4)\+1:0.
Replacing the scalar A by the matrix A one obtains C(A4) = A2 —4A+ 1, where I is the

2 x 2 identity matrix. The given matrix A when squared gives
o 2 172 1] _[7 4
w325 o)=0 7]
Substituting I,4 and A2 into C(A) gives

7 4 2 1 1 0] [o o]
C(A)_[u 7]_4[3 2]*[0 1]_[0 0]_[0]
and, hence, A satisfies its own characteristic equation.

In order to prove the Hamilton-Cayley theorem, assume the nxn constant square
matrix A is given and it has associated with it the characteristic polynomial of the
form

CA)=|A=X|=X"+a A" "+ Fap o N+ a1 A +a,

where aq,as,...,a, are appropriate scalar constants. Replace the scalar A by the
matrix A and replace the constant term «,, by «, I, to obtain the Hamilton-Cayley

matrix equation
CA)= A"+ a1 A" 1+t 0 A% +ay 1A+l

To prove the Hamilton-Cayley theorem it must be demonstrated that C(A) = [0].
Toward this purpose replace the matrix A in equation (10.23) by the matrix A — AI
to obtain

(A= XDAdj(A—XI) =|A - \I|I,

where the various elements of the matrix Adj(A — M) are formed from A — A\ by
deleting a certain row and column and then taking the dete