
Numerical Analysis
of Partial Differential
Equations Using
Maple and MATLAB

Fundamentals of Algorithms
Editor-in-Chief: Nicholas J. Higham, University of Manchester

The SIAM series on Fundamentals of Algorithms is a collection of short user-oriented books on state-
of-the-art numerical methods. Written by experts, the books provide readers with sufficient knowledge
to choose an appropriate method for an application and to understand the method’s strengths and
limitations. The books cover a range of topics drawn from numerical analysis and scientific computing.
The intended audiences are researchers and practitioners using the methods and upper level
undergraduates in mathematics, engineering, and computational science.

Books in this series not only provide the mathematical background for a method or class of methods
used in solving a specific problem but also explain how the method can be developed into an algorithm
and translated into software. The books describe the range of applicability of a method and give guidance
on troubleshooting solvers and interpreting results. The theory is presented at a level accessible to the
practitioner. MATLAB® software is the preferred language for codes presented since it can be used across a
wide variety of platforms and is an excellent environment for prototyping, testing, and problem solving.

The series is intended to provide guides to numerical algorithms that are readily accessible, contain
practical advice not easily found elsewhere, and include understandable codes that implement the
algorithms.

Series Volumes

Aurentz, J. L., Mach, T., Robol, L., Vandebril, R., and Watkins, D. S., Core-Chasing Algorithms for the
Eigenvalue Problem
Gander, M. J. and Kwok, F., Numerical Analysis of Partial Differential Equations Using Maple and MATLAB
Asch, M., Bocquet M., and Nodet, M., Data Assimilation: Methods, Algorithms, and Applications
Birgin, E. G. and Martínez, J. M., Practical Augmented Lagrangian Methods for Constrained Optimization
Bini, D. A., Iannazzo, B., and Meini, B., Numerical Solution of Algebraic Riccati Equations
Escalante, R. and Raydan, M., Alternating Projection Methods
Hansen, P. C., Discrete Inverse Problems: Insight and Algorithms
Modersitzki, J., FAIR: Flexible Algorithms for Image Registration
Chan, R. H.-F. and Jin, X.-Q., An Introduction to Iterative Toeplitz Solvers
Eldén, L., Matrix Methods in Data Mining and Pattern Recognition
Hansen, P. C., Nagy, J. G., and O’Leary, D. P., Deblurring Images: Matrices, Spectra, and Filtering
Davis, T. A., Direct Methods for Sparse Linear Systems
Kelley, C. T., Solving Nonlinear Equations with Newton’s Method

Editorial Board

Raymond Chen
The Chinese University of Hong Kong

Paul Constantine
Colorado School of Mines

Timothy A. Davis
Texas A&M University

Patrick Farrell
University of Oxford

Ilse Ipsen
North Carolina State University

C. T. Kelley
North Carolina State University

Randall J. LeVeque
University of Washington

Sven Leyffer
Argonne National Laboratory

Jennifer Pestana
University of Strathclyde

Sivan Toledo
Tel Aviv University

Martin J. Gander
University of Geneva
Geneva, Switzerland

Felix Kwok
Hong Kong Baptist University

Kowloon Tong, Hong Kong

Numerical Analysis
of Partial Differential
Equations Using
Maple and MATLAB

Copyright © 2018 by the Society for Industrial and Applied Mathematics

10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or transmitted in any manner without the written permission of the publisher. For
information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th
Floor, Philadelphia, PA 19104-2688 USA.

No warranties, express or implied, are made by the publisher, authors, and their employers that the
programs contained in this volume are free of error. They should not be relied on as the sole basis to
solve a problem whose incorrect solution could result in injury to person or property. If the programs
are employed in such a manner, it is at the user’s own risk and the publisher, authors, and their
employers disclaim all liability for such misuse.

Trademarked names may be used in this book without the inclusion of a trademark symbol.
These names are used in an editorial context only; no infringement of trademark is intended.

Maple is a trademark of Waterloo Maple, Inc.

MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information,
please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000,
Fax: 508-647-7001, info@mathworks.com, www.mathworks.com.

Publications Director Kivmars H. Bowling
Executive Editor Elizabeth Greenspan
Developmental Editor Gina Rinelli Harris
Managing Editor Kelly Thomas
Production Editor Lisa Briggeman
Copy Editor Bruce R. Owens
Production Manager Donna Witzleben
Production Coordinator Cally A. Shrader
Compositor Cheryl Hufnagle
Graphic Designer Doug Smock

Library of Congress Cataloging-in-Publication Data
Names: Gander, Martin J., author. | Kwok, Felix (Writer on scientific
 computing), author.
Title: Numerical analysis of partial differential equations using Maple and
 MATLAB / Martin J. Gander (University of Geneva), Felix Kwok (Hong Kong
 Baptist University).
Description: Philadelphia : Society for Industrial and Applied Mathematics,
 [2018] | Series: Fundamentals of algorithms ; 12 | Includes
 bibliographical references and index.
Identifiers: LCCN 2018023072 (print) | LCCN 2018029193 (ebook) | ISBN
 9781611975314 | ISBN 9781611975307 | ISBN 9781611975307(print)
Subjects: LCSH: Differential equations, Partial--Numerical solutions--Data
 processing. | MATLAB. | Maple (Computer file)
Classification: LCC QA377 (ebook) | LCC QA377 .G233 2018 (print) | DDC
 515/.353028553--dc23
LC record available at https://lccn.loc.gov/2018023072

is a registered trademark.

Dedicated to our parents
Edith and Maurice Gander

Cecilia Ho and Pui Yan Kwok

Contents

Preface ix

1 Introduction 1
1.1 Notation . 2
1.2 ODEs . 6
1.3 PDEs . 15
1.4 The Heat Equation . 17
1.5 The Advection-Reaction-Diffusion Equation 25
1.6 The Wave Equation . 28
1.7 Maxwell’s Equations . 31
1.8 Navier–Stokes Equations . 33
1.9 Elliptic Problems . 34
1.10 Problems . 38

2 The Finite Difference Method 45
2.1 Finite Differences for the Two-Dimensional Poisson Equation . . . 46
2.2 Convergence Analysis . 51
2.3 More Accurate Approximations 55
2.4 More General Boundary Conditions 56
2.5 More General Differential Operators 57
2.6 More General, Nonrectangular Domains 62
2.7 Room Temperature Simulation Using Finite Differences 63
2.8 Concluding Remarks . 66
2.9 Problems . 67

3 The Finite Volume Method 69
3.1 Finite Volumes for a General Two-Dimensional Diffusion Equation 70
3.2 Boundary Conditions . 71
3.3 Relation between Finite Volumes and Finite Differences 74
3.4 Finite Volume Methods Are Not Consistent 76
3.5 Convergence Analysis . 80
3.6 Concluding Remarks . 84
3.7 Problems . 84

4 The Spectral Method 87
4.1 Spectral Method Based on Fourier Series 88
4.2 Spectral Method with Discrete Fourier Series 93
4.3 Convergence Analysis . 97
4.4 Spectral Method Based on Chebyshev Polynomials 102

vii

viii Contents

4.5 Concluding Remarks . 107
4.6 Problems . 108

5 The Finite Element Method 113
5.1 Strong Form, Weak or Variational Form, and Minimization 115
5.2 Discretization . 117
5.3 More General Boundary Conditions 120
5.4 Sobolev Spaces . 121
5.5 Convergence Analysis . 125
5.6 Generalization to Two Dimensions 129
5.7 Where Are the Finite Elements? 136
5.8 Concluding Remarks . 143
5.9 Problems . 144

Bibliography 147

Index 151

Preface

This short book gives an introduction to numerical methods for elliptic partial differ-
ential equations (PDEs). It grew out of lecture notes Martin Gander prepared for a
graduate course at McGill University in 2001 and 2002 which was followed by Felix
Kwok as an undergraduate student, and both later taught the course at the University of
Geneva (Martin Gander in 2004, 2008, and 2015 and Felix Kwok in 2012). The material
is suitable for a one-semester course given to students from mathematics, computational
science, and engineering, with two hours per week of lecturing and exercises.

This book is unique in three aspects:

1. It treats the four main discretization methods for elliptic PDEs, namely, finite
difference methods, finite volume methods, spectral methods, and finite element
methods.

2. It contains for each of these methods a complete convergence proof in the most
simplified setting in order to illustrate the main analysis techniques needed to
study these methods.

3. It contains runnable codes in MATLAB which give typical compact first imple-
mentations of these methods.

This allows the material to be taught with very little preparation, and all arguments are
self-contained. It is also possible to study the material independently and individually,
without taking a course. The book contains also an introduction to PDEs since often
graduate students from various disciplines have not had such an introduction. Follow-
ing the long tradition in numerical analysis in Geneva, the book is built on the historical
development of the topics and contains precise descriptions of how methods and tech-
niques were developed, including quotes from main contributors.

We are very thankful to Yves Courvoisier, who took notes in LATEX for the first
part of the course in 2008, when Martin Gander lectured in Geneva, and to Jérôme
Michaud, who completed these notes when Felix Kwok lectured in Geneva in 2012.
These lecture notes were the starting point of the book. Many thanks also to the many
people who helped with the proofreading, in particular Laurence Halpern for the finite
element chapter, Florence Hubert for the finite volume chapter, and Pratik Kumbhar,
Parisa Mamouler, and Sandie Moody for the many misprints they found.

Martin J. Gander and Felix Kwok
August 2017

ix

Chapter 1

Introduction

Les équations différentielles que nous avons démontrées, contiennent les résultats princi-
paux de la théorie, elles expriment, de la manière la plus générale et la plus concise, les
rapports nécessaires de l’analyse numérique avec une classe très-étendue de phénomènes,
et réunissent pour toujours aux sciences mathématiques, une des branches les plus impor-
tantes de la philosophie naturelle.a

Joseph Fourier, Théorie analyique de la chaleur, 1822

All the mathematical sciences are founded on relations between physical laws and laws
of numbers, so that the aim of exact science is to reduce the problems of nature to the
determination of quantities by operations with numbers.

James C. Maxwell, Faraday’s Lines of Force, 1855/1856

aThe differential equations that we showed contain the main results of the
theory; they represent in the most general and concise way the necessary re-
lationship between numerical analysis and a wide class of natural phenomena,
uniting one of the most important branches of natural philosophy forever to the
mathematical sciences.

Ordinary and partial differential equations (ODEs and PDEs) are pervasive in scientific
modeling today: Virtually every field in science and engineering uses differential equa-
tions, from biology (plant growth, population interactions, protein folding) to medicine
(MRI, spread of infections, tumor growth), from physics (the big bang, black holes, par-
ticle accelerators) to chemistry (combustion, pollution, molecule interactions), and all
engineering sciences (bridges, airplanes, cars, circuits, roads, etc.). There are myriad
PDEs, and new ones are discovered by modeling every day. However, only a few of
these PDEs have been analyzed mathematically, and even fewer possess closed-form
solutions. With the advent of modern computers, solutions of PDEs can now be studied
numerically. This book serves as an introduction to the four major techniques for doing
so: finite difference methods, finite volume methods, spectral methods, and finite ele-
ment methods. While for each of these techniques there exist excellent textbooks (see
[25, 58, 36] for finite difference methods, [38, 17] for finite volume methods, [4, 61]
for spectral methods, and [57, 32, 2] for the finite element method), a unified exposition
introducing all these techniques is missing,1 and this book attempts to fill this gap. It
represents a one-semester course taught by the two authors at the universities of McGill
and Geneva; throughout the book, Maple and MATLAB are used to provide hands-on
experience with all the methods. At the end of each chapter, problems and projects are

1A very notable exception is the excellent book by Lui [41], which treats three of the four main methods.

1

2 Chapter 1. Introduction

included to help students familiarize themselves with the techniques learned and with
the scientific computing tools Maple and MATLAB.

1.1 Notation
Throughout this book we use the following standard notation: For a real scalar function

y : R −→ R, x �−→ y(x),

we denote its derivatives by

dy(x)
dx

= y′(x),
d2y(x)

dx2
= y′′(x),

The computer algebra system Maple handles derivatives using the function diff:

diff(y(x),x);
diff(y(x),x,x);
diff(y(x),x,x,x,x,x,x,x,x,x,x,x,x);

d

dx
y(x)

d2

dx2
y(x)

d12

dx12
y(x)

A more convenient way in Maple to denote higher derivatives is to use the sequence
operator $,

diff(y(x),x$12);

d12

dx12
y(x)

which can be used in any other context as well since it simply constructs the associated
sequence

x$12;

x, x, x, x, x, x, x, x, x, x, x, x

If the independent variable is t, then we often also use the notation

dy(t)
dt

= ẏ(t),
d2y(t)

dt2
= ÿ(t),

For a function depending on several variables, for example,

u : R3 −→ R, (x, y, z) �−→ u(x, y, z),

1.1. Notation 3

the partial derivatives with respect to each variable are denoted by2

∂
∂xu(x, y, z) = ux(x, y, z) = ∂xu(x, y, z),

∂2

∂x2u(x, y, z) = uxx(x, y, z) = ∂xxu(x, y, z),
...

...
∂
∂yu(x, y, z) = uy(x, y, z) = ∂yu(x, y, z),

...
...

∂
∂zu(x, y, z) = uz(x, y, z) = ∂zu(x, y, z),

...
...

Maple can also handle partial derivatives:

diff(u(x,y,z),x);

∂

∂x
u(x, y, z)

Additional interesting examples of derivatives using Maple are

diff(u(x,y,z),a);

0

ux:=diff(u(f(x),y,z),x);

ux := D1(u)(f(x), y, z)

(
d

dx
f(x)

)
f:=x->x^4;
ux;

f := x→ x4

4D1(u)(x
4, y, z)x3

u:=(x,y,z)->sin(x)*y+z^2;
ux;

u := (x, y, z) → sin(x) y + z2

4 cos(x4) y x3

We see that Maple automatically substitutes variables with known expressions and com-
putes the corresponding derivatives as soon as this is possible. We also see the operator
D appear, which represents the following derivative operator:

fp:=D(f);

2This symbol for partial derivatives was introduced by Adrien-Marie Legendre in 1786.

4 Chapter 1. Introduction

fp := x→ 4 x3

D(sin);
D(sin+log);

cos

cos +

(
a→ 1

a

)
One can also use the derivative operator D for the partial derivatives

g:=(x,y)->x^2+y;
g1:=D[1](g);
g2:=D[2](g);

g := (x, y) → x2 + y

g1 := (x, y) → 2 x

g2 := 1

and all the results obtained are Maple functions that can be evaluated at a given argu-
ment:

g1(5,1);

10

There is a subtle but fundamental difference between the operator D and the function
diff: The operator D acts on functions and returns functions, and the function diff
acts on expressions and returns expressions. As an example, we obtain in Maple

f:=x->2*x^3;
diff(f(x),x);
unapply(diff(f(x),x),x);
D(f);
D(f)(x);

f := x→ 2 x3

6 x2

x→ 6 x2

x→ 6 x2

6 x2

which shows how to convert expressions into functions and vice versa. Finally, iterated
application of the derivative operator D is obtained by

D(D(f));
(D@@2)(f);

1.1. Notation 5

x→ 12 x

x→ 12 x

One has to be careful when using the composition of functions, which is denoted by

D(sin@y);

(cos@y)D(y)

and not by

D(sin(y));

D(sin(y))

Definition 1.1 (gradient). For a function u : Rd → R, d = 2, 3, (e.g., (x, y, z) �→
u(x, y, z)), the gradient ∇u : Rd → R

d is defined by

∇u :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ux
uy

)
if d = 2,⎛

⎝uxuy
uz

⎞
⎠ if d = 3.

Definition 1.2 (divergence). For a function u : Rd → R
d, d = 2, 3, the divergence

∇ · u : R3 → R is defined by

∇ · u :=

{
∂xu1 + ∂yu2 if d = 2,

∂xu1 + ∂yu2 + ∂zu3 if d = 3.

Definition 1.3 (Laplacian). For a function u : R
d → R, d = 2, 3, the Laplacian

Δu : Rd → R is defined by

Δu := ∇ · ∇u =

{
∂xxu+ ∂yyu if d = 2,

∂xxu+ ∂yyu+ ∂zzu if d = 3.

Definition 1.4 (curl). For a function u : R3 → R
3, the curl ∇ × u : R3 → R

3 is
defined by

∇× u =

⎛
⎝∂yu3 − ∂zu2
∂zu1 − ∂xu3
∂xu2 − ∂yu1

⎞
⎠ .

The curl is sometimes also used for a function u : R2 → R
2, in which case the result

is just a scalar, namely, the third component in Definition 1.4. It can be interpreted as a
vector orthogonal to the two-dimensional plane on which the function u is defined.

Maple knows these basic differential operators, and they are implemented (together
with many other functions) in the linalg package:

6 Chapter 1. Introduction

with(linalg);
grad(x^2+3*y,[x,y]);

[2 x 3]

diverge([x^2-3*y,4*x+y^5],[x,y]);

2 x+ 5 y4

diverge(grad(x^2+3*y,[x,y]),[x,y]);
laplacian(x^2+3*y,[x,y]);

2

2

curl([x^2-3*y+z,4*x+y^5-sin(z),x^2+y^2+z^2],[x,y,z]);

[2 y + cos(z) 1− 2 x, 7]

1.2 ODEs
An ODE is an equation whose solution depends on one variable only, and the solution
appears together with its derivatives in the equation. Here are some examples:

y′ = f(y), u̇ = u2 + t, ẍ = −x,

Each ODE containing higher-order derivatives can be reduced to a system of first-order
ODEs by introducing additional variables, as we illustrate for the third example above,
with the additional variable y := ẋ:

ẍ = −x =⇒
{
ẋ = y,

ẏ = −x.

A differential equation admits in general a family of solutions; in order to select a unique
solution from this family, one needs in addition an initial condition, which leads to the
initial value problem {

y′ = f(y),
y(0) = y0.

ODEs are studied for their power of modeling. They allow us in many situations to
easily obtain mathematical relations between quantities where such relations would be
difficult (or impossible) to derive directly without derivatives. Many such laws were
discovered by Newton and can be found in his monumental Philosophiae Naturalis
Principia Mathematica; see Figure 1.1.

Example 1.5 (the pendulum). Newton’s second law of motion says that the force F
acting on an object is equal to the product of the mass m and the acceleration a (see
Figure 1.2 from [45]):

F = m · a.

1.2. ODEs 7

Figure 1.1. Isaac Newton (25.12.1642–20.03.1726) at the age of 46 and the title page
of Philosophiae Naturalis Principia Mathematica.

Figure 1.2. Newton’s second law of motion from the Principia Mathematica published in 1686.

In the case of the pendulum, the only force acting on the pendulum is the gravitational
force. The part relevant for the motion is the force orthogonal to the pendulum since the
force in the direction of the pendulum is balanced by the tension of the string attaching
it to the pivot. Thus, one has to split the total gravitational force into two components,
as shown in Figure 1.3. The mass m is given, and the linear acceleration is obtained by
multiplying the angular acceleration by the length of the string. Substituting leads to
the differential equation

mg sin(θ) = −md2(Lθ)
dt2

.

The length of the string is constant, so we can take it out of the derivative. Simplifying
the masses and isolating the second derivative on the left yields the more classical form

θ̈ = − g

L
sin(θ). (1.1)

This equation has no known closed-form solution. Maple attempts to find an implicit
solution with the dsolve command:

dsolve(diff(theta(t),t,t)=-g/L*sin(theta(t)),theta(t));

∫ θ(t)

− L√
L (2 g cos(_a) + _C1 L)

d_a − t− _C 2 = 0

∫ θ(t) L√
L (2 g cos(_a) + _C1 L)

d_a − t− _C 2 = 0

8 Chapter 1. Introduction

θ

L

m

mg

Figure 1.3. The pendulum.

0 2 4 6 8 10 12 14 16 18 20

0θ

t

Figure 1.4. Numerical solution of the nonlinear pen-
dulum equation (1.1).

A numerical method can be used to get an approximation of the solution. While Maple
can also solve differential equations numerically (see Problem 1.3), MATLAB is our
preferred tool for numerical calculations. In MATLAB, we obtain the numerical solu-
tion with the commands

f=@(t,y) [y(2); -1/2*sin(y(1))];
[t,y]=ode45(f,[0;20],[1/10; 0]);
plot(t,y(:,1));
xlabel(’t’);
ylabel(’theta’);

Note that we first transformed the second-order equation into a first-order system to
define the right-hand side function f of the ODE. We then used the numerical ODE
solver ode45, an adaptive Runge–Kutta method of order 4, together with the initial
condition θ(0) = 1

10 and θ̇(0) = 0, to obtain the solution shown in Figure 1.4.
In order to obtain an analytical solution, we can approximate sin(θ) for small θ by

sin(θ) ≈ θ. Then the motion of this pendulum is for small θ approximately described
by the ODE

θ̈ = − g

L
θ.

This equation has as solution a combination of the trigonometric functions

sin(
√

g
L t), cos(

√
g
L t),

as one sees easily by inspection. The solution can also be obtained in Maple:

dsolve(diff(theta(t),t,t)=-g/L*theta(t),theta(t));

θ(t) = _C1 sin

(√
g t√
L

)
+ _C 2 cos

(√
g t√
L

)

1.2. ODEs 9

Figure 1.5. Left: Alfred J. Lotka (2.3.1880–5.12.1949). Courtesy of MetLife Archives.
Right: Vito Volterra (3.5.1860–11.10.1940).

Note how Maple denotes internal constants with an underscore. These constants are
determined by suitable initial conditions, for example,

dsolve({diff(theta(t),t,t)=-g/L*theta(t),theta(0)=1/10,
D(theta)(0)=0},theta(t));

θ(t) =
1

10
cos

(√
g t√
L

)

Example 1.6 (population dynamics). A classical model of predator-prey interaction
is the Lotka–Volterra model; see Figure 1.5 for a picture of the two inventors. Alfred

J. Lotka, an American mathematician and physical chemist, arrived at the now classical
model after being inspired by earlier studies of autocatalytic chemical reactions and of
organic systems consisting of a plant species and a herbivorous animal species. We
show in Figure 1.6 the specific situation Lotka considered in his book [40], where he
first published his predator-prey model.

Independently, Vito Volterra did a statistical analysis of fish catches in the Adriatic
Sea. As he tried to model the observations, he arrived at the same predator-prey sys-
tem as Lotka in [63] in 1926; see Figure 1.7. There is still great interest in such ODE
models (see, for example, the Swiss club of the “Volterriani,” with an active journal at
http://web.liceomendrisio.ch/volterriani/volt.html, which was founded
by Antonio Steiner, who taught Martin Gander mathematics in high school in Solothurn).

We explain now the classical Lotka–Volterra model: Let x(t) denote the prey popu-
lation at time t and y(t) be the corresponding predator population. Assuming that the
prey population grows exponentially in the absence of predators, that the predator pop-
ulation diminishes exponentially without prey, and that the interaction is proportional to
xy, representing a sort of probability that a predator finds a prey, we obtain the system
of ODEs {

ẋ = ax− bxy,

ẏ = −cy + dxy,
(1.2)

where a, b, c, and d are positive constants. This system does not have a closed-form so-
lution (for the closest one can get, see [55, 56]) and thus needs to be solved numerically;
see Problem 1.7.

10 Chapter 1. Introduction

Figure 1.6. Lotka invents the well-known Lotka–Volterra equations in 1925. Snapshot
of page 88 of his book [40]. Reprinted with permission from Wolters Kluwer.

Example 1.7 (crude oil production). Crude oil is an important commodity whose pro-
duction has been tracked for decades; see the data in Figure 1.8, where we show past
production worldwide and in a few countries (indicated with dots). The forecasting of
future production rates based on economic considerations is of interest in many appli-
cations. A very simplistic model for the process of crude oil extraction can be obtained
in the form of a system of ODEs. We denote by R the available reserves and by P
the annual production. The resources diminish at the rate given by the production, so
that Ṙ = −P . The annual production rate P , however, fluctuates based on economic
considerations. Let C0 denote the cost of extracting oil, which can be modeled as

C0 = b1 − b2R,

where b2 > 0 indicates that it is cheaper to extract oil when the reservesR are plentiful.
Now let x be the unit price of oil to the consumer. We assume that the demand for oil is
slightly elastic; i.e., the demandD is given by

D(x) = D0 − b3x,

where b3 > 0 is a small positive constant indicating that the demand drops slightly when
oil prices are high. On the other hand, the supply tends to increase when oil companies

1.2. ODEs 11

Figure 1.7. Volterra invents the well-known Lotka–Volterra equations in 1926. Snap-
shot of page 22 of his book from 1927. Image courtesy of LiberLiber Association.

stand to make a profit, so we assume that the supply S is given by S(x) = S0 +m(x−
C0). When the supply and demand are at equilibrium, i.e., when S(x) = D(x), the
equilibrium demandD∗ is given by

D∗ =
b3S0 +m(D0 − b1b3 + b2b3R)

b3 +m
.

On the one hand, when the equilibrium demandD∗ exceeds production, the production
should increase in order to satisfy demand; on the other hand, when D∗ − P < 0,
production should decrease. Thus, there is a positive constant c such that

Ṗ = cP · sgn(D∗ − P)|D∗ − P |α,
where α is an exponent to be determined. Redefining the undetermined constants if
necessary, we arrive at our oil production model, which is given by the following system
of ODEs: {

Ṙ = −P,
Ṗ = P · sgn(a1R− a2 − a3P)|a1R− a2 − a3P |a4 ,

where a1, a2, a3, and a4 are parameters to be matched with the available data.

12 Chapter 1. Introduction

1860 1880 1900 1920 1940 1960 1980 2000 2020 2040
10 1

10 2

10 3

10 4

10 5

10 6

10 7
Forecasting Quality of the Model: World

data
from 2002
from 1992
from 1982
from 1972
from 1962

1860 1880 1900 1920 1940 1960 1980 2000 2020 2040
10 1

10 2

10 3

10 4

10 5

10 6

10 7
Forecasting Quality of the Model: USA

data
from 2002
from 1992
from 1982
from 1972
from 1962

1860 1880 1900 1920 1940 1960 1980 2000 2020 2040
10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7
Forecasting Quality of the Model: Romania

data
from 2002
from 1992
from 1982
from 1972
from 1962

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040
10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7
Forecasting Quality of the Model: Albania

data
from 2002
from 1992
from 1982
from 1972
from 1962

Figure 1.8. Measured crude oil production worldwide and in the United States, Ro-
mania, and Albania (indicated by dots) and a simple ODE model with fitted parameters using
various parts of the data to make predictions starting from a particular year.

This model, simple as it is, still gives an adequate rough characterization of how oil
production evolved over the last few decades, as one can see in Figure 1.8, where we
show the production predicted by the model when the parameters are chosen to fit the
available data. We now show how to obtain this fit using the following simple MATLAB
commands. We first read and plot the data:

global yf df a x0; % for easy use of MATLAB functions

d=[67.00 283.00 412.00 363.00 299.00 353.00 508.00...
478.00 521.00 599.00 746.00 743.00 893.00 1382.00...
1513.00 1238.00 1299.00 1863.00 2137.00 2780.00 3603.00...
3785.00 4150.00 3231.00 3352.00 3044.00 3894.00 3920.00...
3878.00 4917.00 6390.00 7551.00 7079.00 6889.00 6067.00...
7687.00 8946.00 9045.00 8537.00 8735.00 9808.00 10989.00...
13500.00 15851.00 18636.00 21425.00 20695.00 27012.00 29795.00...
31208.00 34393.00 37495.00 38132.00 43097.00 44784.00 48392.00...
51971.00 59632.00 64223.00 72924.00 95198.00 103442.00 114814.00...
135990.00 134742.00 140572.00 143067.00 162758.00 170150.00 190139.00...
175817.00 165698.00 158274.00 174762.00 182904.00 199949.00 217893.00...
250771.00 242190.00 253254.00 260954.00 268491.00 251924.00 276739.00...
312250.00 330856.00 350362.00 384208.00 435290.00 427940.00 479064.00...
543401.00 567525.00 596475.00 619488.00 689428.00 744197.00 774820.00...
781706.00 836186.00 892119.00 940277.00 1013834.00 1081412.00 1167168.00...
1249662.00 1356040.00 1454391.00 1595145.00 1720448.00 1903813.00 2016375.00...
2126358.00 2330726.00 2312638.00 2212344.00 2430229.00 2408221.00 2412859.00...

1.2. ODEs 13

2510271.00 2346078.00 2158408.00 2030681.00 2000912.00 2056640.00 2024621.00...
2161992.75 2174388.91 2266780.00 2334696.18 2403578.73 2431578.02 2500326.17...
2544941.95 2606937.54 2676219.52 2748182.47 2835994.67 2886370.65 2810290.33...
2895112.66 2845585.05 2756203.47]’;

y=2002-length(d)+1:2002; % corresponding year timeline
semilogy(y,d,’o’) % plot data
xlabel(’year’);ylabel(’oil production’);

We introduce here the global variables global yf df a x0; which will simplify the
use of optimization routines in MATLAB, as we will see. The data could also be read
from a file using a command such as

d=load(’World.txt’); % load all data

where the file ‘World.txt’ should contain the numbers in ASCII text format line by line.
Next, for a given set of the parameters aj , we compute the solution of our differential
equation using the MATLAB solver ode45 and plot the solution together with the data:

a(1)=3.43456e-09;a(2)=0.8;a(3)=0;a(4)=2;
x0=[3*sum(d);d(1)]; % choose initial value
[t,x]=ode45(’F’,y,x0); % solve model
semilogy(y,d,’o’,t,x(:,2),’-’); % plot data
xlabel(’year’); legend(’Data’,’Fit’,’Location’,’SouthEast’)

Here we used a function F.m, which was defined in a file with the same name, to imple-
ment the right-hand side of our model, namely,

function xp=F(t,x);
% F right hand side for simplistic crude oil forcasting model ODE
% xp=F(t,x); right hand side function of the ODE x’=F(t,x,a), for a
% simplistic crude oil forcasting model depending on the parameters
% given in the global vector a

global a;

xp(1,1)=-x(2);
xp(2,1)=sign(a(1)*x(1)-a(2)-a(3)^2*x(2))*...

abs(a(1)*x(1)-a(2)-a(3)^2*x(2))^a(4)*x(2);

For the initial conditions, we estimate the initial reserves (somewhat arbitrarily) to be
three times the cumulative production over all the available data and the production to
be equal to the first measured data point. While the parameter choice fits quite well, one
might wonder if a better fit exists. We can try to minimize the distance between the data
and the model using the function Distance.m, which is implemented as follows:

function d=Distance(aa)
% DISTANCE function to be used in fminsearch
% d=Distance(aa) computes for a given parameter set in vector aa the
% distance between the measured values df for the years yf contained
% in global variables to the solution of the ODE model.

global yf df a x0;

14 Chapter 1. Introduction

a(1:length(aa))=aa; % put the current parameter choice
[t,x]=ode45(’F’,yf,x0); % solve the model with it
subplot(1,2,1)
semilogy(t,x(:,2),’-’,yf,df,’o’); % plot data and current fit
subplot(1,2,2)
semilogy(yf,abs(x(:,2)-df),’-’); % plot the error
drawnow % draw to see while optimizing
d=norm(x(:,2)-df,’inf’); % compute some norm of the error

The function Distance.m is meant to be used inside an optimization loop, with the
model parameters as its only input arguments, while all other data are accessed via
global variables. This way of passing data globally should not be used in real production
code because it makes tracking of data access and modification difficult. Nonetheless,
for very small prototype codes like ours, it is a slick way to proceed. We can now simply
ask MATLAB to minimize the difference between the model and the data, measured in
the infinity norm as specified in Distance.m, using the command

yf=y; df=d;
afit=fminsearch(’Distance’,[3.434e-09 0.7])

and watch how the Nelder–Mead algorithm implemented in fminsearch tries to mini-
mize the distance. In our example, we only try to fit the first two parameters; the other
ones remain at the value we set earlier. If the method has difficulties, as you can see in
the plots produced, simply try a different initial guess; this is meant to be interactive!

To make a prediction, we can calculate the parameters using only part of the avail-
able data, i.e., cut off some of the years at the end and then verify how well the result
fits the data we did not use:

ye=[0 10 20 30 40]; % years to leave out at the end
for i=1:length(ye)
yf=y(1:end-ye(i)); % years to use for fitting
df=d(1:length(yf));
afit=fminsearch(’Distance’,[3.434e-09 0.7])
a(1:length(afit))=afit;
[tf{i},xf{i}]=ode45(’F’,[y y(end)+1:y(end)+30],x0);

end;
clf;
semilogy(y,d,’o’,tf{1},xf{1}(:,2),’-r’,tf{2},xf{2}(:,2),’-g’,tf{3},...
xf{3}(:,2),’-m’,tf{4},xf{4}(:,2),’-c’,tf{5},xf{5}(:,2),’-b’);

legend(’data’,’from 2002’,’from 1992’,’from 1982’,’from 1972’,...
’from 1962’,’Location’,’NorthWest’)

line([2002 2002],[10 10^7],’Color’,’r’);
line([1992 1992],[10 10^7],’Color’,’g’);
line([1982 1982],[10 10^7],’Color’,’m’);
line([1972 1972],[10 10^7],’Color’,’c’);
line([1962 1962],[10 10^7],’Color’,’b’);

title(’Forecasting Quality of the Model: World’);

This is how we computed the results shown in Figure 1.8. This way of fitting data is
simple and very effective, and the commands above can be used for many other types
of data fitting by simply changing the commands slightly.

As we have seen, most of the ODEs have no analytic solution, so one needs to resort
to numerical methods to get an approximation of the solutions. A few classical methods

1.3. PDEs 15

are the forward and backward Euler method, Runge–Kutta methods, and linear multi-
step methods. For a comprehensive treatment of the numerical integration of ODEs, see
the three authoritative monographs [26, 27, 28] that came out of the Geneva school of
numerical analysis.

1.3 PDEs

Definition 1.8. A PDE is a relation of the type

F (x1, . . . , xn, u, ux1, . . . , uxn , ux1x1 , ux1x2 , . . . , uxnxn , ux1x1x1 , . . .) = 0, (1.3)

where the unknown u = u(x1, . . . , xn) is a function of n variables and uxj , . . . , uxi,xj , . . .
are its partial derivatives.

Definition 1.9. The highest order of differentiation occurring in a PDE is the order of
the PDE.

A more compact way of writing PDEs is to use the multi-index notation: Given a
vector α = (α1, . . . , αn) of nonnegative indices, we write

Dα(u) = ∂α1
x1

· · · ∂αn
xn
u,

and we define the order of the multi-index to be |α| = α1 + · · · + αn. Then we can
rewrite (1.8) as

F (x, u,D1u, . . . , Dku) = 0,

where k is the order of the PDE and Dju denotes the set of all partial derivatives of
order j, j = 1, . . . , k.

Equation (1.3) is linear if F is linear with respect to u and all its derivatives; other-
wise, it is nonlinear. There is a further, more refined classification of PDEs according
to the criterion of linearity.

• Linear PDEs are equations of the form (1.3), where

F =
∑
|α|≤k

aα(x)D
αu− f(x);

i.e., the coefficients multiplyingDαu are independent of u and its derivatives.

• Semilinear PDEs are equations where F has the form

F =
∑
|α|=k

aα(x)D
αu+ f(x, u,Du, . . . , Dk−1u);

i.e., the coefficients multiplying the highest-order derivatives are independent of
u and its derivatives.

• Quasi-linear PDEs are equations where F has the form

F =
∑
|α|=k

aα(x, u, . . . , D
k−1u)Dαu+ f(x, u,Du, . . . , Dk−1u);

i.e., the coefficients multiplying the highest-order derivatives are independent of
Dku, where k is the order of the PDE.

16 Chapter 1. Introduction

• Fully nonlinear PDEs are equations where F is nonlinear with respect of the
highest order derivatives of u.

For semilinear second-order equations of the form

auxx + buxy + cuyy = f(x, y, u, ux, uy), (1.4)

there is also a classification based on the discriminant b2 − 4ac:

• b2 < 4ac: elliptic PDE, e.g., a Poisson equation uxx + uyy = f(x, y);

• b2 > 4ac: hyperbolic PDE, e.g., wave equation utt − 1
c2uxx = 0;

• b2 = 4ac: parabolic PDE, e.g., (advection-) diffusion ut + cux = κuxx.

If there are more than two independent variables, (1.4) becomes
m∑
j=1

m∑
k=1

ajkuxjxk
= f(x1, . . . , xm, u, ux1, . . . , uxm), (1.5)

where we assume without loss of generality that ajk = akj when k �= j because for
smooth enough functions, mixed partial derivatives are equal regardless of the order
in which they are taken. In this case, the classification into elliptic, parabolic, and
hyperbolic PDEs can be generalized by looking at the eigenvalues of the matrix A :=
[ajk]:

• The PDE is elliptic if all eigenvalues ofA are of the same sign and none vanishes.

• The PDE is parabolic if all eigenvalues of A are of the same sign except one,
which vanishes.

• The PDE is hyperbolic if the matrix A is nonsingular and if all eigenvalues of A
are of the same sign except one, which has the opposite sign.

Here are some examples of PDEs:

Δu = f, ut +Δu = f, uxx − uyy = utt, ut + a · ∇u− νΔu = f,

Some of these equations describe interesting physical phenomena (first and last one),
whereas others are not interesting or might not even have a solution. To obtain a unique
solution, we must specify a physical domain on which we consider the equation, Ω ⊂
R

d, d = 1, . . . , 3, and add appropriate boundary conditions and also initial conditions
if the equation depends on time. As an example, for the Poisson equation, we could
consider { −Δu = f Ω := (0, 1)× (0, 1),

u = 0 ∂Ω,

where ∂Ω denotes the boundary of the domain Ω.
Another example is the heat equation. The heat in a one-dimensional object, Ω :=

(0, 1), is described by the PDE
ut = uxx.

To get a unique solution, one needs to specify boundary conditions at both ends and
also an initial condition, which is the initial temperature of the object, for example,⎧⎪⎪⎨

⎪⎪⎩
ut = uxx in Ω× (0, T),

u(0, t) = 1,
u(1, t) = 0,
u(x, 0) = e−x.

(1.6)

1.4. The Heat Equation 17

T

x

discontinuity

e−x
0

0

0

1

1

Figure 1.9. Figure of the domain Ω× (0, T) over which the heat equation is defined in
(1.6), together with the initial and boundary conditions.

A drawing often helps to understand the problem setting and can quickly point out
potential difficulties, for example, the discontinuity at the right end between the initial
and boundary condition, as shown in Figure 1.9.

There are very few PDEs with closed-form solutions. Also, the theoretical study of
the existence and uniqueness of solutions for certain equations is currently an active re-
search area. For a few fundamental PDEs, complete results are available, but already for
the Navier–Stokes equations, which we will encounter later, the existence and unique-
ness question in three dimensions has not been fully answered and is currently one of
the seven mathematical problems that carry a prize of US $1 million.3 PDEs, rather
than ODEs, permit a much larger range of problems to be modeled, and a large part of
numerical analysis research today is devoted to the numerical study of PDEs.

1.4 The Heat Equation
Newton’s law of cooling states that the variation of temperature of a body is proportional
to the difference between its own temperature and the temperature of the surrounding
environment.4 If u denotes the temperature of the body, then Newton’s law states that

ut = k(ũ− u),

where ũ is the ambient temperature and k is a constant of proportionality known as the
heat transfer coefficient. This ODE is a rather simple model for the evolution of the
temperature of the body under the influence of an external temperature. It assumes that
the body is very simple and behaves like a single point in space. If the body is made of
different materials so that some parts react differently to the external temperature, we
need to add the dependence of the temperature on the spatial location in order to obtain
a more accurate model.

Fourier’s law of heat flux states that the flow of heat is from hot to cold; i.e., it is
proportional to the negative gradient of the temperature (see Figure 1.10 for the original
statement by Fourier),

F = −a∇u,
where F is the vector field describing the flow of the temperature and a is a constant of
proportionality that depends on the thermal conductivity and the specific heat capacity
of the material. However, this constant can now depend on the spatial location if the
material properties are not uniform. Some proportionality constants are listed in Table
1.1. Note also the minus sign in the formula for the heat flux: The flux is in the opposite

3See the seven Millennium Prize Problems at www.claymath.org/millennium-problems.
4It is not completely clear how this law was established historically; see the fascinating description in [51].

www.claymath.org/millennium-problems

18 Chapter 1. Introduction

Figure 1.10. Joseph Fourier (21.03.1768–16.05.1830) discovers the law of heat flux;
shown is copy of the very nice table of contents entry in [19, p. 611], which gives a summary, not
just a title.

Table 1.1. Table of the proportionality constants of some different materials.

Environment a [m2/sec]

water 0.00144
granite 0.011
iron 0.12
aluminum 0.86
silver 1.71

direction of the gradient of the temperature since the gradient points in the direction of
maximum temperature increase.

To derive a PDE describing the temperature evolution over time in a domain Ω ⊂
R

3, we look at the total amount of heat in the domain at time t, which is∫
Ω

u(x, t)dx,

and describe how this quantity varies over time. The change in the total amount of heat
in Ω is given by the flow of heat across the boundary of Ω and possible heat sources or
sinks in the domain:

∂

∂t

∫
Ω

u(x, t)dx =

∫
∂Ω

−F(x(s), t) · n(s)ds +
∫
Ω

f(x, t)dx. (1.7)

Here the function f denotes the heat sources or sinks, and n(s) is the unit outward
normal to the boundary ∂Ω ofΩ. Thus, F(x(s), t)·n(s) is precisely the heat flux leaving

1.4. The Heat Equation 19

Figure 1.11. Copy of the table of contents entry in [19, p. 612].

the domain across the boundary, which explains the minus sign. The tangential part of
the heat flux at the boundary does not contribute to the change of the total heat since
it neither leaves nor enters the domain. Using Fourier’s heat law and the divergence
theorem, we obtain

∂

∂t

∫
Ω

u(x, t)dx =

∫
∂Ω

−F · nds+
∫
Ω

f(x, t)dx

=

∫
∂Ω

a∇u · nds+
∫
Ω

f(x, t)dx

=

∫
Ω

∇ · a∇udx+

∫
Ω

f(x, t)dx.

Since in general, Ω does not depend on time, we can change the order of integration and
differentiation, and obtain∫

Ω

(
∂

∂t
u−∇ · a∇u− f

)
(x, t)dx = 0.

If the function under the integral is continuous, then varying the arbitrary domain of
integration Ω allows us to conclude that the temperature u satisfies the PDE

∂

∂t
u−∇ · a∇u = f.

This equation, which is parabolic according to our classification, is called the heat equa-
tion or diffusion equation. It appears as the next entry after Fourier’s law of heat flux
in [19]; see Figure 1.11 for the original statement by Fourier in 1822, who derived
the equation by arguing at the differential level (“on voit par-là qu’il s’accumule du-
rant l’instant dt dans l’intérieur de cette molécule, une quantité totale de chaleur égale à
K(d

2v
dx2+

d2v
dy2+

d2v
dz2)”). Fourier had essentially obtained these results already in a ground-

breaking manuscript submitted to the French Academy in 1807, but the appointed com-
mittee of reviewers (Laplace, Lagrange, Monge, and Lacroix) did not appreciate the
proposed way of solving the equation using infinite series; see [44].

Example 1.10. Suppose a nail of length L with initial temperature u0(x), x ∈ (0, L), is
placed between two ice cubes, as shown in Figure 1.12.5 We assume that the nail is thin
enough so that we can consider it to be one dimensional. The ice cubes are naturally at
temperature zero, and they touch the nail at both extremities. This defines the boundary
conditions of the problem, and for the equation describing the temperature distribution

5This example is a variation of the original example of Fourier, which led to the discovery of Fourier
series [19, p. 161]: “Ainsi la question actuelle consiste à déterminer les températures permanentes d’un solide
rectangulaire infini, compris entre deux masses de glace B et C et une masse d’eau bouillante A.”

20 Chapter 1. Introduction

L
x

0

ice cubeice cube

Figure 1.12. Figure of a nail cooled by two ice cubes placed on either side of it.

in the nail we obtain⎧⎪⎪⎨
⎪⎪⎩

ut = νuxx in (0, L)× (0, 1),
u(x, 0) = u0(x) in Ω,
u(0, t) = 0 in (0, T),
u(L, t) = 0 in (0, T),

(1.8)

where ν is a positive real constant. The temperature of the nail is only influenced by
the ice cubes at both ends; there is no other heat source or sink in this example, which
explains why there is no source term f in the equation.

This is one of the few PDEs that have an analytic solution. Following in the footsteps
of Fourier, we construct a solution by separation of variables. The main idea behind
this method is first to seek simple solutions of the PDE and then to use the linearity of
the equation to construct more general solutions. We suppose that the temperature u is
a product of two functions,6 one depending on x and the other on t:

u(x, t) = a(x)b(t).

Inserting this expression into (1.8) gives the relation

a(x)b′(t) = νa′′(x)b(t).

Rearranging so that the left-hand side contains only functions of x and the right-hand
side only functions of t leads to

ν
a′′(x)
a(x)

=
b′(t)
b(t)

.

Since equality must hold for all x and t, the expressions on each side of the equal sign
must be constant. Denoting this constant by σ, we obtain the two equations{

a′′ = σ
ν a,

b′ = σb.
(1.9)

This system we obtained from the heat equation consists now of ODEs, and those need
to be completed with initial (or boundary) conditions. Using the boundary conditions
from the heat equation (1.8), we obtain at x = 0

u(0, t) = a(0)b(t) = 0.

Thus, one or both terms must be zero. If b is identically zero, the solution u is zero.
This is not desirable since it does not verify the initial condition. We thus set a(0) to be

6Fourier [19, p. 163]: “Nous examinerons d’abord si la valeur de v peut être représentée par un pareil
produit.”

1.4. The Heat Equation 21

zero and hence have obtained an initial condition for a(x). We need, however, a second
condition to solve the corresponding second-order ODE. Taking the second boundary
condition of the heat equation, we get

u(L, t) = a(L)b(t) = 0.

Again considering b to be zero leads nowhere, and thus we set a(L) = 0. Now the
second-order equation for a(x) is complete, with one initial and one final condition (or
two boundary conditions), ⎧⎨

⎩
a′′ = σ

ν a in (0, L),
a(0) = 0,
a(L) = 0.

Depending on σ, we need to consider three different cases:

1. (σ = 0). If σ is zero, the solution is a linear function,

a(x) = cx+ d.

Using the boundary conditions, we find that the constants c and d are zero, and
we obtain again the zero solution, which is of no interest.

2. (σ > 0). A positive σ leads to an exponential solution of the form

a(x) = ce
√

σ
ν x + de−

√
σ
ν x.

The boundary conditions lead to the system of linear equations{
c+ d = 0,

ce
√

σ
ν L + de−

√
σ
ν L = 0,

which has again only the solution c = 0 and d = 0. Thus, we only obtain
identically zero solutions for the functions a and u.

3. (σ < 0). In that case, the unknown a is of the form

a(x) = c cos

(√−σ
ν
x

)
+ d sin

(√−σ
ν
x

)
.

We denote by λ the constant appearing in the cosine and sine, i.e., λ =
√

−σ
ν .

Using the boundary condition at x = 0, we find again

a(0) = c = 0,

but at x = L the boundary condition gives

a(L) = d sin(λL) = 0,

and we can have a nonzero constant d since sin(λL) is zero for

λ =
nπ

L
, n = 0, 1, 2,

For each integer n, we thus have the solution

an(x) = dn sin
(nπ
L
x
)
,

and the corresponding constant σ must take on the value σn = −ν(nπL)2.

22 Chapter 1. Introduction

For each of those solutions an, we look for the corresponding function bn(t). Equation
(1.9) defining b becomes an equation for bn,

b′n = −ν
(nπ
L

)2
bn,

with solution
bn = cne

−ν(nπ
L)2t.

Multiplying both solutions an and bn gives

un(x, t) = cne
−ν(nπ

L)2t sin
(nπ
L
x
)
, n = 0, 1, 2, . . . ,

which are all solutions of the heat equation with homogeneous boundary conditions⎧⎨
⎩

∂

∂t
un = ν

∂2

∂x2
un,

un(0, t) = un(L, t) = 0.

The sum of all such solutions un is, by linearity, also solution to this problem,

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

cne
−ν(nπ

L)2t sin
(nπ
L
x
)
.

The only condition of our original problem we have not yet satisfied is the initial con-
dition.7 Our series solution u(x, t) at t = 0 is

u(x, 0) =

∞∑
n=1

cn sin
(nπ
L
x
)
= u0(x).

Thus, we must find constants cn so that u(x, 0) = u0(x), the initial condition. But
u(x, 0) is simply a Fourier series,8 and thus the coefficients cn must be the Fourier
coefficients of the initial condition u0,

cn =
2

L

∫ L

0

sin
(nπ
L
x
)
u0(x)dx.

Remark 1.1. It is not a coincidence that we obtained a Fourier series since second-
order operators generally possess eigenfunctions which form an orthonormal system, a
result due to Sturm and Liouville.

Remark 1.2. Our closed-form solution reveals an interesting property of solutions of
the heat equation in general: The Fourier coefficients cn are multiplied by the expo-
nential term e−ν(nπ

L)2t, which depends strongly on n. The bigger n is, the faster the
exponential term goes to zero. This means that if one starts with an initial condition
that contains high-frequency components, n large, those will disappear quickly, and

7Fourier [19, p. 164]: “Il reste à remplir une troisième condition.”
8The search for a solution of the heat equation (Fourier considered the steady case, a two-dimensional

Laplace equation) led Fourier to his major invention of the Fourier series [19, p. 165]: “On pourrait douter
qu’il existât une pareille fonction, mais cette question sera pleinement éclaircie par la suite.” The interested
reader is invited to continue reading the courageous approach of Fourier (pp. 165ff), with the key idea finally
coming on page 232.

1.4. The Heat Equation 23

0

2

4

6

0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2 0.4 0.6 0.8 1
x

Figure 1.13. Solution of the one-dimensional heat equation: Initially, at time t = 0,
one can see many high-frequency components in the initial condition. Those quickly disappear
from the solution, as one can see at times t = 0.001, t = 0.01, and t = 0.1.

only the low frequency components, n small, will remain after a short period of time.
This can be easily seen in Maple:

u:=sum(c[n]*sin(n*Pi/L*x)*exp(-nu*(n*Pi/L)^2*t),n=1..N);
nu:=1;L:=1;
N:=10;
c:=[1$N];
u;
t:=0;plot(u,x=0..L);
t:=0.001;plot(u,x=0..L);
t:=0.01;plot(u,x=0..L);
t:=0.1;plot(u,x=0..L);

t:=’t’;plot3d(u,x=0..1,t=0..0.1,axes=boxed);

We show in Figure 1.13 the four results obtained at different times and in Figure 1.14
the evolution in space-time of the solution.

24 Chapter 1. Introduction

0
0.2

0.4
0.6

0.8
1

x

0
0.02

0.04
0.06

0.08
0.1

t

0

2

4

6

Figure 1.14. Solution of the one-dimensional heat equation in space-time, where one
can clearly see how high-frequency components are quickly attenuated in the solution.

Remark 1.3. Each term un of the solution decreases when t increases because of the
exponential term e−ν(nπ

L)2t. Thus, the general solution u(x, t) tends to zero when t
tends to infinity,

u(x, t) → 0, (t→ ∞).

This means in the context of our problem in Figure 1.12 that the nail cools until it
reaches the temperature of the ice cubes.

Example 1.11. A more concrete example is the temperature distribution in the living
room of Martin Gander, when he was living in Montreal, where in winter the outdoor
temperature regularly drops below −20◦C. The living room in apartment 206 on 3421
Durocher Street is shown in Figure 1.15. One can see the entrance door in the top left
corner, the angle couch in the top right corner, the desk on the right below, and the
dining table directly in front of the window at the bottom. The red line indicates the
location of the heater in the room. The window insulation was very modest, as the two
glass windows regularly froze from the interior. The entrance door was connected to a
hallway, which was regularly heated to about 15◦C. We assume that the walls are per-
fectly insulated and thus impose homogeneous Neumann conditions at the boundaries
represented by walls, so that the normal derivative, which represents the heat flux, is
zero. At the door and the window, we assume that the temperature equals the outside
environment and thus impose Dirichlet conditions with the corresponding temperatures.

1. If we are interested in the evolution of the temperature, then the temperature
distribution in the living room is obtained from the heat equation

ut = νΔu + f.

Clearly, a solution using a series expansion is difficult here because of the com-
plex geometry, so one needs to use numerical methods. An example of the tem-
perature evolution using a finite difference method is given in Figure 1.16, which
represents the situation when one returns from a skiing weekend during which

1.5. The Advection-Reaction-Diffusion Equation 25

Figure 1.15. Living room of Martin Gander’s apartment on Durocher Street in Montreal.

the heater was turned off. One can see how the room heats up after the heater
has been turned on and in particular how the temperature is increasing the most
slowly in the area around the couch. This phenomenon, which we felt regularly,
is the reason why we usually avoided the couch area after returning.

2. If the heating is left on, the solution of the heat equation eventually becomes
stationary, as one can see as one moves from the top left to the bottom right of
Figure 1.16. Mathematically, this means that the source is independent of time,
i.e., f = f(x), and we obtain a stationary temperature distribution when t→ ∞:

∂u

∂t
→ 0, t→ ∞.

The limiting heat distribution then satisfies the elliptic PDE

−νΔu = f

with the same boundary conditions. This is the Poisson equation.

3. If there is no heater, then the source is the zero function f = 0 and the equation
becomes the Laplace equation,

Δu = 0,

again with the same boundary conditions, whose solution is shown in the top left
frame in Figure 1.16, before the heater was turned on.

1.5 The Advection-Reaction-Diffusion Equation
We denote by u the concentration of a certain substance in a fluid in motion, whose
flow follows a given velocity vector field a, as shown in Figure 1.17. We assume that

26 Chapter 1. Introduction

0

10

20

30

400

10

20

30

40
−20

−15

−10

−5

0

5

10

15

At time 0

0

10

20

30

400

10

20

30

40
−20

−15

−10

−5

0

5

10

15

At time 0.3

0

10

20

30

400

10

20

30

40
−20

−15

−10

−5

0

5

10

15

At time 0.6

0

10

20

30

400

10

20

30

40
−20

−15

−10

−5

0

5

10

15

At time 1.2

0

10

20

30

400

10

20

30

40
−20

−15

−10

−5

0

5

10

15

At time 2.4

0

10

20

30

400

10

20

30

40
−15

−10

−5

0

5

10

15

At time 3.6

0

10

20

30

400

10

20

30

40
−15

−10

−5

0

5

10

15

20

At time 5.4

0

10

20

30

400

10

20

30

40
−15

−10

−5

0

5

10

15

20

At time 12

Figure 1.16. Evolution of the temperature after returning from a skiing weekend.

the substance is added in a certain location and also that it can chemically react with its
environment, both of which are modeled by the possibly nonlinear function f(u, x, t).
Here we adopt the convention that f > 0 means that substance is created and f < 0
means that substance disappears.

The flow of the substance in the fluid has two components: The first is naturally
the influence of the motion of the fluid itself, which simply transports the substance
according to the vector field a, and the second is the diffusion of the substance in the
fluid, which leads to the total flux of the substance,

F = au− ν∇u.

1.5. The Advection-Reaction-Diffusion Equation 27

substance

flow field

Figure 1.17. Drawing showing the mixing of a substance in a moving fluid with a
concentration varying because of chemical reactions creating or eliminating the considered sub-
stance.

As for the heat equation, using conservation of the substance in an arbitrary domain Ω,
we obtain the PDE

ut = −∇ · F+ f

= ∇ · (ν∇u)−∇ · (au) + f

= ∇ · (ν∇u)− (∇ · a)u− a · ∇u+ f.

This PDE is called the advection-reaction-diffusion equation, and it consists of three
terms: The first is the diffusion term ∇ · ν∇u; the second is the advection term, that
is, ∇ · (au), which we expanded in the last equality, and the last is the reaction term
represented by f . This PDE is in general nonlinear if the reaction term depends on u in
a nonlinear fashion.

Remark 1.4. Often we consider such a problem with multiple substances, for example,
u, v, andw. In this case, we obtain a system of PDEs in which the reaction term models
the reaction between the various substances, leading to vector-valued reaction functions
of the form

f(u, v, w, x, t) =

⎧⎪⎨
⎪⎩
f1(u, v, w, x, t),

f2(u, v, w, x, t),

f3(u, v, w, x, t).

If there is no reaction term, the PDE simplifies to

ut = ∇ · ν∇u−∇ · au− a · ∇u, (1.10)

which is called the advection-diffusion equation.
If the vector field a, which represents the transport mechanism, is a consequence of

thermal convection, then (1.10) is called the convection-diffusion equation, and in this
case a depends in general on u, which makes the PDE nonlinear.

28 Chapter 1. Introduction

Figure 1.18. Jean-Baptiste le Rond d’Alembert (16.11.1717–29.10.1783) and his sem-
inal paper on the modeling of a vibrating string from 1747.

Finally, if the divergence of the vector field is zero, i.e., ∇ · a = 0, we obtain for ν
constant

ut = νΔu− a · ∇u,
a simpler version of the advection-diffusion equation.

1.6 The Wave Equation
To derive a model for a vibrating violin string, we use Newton’s second law of motion,
which states that mass times acceleration equals the total force acting on the object. If
we denote by m the mass, by u the vertical displacement, and by F the forces, then
writing the acceleration as utt leads to

mutt = F.

In addition, we know from Hooke’s law that the restoring force is proportional to the
elongation,

F ∼ u.

Combining these two laws, we get an ODE of the form

mutt = −ku,
where k > 0 is the proportionality constant. This equation is a simplified model for a
vibrating string, as it does not take into account the spatial direction.

For a more accurate model in time and space, we follow the derivation of d’Alembert
[13]. D’Alembert was an illegitimate child of a chevalier and a writer and grew up in
an orphanage. He studied philosophy, law, and arts and also pursued poetry, music,
medicine, and mathematics; for a portrait, see Figure 1.18. D’Alembert’s idea for un-
derstanding the motion of a string was to take a closer look at a small section of the
string. On such a section of length Δs, the mass can be expressed as the product of the
small interval times the density ρ of the string,

m = ρΔs.

1.6. The Wave Equation 29

x x

x

u

ΔxΔx

Δu Δu

x+Δxx+Δx

Δs Δs

L0

θ1

θ2

T1

T2

Figure 1.19. Figure of a vibrating violin string on which we zoomed at two different
places to illustrate the decomposition of a small portion of the string in the horizontal and vertical
directions and the tensions acting on the string.

The small section of the string, Δs, can be approximated, as shown in Figure 1.19, by

Δs ≈
√
Δx2 +Δu2,

= Δx

√
1 +

(
Δu

Δx

)2

,

≈ Δx
√
1 + (u′(x))2.

For the vibration of the string, it is reasonable to assume that the vertical variation u′(x)
is small, and thus we neglect this contribution in our model for the mass and use

m = ρΔx.

The force on the string segment is due to the tension created when one pulls on the
string. Let T1 and T2 be the tensions in the string at x and x + Δx, as shown in
Figure 1.19. If there is no horizontal movement, then the horizontal components of the
tensions must be equal. We name these horizontal components

T := T1 cos(θ1) = T2 cos(θ2).

The force acting on the string in the vertical direction is given by the difference of the
vertical components of the tension at x and x+Δx,

F = T2 sin(θ2)− T1 sin(θ1).

Dividing F by T and using both equivalent definitions of T , we obtain

F

T
=
T2 sin(θ2)

T2 cos(θ2)
− T1 sin(θ1)

T1 cos(θ1)
= tan(θ2)− tan(θ1).

But tan(θi), for i = 1, 2, is none other than the slope of the string at the points x and
x+Δx, respectively, which is given by the first spatial derivative of the position u(x).
Using this force in Newton’s law of motion and dividing both sides by TΔx gives

ρ

T
utt =

1

Δx
(tan(θ2)− tan(θ1)),

=
ux(x+Δx) − ux(x)

Δx
.

30 Chapter 1. Introduction

Figure 1.20. The now classical second-order wave equation as it was written by
d’Alembert, from [14], which had already been submitted in a first version in 1755.

Finally, letting Δx tend to zero leads to the so-called second-order wave equation in
one dimension,

utt = c2uxx, (1.11)

where c :=
√
T/ρ represents the wave speed. Unlike the heat equation, the wave equa-

tion is a hyperbolic PDE, which exhibits oscillatory rather than diffusive behavior; for
an example of a solution of the wave equation, see Figure 1.21. We show in Figure
1.20 the wave equation as it appeared in [14], the second of a two-part publication by
d’Alembert. A solution formula for this equation already appears in part I of the publi-
cation [13] from 1747 (see Figure 1.18 and also Problem 1.9), although d’Alembert did
not explicitly formulate the PDE satisfied by it until 1761 in order to address criticisms
by Euler and Daniel Bernoulli in 1753 over his previous work.9 The vibrating string
controversy led to important new concepts in the understanding of functions: Instead
of being restricted to analytic expressions, the notion now also includes discontinuous
functions and functions drawn freehand; see [33].

Remark 1.5.

• In a domain Ω of dimension two or three,10 with initial and boundary conditions
and a source function, the wave equation is⎧⎪⎪⎨

⎪⎪⎩
utt = c2Δu+ f in Ω× (0, T),

u(x, 0) = u0(x) in Ω,
ut(x, 0) = u0t (x) in Ω,
u(x, t) = g(x, t) on ∂Ω,

where u0(x) is the initial position of the string and u0t (x) is its initial velocity.
Note that we need two initial conditions because the equation contains a second-
order time derivative.

• An analytic solution of the wave equation can be found using separation of vari-
ables, as seen in the case of the heat equation; see Problem 1.9 for the case in
one dimension.

• Using the wave equation, we can approximate the water surface waves created
when a platform diver jumps into a pool. The edge of the swimming pool, mod-
eled by homogeneous Neumann conditions, reflects the waves and creates very
complicated wave patterns filling the entire swimming pool; see the sequence of
graphs in Figure 1.21.

9D’Alembert [14]: “La lecture de leurs Mémoires & les miens suffiroit peut-être pour me mettre à couvert
de leurs attaques; car chacun de ces grands Géometres, pris séparément, semble m’accorder ce que l’autre me
nie.”

10The three-dimensional case was discovered by Euler in 1766.

1.7. Maxwell’s Equations 31

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time index = 2

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time index = 4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time index = 8

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time index = 12

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time index = 18

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time index = 24

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time index = 40

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time index = 60

Figure 1.21. Evolution of the water surface after a platform diver has jumped into the pool.

1.7 Maxwell’s Equations
In our current environment of mobile phones and wireless computer networks, electric
and magnetic fields are omnipresent. The complete equations satisfied by these fields
were first formulated and studied by Maxwell in [6], with an earlier version appearing
already in 1856; see Figure 1.22. Maxwell’s achievement was to reduce everything that
was known about electricity and magnetism at his time to a system of 20 equations in
20 unknowns and his introduction of the notion of an electromagnetic field, in contrast
to the force lines used by Faraday. In modern notation, one uses only six unknowns:

32 Chapter 1. Introduction

Figure 1.22. James Clerk Maxwell (13.06.1831–05.11.1879), and the beginning of his
seminal paper “On Faraday’s lines of force.”

We denote the time-dependent electric vector field by

E : R4 −→ R
3

and the time-dependent magnetic field by

H : R4 −→ R
3.

The PDEs governing these fields, now known as Maxwell’s equations, consist of two
physical laws:

1. The Maxwell–Ampere law:

− ε
∂E

∂t
+∇×H− J = 0. (1.12)

Here ε is the electric permittivity and J is the current density. The Maxwell–
Ampere law relates the current to the change in the electric field and the rotation
of the magnetic field.11

2. The Maxwell–Faraday law:

μ
∂H

∂t
+∇×E = 0. (1.13)

Here μ is the magnetic permeability. The Maxwell–Faraday law relates the
change of the magnetic field to the rotation of the electric field. There are no
physical magnetic currents, and there is no magnetic damping.

11It is tempting to use Ohm’s law, J = σE, where σ > 0 is the electric conductivity, to replace J in (1.12)
and thus obtain a system with damping to the electric field. Ohm’s law in this form is, however, very different
in character from Maxwell’s equations; see, for example, [24, p. 289], where the author says that “it’s not
really a true law, in the sense of Gauss’s law or Ampère’s law; rather, it is a ‘rule of thumb’ that applies pretty
well to many substances. You’re not going to win a Nobel Prize for finding an exception. In fact, when you
stop to think about it, it’s a little surprising that Ohm’s law ever holds,” and [46, p. 129], where the author
says, “It is an empirical law, a generalization derived from experiment, not a theorem that must be universally
obeyed. In fact, Ohm’s law is bound to fail in the case of any particular material if the electric field is too
strong”; see also the recent publication specifically about this topic [15], where the author claims that the two
fields E are really different quantities: “It is found that, in general, the electric field in Ohm’s law cannot be
identified with the electric field as defined by Maxwell’s equations.” The correct approach to include Ohm’s
law is to substitute J = σE+ Je into Maxwell’s equations, which then include the current source due to the
electric field in the domain and a possible further external current source Je.

1.8. Navier–Stokes Equations 33

Both (1.12) and (1.13) together form a system of six linear differential equations for the
six vector field components in E and H, and this system is called Maxwell’s equations.

The electric field E and the magnetic field H must satisfy in addition the divergence
conditions

∇ · (εE) = ρ (Gauss’s law), ∇ · (μH) = 0 (Gauss’s law for magnetism). (1.14)

However, when the material parameters ε, μ, and σ are independent of time, these
conditions are in fact redundant, as long as they are satisfied by E and H at initial time.
To show this, first note that the divergence of the curl vanishes, as one can see by a
direct calculation or using the Maple command

diverge(curl([E1(x,y,z),E2(x,y,z),E3(x,y,z)],[x,y,z]),[x,y,z]);

from the linalg package. Applying the divergence operator to (1.13), we get

∇ ·
(
μ
∂H

∂t

)
=

∂

∂t
(∇ · (μH)) = 0.

Thus, ∇ · (μH) is constant in time, so if it vanishes at the initial time t = 0, it will
continue to vanish for all time t. Similarly, by taking the divergence of (1.12),

∇ ·
(
ε
∂E

∂t
+ J

)
=

∂

∂t
(∇ · (εE)) +∇ · J = 0,

and then using the conservation of the electric charge,

∂ρ

∂t
+∇ · J = 0,

we obtain
∂

∂t
(∇ · (εE)− ρ) = 0,

which implies that if Gauss’s law ∇ · (εE) = ρ is verified at initial time, then it is also
verified for all time.

1.8 Navier–Stokes Equations
The vector field u : R4 → R

3 of the velocity of an incompressible Newtonian fluid
satisfies the Navier–Stokes equations, discovered by Claude-Louis Navier and George
Gabriel Stokes (see Figure 1.23):{

ut + u · ∇u+∇p = νΔu,
∇ · u = 0.

Here, the scalar quantity p : R4 → R is the pressure and ν is the viscosity. We recognize
in the first equation the three familiar terms of an advection-diffusion equation, which
transports and diffuses the entire velocity field u. But now the transport field is u
itself, which makes this equation nonlinear. In addition, there is the term ∇p, which
is necessary to balance the requirement of the second equation, which states that the
velocity field u must be divergence free, and thus the fluid is incompressible.

Depending on the concrete situation, various simplifications of the incompressible
Navier–Stokes equations are useful.

34 Chapter 1. Introduction

Figure 1.23. Claude-Louis Navier (10.02.1785–21.08.1836), and George Gabriel
Stokes (13.08.1819–01.02.1903).

Remark 1.6.

• Neglecting the nonlinear term, we obtain the Stokes equations,{
ut +∇p = νΔu,

∇ · u = 0,

which are also often used in the stationary case, i.e., when ut is zero.

• In a so-called perfect fluid, we can neglect the viscosity ν and obtain the simplified
system {

ut + u · ∇u+∇p = 0,
∇ · u = 0.

These equations are called the incompressible Euler equations, as they appeared
first in published form in [37]; see Figure 1.24.

• One can also linearize the system around a given velocity u0(x), which leads,
when also neglecting the viscosity, to the Oseen equations,{

ut + u0 · ∇u+∇p = 0,
∇ · u = 0.

An excellent reference for physical modeling using PDEs is the chapter “Les mod-
èles physiques” in the first volume of Analyse mathématique et calcul numérique pour
les sciences et les techniques by Robert Dautray and Jacques-Louis Lions [10]. This
classical volume has also been translated into English; see [11].

1.9 Elliptic Problems
As we have seen in the last few sections, many problems of physical interest are initial-
boundary value problems, in which we seek a time-dependent solution u(x, t) starting
with some initial conditions u(x, 0) and boundary conditions u|∂Ω. An equally inter-
esting class of problems are elliptic problems, in which we seek a solution u(x) defined

1.9. Elliptic Problems 35

Figure 1.24. Leonhard Euler (15.04.1707–18.09.1783) on the Swiss 10-franc note and
the invention of Euler’s equations in 1757.

on the spatial domain Ω only, given some boundary conditions u|∂Ω. A general second-
order linear elliptic equation in d dimensions is of the form Lu = f , where

Lu = −
d∑

i=1

d∑
j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

d∑
i=1

bi(x)
∂u

∂xi
+ c(x)u,

with the additional (uniform) ellipticity condition

d∑
i=1

d∑
j=1

aij(x)ξiξj ≥ θ‖ξ‖2 ∀ξ ∈ R
d

for some θ > 0. In other words, we require the symmetric tensorA(x) := (aij(x))
d
i,j=1

to be positive definite, with minimum eigenvalue at least θ almost everywhere. Elliptic
problems often arise from the following considerations.

Semidiscretization in time: One way of solving a time-dependent problem is to
subdivide the time interval [0, T] into a time grid 0 = t0 < t1 < · · · < tN = T and
approximate the time derivative by a finite difference in time. The simplest version is
the first-order finite difference

∂u

∂t
(x, tn) =

u(x, tn+1)− u(x, tn)

Δtn
+O(Δtn),

where Δtn := tn+1 − tn is the nth time step. For the heat equation

∂u

∂t
= Δu+ f,

36 Chapter 1. Introduction

replacing the time derivative with the finite difference approximation leads to

un+1 − un

Δtn
= Δu+ f,

where un ≈ u(·, tn) is an approximation of the solution u at time tn. Note that we have
not specified the time t at which u and f on the right-hand side are evaluated. If these
terms are taken at tn, we obtain the explicit method

un+1 = un +Δtn(Δun + f(·, tn)),
which is called forward Euler and does not require solving a boundary value problem.
However, for stability reasons, one often prefers to evaluateu and f at time tn+1 instead,
leading to the implicit method

−Δun+1 +
1

Δtn
un+1 =

1

Δtn
un + f(·, tn+1),

which is called backward Euler. If we define gn := un/Δtn + f(·, tn+1), we obtain an
elliptic problem in un+1 of the form

−Δun+1 + αun+1 = gn, (1.15)

where αn = 1/Δtn > 0 is a positive parameter that depends on the time step size.
Thus, to solve the time-dependent problem numerically, one would solve a sequence of
elliptic problems (1.15) for n = 0, 1, . . . , N−1. Other time discretizations are possible
(e.g., the Crank–Nicolson method), but any implicit method will invariably produce a
sequence of elliptic problems that must be solved at each time step.

Steady-state/equilibrium solutions: A second way in which elliptic problems arise
is through steady-state solutions. As we have seen in section 1.4, the evolution of
temperature in a spatial domain Ω is described by the heat equation

∂u

∂t
−∇ · (a(x)∇u) = f(x, t),

where a(x) ≥ amin > 0. If neither forcing term f nor the boundary conditions u|∂Ω
depend on time, then it can be shown that ∂u

∂t → 0 and that u(x, t) → ū(x), where ū(x)
satisfies the elliptic equation

−∇ · (a(x)∇ū) = f(x). (1.16)

If a(x) = ν > 0 is constant in space, (1.16) is known as the Poisson equation; see
also Example 1.11. If, in addition, we have f ≡ 0 and a(x) = ν = 1, then it is called
the Laplace equation. Note that the Poisson equation also describes the steady-state
solution of the wave equation

utt = c2Δu+ f.

Another situation where the Poisson equation appears is in electrostatics. Consider once
again the Maxwell–Faraday law (1.13)

μ
∂H

∂t
+∇×E = 0.

If the system is at steady state such that ∂H
∂t = 0, then the electric field is curl-free; i.e.,

we have ∇× E = 0. This implies E is the gradient of a scalar field ψ, i.e., E = ∇ψ.
Substituting this into Gauss’s law (1.14) gives

∇ · (ε∇ψ) = ρ.

1.9. Elliptic Problems 37

If the electric permittivity ε > 0 is constant in space, we obtain once again the Poisson
equation Δψ = ρ/ε.

For the advection-diffusion equation

ut = ∇ · (ν∇u)−∇ · (au) + f,

the steady-state solution is given by

−∇ · (ν∇u) +∇ · (au) = f,

which is also an elliptic problem.
The steady-state solution of a Navier–Stokes equation satisfies{

u · ∇u+∇p = νΔu,

∇ · u = 0.

This is a nonlinear equation in u. For small velocities (relative to the viscosity ν),
one can neglect the quadratic term (cf. Remark 1.6) to obtain the steady-state Stokes
equation {

−νΔu+∇p = 0,

∇ · u = 0.
(1.17)

Although the first equation in (1.17) resembles a Poisson equation, the fact that it is
coupled with the divergence-free constraint makes the problem a saddle point problem
with very different properties that require different discretization techniques than the
standard elliptic Poisson equation.

Time-harmonic regimes: A third situation in which one encounters elliptic equa-
tions is in the so-called time-harmonic regime, in which the forcing term and boundary
conditions are periodic with frequency ω. In the case of the heat equation with ho-
mogeneous boundary conditions, we assume that the forcing term satisfies f(x, t) =
f̃(x)eiωt, so that the solution approaches the time-periodic solution u(x, t) → ũ(x)eiωt

as t→ ∞, where ũ(x) satisfies

iωũ−Δũ = f̃ .

This is the shifted Laplace equation with an imaginary shift iω. Similarly, to look for a
time-harmonic solution of the second-order wave equation, we suppose that the solution
is of the form

u(x, t) = ũ(x)eiωt,

where ω is a given frequency. If we introduce this ansatz into the wave equation, we get

−ω2ũ(x)eiωt = Δũeiωt + f.

Now simplifying the exponential term, collecting terms depending on ũ on the left, and
defining f̃ := fe−iωt, we obtain

−(Δ + ω2)ũ = f̃ ,

which is called the Helmholtz equation.12 Note that if we change the sign inside the
parentheses, we find a diffusion equation of the same form as (1.15). Thus, the sign is

12This equation was studied by Helmholtz [30] to obtain a better physical understanding of organ pipes;
see also [21].

38 Chapter 1. Introduction

of paramount importance for the qualitative behavior of the solutions: The Helmholtz
equation comes from a wave equation, and solutions are oscillatory, whereas with the
sign changed, solutions represent a diffusive phenomenon, which rapidly damps out all
oscillatory components, as we have seen in the one-dimensional example earlier.

Because elliptic problems occur naturally as subproblems in many time-dependent
PDEs and are interesting in their own right, a substantial amount of research has been
devoted to developing effective numerical methods for these problems. In the next
few chapters, we will introduce four major classes of numerical methods for elliptic
problems, each based on a different principle:

• Finite difference methods, based on Taylor expansion;

• finite volume methods, based on discrete conservation;

• spectral methods, based on Fourier analysis;

• finite element methods, based on the variational principle.

1.10 Problems

Problem 1.1 (Maple). For all Maple commands, the online help can be accessed using
the question mark, for example, ? series.

(i) Use the commands taylor and series to compute expansions of the function
sin(x), cos(

√
x)2, and 1

x2+x about 0. What is the difference between the two
commands?

(ii) For the function sin(x), draw a graph of the function and its Taylor series, trun-
cated after 2, 4, and 6 terms. Use the command convert to convert the Taylor
series into a polynomial and, if you need to, the command display to display
several graphs in one drawing.

(iii) Use the commands sum and product to compute the sum of the first n integers
cubed and the product of the first n even integers.

(iv) Use the commands solve and allvalues to find the solutions of x2+2x−x5 =
0 and x4 + x+ 1 = 0.

(v) We consider the expression

f:=exp(-(x^2+y^2))

and the function

g:=(x,y)->exp(-(x^2+y^2)).

Compute the derivatives of f and g using the command diff and the operator
D. Explain the difference between these two commands. Draw f and g on the
domain [−2, 2]× [−2, 2] with the command plot3d.

Problem 1.2 (MATLAB). For all MATLAB commands, one can access the online
help using the command help followed by the name of the command, for example,
help plot.

1.10. Problems 39

(i) Use MATLAB to solve the system of linear equationsAx = b for the following:

1. A, a randomly generated 3× 3 matrix, and b, a randomly generated column
vector with 3 entries (use the command rand).

2. A =

⎛
⎝−2 1 0

1 −2 1
0 1 −2

⎞
⎠ and b =

⎛
⎝1
2
3

⎞
⎠.

(ii) Use the graphics capabilities of MATLAB to plot the following graphs:

1. The graph of the functions f , g, and h between 0 and 5 on the same plot,
using the command plot:

f(x) = exp

(
1

x+ 1

)
,

g(x) = e

(
1− x+

3

2
x2
)
,

h(x) = e

(
1− x+

3

2
x2 − 13

6
x3 +

73

24
x4
)
,

where e is Euler’s constant.

2. The graph of the following functions, using the commandssemilogy, loglog,
and plot:

f(x) = exp

(
1

x+ 1

)
,

g(x) =
1

x+ 1
,

h(x) = ln(x).

3. Represent the surface given by the function f(x, y) = sin(x)y+ 1
1+y2 using

the commands mesh, surf, and contour. The command meshgrid is very
useful here.

Problem 1.3 (pendulum problem). Solve the pendulum equation (1.1) numerically
with Maple. Use as initial conditions θ(0) = 1

10 and θ̇(0) = 0, as in the numerical
example with MATLAB in Section 1.2. Try both the series and the numeric options
in the dsolve command of Maple (type ‘? dsolve’ in Maple to get the online help).
Plot the two results, and compare them with the results obtained with MATLAB. What
do you observe? (Hint: the output argument output=listprocedure is useful for the
numeric option.)

Problem 1.4 (pendulum equation). The goal of this problem is to solve numerically
the pendulum equation using MATLAB and to compare the result to the analytic solu-
tion of the equation that uses the small angle approximation. The pendulum equation is
given by

θ̈ = − g

L
sin(θ), (1.18)

40 Chapter 1. Introduction

and the small angle approximation leads to the equation

θ̈ = − g

L
θ. (1.19)

1. Use the ODE solver ode45 from MATLAB to solve (1.18), and compare your
solution to the exact solution of (1.19) for various initial conditions. Change both
the initial position and velocity.

2. Up to which angle is the small angle approximation still good, assuming that the
initial velocity is zero?

3. What is qualitatively the behavior of the pendulum if the initial velocity is very
large? How does this translate in the numerical solution computed in MATLAB?

Problem 1.5 (modeling). A tank contains two kilograms of salt dissolved in 400 liters
of water. We pour continuously, at a rate of 10 liters per minute, a salty solution with
concentration of 0.3 kg/l into the tank. We suppose that the two liquids get instan-
taneously well mixed, with the help of a stirrer, and that the volume of the tank is
constant, which means that there is an overflow where the mixed liquid can leave the
tank.

1. Find a mathematical model for the process.

2. Find the quantity of salt in the tank after 10 minutes.

3. What concentration will one approach if one waits for a very long time?

4. What happens if the tank has a volume of 1000 litres; i.e., at the beginning the
salty solution does not overflow?

5. What concentration would one approach if the tank had an infinite volume, if one
waits for a very long time?

Problem 1.6 (Newton’s law of cooling). If an object with temperature T is put into
a surrounding environment of constant temperatureM , the temperature variation of the
object is proportional to the difference of the temperatures M − T . This leads to the
differential equation

dT

dt
= k(M − T),

where k is the constant of proportionality.

(i) Solve the differential equation analytically for T (t).

(ii) A student buys a thermometer to check his body temperature. Feeling healthy,
he checks his temperature: Before starting, the thermometer shows 22◦C for the
surrounding temperature, and after 10 minutes under the arm, as indicated on the
package, the thermometer shows 37.38◦C.

A few days later, the student feels unwell and measures his temperature again.
This time, the thermometer shows 19◦C for the surrounding temperature, and,
being impatient, the student already checks after having the thermometer only
1.5 minutes under the arm to find the temperature 30◦C.

1.10. Problems 41

1. Compute the temperature if the thermometer had been left 10 minutes, as
required.

2. Compute the exact temperature of the student. Does he have a fever?

3. Does the student really need to wait 10 minutes, as recommended on the
package?

Problem 1.7 (Lotka–Volterra). Try finding a closed-form solution of the system of
Lotka–Volterra,

ẋ = ax− bxy, (1.20)

ẏ = −cy + dxy, (1.21)

which models the interaction of a predator population y(t) with a prey population x(t),
using Maple. Choose for the constants a = b = c = d = 1. Plot the solution, and
compare it to the numerical solution in Maple and MATLAB. What is the long-term
behavior of the two populations?

Problem 1.8 (divergence theorem). We consider a bounded open domain Ω ⊂ R
n

with boundary ∂Ω. We denote by x a point (x1, . . . , xn) in R
n.

Definition 1.12. The boundary ∂Ω is said to belong to the class Ck, k ∈ Z, if for
each x0 ∈ ∂Ω, there exist r > 0, an n × n rotation matrix Q (i.e., QTQ = I and
det(Q) = 1), and a function γ : Rn−1 → R in Ck such that

Ω ∩B(x0, r) = {x ∈ B(x0, r) : x = x0 +Qy, yn > γ(y1, . . . , yn−1)}.

Remark. If ∂Ω is C1, then the unit outer normal vector n is well defined. In this case,
we define the normal derivative of a function u : Ω̄ → R in C1 by

∂u

∂n
= ∇u · n.

Theorem 1.13 (Gauss–Green). If ∂Ω ∈ C1 and u ∈ C1(Ω̄), then∫
Ω

uxidx =

∫
∂Ω

unids, i = 1, 2, . . . , n.

We first suppose, after a suitable rotation, that the domain is defined by two func-
tions f and g, as shown in Figure 1.25(a). The domain Ω is thus given by

Ω = {(x, y) ∈ Ω : a < x < b and g(x) < y < f(x)}.

Complete the following outline of the proof of the Gauss–Green theorem:

1. Define ∂Ω as the union of two level sets defined by f and g.

2. Give the unit outer normal vectors on the boundary ∂Ω.

42 Chapter 1. Introduction

aa bb x1 x1x1

x2 x2x2
ff

g
g

(a) (b) (c)

Figure 1.25. Three steps in the proof of the divergence theorem.

3. Compare the values of
∫
∂Ω
un2ds and

∫
Ω
ux2dx using the infinitesimal relations

ds2 = dx2 + df2 and ds2 = dx2 + dg2.

4. Is the Gauss–Green theorem still valid for a domain like in Figure 1.25(b)?

5. What can be done if the domain is like in (c) of Figure 1.25?

6. Use the Gauss–Green theorem to prove the following result:

Theorem 1.14 (divergence theorem). If ∂Ω is in C1 and f : Ω̄ → R
n is a vector

field in C1, then ∫
Ω

∇ · fdx =

∫
∂Ω

f · nds.

Problem 1.9 (wave equation). We study the wave equation

utt = c2uxx.

1. (D’Alembert’s method). Use the factorization of the wave operator ∂tt − c2∂xx
into (∂t+ c∂x)(∂t − c∂x) to show that the solution u of the wave equation can be
written in the form u(x, t) = f(ct+ x) + g(ct− x).

Interpret this solution for a string of infinite length, with initial conditionu(x, 0) =
e−x2

and ut(x, 0) = 0, and provide a drawing explaining your interpretation.

2. Use the method of separation of variables, setting u(x, t) = a(x)b(t), in order
to find a solution of the wave equation in the interval (0, L) with homogeneous
boundary conditions.

3. What are the fundamental differences with the solution of the heat equation seen
in subsection 1.4?

4. Solve the equation with initial conditions u(x, 0) = sin(x), ut(x, 0) = 0, and
wave speed c = 1 on the interval (0, π) and homogeneous boundary conditions.

Problem 1.10 (conservation laws). Consider the flow inside a thin tube of a fluid
carrying tiny particles called tracers. We denote by q(x, t) the density of these tracers,
and we model the thin tube by a one-dimensional line.

1.10. Problems 43

1. Give a mathematical expression for the total mass of the tracers in the tube be-
tween two points x1 and x2.

2. The flow of the fluid describes the flux of the tracers, and we denote this flux by
f . Find a conservation law which models the variation of the total mass in the
section of the tube between x1 and x2.

3. Give an expression of the flux as a function of the velocity v(x, t) of the fluid.

4. Derive a PDE using the previously obtained results.

5. Suppose now that the fluid speed is constant in the tube, i.e., v(x, t) = c. Verify
that g(x − ct) is a solution of the PDE you found for any sufficiently smooth
function g.

6. If we set X(t) := a+ ct, where a is a constant, show that q(X(t), t) is indepen-
dent of time. What can one thus say about the solutions of the PDE you found?

Chapter 2

The Finite Difference
Method

Das Verfahren besteht nun darin, dass wir in den Querschnitt ein Netz von Quadraten einze-
ichnen und die Differentialgleichung durch eine Differenzengleichung ersetzen, in der die
Differenzen aufeinanderfolgender Werte von x und y gleich der Seite der quadratischen
Maschen des Netzes sind.a

Carl Runge, Über eine Methode die partielle Differentialgleichung Δu = Constans nu-
merisch zu integrieren, 1908

Ersetzt man bei den klassischen linearen Differentialgleichungsproblemen der mathe-
matischen Physik die Differentialquotienten durch Differenzenquotienten in einem—etwa
rechtwiklig angenommenen—Gitter, so gelangt man zu algebraischen Problemen von sehr
durchsichtiger Struktur. Die vorliegende Arbeit untersucht nach einer elementaren Diskus-
sion dieser algebraischen Probleme vor allem die Frage, wie sich die Lösungen verhalten,
wenn man die Maschen des Gitters gegen Null streben lässt.b

R. Courant, K. Friedrichs, H. Levy, Über die partiellen Differenzengleichungen der Mathe-
matischen Physik, 1928

Die vorliegende Arbeit gibt eine genaue Abschätzung der Fehler, welche bei der Lösung der
linearen partiellen Differenzengleichung von elliptischem Typus mittels des Differenzenver-
fahrens entstehen.c

S. Gershgorin, Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller Dif-
ferentialgleichungen, 1930

aThe procedure consists of drawing a network of squares and replacing the
differential equation by a difference equation in which successive values of x
and y equal the side of the square mesh of the network.

bIf one replaces in the classical linear differential equations of mathematical
physics the differential quotients by difference quotients in a rectangular mesh,
one arrives at algebraic problems of very transparent structure. Here we inves-
tigate, after an elementary discussion of these algebraic problems, mainly the
question of how their solutions behave when the mesh size goes to zero.

cThis chapter contains a precise estimate of the error which arises when one
solves elliptic PDEs approximately using a finite difference method.

The finite difference method is an easy-to-understand method for obtaining approximate
solutions of PDEs. The method was introduced by Runge in 1908 to understand the
torsion in a beam of arbitrary cross section, which results in having to solve a Poisson
equation; see the quote above and also Figure 2.1. The finite difference method is based
on an approximation of the differential operators in the equation by finite differences,

45

46 Chapter 2. The Finite Difference Method

Figure 2.1. Carl David Tolmé Runge (30.08.1856–03.01.1927), and the beginning of
the manuscript where he introduced the finite difference method for the Poisson equation [52].

which is natural since the derivatives themselves are defined to be the limit of a finite
difference,

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
.

The method was immediately put to use by Richardson, who tried a retroactive forecast
of the weather for May 20, 1910, by direct computation. The forecast failed dramati-
cally because of roughness in the initial data that led to unphysical surges in pressure,
but the method was essentially correct and led to Richardson’s famous book on numer-
ical weather prediction [48] in 1922. A first convergence proof for the finite difference
method was given in 1928 in the seminal paper by Courant, Friedrichs, and Lewy [9],
and the first error estimate is due to Gershgorin [23]; see the quotes above and also
the excellent historical review [59]. We will start by looking at the Poisson equation to
explain the finite difference method.

2.1 Finite Differences for the Two-Dimensional Poisson
Equation

We want to compute an approximate solution of the Poisson equation

{
Δu = f in Ω,
u = g on ∂Ω.

(2.1)

We first assume that the domain Ω is simply the unit square. By prescribing the function
value on the boundary ∂Ω as in (2.1), we are said to be imposing a Dirichlet boundary
condition. Later, we will consider the case where we prescribe a given flux across the
boundary, so that ∂u

∂n := ∇u · n = g, where n is the unit outer normal vector to the
boundary ∂Ω; this is known as a Neumann boundary condition.

2.1. Finite Differences for the Two-Dimensional Poisson Equation 47

The idea of the finite difference method is to approximate the derivatives in the PDE
using a truncated Taylor series in each variable. For example, after perturbing the x
variable by a distance h, a Taylor approximation gives

u(x+ h, y) = u(x, y) + ux(x, y)h+ uxx(x, y)
h2

2
+ uxxx(x, y)

h3

3!
+ uxxxx(ξ1, y)

h4

4!
,

(2.2)

where ξ1 lies between x and x+ h. Substituting h by −h gives

u(x− h, y) = u(x, y)− ux(x, y)h+ uxx(x, y)
h2

2
− uxxx(x, y)

h3

3!
+ uxxxx(ξ2, y)

h4

4!
,

(2.3)

where ξ2 lies between x − h and x. If we wanted to approximate a first derivative, we
would obtain from (2.2) that

u(x+ h, y)− u(x, y)

h
= ux(x, y) +O(h),

and neglecting the error term O(h) gives a first-order finite difference approximation of
the first partial derivative of u with respect to x,

ux(x, y) ≈ u(x+ h, y)− u(x, y)

h
.

This is called a forward approximation. Similarly, we can obtain a backward approxi-
mation of the first partial derivative with respect to x from (2.3),

ux(x, y) ≈ u(x, y)− u(x− h, y)

h
.

An even better approximation can be obtained using the difference of (2.2) and (2.3),
namely,

ux(x, y) =
u(x+ h, y)− u(x− h, y)

2h
+O(h2),

which is a centered approximation that is second-order accurate. One can use the same
idea to obtain forward, backward, and centered approximations for the partial derivative
with respect to y.

For the second derivative with respect to x, which appears in our Poisson equation,
we add (2.2) and (2.3) and obtain

u(x+h, y)−2u(x, y)+u(x−h, y) = uxx(x, y)h
2+(uxxxx(ξ1, y)+uxxxx(ξ2, y))

h4

4!
.

Dividing both sides by h2, isolating the second derivative term, and assuming that the

48 Chapter 2. The Finite Difference Method

fourth derivative of u is continuous gives

uxx(x, y) =
u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
− uxxxx(ξ, y)

h2

12
. (2.4)

Neglecting the last term on the right-hand side leads to a second-order approximation
of the second partial derivative of u with respect to x,

uxx(x, y) ≈ u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
. (2.5)

Similarly, we obtain in the y variable the approximation

uyy(x, y) ≈ u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
. (2.6)

Using these two approximations, we can define a discrete approximation of the Laplace
operator.

Definition 2.1. The discrete Laplacian Δh is given by

Δhu(x, y) :=
u(x+ h, y) + u(x, y + h)− 4u(x, y) + u(x− h, y) + u(x, y − h)

h2
,

which is also called the five-point star approximation of the Laplacian.

Applying the discrete Laplacian to u from the Poisson equation (2.1), we get

Δhu(x, y) =
u(x+ h, y) + u(x, y + h)− 4u(x, y) + u(x− h, y) + u(x, y − h)

h2

= uxx(x, y) + uyy(x, y) +O(h2)

= f(x, y) +O(h2).
(2.7)

Thus, the solution u of the Poisson equation satisfies the discrete Poisson equation
Δhu(x, y) = f(x, y) at each point (x, y) ∈ Ω up to a truncation error term O(h2).
The idea of the finite difference method is to neglect the truncation error term and thus
to compute an approximation to u at given grid points in the domain. In our case, where
the domain Ω is the unit square (0, 1) × (0, 1), we discretize the domain with a uni-
form rectangular mesh with n grid points in each direction. This leads to a mesh size
h = 1/(n + 1), and the grid is given by xi = ih and yj = jh for i, j = 1, 2, . . . , n;
see Figure 2.2. If n is large, the mesh size h is small, and thus the truncation error
O(h2) should also be small. Neglecting the truncation error in (2.7), denoting by ui,j
an approximation of the solution at grid point (xi, yj) and letting fi,j := f(xi, yj), we
obtain the system of equations

Δhui,j = fi,j , i, j = 1, 2, . . . , n. (2.8)

2.1. Finite Differences for the Two-Dimensional Poisson Equation 49

Figure 2.2. Discretization of the unit square domain Ω = (0, 1)×(0, 1), with Dirichlet
boundary conditions from (2.10). Three five-point stars are shown, two of which involve bound-
ary points.

Now for the indices i = 1, i = n, j = 1, and j = n, the corresponding equations
involve the boundary values at x = 0, 1 and y = 0, 1. More precisely, in the particular
case where, for example, i = 1 and j = 1, as for the five-point star in the lower left
corner in Figure 2.2, (2.8) becomes

u2,1 + u1,2 − 4u1,1 + u0,1 + u1,0
h2

= f1,1, (2.9)

where u0,1 and u1,0 are on the boundary, so their values are given by the boundary
condition u = g of problem (2.1). If we denote this boundary condition on each of the
sides of the unit square by ⎧⎪⎪⎨

⎪⎪⎩
u(x, 0) = p(x),
u(0, y) = q(y),
u(x, 1) = r(x),
u(1, y) = s(y),

(2.10)

as shown in Figure 2.2, then (2.9) becomes

u2,1 + u1,2 − 4u1,1 + q1 + p1
h2

= f1,1,

where p1 := p(x1) and q1 := q(y1). Since these boundary values are known, one
usually puts them on the right-hand side of the equation and obtains

u2,1 + u1,2 − 4u1,1
h2

= f1,1 − 1

h2
(q1 + p1).

50 Chapter 2. The Finite Difference Method

Similarly, we obtain for the indices i = 1 and j = 2 the discrete equation

u1,3 + u2,2 − 4u1,2 + u1,1
h2

= f1,2 − 1

h2
q2.

Continuing this way for all the nodes connected to the boundary, i.e., whenever the
index is i = 1, i = n, j = 1, and j = n, we gather all equations obtained for every
point in the grid in the linear system of equationsAu = f , where the matrix A is given
by

A =
1

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 1

1 −4
. . . 1

. . .
. . . 1

. . .
1 −4 1

1 −4 1
. . .

1 1 −4
. . .

. . .
. . .

. . . 1

1 1 −4
. . .

. . .
. . . 1

1
. . .

. . .
. . . 1

1 −4 1

1 1 −4
. . .

. . .
. . .

. . . 1
1 1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.11)

The matrix A is block tridiagonal and has at most five nonzero entries per row. Such
matrices are called structured, sparse matrices. Although such systems can in prin-
ciple be solved using Gaussian elimination, the elimination process introduces new
nonzero entries, destroying sparsity and incurring high computational and memory
costs. An attractive alternative is to use iterative methods, which do not require fac-
torization and are often more efficient for large, sparse problems. We mention in
particular Krylov methods [39, 53] which, together with approximate factorizations
[53], domain decomposition [47, 60, 54], and multigrid preconditioners [3], lead to the
best current iterative solvers for such sparse linear systems; for a simple introduction,
see [5].

2.2. Convergence Analysis 51

The vectors u and f in the linear system of equations Au = f we obtained are

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1,1
u1,2

...
u1,n
u2,1
u2,2

...
u2,n

...

...
un,1
un,2

...
un,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1,1 − 1
h2 (p1 + q1)

f1,2 − 1
h2 q2

...
f1,n − 1

h2 (qn + r1)
f2,1 − 1

h2 p2
f2,2
...
f2,n − 1

h2 r2
...

...
fn,1 − 1

h2 (pn + s1)
fn,2 − 1

h2 (s2)
...
fn,n − 1

h2 (rn + sn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Like Runge, we approximated the derivatives in the Poisson equation by finite differ-
ences, and thus the finite difference operator is an approximation of the differential
operator. However, this does not automatically imply that the solution u of the large
sparse system of equations we obtained is an approximation of the solution u of the
Poisson equation (2.1), even though this is what Runge stated without proof.13 In the
next section, we present a convergence analysis of the method, where we will see that
the Taylor expansion (2.7) is only one out of three ingredients needed to quantify the
error in the discrete solution u.

2.2 Convergence Analysis
Convergence of the finite difference approximation to the solution of the underlying
PDE was first proved by Courant, Friedrich, and Lewy in [9] using a maximum principle
and compactness. This was still done in the spirit of proving that the PDE actually has
a solution, so nowhere it is assumed that the solution of the PDE exists.14 The first
error estimate was given two years later by Gershgorin [23]; see also the quotes at
the beginning of this chapter. Gershgorin proved the result for a general second-order
elliptic operator, and we basically follow the same steps in the simpler case of our
Poisson equation with Dirichlet boundary conditions on the unit square,

{
Δu = f in Ω = (0, 1)× (0, 1),
u = g on ∂Ω,

(2.12)

13Runge (1908): “Ist das Netz hinreichend dicht, so werden die gefundenen Werte von u sehr wenig von
den wahren Werten verschieden sein, und man kann daraus mit beliebiger Genauigkeit die gesuchte Fläche
interpolieren.”

14Courant, Friedrichs, and Lewy [9]: “Die Lösbarkeit der Differentialgleichungsprobleme setzen wir nir-
gens voraus; vielmehr erhalten wir durch den Grenzübergang hierfür einen einfachen Beweis.”

52 Chapter 2. The Finite Difference Method

discretized by a finite difference approximation on the uniform grid given by xi = ih
and yj = jh for i, j = 1, 2, . . . , n and h = 1/(n+ 1),{

Δhui,j = fi,j , i, j = 1, . . . , n,

ui,j = gi,j , (i, j) ∈ B,
(2.13)

where the set of boundary nodes is given by

B := {(i, j) : i = 0, n+1 and j = 1, . . . , n, or j = 0, n+1 and i = 1, . . . , n}. (2.14)

Following Gershgorin, but as shown for our simpler case in [58], we now prove that the
discrete solution ui,j of (2.13) is indeed an approximation of the continuous solution u
of (2.12).

Definition 2.2. For u := {ui,j}ni,j=1 defined by (2.13), we define the maximum norm
in the interior by

||u||∞ = max
i,j=1,...,n

|ui,j |

and also a maximum norm on the boundary,

||u||∞,∂Ω = max{ui,j : (i, j) ∈ B}.

In order to prove convergence of the finite difference approximation, we need three
main ingredients: a truncation error estimate, a discrete maximum principle, and a
Poincaré-type estimate, which bounds the values of a function by its derivatives. These
results are given in the following lemmas.

Lemma 2.3 (truncation error estimate). If the solution u of the Poisson equation
(2.12) is in C4((0, 1)× (0, 1)) and satisfies∣∣∣∣∂4u∂x4

(x, y)

∣∣∣∣ ≤M1,

∣∣∣∣∂4u∂y4
(x, y)

∣∣∣∣ ≤M2 ∀x, y ∈ (0, 1),

then u, defined by (2.13), satisfies

||Δhu−Δhu||∞ ≤ M1 +M2

12
h2.

Proof. Using the definition of the maximum norm, the Taylor expansion (2.4) from the
previous subsection, and the fact that fi,j = f(xi, yj), we obtain

||Δhu−Δhu)||∞ = max
i,j∈{1,...,n}

|Δhu(xi, yj)−Δhui,j|

= max
i,j∈{1,...,n}

∣∣∣Δu(xi, yj)+ 1
12

(
∂4u
∂x4 (ξi, yj)+

∂4u
∂y4 (xi, ηj)

)
h2−fi,j

∣∣∣
= max

i,j∈{1,...,n}

∣∣∣ 112 (∂4u
∂x4 (ξi, yj) +

∂4u
∂y4 (xi, ηj)

)
h2
∣∣∣

≤ M1 +M2

12
h2,

which concludes the proof.

2.2. Convergence Analysis 53

Lemma 2.4 (discrete maximum principle). Solutions of the five-point finite difference
discretization Δh of the Laplace equation satisfy a discrete maximum principle:

1. If Δhu = 0, then the approximation ui,j attains its maximum and minimum
values on the boundary of the domain, i.e., for (i, j) ∈ B.

2. If Δhu ≤ 0, then the minimum of ui,j is on the boundary, and if Δhu ≥ 0, then
the maximum of ui,j is on the boundary.

Proof. The equation Δhu = 0 implies that for all i, j = 1, 2, . . . , n of the grid, we have

ui+1,j + ui,j+1 − 4ui,j + ui−1,j + ui,j−1

h2
= 0.

Hence, the numerator must be zero. Solving for ui,j , we obtain

ui,j =
ui+1,j + ui,j+1 + ui−1,j + ui,j−1

4
,

which means that ui,j equals the average of its grid neighbors, and so it can be neither
larger nor smaller than those neighbors. Thus, no interior value ui,j can be a local
maximum or minimum, and it follows that any maxima and minima must be attained
on the boundary.

If Δhu ≤ 0, following the same reasoning as before, ui,j must be greater than the
average of its grid neighbors, and hence it cannot be a local minimum. Similarly, when
Δhu ≥ 0, ui,j must be smaller than the average of its neighbors, and hence it cannot
be a local maximum.

We call a grid function wi,j a discrete function associating a value to every point of
the grid.

Lemma 2.5 (Poincaré-type estimate). For any grid function wi,j , i, j = 0, . . . , n+ 1,
such that wi,j = 0 on the boundary, i.e., for (i, j) ∈ B, we have

||w||∞ ≤ 1

8
||Δhw||∞.

Proof. We consider a particular grid function defined by

vi,j =
1

4

((
xi − 1

2

)2

+

(
yj − 1

2

)2
)
.

54 Chapter 2. The Finite Difference Method

Applying the discrete Laplacian to this grid function at any point of the grid (xi, yj) =
(ih, jh), i, j = 1, . . . , n and h = 1

n+1 , we obtain

Δhvi,j =
1

4h2

((
ih+h− 1

2

)2

+

(
ih−h− 1

2

)2

+2

(
jh− 1

2

)2

− 4

(
ih− 1

2

)2

. . .

. . .− 4

(
jh− 1

2

)2

+

(
jh+ h− 1

2

)2

+

(
jh− h− 1

2

)2

+ 2

(
ih− 1

2

)2
)

=
1

4h2

(
2

(
ih− 1

2

)
h+ h2 − 2

(
ih− 1

2

)
h+ h2 . . .

. . .+ 2

(
jh− 1

2

)
h+ h2 − 2

(
jh− 1

2

)
h+ h2

)

= 1
(2.15)

independently of i, j. Furthermore, since the grid function v is a parabola centered at
(12 ,

1
2), it attains its maxima at the corners of the unit square domain, where its value

equals 1
8 , and thus we get for the maximum norm on the boundary

||v||∞,∂Ω =
1

8
. (2.16)

Now we consider for any grid function w the inequality

Δhwi,j − ||Δhw||∞ ≤ 0,

which trivially holds since we subtract the maximum over all i, j = 1, . . . , n. Then
using (2.15), we multiply the norm term by 1 = Δhvi,j and obtain

Δhwi,j − ||Δhw||∞ = Δhwi,j − ||Δhw||∞Δhvi,j

= Δh(wi,j − ||Δhw||∞vi,j) ≤ 0.

Now using the discrete maximum principle from Lemma 2.4, we know that the min-
imum of wi,j − ||Δhw||∞vi,j must occur on the boundary. Since by assumption the
grid functionwi,j equals zero on the boundary and we found in (2.16) that the maximum
value of v on the boundary is 1

8 , we obtain

−||Δhw||∞ 1

8
≤ wi,j − ||Δhw||∞vi,j ≤ wi,j ,

where the second inequality holds trivially since ||Δhw||∞vi,j ≥ 0 by definition. With
a similar argument for the inequality

Δhwi,j + ||Δhw||∞ ≥ 0,

we get the relations

||Δhw||∞ 1

8
≥ wi,j + ||Δhw||∞vi,j ≥ wi,j .

We therefore proved that the grid function wi,j lies in between

−1

8
||Δhw||∞ ≤ wi,j ≤ 1

8
||Δhw||∞, i, j = 1, . . . , n,

2.3. More Accurate Approximations 55

u1

u2

u3

u4

u5u6

u7 u8

u0

(xi, yj) (xi, yj)
hh

h

h

h

h

Figure 2.3. Two nine-point stars for the finite difference approximation of the Laplacian.

and thus the modulus of the grid function wi,j is bounded by

|wi,j | ≤ 1

8
||Δhw||∞, i, j = 1, . . . , n.

We therefore obtain the norm estimate

||w||∞ ≤ 1

8
||Δhw||∞

as desired.

Theorem 2.6 (convergence). Assume that the solution u of the Poisson equation (2.12)
is in C4(Ω). Then the finite difference approximation u of (2.13) converges to u when h
tends to zero, and we have the error estimate

||u(xi, xj)− ui,j ||∞ ≤ Ch2,

where C is a constant and h is the mesh size.

Proof. We simply apply Lemma 2.5 to the norm of the difference and then use Lemma
2.3 to obtain

||u(xi, xj)− ui,j||∞ ≤ 1

8
||Δh(u(xi, xj)− ui,j)||∞ ≤ M1 +M2

96
h2,

which concludes the convergence proof.

2.3 More Accurate Approximations
The five-point star we analyzed in the previous section is, as for all finite difference
methods, the result of a Taylor expansion of the unknown solution u at neighboring
grid points. This expansion led to the local truncation error estimate in Lemma 2.3.
For a more accurate approximation, we would need to cancel more terms in the Taylor
expansions, so that the remaining truncation error term is higher order in h. This can be
achieved in different ways, two of which are shown in Figure 2.3. For the left choice in

56 Chapter 2. The Finite Difference Method

Figure 2.3, the finite difference approximation of the Laplacian is given by

Δu =
1

12h2
(16(u(x+ h, y) + u(x, y + h) + u(x− h, y) + u(x, y − h))

−(u(x+ 2h, y) + u(x, y + 2h) + u(x− 2h, y) + u(x, y − 2h))− 60u(x, y))

+O(h4);

that is, the local truncation error is of order 4; see Problem 2.3.
To obtain a fourth-order approximation using the right-hand-side scheme in Figure

2.3, we need to include information given by the Poisson equation including the right-
hand side. This leads to the finite difference scheme
1

h2
(−8(u1+u2+u3+u4)−2(u5+u6+u7+u8)+40u0) = 8f0+f1+f2+f3+f4;

see Problem 2.3. In this case, we do not get an approximation of the Laplacian in-
dependently of the right-hand side but rather a complete discrete system of equations
including a particular right-hand side.

2.4 More General Boundary Conditions
We have already seen how to handle Dirichlet boundary conditions in the finite differ-
ence discretization of the Poisson equation; see (2.9). For the one-dimensional Poisson
equation uxx = f in Ω = (0, 1) with Dirichlet boundary conditions u(0) = a and
u(1) = b, this corresponds to solving the linear system⎧⎪⎨

⎪⎩
ui+1 − 2ui + ui−1

h2
= f(xi) ∀i = 1, . . . , n,

u0 = a,
un+1 = b,

(2.17)

where h = 1
n+1 . Dirichlet boundary conditions correspond to the prescription of u

on the boundary, and in the linear system that results, these boundary values are often
transferred to the right-hand side, as we have seen in (2.9).

With Neumann boundary conditions, one prescribes the flux through the boundary,
which in the case of the Poisson equation is the normal derivative,

∂u

∂n
= a. (2.18)

Hence, the value of u at the boundary is unknown, and an additional equation must
be derived to complete the discretized system (2.17). To do so, one discretizes the
Neumann boundary condition (2.18) using a finite difference approximation. There are
two schemes that can be used:

1. The one-sided approach consists of approximating the normal derivative using a
one-sided finite difference. For the left boundary, for instance, we would impose

u1 − u0
h

= −a,
where the minus sign comes from the fact that the outward normal derivative
equals minus the derivative with respect to x at the left boundary. Such a dis-
cretization is only first-order accurate in general, as one can see using a Taylor
expansion,

u(h)− u(0)

h
=
u(0) + u′(0)h+O(h2)− u(0)

h
= u′(0) +O(h).

2.5. More General Differential Operators 57

2. A second approach, called the centered approach, uses a centered finite difference
approximation. On the left boundary, we would have

u1 − u−1

2h
= −a. (2.19)

This approximation is second-order accurate, just like our discretization of the
Laplacian in the interior, since

u(h)−u(−h)
2h = u(0)+u′(0)h+u′′(0)h2/2+O(h3)−(u(0)−u′(0)h+u′′(0)h2/2−O(h3))

2h

= u′(0) +O(h2).

We have, however, introduced a ghost point u−1 ≈ u(−h), which lies outside of
the domain Ω = (0, 1). In order to obtain an equation for this point, we assume
that the discretization of the Laplacian is valid up to the boundary at x = 0,

u1 − 2u0 + u−1

h2
= f0.

Hence, we can solve for the ghost point and obtain

u−1 = h2f0 + 2u0 − u1,

which we then introduce into the centered finite difference approximation (2.19)
to obtain the new approximation

u1 − u0
h

= −a+ h

2
f0.

It is interesting to note that if f0 = 0, then the one-sided approach is equivalent
to the centered one, and thus both are second-order accurate.

The last commonly used boundary conditions are the Robin boundary conditions, in
which we prescribe a value to a linear combination of u and its normal derivative. For
example, for the left boundary, the condition could be

ux(0) + αu(0) = a.

Since we have two choices for approximating the derivative, there are again two dis-
cretizations for the Robin boundary conditions:

1. The one-sided finite difference approximation,

u1 − u0
h

+ αu0 = a.

2. The centered approximation,

u1 − u0
h

+ αu0 = a+
h

2
f0.

2.5 More General Differential Operators
In this section, we consider more general problems of the form

Lu = f,

58 Chapter 2. The Finite Difference Method

where L is a differential operator, and establish its finite difference approximation,
which we denote by Lh.

Definition 2.7. The finite difference discretization Lh with mesh parameter h of a dif-
ferential operator L of degree m at a point x ∈ Ω is of order p if

Lu(x)− Lhu(x) = O(hp)

for all functions u ∈ Cp+m(Ω̄).

Example 2.8.

1. For the case where L is just a first derivative in one dimension, m = 1,

Lu = ux,

we obtain for the one-sided finite difference approximation

Lhu(x) :=
u(x+ h)− u(x)

h
.

A Taylor expansion reveals that

Lu − Lhu = ux(x) −
u(x) + ux(x)h + uxx(ξ)

h2

2 − u(x)

h

= −uxx(ξ)h
2
.

Hence, the order is p = 1, and it is necessary to suppose u twice continuously
differentiable, i.e., p+m = 2.

2. As a second example, we consider the second derivative in one dimension,

Lu = uxx.

This operator is of degreem = 2, and its discrete finite difference approximation
we have seen is

Lhu =
u(x+ h)− 2u(x) + u(x− h)

h2
.

Using a Taylor expansion, we have seen that

Lu − Lhu = − 1

12
uxxxx(ξ)h

2,

so that this discretization is of order p = 2 and we need the solution u to be four
times continuously differentiable, i.e., p+m = 4.

We now show several generalizations of finite difference approximations, which go
beyond the Poisson equation in two dimensions seen so far. The first generalization is
simply to go to three spatial dimensions and consider{

Δu = uxx + uyy + uzz = f, Ω ⊂ R
3,

u = g, ∂Ω.

2.5. More General Differential Operators 59

The natural finite difference discretization of this three-dimensional problem is to sim-
ply add a finite difference in the third direction, which leads to

Δhu =
ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1 − 6ui,j,k

h2
,

which is still an order two approximation.
A second generalization is to consider the finite difference discretization of a sta-

tionary, nonlinear advection-reaction-diffusion equation, namely,

νuxx(x) − aux(x) + f(u, x) = 0.

While the second-order derivative can be discretized as usual by the classical second
order finite difference scheme, we have a choice for the first-order derivative: a centered
scheme or a one-sided scheme.

• If we choose the centered scheme for the first-order derivative, then we get the
discretization

ν
ui+1 − 2ui + ui−1

h2
− a

ui+1 − ui−1

2h
+ f(ui, xi) = 0. (2.20)

This is a second-order scheme for the advection-reaction-diffusion equation.

• For the one-sided scheme, we get the two possible discretizations:

ν
ui+1 − 2ui + ui−1

h2
− a

ui − ui−1

h
+ f(ui, xi) = 0, (2.21)

ν
ui+1 − 2ui + ui−1

h2
− a

ui+1 − ui
h

+ f(ui, xi) = 0. (2.22)

We show in Figure 2.4 a comparison of the three possible discretizations in (2.20),
(2.21), and (2.22) for the linear model problem

νuxx(x) + ux(x) = 0, u(0) = 0, u(1) = 1, ν =
1

100
.

We make two major observations:

1. When h is not very small, the approximate solution given by the centered fi-
nite difference scheme shows unphysical oscillations, which, however, disappear
when h becomes smaller. The so-called upwind scheme (2.22) always gives a
physically correct, monotone solution.

2. The so-called downwind scheme (2.21) produces an incorrect solution, even if
the mesh size h is refined. The discretization is not convergent. This was already
observed in the seminal work by Courant, Friedrichs, and Lewy [9] and led to the
so-called CFL condition.15

In Figure 2.4, we observe that the downwind scheme is not a convergent scheme, even
though the finite difference operator is a first-order discretization. The reason is that the
transport term in the advection-diffusion equation, which in the example represents a
transport from the right to the left, cannot be taken into account correctly when the finite

15Courant, Friedrichs, and Lewy [9]: “. . . werden wir bei dem Anfangswertproblem hyperbolischer Gle-
ichungen erkennen, dass die Konvergenz allgemein nur dann vorhanden ist, wenn die Verhältnisse der Gitter-
maschen in verschiedenen Richtungen gewissen Unleichungen genügen, die durch die Lage der Charakteris-
tiken zum Gitter bestimmt werden.”

60 Chapter 2. The Finite Difference Method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

exact
centered
upwind
downwind

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

exact
centered
upwind
downwind

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

exact
centered
upwind
downwind

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

x

exact
centered
upwind
downwind

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

x

exact
centered
upwind
downwind

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

x

exact
centered
upwind
downwind

Figure 2.4. Exact solution and numerical approximation of a simple steady advection-
diffusion equation using a centered, an upwind, and a downwind approximation for the advection
term for h = 1

10
, 1
20
, 1
40
, 1
60
, 1
80
, 1
100

.

difference discretization looks to the left with a one-sided finite difference. These one-
sided discretizations must always be chosen into the direction of where the information
is coming from, which is called the upwind direction. If they are chosen correctly, one
can show that one obtains the physically correct monotonic solutions, even for coarse
mesh sizes; see Problem 2.4. The centered scheme has the advantage that it always
looks both ways and hence can capture both flow directions. In addition, it is second-
order accurate, which is better than the first-order upwind scheme, as one can see in
Figure 2.4. It, however, produces oscillations when the mesh is not fine enough.

2.5. More General Differential Operators 61

We now consider a PDE with variable coefficients,

ν(x)uxx − a(x)ux + f(u, x) = 0. (2.23)

In this case, finite difference schemes can be directly applied; for example, the centered
finite difference scheme leads to the discretization

ν(xi)
ui+1 − 2ui + ui−1

h2
− a(xi)

ui+1 − ui−1

2h
+ f(ui, xi) = 0,

which is again second order. Similarly, one could use an upwind scheme, but then at
each grid point, one has to check the sign of a(xi) and choose the one-sided discretiza-
tion which looks upwind. Another example with variable coefficients is given by the
diffusion equation

(a(x)ux)x = f,

and here it is not immediately clear how to apply a finite difference discretization. One
idea is to apply a finite difference scheme twice, once for each first-order derivative. We
would therefore first discretize the inner term,

a(xi)ux(xi) ≈ a(xi)
u(xi+1)− u(xi)

h
,

and then apply again a one-sided finite difference to the outer derivative in the equation,

(a(xi)ux(xi))x ≈ 1

h

(
a(xi)

u(xi+1)− u(xi)

h
− a(xi−1)

u(xi)− u(xi−1)

h

)

=
a(xi)u(xi+1)− (a(xi) + a(xi−1))u(xi) + a(xi−1)u(xi−1)

h2
.

Such an approximation is, however, usually only first-order accurate, as one can check
using the Maple commands

Lhu:=(a(x)*u(x+h)-(a(x)+a(x-h))*u(x)+a(x-h)*u(x-h))/h^2;
taylor(Lhu,h,4);

which gives as a result

(a(x) (D(2))(u)(x) + D(a)(x)D(u)(x))

+

(
−1

2
D(a)(x) (D(2))(u)(x) − 1

2
(D(2))(a)(x)D(u)(x)

)
h+O(h2),

and we see that the h-order term in general will not be zero, except for a constant.
Another idea for a finite difference discretization, which is also indicated by the

above result in Maple, is to first expand all the derivatives,

axux + auxx = f,

and then to apply again the finite difference discretizations considered in (2.23). This,
however, requires the knowledge of the derivative of the diffusion coefficient a(x). We
will see in the Chapter 3 on finite volume schemes that there is a further approach
to obtain a finite difference scheme for equations with variable coefficients, which is
somewhat more natural than the finite difference schemes we have constructed here.

62 Chapter 2. The Finite Difference Method

Ω

h

h

x

y

Figure 2.5. If the domain is not rectangular, the uniform finite difference grid needs to
be adapted close to the boundary since grid points will not lie on the boundary in general, as for
the top right five-point stencil in this figure.

2.6 More General, Nonrectangular Domains
If the domain is not rectangular, such as, for example, in Figure 2.5, there is immedi-
ately an additional difficulty in applying a finite difference discretization close to the
boundary: A uniform grid will lead to nodes that are not located on the boundary, and
thus the standard five-point finite difference discretization of the Laplacian needs to be
adapted for the boundary. There are two ways to resolve this problem:

1. We modify the domain slightly, so that its boundary falls precisely on grid points.
One can, for example, slightly enlarge or shrink the domain Ω so that the bound-
ary ∂Ωh of the new domain Ωh lies on the grid points of the uniform grid; see
Figure 2.6 on the left, where the domain was slightly enlarged. This modification
leads in general to a first-order approximation, but it is very easy to implement
and is the one implemented in the MATLAB numgrid command.

2. A second solution consists of moving the exterior grid points along the regular
grid lines until they fall on the boundary ∂Ω of the domain Ω, as shown in Figure
2.6 on the right. This implies a modification of the finite difference stencil: Since
we moved the grid points, we get new local mesh parameters denoted by h̄ and ¯̄h.
Using Taylor expansions, we compute now a new finite difference Laplacian for
this irregular grid situation. Expanding with the two different mesh parameters h
and h̄, we find for the x direction

u(x+ h̄) = u(x) + h̄u′(x) +
h̄2

2
u′′(x) +

h̄3

6
u′′′(x) +O(h̄4),

u(x− h) = u(x)− hu′(x) +
h2

2
u′′(x) − h3

6
u′′′(x) +O(h4).

Adding the first equation to the second one, which is multiplied with the factor h̄
h

2.7. Room Temperature Simulation Using Finite Differences 63

Ω
h
h

∂Ω

∂Ωh

Ω
h
h

h̄

¯̄h

∂Ω

Figure 2.6. Two options for handling the boundary difficulties caused by a complex
geometry of the domain Ω. Left: changing the domain boundary slightly to make it coincide with
the grid points. Right: modification of the grid points.

in order to cancel the first-order derivative terms, we obtain

u(x+ h̄) +
h̄

h
u(x− h)

=

(
1 +

h̄

h

)
u(x)+

(
h̄2 + hh̄

2

)
u′′(x)+

(
h̄3 − h̄h2

6

)
u′′′(x)+O(h̄4)+O(h4),

(2.24)

which leads to the finite difference stencil for the second derivative,

u(x+ h̄)− (1 + h̄
h)u(x) +

h̄
hu(x− h)

h̄2+hh̄
2

= u′′(x) +
h̄(h̄2 − h2)

3h̄(h̄+ h)
u′′′(x) +O

(
2h̄4

h̄2 + hh̄

)
+O

(
2h4

h̄2 + hh̄

)
. (2.25)

In order to estimate the error term, it is useful to link the two mesh sizes h and
h̄ by setting h̄ := αh, where α is the contraction of the mesh parameter at the
boundary. We then obtain for the error term containing u′′′(x)

α2h2 − h2

αh+ h
= h

α2 − 1

α+ 1
= O(h) for α ∈ (0, 1).

The same analysis can also be applied in the y direction, and we obtain a modified
five-point finite difference stencil for the Laplacian close to the boundary, which
is again only first-order accurate.

For nonrectangular domains, the handling of Neumann and Robin boundary conditions
is rather difficult when using finite difference discretizations since the normal derivative
is no longer in the same direction as the grid lines. We will see that there are more
appropriate tools for this case, such as the finite volume method in Chapter 3 and the
finite element method in Chapter 5.

2.7 Room Temperature Simulation Using Finite Differences
We now show how one can use finite differences to solve already quite an interesting
problem of steady heat distribution in a room. In doing so, we will resort to many

64 Chapter 2. The Finite Difference Method

0 10 20 30 40

nz = 986

0

5

10

15

20

25

30

35

40

0
-1

5

10

-0.5 1

15

0.5

20

0

25

0
0.5 -0.5

1 -1

Figure 2.7. Left: Outline of the living room of Martin Gander’s apartment on Durocher
Street in Montreal as it appears using the spy(G) command in MATLAB. Right: Room tempera-
ture in summer.

MATLAB tricks that are employed inside the built-in command numgrid. We first show
the outline of the living room of Martin Gander on Durocher Street in Montreal, which
was depicted already in Figure 1.15 but now as it appears using the spy(G) command
in MATLAB in Figure 2.7 on the left. The matrix G here is part of the temperature
simulation program:

function U=RoomTemperature(ot,dt,ht,n);
% ROOMTEMPERATURE computes the room temperature in our living room
% U=RoomTemperature(ot,dt,ht,n); takes the outside temperature ot,
% the door temperature dt and the heater temperature ht and the
% number of gridpoints n and then computes the room temperature in
% our living room

x=linspace(-1,1,n); % generate grid
[X,Y]=meshgrid(x,x);
G=((X>-1) & (X<0.6) & (Y>-0.5) & (Y<0.8)) | ... % area of our living room
((X>-0.2) & (X<0.6) & (Y>-1) & (Y<-0.5)) | ...
((X>-0.6) & (X<0) & (Y>0.8) & (Y<1));

H=((X>-0.6) & (X<0) & (Y>0.5) & (Y<0.75)); % original heater location
%H=((X>-0.6) & (X<0) & (Y>-0.1) & (Y<0.15)); % heater in the center
%H=((X>0.4) & (X<0.6) & (Y>-0.3) & (Y<0.3)); % heater on the wall
k=find(G);
G=zeros(size(G)); % Convert from logical to double
G(k)=(1:length(k))’; % Indices for the matrix
A=delsq(G); % Laplacian in the interior
do=[]; % door indices
for i=2:n-1, % add Neumann conditions for insulated
for j=2:n-1, % walls
no=G(i,j);
if no~=0,
if G(i,j-1)==0, % Neumann condition on the left wall
A(no,no)=A(no,no)-1;

end;
if G(i,j+1)==0, % Neumann condition on the right wall
A(no,no)=A(no,no)-1;

end;
if G(i+1,j)==0 & i<n-1, % keep Dirichlet conditions for window
A(no,no)=A(no,no)-1;

end;
if G(i-1,j)==0,
if (X(i,j)>-0.8 & X(i,j)<-0.3), % keep Dirichlet conditions for door

2.7. Room Temperature Simulation Using Finite Differences 65

-20
-1

-10

-0.5 1

0

0.5

10

0

20

0
0.5 -0.5

1 -1

-20
-1

-10

0

-0.5 1

10

0.5

20

0

30

0
0.5 -0.5

1 -1

Figure 2.8. Room temperature in winter without heating (left) and with heating (right),
where the heater is well placed next to the window.

do=[do no];
else
A(no,no)=A(no,no)-1;

end;
end;

end;
end;

end;
h=2/(n-1);
A=-A/h^2; % scale the Laplacian with h
b=zeros(length(k),1);
wi=G(end-1,find(G(end-1,:)>0)); % find window indices
he=G(find(H)); % find heater indices
b(wi)=-1/h^2*ot; % add heating and Dirichlet conditions
b(he)=-ht;
b(do)=-1/h^2*dt;
u=A\b; % solve using sparse reordered LU
U=G;
U(G>0)=full(u(G(G>0))); % put solution onto the grid
mesh(X,Y,U);
axis(’ij’);

In the first part of this program, the matrix G is constructed using logical operations to
only include regions of a rectangle that are part of the living room. It is best to insert a
keyboard command to stop the program and to then look at the variables it constructs,
i.e., x, y, and G, and to modify the logical operations to create a different living room.
Similarly, the position of the heater is also defined in H. Then the discrete Laplace
operator is constructed using the delsq command in MATLAB. Since this MATLAB
command implicitly assumes Dirichlet conditions and most of the walls of the room are
insulated, the matrix is modified where needed to contain Neumann conditions. After
defining the mesh size h and the right-hand side, the system is solved using backslash
and then put on the grid with a compact combination of commands using again the mesh
G. With the command

RoomTemperature(20,20,0,40);

one can obtain the result in Figure 2.7 on the right, with the doors and windows at 20◦C
and without the heater. Clearly, the temperature is equal everywhere, as one would
expect when door and window are held at the same temperature and the rest of the
room is fully insulated. On the left in Figure 2.8, we show the distribution in winter

66 Chapter 2. The Finite Difference Method

-20
-1

-10

0

-0.5 1

10

20

0.50

30

40

0
0.5 -0.5

1 -1

-20
-1

0

20

-0.5 1

40

0.5

60

0

80

0
0.5 -0.5

1 -1

Figure 2.9. Room temperature in winter with heating, but a poorly placed heater, in
the center of the room (left) and on a sidewall (right).

without the heater, when the door and window are kept at the same temperature as their
outside environment, namely at 15 and −20 degrees respectively. The distribution was
calculated using the command

RoomTemperature(-20,15,0,40);

We see that the temperature goes below zero for part of the room. With heating on in
winter, we obtain the results in Figure 2.8 on the right, using the command

RoomTemperature(-20,15,500,40);

The heater is optimally placed close to the window and covering the width of the win-
dow. One reaches a comfortable even temperature distribution over the whole room.
If the heater had been placed in the center of the room or on a side wall, the temper-
ature would have been significantly worse, as Figure 2.9 shows (just uncomment the
corresponding lines in the program RoomTemperature).

2.8 Concluding Remarks
The finite difference method for PDEs is based on an approximation of the differential
operators by finite difference operators, which one finds using Taylor expansions. The
finite difference method has the following advantages and disadvantages, denoted by
plus and minus signs, respectively:

+ The finite difference method is very easy to understand and to program.

− While one can obtain higher-order finite difference stencils, their accuracy will
always be a power of h.

− There is no systematic way to derive finite difference approximations, apart from
using Taylor expansions and combining terms.

− It is more difficult to discretize problems on general domains, especially if the
boundary conditions are not of Dirichlet type.

We will see in the following chapters how each of the negative points can be addressed
by different, more sophisticated techniques.

2.9. Problems 67

2.9 Problems

Problem 2.1 (discretization of Neumann boundary conditions).

1. Derive a one-sided finite difference discretization for the treatment of Neumann
boundary conditions imposed on a two-dimensional Poisson problem −Δu = f ,
where the interior is discretized using the standard five-point stencil. Show that
the truncation error is of order one in general.

2. Show how the discretization matrix associated with the five-point finite difference
stencil can be easily modified to include Neumann conditions for the case of a
rectangular domain.

3. Repeat the above for a centered approximation, and show that the local truncation
error is of order two.

4. What is the fundamental difference with the one-dimensional case shown in sub-
section 2.4?

Problem 2.2 (temperature simulation in a room).

1. Draw a floor plan of your room, including windows, doors, and heaters.

2. Model the temperature in your room using the stationary heat equation−Δu = f ,
also called the Poisson equation. To do so, write a MATLAB program similar to
the program given in section 2.7. We suppose here that the walls are perfectly
insulating, which implies homogeneous Neumann boundary conditions, and for
the windows and doors, we suppose no insulation at all, which implies Dirichlet
conditions with a given temperature.

3. Compute the room temperature in summer, when the doors and windows are at
20◦C. What result do you observe?

4. Compute the room temperature in winter, without heating, on a cold winter day
with −10◦C outside, i.e., the window is at a temperature of 10◦C, and the doors
at a temperature of 15◦C.

5. Do the same now with the heater turned on such that the temperature is comfort-
able. Are your heaters well placed?

Problem 2.3 (higher-order finite difference approximations). We have studied the
standard five-point finite difference stencil in subsection 2.1. The coefficients of this
approximation can be obtained using the Maple commands

U[0]:=u(x,y);
U[1]:=u(x+h,y);
U[2]:=u(x,y+h);
U[3]:=u(x-h,y);
U[4]:=u(x,y-h);

delu:=sum(a[i]*U[i],i=0..4);

for i from 0 to 4 do
c[i]:=expand(coeftayl(delu,h=0,i));
od;

68 Chapter 2. The Finite Difference Method

eqs1:=coeffs(c[0],u(x,y));
eqs2:=coeffs(c[1],{D[1](u)(x,y),D[2](u)(x,y)});
eqs3:=coeffs(c[2],{D[1,1](u)(x,y),D[2,2](u)(x,y)});
eqs4:=coeffs(c[3],{D[1,1,1](u)(x,y),D[2,2,2](u)(x,y)});
solve({eqs1,eqs2,eqs3[1]=1,eqs3[2]=1,eqs4},{seq(a[i],i=0..4)});

gives -4 1 1 1 1 as expected, eqs4 and eqs2 are equivalent

Show, using similar commands in Maple, that the nine-point finite difference sten-
cils given in subsection 2.3 have a local truncation error of order four.

Problem 2.4 (discrete maximum principle). The goal is to discover under which
conditions there is a discrete maximum principle for the finite difference discretiza-
tions (2.20), (2.21), and (2.22) that we have seen in this chapter for the corresponding
advection-diffusion equation. We assume for this question that h > 0, a > 0, and
ν > 0.

1. For the centered scheme (2.20), prove that under a condition on the mesh size h,
depending on a and ν, the scheme satisfies a discrete maximum principle.

2. Repeat part 1 for (2.21).

3. Repeat part 1 for (2.22).

4. How is the discrete maximum principle related to the monotonicity of the approx-
imate solution?

5. Under the assumptions in this question, which of the two schemes (2.21) and
(2.22) is the upwind scheme?

Chapter 3

The Finite Volume
Method

Perhaps some day in the dim future it will be possible to advance the computations faster
than the weather advances and at a cost less than the saving to mankind due to the informa-
tion gained. But that is a dream.

Lewis F. Richardson, Weather Prediction by Numerical Process, 1922

The high turning angles encountered in high-performance turbines make an orthogonal grid
difficult to use and, due to the typical sharp boundary curvatures, increase the danger of
computational instability. The foregoing problems have been overcome to a significant extent
by the proposed “finite area method” which is a numerical representation of the transient
conservation equation in integral form.

P. W. McDonald, The Computation of Transonic Flow through Two-Dimensional Gas
Turbine Cascades, 1971

We have seen that the finite difference method has difficulties adapting to nonrectangu-
lar geometries with various boundary conditions. This was the main motivation behind
the invention of a new technique in the area of computational fluid dynamics; see the
second quote above. In 1971, McDonald [43] proposed a new technique now known
as the finite volume method. The same technique appeared also independently in 1972
[42], where the main focus was first on splitting methods, but the finite volume method
appears toward the end; see Figure 3.1. On a geometry with a mesh as in Figure 3.1 on
the left, it is no longer possible to guess difference stencils using Taylor expansions and
taking the appropriate combinations. The new idea of the finite volume method is to first
integrate the equation over a small so-called control volume, then to use the divergence
theorem to convert the volume integral into a boundary integral involving fluxes, before
finally approximating these fluxes across the boundaries; see Figure 3.1 on the right.
This gives a systematic way of constructing finite difference–type stencils on arbitrary
meshes with very complicated boundaries and associated boundary conditions, leading
to a very flexible method. In the case of a rectangular mesh, one obtains with the finite
volume method the same finite difference stencils that we have encountered in Chap-
ter 2 on finite difference methods, and convergence of the method follows as before. For
more general meshes, however, the stencils obtained from the finite volume method are
not even consistent in the sense of small local truncation errors, as one can simply verify
by a Taylor expansion. Finite volume methods are consistent in a different way, namely,
that the fluxes are discretized in a conservative manner, and the flux approximations are
consistent. We will see that the convergence analysis of finite volume methods requires
new technical tools.

69

70 Chapter 3. The Finite Volume Method

Figure 3.1. Left: Figure from the original publication of [43], indicating why a realistic
geometry of a turbine cannot be treated with a rectangular mesh. Reprinted with permission
from ASME. Right: Finite volume cell and integration over its four boundaries from the original
publication of [42]. Reprinted with permission from AIAA.

Ω

∂Ω

Vi

ui
u1

u2

u3
u4

hi1

li1

Figure 3.2. Voronoi cell Vi for the unknown ui.

3.1 Finite Volumes for a General Two-Dimensional Diffusion
Equation

We will start by looking at the general diffusion equation

∇ · (a(x)∇u) = f in Ω (3.1)

with a scalar function a(x).
The finite volume method is designed to discretize such differential operators on

arbitrary domains with very general grids. Given a grid formed by an arbitrary mixture
of polygons with vertices {xi} ⊂ Ω, one first has to construct a set of control volumes
around each xi, over which the finite volume method then discretizes the PDE. One
such construction is to consider Voronoi cells; see Figure 3.2.

Definition 3.1 (Voronoi cell). For a given set of vertices {xi} ⊂ Ω of a mesh, we define
the corresponding Voronoi cells Vi by

Vi = {x ∈ Ω : ‖x− xi‖ ≤ ‖x− xj‖, ∀j �= i, xj neighbor of xi}. (3.2)

3.2. Boundary Conditions 71

In the finite volume method, one first has to integrate the PDE over each control
volume Vi, ∫

Vi

∇ · (a(x)∇u)dx =

∫
∂Vi

a(x)∇u · nds =
∫
Vi

fdx, (3.3)

where we used the divergence theorem to convert the volume integral to a surface in-
tegral. Then one approximates the normal derivative a(x)∇u · n = a(x) ∂u∂n using
the so-called two-point flux approximation (TPFA) scheme: We replace the directional
derivative with a finite difference of function values on each side of the control volume,
yielding ∫

∂Vi
a(x)∇u · n ds =

∑
j∼i

∫
Γij

a(x)∇u · nij ds

≈
∑
j∼i

aij
uj − ui

‖xj − xi‖ lij

=
∑
j∼i

aij
uj − ui
hij

lij

!
= Vol(Vi)fi,

(3.4)

where we use the following notation:

hij is the distance between xi and xj ;

aij is the value of a(x) at the midpoint between xi and xj ;

lij is the length of the boundary part Γij of Vi between xi and xj ;

j ∼ i means j is a neighbor of i.

Collecting the discrete equations

∑
j∼i

aij
uj − ui
hij

lij = Vol(Vi)fi

from (3.4) for all the grid nodes xi, we obtain a linear system

Au = f , (3.5)

which, as in the case of the finite difference method, is sparse and structured.

Remark 3.1. Choosing for aij the value of a(x) at the midpoint between xi and xj

and multiplying with the length lij is just one possible way to approximate the integral∫
Γij

a(x)ds that remains once the fluxes have been approximated by constants. Any
other quadrature formula could also be used.

3.2 Boundary Conditions
One of the main advantages of the finite volume method is that it can naturally take
boundary conditions into account on very general domains, as we show now.

If the diffusion equation (3.1) is equipped with Dirichlet boundary conditions,

u = g on ∂Ω, (3.6)

72 Chapter 3. The Finite Volume Method

Ω

∂Ω

Vi

ui

u1
u2

u3

u4

u5

Figure 3.3. Voronoi cell Vi close to the boundary with a Dirichlet boundary condition.

Ω

∂ΩVi

ui
u1

u2
u3

P

Ω

∂Ω

Vi
ui

u1
u2

li1
li2

P

Figure 3.4. Voronoi cell Vi on the boundary. Left: Vertex-centered case. Right: Cell-
centered case.

it is convenient in the finite volume method to align the mesh such that there are nodes
that fall directly onto the boundary, as in Figure 3.3. For a mesh point xi next to the
boundary, as in Figure 3.3, one then integrates normally over the associated control
volume Vi as in (3.4) and obtains for the example in Figure 3.3 the discrete equation

ai3
u3−ui

hi3
li3 + ai4

u4−ui

hi4
li4 + ai1

g1−ui

hi1
li1 + ai2

g2−ui

hi2
li2 + ai5

g5−ui

hi5
li5 = Vol(Vi)fi.

(3.7)
Since for the nodes on the boundary ∂Ω we know their value from the Dirichlet bound-
ary condition (3.6), uj = gj := g(xj), j = 1, 2, 5, these values can be inserted into the
discrete equation (3.7) and then put onto the other side of the equal sign, to be simply
included in the right-hand side of the linear system (3.5), very similar to the finite dif-
ference case. Note, however, that in the finite volume case, the arbitrary shape of the
boundary did not pose any difficulties in the construction of the discrete equation.

We now consider the diffusion equation (3.1) with Neumann boundary conditions,

∂u

∂n
= g on ∂Ω. (3.8)

To discretize Neumann boundary conditions in the finite volume method, there are two
approaches:

vertex centered: the grid points are chosen to lie on the boundary as in the Dirichlet
case (see Figure 3.4 on the left);

cell centered: the grid points are all lying inside the domain (see Figure 3.4 on the
right).

3.2. Boundary Conditions 73

In the vertex-centered case, where the grid points lie on the boundary, one integrates
again over the control volume in the finite volume method and approximates the normal
derivatives, except on the real boundary,∫

Vi

∇ · (a(x)∇u) =
∫
∂Vi

a(x)
∂u

∂n
ds

≈ ai2
u2 − ui
hi2

li2 + ai1
u1 − ui
hi1

li1

+ai3
u3 − ui
hi3

li3 +

∫
P

a(x)
∂u

∂n
ds. (3.9)

In the remaining integral term, the normal derivative is now given by the Neumann
boundary condition ∂u

∂n = g because we integrate on the boundary of the physical
domain. This integral can thus be evaluated or approximated by quadrature and the
corresponding value put into the right-hand side of the linear system (3.5).

In the cell-centered approach, the control volumes are aligned with the physical
boundary of the problem, as shown in Figure 3.4 on the right. The finite volume method
can also proceed in this case simply with an integration over the control volume,∫

Vi

∇ · (a(x)∇u) =
∫
∂Vi

a(x)
∂u

∂n
ds

≈ ai2
u2 − ui
hi2

li2 + ai1
u1 − ui
hi1

li1 +

∫
P

a(x)
∂u

∂n
ds.

Since the remaining integral is entirely along the Neumann boundary, it can be evaluated
from the prescribed fluxes and incorporated into the right-hand side of the discrete linear
system.

To discretize a Robin boundary condition of the type

a(x)
∂u

∂n
+ γu = g,

we can again consider a vertex-centered and a cell-centered approach. The vertex-
centered approach is similar to the Neumann case, except we substitute the Robin con-
dition into the last integral in (3.9),∫

Vi

∇ · (a(x)∇u) ≈
3∑

j=1

aij
uj − ui
hij

lij +

∫
P

a(x)
∂u

∂n
ds

=

3∑
j=1

aij
uj − ui
hij

lij +

∫
P

(g − γu(x))ds (3.10)

≈
3∑

j=1

aij
uj − ui
hij

lij − γui · lP +

∫
P

gds,

where lP is the length of P . In the cell-centered case, however, we have the further
complication that

∫
P γu(x)ds cannot be directly approximated in terms of ui since the

grid point does not lie on the boundary. To approximate this integral, we introduce a
ghost point with value ug outside the domain such that the segment between ug and ui
is normal to P and its midpoint lies on P ; see Figure 3.5. Then we can introduce the
approximation ∫

P

γu(x)ds ≈ γ

(
ui + ug

2

)
lP .

74 Chapter 3. The Finite Volume Method

Ω

∂ΩVi ui

ug

u1u2

li1
li2

P

Figure 3.5. Voronoi cell Vi on the boundary for a Robin boundary condition in the
cell-centered case.

Vi uiu1

u2

u3

u4
x

y

h

h

Figure 3.6. Cartesian square mesh to investigate the relation between the finite volume
and the finite difference method.

Just like for finite difference methods, the ghost point unknown ug can be eliminated
using the boundary condition

g = a
∂u

∂n
+ γu ≈ a

ug − ui
hgi

+ γ
ui + ug

2
,

where g and a are to be evaluated at the midpoint of ug and ui.

3.3 Relation between Finite Volumes and Finite Differences
We have seen that the finite volume method also constructs discretization stencils, such
as the classical five-point star we had investigated for the finite difference method, but
on arbitrary meshes. It is thus of interest to see what kind of discretization stencil the
finite volume method produces on a regular grid. To investigate this, we consider the
Poisson equation

Δu = f in Ω = (0, 1)2 (3.11)

and choose for our mesh a simple square Cartesian mesh, as indicated in Figure 3.6.

3.3. Relation between Finite Volumes and Finite Differences 75

uiui−1 ui+1

hh

x

Vi

Figure 3.7. Control volume Vi in one dimension.

Integrating over the control volume as usual in the finite volume method, we find

∫
Vi

udx =

∫
∂Vi

∂u

∂n
ds

≈
4∑

j=1

uj − ui
h

h
!
= h2fi, (3.12)

which gives for the finite volume method the difference stencil

⇒ u1 + u2 + u3 + u4 − 4ui = h2fi. (3.13)

This is equivalent to the classical five-point finite difference stencil we have seen earlier,
as one only needs to divide by h2. As a result, we see that the finite volume method is
also second-order accurate in this case.

Because of this intimate relationship between finite differences and finite volumes,
it is often convenient, when working with finite differences, to construct stencils us-
ing finite volume techniques, especially near irregular boundaries or in the presence of
variable coefficients.

Example 3.2. We consider again the example that we tried to discretize in Chapter 2 on
finite differences,

(a(x)ux)x = f.

With the finite volume method, using a control volume as indicated in Figure 3.7, we
obtain

∫
Vi

(aux)xdx = a(x)ux(x)

∣∣∣∣xi+h/2

xi−h/2

≈a
(
xi+

h

2

)
ui+1−ui

h
−a
(
xi− h

2

)
ui−ui−1

h

=
a(xi +

h
2)ui+1 − (a(xi +

h
2) + a(xi − h

2))ui + a(xi − h
2)ui−1

h
!
= hfi.

We therefore obtain the finite difference stencil

a(xi +
h
2)ui+1 − (a(xi +

h
2) + a(xi − h

2))ui + a(xi − h
2)ui−1

h2
= fi. (3.14)

It would have been difficult to guess this just from writing Taylor expansions as in finite
differences. To check the truncation error of the new stencil (3.14), we can, however,

76 Chapter 3. The Finite Volume Method

use Taylor expansions. Expanding the terms appearing in the new stencil, we get

a

(
xi +

h

2

)
= a(xi) + ax

h

2
+ axx

h2

8
+ axxx

h3

8 · 3! +O(h4),

a

(
xi − h

2

)
= a(xi)− ax

h

2
+ axx

h2

8
− axxx

h3

8 · 3! +O(h4),

u(xi + h) = u(xi) + uxh+ uxx
h2

2
+ uxxx

h3

3!
+O(h4),

u(xi − h) = u(xi)− uxh+ uxx
h2

2
− uxxx

h3

3!
+O(h4).

This implies that

−
(
a

(
xi +

h

2

)
+ a

(
xi − h

2

))
= −

(
2a(xi) + axx(xi)

h2

4
+O(h4)

)
and also that

a

(
xi+

h

2

)
u(xi+h)+a

(
xi− h

2

)
u(xi−h) = a(xi)

(
2u(xi)+uxx(xi)h

2+O(h4)
)

+ ax
h

2
(2ux(xi)h) +O(h4)

+ axx
h2

8
(2u(xi)) +O(h4).

Introducing these results into the discrete equation (3.14), we obtain

1

h2
(axuxh

2 + auxxh
2 +O(h4)) = axux + auxx +O(h2)

= (a(x)ux(x))x +O(h2),

and we see that the finite volume method automatically led to a truncation error of order
two.

The relation between the finite volume and the finite difference method can be used
to analyze the convergence of the finite volume method when the stencil is equivalent to
a finite difference stencil whose convergence properties are known. However, we will
see in the next sections that finite volume methods also converge in much more general
settings; in particular, convergence holds even when the method is inconsistent in the
sense of Lemma 2.3, i.e., when the truncation error does not shrink to zero as the mesh
is refined.

3.4 Finite Volume Methods Are Not Consistent
To show the main ideas, we consider first a one-dimensional model problem,

− uxx = f in (0, 1) u(0) = u(1) = 0. (3.15)

We discretize the domain with a very general mesh with primal mesh points xi and dual
mesh points xi+ 1

2
,

0 = x0 = x 1
2
< x1 < x 3

2
< · · · < xN+ 1

2
= xN+1 = 1; (3.16)

3.4. Finite Volume Methods Are Not Consistent 77

h1 h2 h3 hN

h 1
2

h 3
2

h 5
2

hN+ 1
2

0 x2 x3 xNx1 x 3
2

x 5
2 1

Figure 3.8. General finite volume mesh with primal nodes xi and dual nodes xi+ 1
2

.
Note that we set x0 = x 1

2
= 0 and xN+ 1

2
= xN+1 = 1 at the end points.

see Figure 3.8, where we also indicate the primal mesh sizes hi := xi+ 1
2
−xi− 1

2
and the

dual mesh sizes hi+ 1
2
:= xi+1 − xi. The finite volume cell associated with the primal

mesh point xi is (xi− 1
2
, xi+ 1

2
), and integrating (3.15) on such a cell, we get∫ x

i+1
2

x
i− 1

2

−uxx(x)dx = −
(
ux(xi+ 1

2
)− ux(xi− 1

2
)
)
=

∫ x
i+1

2

x
i− 1

2

f(x)dx. (3.17)

If we now approximate the fluxes ux(xi± 1
2
) by finite differences as usual in the finite

volume method, we obtain the scheme

−
(
ui+1 − ui
hi+ 1

2

− ui − ui−1

hi− 1
2

)
= hifi, i = 1, 2, . . . , N, (3.18)

where u0 = uN+1 = 0, and we defined

fi :=
1

hi

∫ x
i+1

2

x
i− 1

2

f(x)dx.

Following what we have learned for finite difference methods, we first investigate the
truncation error of this scheme. To do so, we insert the exact solution into the scheme
(3.18) after having divided by hi to obtain a finite difference type equation with fi on
the right-hand side and compute the residual,

ri :=− 1
hi

(
u(xi+1)−u(xi)

h
i+1

2

− u(xi)−u(xi−1)
h
i− 1

2

)
− fi

= − 1
hi

(
ux(xi)hi+1

2
+ 1

2uxx(xi)h
2

i+1
2
+O(h3

i+1
2
)

h
i+1

2

−
ux(xi)hi− 1

2
−uxx(xi)h

2

i− 1
2
+O(h3

i− 1
2
)

h
i− 1

2

)
−fi

= − 1
hi

(
h
i+1

2

2 uxx(xi) +O(h2
i+ 1

2

) +
h
i− 1

2

2 uxx(xi) +O(h2
i− 1

2

)

)
− fi

= −h
i+1

2
+h

i− 1
2

2hi
uxx(xi)− fi +

(
O(h2

i+ 1
2

) +O(h2
i− 1

2

)
)
.

To see under which conditions the local truncation error can be made small, we use
again the trick of setting hi+ 1

2
= αhi and hi− 1

2
= βhi, which leads to

ri = −α+ β

2
uxx(xi)− f(xi) +O(hi), (3.19)

where we used that fi = f(xi) +O(hi); see the definition (3.18). From (3.19), we see
that the residual becomes O(hi) if and only if α+ β = 2, when the O(1) term vanishes
because of the PDE −uxx(xi) = f(xi).

78 Chapter 3. The Finite Volume Method

hi

hi− 1
2

hi+ 1
2

xi xi+1xi−1 xi+ 1
2

xi− 1
2

Figure 3.9. Example of an inconsistent finite volume mesh.

V

(xc, yc)

(x1, y1)
(x2, y2)

(x3, y3)

(ξ1, η1)

(ξ2, η2)

(ξ3, η3)

Figure 3.10. Example of an inconsistent finite volume mesh.

Example 3.3. Suppose we have a mesh satisfying hi+ 1
2
= hi− 1

2
, but the cell centered

at xi is chosen such that hi = 2
3hi+ 1

2
; see Figure 3.9. Then we have hi± 1

2
= 3

2hi,

which implies that α = β = 3
2 . Thus, we have α + β = 3 �= 2, so the finite volume

scheme is not consistent.

One might argue that in this one-dimensional example, it does not make sense to
place the finite volume cell boundaries xi+ 1

2
anywhere other than midway between the

xi. However, inconsistent finite volume schemes arise much more naturally in two
dimensions, even when we put the boundaries halfway between primal nodes to obtain
a Voronoi cell: Such inconsistencies are in fact the typical case, as we now show for the
classical FV4 finite volume scheme.

FV4 stands for finite volume scheme with four nodes; i.e., the Voronoi cell is a
triangle, as shown in Figure 3.10. This is also often referred to as the two-point flux
approximation (TPFA) scheme. To compute the FV4 stencil for the model equation

−Δu = f,

we integrate the equation over the Voronoi cell V and obtain

−
∫
V

uxxdx =

∫
∂V

∂u

∂n
=

∫
V

fdx.

Approximating the fluxes by finite differences, we get the FV4 scheme,

3∑
i=1

ui − uc√
(xi − xc)2 + (yi − yc)2

√
(ξi+1 − ξi)2 + (ηi+1 − ηi)2 = vol(V)fi, (3.20)

where we let fi := 1

vol(V)

∫
v f(x)dx and define for convenience ξ4 := ξ1 and η4 := η1

so we do not have any special cases. To check whether this scheme is consistent, we

3.4. Finite Volume Methods Are Not Consistent 79

need to compute for a given set of points (xi, yi) ordered counterclockwise around the
center point (xc, yc) the corresponding corners of the Voronoi cell (ξi, ηi), which satisfy
the equation

(xi−ξi)2+(yi−ηi)2 = (xi−1−ξi)2+(yi−1−ηi)2 = (xc−ξi)2+(yc−ηi)2, i = 1, 2, 3,

where we also defined for convenience x0 := x3 and y0 := y3. Inserting the solutions
into the FV4 scheme and using a Taylor expansion to check for consistency is best
done using Maple. The following Maple commands compute, for an arbitrary number
of neighboring nodes N ordered counterclockwise around a center node (xc, yc), the
corresponding Voronoi cell and its associated finite volume stencil:

N:=4;
x[0]:=x[N]; y[0]:=y[N];
for i from 1 to N do
eq:={(x[i]-xi[i])^2+(y[i]-eta[i])^2=(x[i-1]-xi[i])^2+(y[i-1]-eta[i])^2,
(x[i]-xi[i])^2+(y[i]-eta[i])^2=(xc-xi[i])^2+(yc-eta[i])^2};

solve(eq,{xi[i],eta[i]});
assign(%);

od;
xi[N+1]:=xi[1]; eta[N+1]:=eta[1];
i:=’i’;s:=sum((u(x[i],y[i])-u(xc,yc))/sqrt((x[i]-xc)^2+(y[i]-yc)^2)
*sqrt((xi[i+1]-xi[i])^2+(eta[i+1]-eta[i])^2),i=1..N);

Next, we introduce the generic mesh size h in order to easily expand in a Taylor
series and also set the center node to (0, 0) for simplicity:

for i from 1 to N do
x[i]:=a[i]*h; y[i]:=b[i]*h;

od;
xc:=0; yc:=0;

We first choose the parameters to obtain the standard five-point finite difference stencil,
plot it, and compute the truncation error:

a[1]:=1;b[1]:=0;a[2]:=0;b[2]:=1;a[3]:=-1;b[3]:=0;a[4]:=0;b[4]:=-1;
i:=’i’;h:=1/10;P1:=plot([seq(xi[i],i=1..N+1)],[seq(eta[i],i=1..N+1)]);
P2:=plot([seq(x[i],i=1..N)],[seq(y[i],i=1..N)],style=point,
scaling=constrained);

plots[display](P1,P2);
h:=’h’;simplify(series(s,h,4));

We obtain as expected the consistent discretization of the Laplacian that has a trun-
cation error of order two (note that a factor h2 is also present on the right-hand side
from the integration over the finite volume cell of size h× h),

((D1,1(u)(0, 0) + (D2,2(u)(0, 0))h
2 +O(h4),

and we show the resulting stencil plot from Maple in Figure 3.11 on the left. However,
if we change the nodes a little using the Maple commands

a[1]:=1;b[1]:=1/10;a[2]:=-1/10;b[2]:=1;a[3]:=-1;b[3]:=1/5;
a[4]:=-1/5;b[4]:=-1;
i:=’i’;h:=1/10;P1:=plot([seq(xi[i],i=1..N+1)],[seq(eta[i],i=1..N+1)]);
P2:=plot([seq(x[i],i=1..N)],[seq(y[i],i=1..N)],style=point,
scaling=constrained);

plots[display](P1,P2);
h:=’h’;simplify(series(s,h,3));

80 Chapter 3. The Finite Volume Method

Figure 3.11. Left: Standard five-point finite difference stencil obtained with a finite
volume method, which is consistent. Right: Irregular five-point finite difference stencil obtained
with the finite volume method, which leads to an inconsistent discretization.

we obtain an inconsistent discretization of the Laplacian,(
1471

1400
D1,1(u)(0, 0) +

9

98
D1,2(u)(0, 0) +

2563

2450
D2,2(u)(0, 0)

)
h2 +O(h3)

with the associated stencil plot from Maple in Figure 3.11 on the right. From what we
have seen in Chapter 2 on finite differences, this method would not seem to have any
chance of being convergent since a small truncation error was the essential ingredient to
prove convergence of the finite difference method. A new approach is therefore needed
to understand the convergence of finite volume methods.

3.5 Convergence Analysis
The general ideas of this new type of convergence analysis can be understood in the
simple one-dimensional example (3.15) discretized on the very general mesh (3.16),
which led to the finite volume scheme (3.18). For a more general treatment, see [17],
on which the following one-dimensional result is based.

Theorem 3.4 (FV error estimate). Assume that in the problem (3.15) the right-hand
side f is in C1([0, 1]), and that the solution u is in C2([0, 1]). Then there exists a
solution u := (u1, u2, . . . , uN) of the finite volume discretization (3.18) on the mesh
(3.16), and the error ei := u(xi)− ui satisfies the error estimates

N∑
i=0

(ei+1 − ei)
2

hi+ 1
2

≤ C2h2 (3.21)

and
|ei| ≤ Ch, i = 1, 2, . . . , N, (3.22)

where C represents some constant that depends only on the solution u and h :=
maxi hi, i = 1

2 , 1,
3
2 , . . . , N,N + 1

2 .

3.5. Convergence Analysis 81

Proof. We first multiply (3.18) by ui and obtain

u2i − uiui−1

hi− 1
2

− ui+1ui − u2i
hi+ 1

2

= hiuifi.

We now sum this equation from i = 1 to N . Using the fact that u0 = uN+1 = 0 and
regrouping the terms, we obtain

u21
h 1

2

− u2u1 − u21
h 3

2

+
u22 − u2u1

h 3
2

− u3u2 − u22
h 5

2

+
u23 − u3u2

h 5
2

− · · ·+ u2N
hN+ 1

2

=
u21
h 1

2

+
(u2 − u1)

2

h 3
2

+
(u3 − u2)

2

h 3
2

+ · · ·+ u2N
hN+ 1

2

,

which leads to the closed-form summation formula

u21
h 1

2

+

N−1∑
i=1

(ui+1 − ui)
2

hi+ 1
2

+
u2N
hN+ 1

2

=

N∑
i=1

hiuifi.

We see that if the right-hand side is zero, fi = 0 for i = 1, 2, . . . , N , then ui must be
zero as well: For i = 1 and i = N , this is clearly true because of the first and last
term on the left. If those are, however, zero, then the middle term containing the sum
also implies that u2 = 0 and uN−1 = 0, and the result follows by induction. Thus, our
linear system (3.18) only has the identically zero solution when the right-hand side is
zero, meaning that the system is nonsingular. As a result, the solution of (3.18) exists
and is unique for any right-hand-side f .

We now focus on the error estimate, which is based on a similar summation formula
for the error. We start with the integrated equation (3.17),

−
(
ux(xi+ 1

2
)− ux(xi− 1

2
)
)
= hifi,

which implies using Taylor series that the exact solution satisfies

−
(
u(xi+1)− u(xi)

hi+ 1
2

− u(xi)− u(xi−1)

hi− 1
2

)
= hifi +Ri− 1

2
−Ri+ 1

2
,

where the remainder terms from the Taylor expansion satisfy |Ri± 1
2
| ≤ Ch. Subtracting

from this equation the equation satisfied by the numerical approximation (3.18), we
obtain that the errors satisfy the equation

ei+1 − ei
hi+ 1

2

− ei − ei−1

hi− 1
2

= Ri− 1
2
−Ri+ 1

2
.

Multiplying on both sides by ei and summing, we get

N∑
i=1

(ei+1 − ei)ei
hi+ 1

2

−
N∑
i=1

(ei − ei−1)ei
hi− 1

2

=

N∑
i=1

Ri− 1
2
ei −

N∑
i=1

Ri+ 1
2
ei. (3.23)

Using that e0 = eN+1 = 0, we can add a vanishing first term to the first sum on the left
and a vanishing last term to the second sum on the left and then sum them differently to

82 Chapter 3. The Finite Volume Method

obtain a sum of squares,

e1e0 − e20
h 1

2

+
e2e1 − e21

h 3
2

+
e3e2 − e22

h 5
2

+ · · ·+ eNeN−1 − e2N−1

hN− 1
2

+
eN+1eN − e2N

hN+ 1
2

− e21 − e1e0
h 1

2

− e22 − e1e2
h 3

2

− e23 − e2e3
h 5

2

− · · · − e2N − eNeN−1

hN− 1
2

− e2N+1 − eN+1eN

hN+ 1
2

= −
N∑
i=0

(ei+1 − ei)
2

hi+ 1
2

.

Similarly, we proceed for the right-hand side, where we add a last vanishing term to the
first sum and a first vanishing term to the second sum,

R 1
2
e1 +R 3

2
e2 + · · ·+RN− 1

2
eN +RN+ 1

2
eN+1

−R 1
2
e0 +−R 3

2
e1 − · · · −RN− 1

2
eN−1 −RN+ 1

2
eN

=

N∑
i=0

Ri+ 1
2
(ei+1 − ei).

Using the fact that all remainder termsRi+ 1
2

are bounded in modulus by Ch, taking the
modulus on both sides we thus obtain

N∑
i=0

(ei+1 − ei)
2

hi+ 1
2

≤ Ch

N∑
i=0

|ei+1 − ei|. (3.24)

We use now the Cauchy–Schwarz inequality for the term on the right,

N∑
i=0

|ei+1 − ei| =
N∑
i=0

|ei+1 − ei|√
hi+ 1

2

√
hi+ 1

2
≤
√√√√ N∑

i=0

(ei+1 − ei)2

hi+ 1
2

√√√√ N∑
i=0

hi+ 1
2
, (3.25)

and because the sum of all mesh sizes hi+ 1
2
= xi+1 − xi satisfies

∑N
i=0 hi+ 1

2
= 1, by

inserting (3.25) into (3.24) and dividing by a square root we obtain√√√√ N∑
i=0

(ei+1 − ei)2

hi+ 1
2

≤ Ch, (3.26)

which is our first convergence estimate. To obtain the second estimate, we use the fact
that ei can be written as a telescopic sum using e0 = 0,

ei =
i∑

j=1

(ej − ej−1),

which implies, taking norms and inserting (3.26) into estimate (3.25), that

|ei| ≤ Ch.

3.5. Convergence Analysis 83

The proof of Theorem 3.4 does not require the maximum principle, which was an
essential ingredient in the convergence proof of the finite difference method in the pre-
vious chapter. In fact, Theorem 3.4 does not even require the consistency of the finite
difference stencil obtained. It, however, uses the two major properties of finite volume
methods:

1. The fluxes are conserved; i.e., the flux approximation used by the left cell of a cell
boundary is the same as the one used by the right cell of the same cell boundary,
which allowed us to combine the two separate sums in (3.23) on the right.

2. The flux approximation is consistent; i.e., the remainder terms Ri+ 1
2

become
small when the mesh size becomes small.

For any finite difference scheme that satisfies these two properties, one can prove con-
vergence using the finite volume techniques of Theorem 3.4.

The convergence result from Theorem 3.4 is, however, not sharp, and often quadratic
convergence is observed. We can test this using the following simple MATLAB com-
mands:

u=@(x) sin(pi*x); % solution and corresponding
f=@(x) -pi^2*sin(pi*x); % right hand side
d=0.5; % perturbation
NN=10*2.^(0:5); % of the mesh, 0<=d<=0.5
err=[];
for j=1:length(NN) % mesh refinement
N=NN(j);
if j==1
h=1/N; xx=(0:h:1);
xx(2:end-1)=xx(2:end-1)+(rand(1,N-1)-1/2)*d*h; % perturb primal mesh
hhd=diff(xx);
xxd=xx(1:end-1)+(1/2+(rand(1,N)-1/2)*d).*hhd; % perturb dual mesh
hh=diff([0 xxd 1]);
figure(1);plot(xx,1,’o’,xxd,1,’+’);

else
xx(1:2:2*length(xx)-1)=xx; % refine mesh
xx(2:2:end-1)=xxd;
hhd=diff(xx);
xxd=xx(1:end-1)+1/2.*hhd;
hh=diff([0 xxd 1]);

end;
A=sparse(N-1);
for i=1:N-1 % assemble matrix by going
A(i,i)=-(1/hhd(i)+1/hhd(i+1))/hh(i+1); % over all cell interfaces
if i>1, A(i,i-1)=1/hhd(i)/hh(i+1); end;
if i<N-1, A(i,i+1)=1/hhd(i+1)/hh(i+1); end;

end;
b=f(xx(2:end-1)’); ue=u(xx’);
ua=A\b;
err(j)=max(abs(ue(2:end-1)-ua))

end
figure(2);loglog(1./NN,err,’--’,1./NN,1./NN,’-’,1./NN,1./NN.^2,’-’)

We show in Figure 3.12 on the left the random initial mesh used for the experiment
and on the right the error measured in the maximum norm when the mesh is regularly
refined several times. Clearly, the finite volume method converges quadratically, even
though our convergence estimate in Theorem 3.4 shows only linear convergence. It is
an open problem to prove this often observed quadratic convergence for the general case
of finite volume methods [17]. In specific situations it is, however, possible; see, for ex-
ample, Forsythe and Sammon [18], who prove quadratic convergence for cell-centered

84 Chapter 3. The Finite Volume Method

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mesh size h
10 -3 10 -2 10 -1 10 0

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

measured error
h

h2

Figure 3.12. Left: Initial randomly perturbed finite volume mesh leading to incon-
sistent finite difference stencils when the finite volume method is applied. Right: Convergence
measured in the maximum norm when the mesh is refined in a regular way and reference lines for
linear and quadratic convergence.

rectangular nonuniform grids and also show that lower-order boundary condition dis-
cretizations do not cause any harm.

3.6 Concluding Remarks
Over the last two decades finite volume methods have been developed much further
than what we have seen in this chapter: An excellent introduction can be found in
[17]. In particular, the discrete duality finite volume method has now so much math-
ematical structure that fully general convergence proofs on arbitrary domains with ar-
bitrary meshes have become possible; see, for example, [12, 1]. These methods are
also very much related to a new class of finite element methods, namely, the discon-
tinuous Galerkin methods. Finite volume methods have the following advantages and
disadvantages, denoted by plus and minus signs, respectively:

+ The finite volume method gives a systematic way to obtain discretization stencils
for PDEs.

+ The finite volume method works for arbitrary geometries and meshes.

− The method is harder to implement when on general meshes, and one has to
follow an assembly strategy as in the finite element method, which we will see
later.

− Higher-order methods require sophisticated flux definitions.

3.7 Problems

Problem 3.1 (finite volumes and finite differences).

1. Construct a finite volume discretization of the nonlinear equation⎧⎨
⎩

(uux)x = f(x),
u(0) = 0,
u(1) = 0.

3.7. Problems 85

Hint: To complete the scheme, approximate the unknown function u at the mid-
points using an average of the neighboring values.

2. Show that the truncation error is O(h2).

3. Show that a reformulation of the differential equation allows you to obtain the
same scheme using centered finite differences.

4. Implement the finite volume method you obtained, and use Newton’s method to
solve the nonlinear system of equations you obtain. Show graphically that the
method converges. Is the solution unique?

Problem 3.2 (nonconstant diffusion coefficients). We consider the two-dimensional
problem

∇ · (a(x, y)∇u(x, y)) = f(x, y), (3.27)

where a is a scalar function. We assume that the grid for the finite volume method to be
constructed is rectangular and regular.

1. Derive a finite volume discretization of (3.27).

2. Show that the scheme you obtained in the one-dimensional case has a second-
order truncation error.

3. Using Maple, show that the two-dimensional scheme is also second order.

Problem 3.3 (Neumann boundary conditions for finite volumes).

1. Consider the Poisson equation −Δu = f discretized by a finite volume method
on a regular rectangular grid, and discretize the Neumann boundary conditions
using the vertex-centered approach. Show that the truncation error is of order
one.

2. Show how the associated dicretization matrix can easily be modified to include
the Neumann conditions discretized with the vertex-centered approach.

3. Repeat parts 1 and 2 for a cell-centered discretization of the Neumann conditions.

4. What relation can you find between the finite difference and finite volume dis-
cretizations of the Neumann conditions in this case?

Problem 3.4 (consistency of finite volumes). Use the Maple program statements in
this chapter to explore under which conditions the FV4 scheme is consistent. Can you
also find conditions when one uses four neighboring cells, except for perfect symmetry?

Chapter 4

The Spectral Method

Sehr viel besser eignen sich Entwicklungen nach Polynomen, Fouriersche Reihen usw. für
die Darstellung einer reellen Funktion w(x, y, . . .) in einem gegebenen Bereich.a

Walther Ritz, Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathe-
matischen Physik, 1908

The purpose of the following article is to show the manifold possibilities of the application
of Tshebysheff’s polynomials in approximation problems. All these applications are based
on some simple basic properties of the Fourier series. Although the mathematical nature
of the Fourier series is exhaustively investigated, it is not sufficiently realized how excellent
approximations, for both empirical and analytical functions, may be obtained by combining
the advantages of the power series and the Fourier series.

Cornelius Lanczos, Trigonometric Interpolation of Empirical and Analytical Functions,
1938

Historically, second order accurate difference methods have been used for computations
in dynamic meteorology and oceanography. We investigate more accurate difference meth-
ods and show that fourth order methods are optimal in some sense. This method is then
compared with a variant of the Fourier technique.

Heinz-Otto Kreiss and Joseph Oliger, Comparison of accurate methods for the integration
of hyperbolic equations, 1972

aExpansions in polynomials, Fourier series, etc. are much more suitable for
the representation of a real function w(x, y, . . .) in a given domain.

We now introduce a very different approach for solving PDEs, namely, the spectral
methods. The idea behind these methods is to search for a solution as a series generated
by a set of basis functions, i.e.,

u(x) =

∞∑
k=−∞

û(k)ϕk(x), (4.1)

and thus goes back to the invention of Fourier and separation of variables [19], as we
have seen in Chapter 1. As part of his groundbreaking work on vibrating plates in
1908, Ritz was the first to propose using a truncated expansion of this form as a com-
putational method: In order to approximate the shape of a two-dimensional bending or
vibrating plate, he used basis functions ϕk that are products of eigenfunctions of the
one-dimensional bar; see the quote above and Figure 4.1, extracted from [49]; see also
[50]. Ritz could thus be regarded as the father of spectral methods.

87

88 Chapter 4. The Spectral Method

Figure 4.1. Groundbreaking proposition of Ritz from 1908 to use a truncated expansion
of the form (4.1) in minimizing an energy integral whose stationary point is a solution to the
biharmonic equation, using products of solutions of the one-dimensional problem.

In modern spectral methods, the functions ϕk are generally chosen from one of the
following two categories:

• trigonometric functions,

• orthogonal polynomials.

Lanczos already noticed in 1938 that important approximation advantages can be gained
by considering polynomial approximations in a similar sense as Fourier series, namely,
globally, as opposed to Taylor series [35]. Spectral methods, in contrast to all the meth-
ods we have seen so far, are global in nature, and it is natural to start this chapter with
Fourier series.

4.1 Spectral Method Based on Fourier Series
Suppose we are interested in computing an approximate solution of the one-dimensional
Poisson equation with periodic boundary conditions,⎧⎨

⎩
uxx = f, Ω = (0, 2π),
u(0) = u(2π),
u′(0) = u′(2π).

(4.2)

A periodic function u ∈ C(0, 2π) admits a Fourier series,

u(x) =

∞∑
k=−∞

uke
ikx, (4.3)

4.1. Spectral Method Based on Fourier Series 89

where the Fourier coefficients are given by the formula

uk =
1

2π

∫ 2π

0

u(x)e−ikxdx. (4.4)

In order to solve the Poisson equation (4.2), one can insert the Fourier series represen-
tation of the solution (4.3) into the equation to obtain

∂xx

(∞∑
k=−∞

uke
ikx

)
=

∞∑
k=−∞

−k2ukeikx = f. (4.5)

To determine the unknown Fourier coefficients uk, a natural idea is to use the orthogo-
nality of the exponential functions eikx: We multiply both sides by the “test function”16

e−ilx and integrate over (0, 2π), which leads to

∞∑
k=−∞

−k2uk
∫ 2π

0

eikxe−ilxdx =

∫ 2π

0

f(x)e−ilxdx = 2πfl, (4.6)

where fl is the lth Fourier coefficient of f(x). Using now the orthogonality of eikx, i.e.,∫ 2π

0

eikxe−ilxdx =

{
0 if l �= k,

2π if l = k,

we obtain a very simple equation for the Fourier coefficients uk, namely,

− l2ul = fl. (4.7)

The Fourier coefficients of the solution are therefore given by

ul =

⎧⎨
⎩− 1

l2
fl if l �= 0,

undefined if l = 0.
(4.8)

Remark 4.1. If l = 0, (4.7) becomes

0 = f0 =
1

2π

∫ 2π

0

f(x)dx.

Therefore, (4.2) has a solution if and only if f has a vanishing mean. This condition
is known as a compatibility condition. Note that the compatibility condition does not
imply that the solution is unique because u0 is undefined and can be chosen freely. To
get a unique solution, we need to specify the value of u0; see also Problem 4.1.

Once Fourier coefficients are found, the solution can be written as

u(x) = û(0)−
∑
k
=0

1

k2
fke

ikx.

To obtain a numerical approximation, the infinite expansion must be truncated, as
Ritz proposed, so we need to estimate the error induced by such a truncation. This error

16This idea will appear again in the next chapter on the finite element method, when the basis functions
are no longer orthogonal. Indeed, it is precisely this approach for a sine expansion that motivated Galerkin in
1915 to proceed in the same way with more general functions ϕ; see [20, pp. 169–171].

90 Chapter 4. The Spectral Method

y1

y2
y3

y4

y5
y6

y7
y8

x1 x2 x3 x4 x5 x6 x70 2π

Figure 4.2. Example of a step function in the proof of Theorem 4.2.

estimate is substantially different from error estimates we have seen so far; see the last
quote at the beginning of this chapter from [34], where the authors point out important
qualities, but also limitations, of the Fourier spectral methods.17

To study rigorously the truncation error, we need to study the decay of the Fourier
coefficients uk. We do this for quite a general class of functions.

Definition 4.1 (functions of bounded variation). For a function u : [0, 2π] → R, its
total variation is defined by

V[0,2π]u := sup
n>0

sup
0=x0<x1<···<xn=2π

(
n−1∑
i=0

|u(xi+1)− u(xi)|
)
.

The function u is of bounded variation if V[0,π]u <∞.

If u is of bounded variation, u is integrable in the sense of Riemann [29], and contin-
uously differentiable functions are of bounded variation. Continuity alone is, however,
not sufficient for bounded variation; e.g., u(x) = x sin(1/x) is not of bounded varia-
tion, but there are also functions that are not continuous but of bounded variation, for
example, the step functions. We can now prove the following essential estimate, which
leads to the spectacular so-called spectral convergence of spectral methods.

Theorem 4.2. If u : [0, 2π] �→ R is of bounded variation, then

|uk| ≤ C

|k| for some C > 0 independent of k. (4.9)

If u : R �→ R is 2π-periodic and p times differentiable with u(p)|[0,2π] of bounded
variation, then there exists a constant C > 0 depending on u(p) but independent of k
such that

|uk| ≤ C

|k|p+1
. (4.10)

Proof. We start by showing (4.9) for a step function u(x), as illustrated in Figure 4.2.
For such a step function u(x), we can explicitly compute its Fourier coefficients,

uk =
1

2π

∫ 2π

0

u(x)e−ikxdx =
1

2π

n∑
j=1

yj

∫ xj

xj−1

e−ikxdx

=
1

2πik

(
y1 + eikx1(y2 − y1) + eikx2(y3 − y2) + · · · − yn

)
,

17“It is at the present time not clear what the accuracy of the Fourier method is for equations with variable
coefficients, particularly when discontinuities are present. Some preliminary calculations have shown that if
the solution is discontinuous, then the number of necessary frequencies must be increased substantially.”

4.1. Spectral Method Based on Fourier Series 91

and therefore we obtain the desired estimate

|uk| ≤ 1

2π|k|
(
V[0,2π]u+ |u(2π)− u(0)|) ≤ C

|k| .

Let u(x) now be an arbitrary function of bounded variation. Since such a u(x) is in-
tegrable, by the definition of the Riemann integral, there exists a step function ũ(x)
which satisfies V[0,2π]ũ + |ũ(2π) − ũ(0)| ≤ V[0,2π]u + |u(2π) − u(0)| such that∫ 2π

0 ũ(x)e−ikxdx is arbitrarily close to the Fourier coefficient
∫ 2π

0 u(x)e−ikxdx of
u(x), which proves (4.9).

Now if u(x) is once differentiable with its derivative of bounded variation, we can
use integration by parts,

uk =
1

2π

∫ 2π

0

u(x)e−ikxdx =
1

2π
u(x)

e−ikx

−ik

∣∣∣∣∣
2π

0

+
1

2πik

∫ 2π

0

u′(x)e−ikxdx,

and since the first term on the right-hand side vanishes because of periodicity, we can
apply (4.9) to u′(x) to get |uk| ≤ C

|k|2 . Using integration by parts several times then
leads to the estimate (4.10).

We show in Figure 4.3 for several functions of increasing regularity how their
Fourier coefficients decay. The figures were obtained with the following MATLAB
code:

f{1}=inline(’exp(x)-(exp(2*pi)-1)/2/pi’,’x’); % u discontinuous at 0 -> h
f{2}=inline(’2/3*pi^2-2*pi*x+x.^2’,’x’); % u continuous at 0 -> h^2
f{3}=inline(’2*pi^2*x-3*pi*x.^2+x.^3’,’x’); % u’ continuous at 0 -> h^3
f{4}=inline(’-8/15*pi^4+4*pi^2*x.^2-4*pi*x.^3+x.^4’,’x’); % u’’ cont -> h^4
f{5}=inline(’-8/3*pi^4*x+20/3*pi^2*x.^3-5*pi*x.^4+x.^5’,’x’); % u’’’cont->h^5
f{6}=inline(’3./(5-4*cos(x))-1’,’x’); % all derivatives continuous
n=512; h=2*pi/n; x=(0:h:2*pi)’;
for i=1:6
b=feval(f{i},x(1:n)); bh=fft(b);
subplot(2,1,1); plot([x;x+2*pi],f{i}([x;x]),’-’); xlabel(’x’);
subplot(2,1,2);
if i<6
loglog(1:n/2-1,abs(bh(2:n/2)),’o’,1:n/2-1,abs(bh(2))./(1:n/2-1).^i,’-’);
xlabel(’k’); legend(’u_k’,[’1/k^’ num2str(i)]);

else
loglog(1:n/2-1,abs(bh(2:n/2)),’o’);
xlabel(’k’); legend(’u_k’);

end
pause

end;

Note that we already use a very efficient way to compute the Fourier coefficients, the
fast Fourier transform, which we will investigate more closely in the next section. With
Theorem 4.2, we can now precisely estimate the difference between a truncated Fourier
series expansion of u(x) and the function u(x) itself.

Theorem 4.3. Let u : R �→ R be 2π-periodic and p ≥ 1 times differentiable with
u(p)|[0,2π] of bounded variation. For an even number n > 0, let

uh(x) :=
∑

|k|≤n/2

uke
ikx

92 Chapter 4. The Spectral Method

x
0 2 4 6 8 10 12 14

-100

0

100

200

300

400

500

k
10 0 10 1 10 2 10 3

10 2

10 3

10 4

10 5

u
k

1/k 1

x
0 2 4 6 8 10 12 14

-4

-2

0

2

4

6

8

k
10 0 10 1 10 2 10 3

10 -2

10 0

10 2

10 4

u
k

1/k 2

x
0 2 4 6 8 10 12 14

-15

-10

-5

0

5

10

15

k
10 0 10 1 10 2 10 3

10 -10

10 -5

10 0

10 5

u
k

1/k 3

x
0 2 4 6 8 10 12 14

-60

-40

-20

0

20

40

60

k
10 0 10 1 10 2 10 3

10 -10

10 -5

10 0

10 5

u
k

1/k 4

x
0 2 4 6 8 10 12 14

-300

-200

-100

0

100

200

300

k
10 0 10 1 10 2 10 3

10 -10

10 -5

10 0

10 5

u
k

1/k 5

x
0 2 4 6 8 10 12 14

-1

-0.5

0

0.5

1

1.5

2

k
10 0 10 1 10 2 10 3

10 -20

10 -10

10 0

10 10

u
k

Figure 4.3. Illustration of how the Fourier coefficients decay faster and faster if the
function becomes more and more regular. From top left to bottom right: Functions with zero up
to four derivatives of bounded variation and a function with all derivatives continuous in the last
panel, where one clearly sees spectral convergence.

be the truncated Fourier expansion of u(x). Then we have the error estimate

||u− uh||2 ≤ 2p+1
√
2πC√

2p+ 1

1

np+ 1
2

, (4.11)

where C > 0 is a constant independent of n.

Proof. The proof is based on the Parseval–Plancherel identity,

||u||22 = 2π

∞∑
k=−∞

|uk|2,

4.2. Spectral Method with Discrete Fourier Series 93

which implies, using Theorem 4.2, that

||u− uh||22 = 2π
∑

|k|>n/2

|uk|2 ≤ 2π
∑

|k|>n/2

C2

|k|2p+2
≤ 4πC2

∫ ∞

n/2

1

k2p+2
dk

=
22p+3πC2

2p+ 1

1

n2p+1
.

How should we interpret this result in order to compare it to error estimates we have
obtained for the finite difference and finite volume methods? If we assume that the
unknowns are the Fourier coefficients uk, then we have n+1 unknowns on the interval
[0, 2π], which represents the problem domain, and thus we can define a hypothetical
mesh size18 h := 2π

n and rewrite the error estimate (4.11) as a function of this mesh size
h,

||u− uh||2 ≤ 2C√
2p+ 1

1

πp
hp+

1
2 = O(hp+

1
2).

This reveals the most important property of spectral methods: They converge at a rate
depending on the regularity p of the solution. If the solution has two derivatives, conver-
gence will be O(h2.5); if it has 10, it will be O(h10.5); and if it has an infinite number
of derivatives, it converges faster than O(hp) for any p > 1. This is called spectral
convergence, a convergence that is faster than any algebraic rate in the grid size h.

Our analysis so far has been for a continuous solution u(x), and we only truncated
the Fourier series approximation, without solving the PDE. To obtain a real numerical
method, we need to approximate also the integral in the evaluation of the Fourier co-
efficient and solve the PDE, which will lead to a fully discrete version of the Fourier
spectral method.

4.2 Spectral Method with Discrete Fourier Series
Suppose u is a 2π-periodic function. Just as for finite difference and finite volume
methods, we now introduce a mesh with mesh points

xj = jh, h =
2π

n
for some even n, (4.12)

and assume that we only have knowledge of the function u(x) at the grid points xj .
Recalling the formula of the Fourier series,

u(x) =

∞∑
k=−∞

uke
ikx, (4.13)

we see that we cannot possibly determine u(x) uniquely since there are infinitely many
coefficientsuk but only a finite number of function values {u(xj)}n−1

j=0 at the grid points.
This interpolation problem has infinitely many solutions, one of which is of the form

u(xj) =

n/2−1∑
k=−n/2

ûke
ikxj , j = 0, . . . , n− 1. (4.14)

18This will become a real mesh size soon.

94 Chapter 4. The Spectral Method

In other words, we can obtain one such interpolant by setting all the Fourier coefficients
outside the range k ∈ K = {−n

2 , . . . ,
n
2 − 1} to zero and calculating the remaining

n Fourier coefficients from the n grid point equations. The resulting trigonometric in-
terpolant, û(x) :=

∑n/2−1
k=−n/2 ûke

ikx, coincides with u(x) at the interpolation points xj
but not necessarily anywhere else. Thus, we generally have u(x) �= û(x) or, equiva-
lently, uk �= ûk. Nonetheless, there is a strong relation between uk and ûk, which we
will prove later in Theorem 4.6.

To find an explicit formula for the ûk, it is instructive to rewrite the finite expansion
(4.14) in matrix form. We denote

u := (u(x0), u(x1), . . . , u(xn−1))
T ,

û := (û−n
2
, û−n

2
+1, . . . , ûn

2
−1)

T ,

F−1 :=

⎛
⎜⎜⎜⎜⎝

ei
−n
2 x0 ei(

−n
2 +1)x0 · · · ei(

n
2 −1)x0

ei
−n
2 x1 ei(

−n
2 +1)x1 · · · ei(

n
2 −1)x1

...
...

ei
−n
2 xn−1 ei(

−n
2 +1)xn−1 · · · ei(

n
2 −1)xn−1

⎞
⎟⎟⎟⎟⎠ ,

where F−1 is invertible, with an inverse F that will be defined soon. We can then
rewrite the expansion (4.14) in matrix form,

u = F−1û, (4.15)

and by multiplying by F on both sides, we get

û = Fu. (4.16)

The matrix F is called the discrete Fourier transform (DFT) and F−1 the inverse dis-
crete Fourier transform (IDFT). To find the discrete Fourier coefficients ûk from the
function values u(xj), we first notice the discrete orthogonality relation

n/2−1∑
j=−n/2

eikxj e−ilxj =

n/2−1∑
j=−n/2

ei(k−l) 2π
n j = e−i(k−l)π

n−1∑
j=0

ei(k−l) 2π
n j

=

{
e−i(k−l)π 1−ei(k−l)2π

1−ei(k−l) 2π
n

= 0 if k �= l mod n,

n if k = l mod n,
(4.17)

where we used the summation formula for geometric series. In analogy with the con-
tinuous formula for the Fourier coefficients (4.4), we multiply (4.14) by e−ilxj and sum
over j = −n

2 , . . . ,
n
2 − 1 to obtain

n/2−1∑
j=−n/2

u(xj)e
−ilxj =

n/2−1∑
j=−n/2

n/2−1∑
k=−n/2

ûke
i(k−l)xj = nûl,

and therefore the explicit expression for the DFT (and thus the matrix F) is

ûk =
1

n

n/2−1∑
j=−n/2

u(xj)e
−ikxj . (4.18)

4.2. Spectral Method with Discrete Fourier Series 95

Remark 4.2. We can also find the matrix F by applying the trapezoidal quadrature rule
to approximate the integral in the definition of the Fourier coefficient,

ûk =
1

n

n/2−1∑
j=−n/2

u(xj)e
−ikxj ≈ 1

2π

∫ π

−π

u(x)e−ikxdx = uk.

Imposing the Fourier series expansion (4.14) at discrete mesh points is therefore equiv-
alent to approximating the Fourier coefficient integral by quadrature.

We need a final ingredient in order to be able to give our first spectral method.

Definition 4.4 (differentiation matrix). A differentiation matrix is a matrix D that,
when multiplied with a vector u, gives an approximation of the derivative of the function
u(x) from which the vector u is sampled.

We have seen many differentiation matrices so far; for example, (2.11) is a second-
order differentiation matrix in two spatial dimensions, or

D+ :=
1

h

⎡
⎢⎢⎢⎣

−1 1
. . .

. . .
−1 1

−1

⎤
⎥⎥⎥⎦ , D− :=

1

h

⎡
⎢⎢⎢⎣

1
−1 1

. . .
. . .
−1 1

⎤
⎥⎥⎥⎦

are the forward and backward finite difference differentiation matrices. For spectral
methods, the differentiation matrices are defined using the Fourier transform. In anal-
ogy to the continuous situation, where a derivative in Fourier space corresponds to mul-
tiplication by ik as in (4.5), we define

D̂F :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i(n2) −i(n2 − 1)
. . .

−i
0

i
. . .

i(n2 − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.19)

and thus the Fourier differentiation matrix is obtained by first transforming the vector
into the Fourier domain, applying D̂F , and then performing the inverse Fourier trans-
form,

DF := F−1D̂FF. (4.20)

This leads to the following discrete Fourier spectral method for solving the Poisson
equation with periodic boundary conditions (4.2):

1. Discretize the right-hand side f by sampling,

f := (f(x0), . . . , f(xn−1))
T .

96 Chapter 4. The Spectral Method

2. To solve the discretized version of uxx = f using the Fourier spectral method,
we have to solve

D2
Fu = f =⇒ u = D−2

F f .

We thus have to apply

D−2
F = (F−1D̂FF)

−2 = (F−1D̂−1
F F)(F−1D̂−1

F F) = F−1D̂−2
F F

to the right-hand side f , which requires the following steps:

(a) Fourier transform f to get f̂ ;

(b) apply D̂−2
F to f̂ ;

(c) back transform the result to obtain uh := F−1D̂−2
F F f as an approximation

of

u := (u(x0), . . . , u(xn−1))
T .

As in the continuous case, we must be careful when applying D̂−2
F since this matrix is

singular; see the zero in the center in (4.19). It is at this moment that the ill-posedness
of the problem manifests itself and a choice has to be made; see Remark 4.1.

Remark 4.3. To obtain an efficient algorithm, a key ingredient is to use the fast Fourier
transform (FFT) instead of multiplying with the matrix F and the inverse fast Fourier
transform (IFFT) instead of multiplying with the matrix F−1, as we have done already
in the MATLAB script above. In MATLAB, the truncated discrete Fourier series is
defined as

u(xj) =
1

n

n−1∑
k=0

ũke
ikxj (4.21)

instead of our choice shown in (4.14). The next lemma shows that there is a direct link
between the coefficients ũk from MATLAB and the coefficients ûk we used.

Lemma 4.5. The coefficients ũk and ûk for l = 0, 1, . . . , n2 − 1 are related by

û−n
2 +l =

1

n
ũn

2 +l, ûl =
1

n
ũl.

Proof. With k := −n
2 +l for l = 0, 1, . . . , n2 −1, and using that the exponential function

is 2π-periodic and the definition of xj , we obtain

eikxj = ei(−
n
2 +l)j 2π

n = ei(−jπ)+lj 2π
n = ei(jπ+lj 2π

n) = ei(
n
2 +l)j 2π

n = eik̃xj ,

where k̃ = n
2 + l. Thus, the coefficients of the sum (4.21) are linked to the coefficients

of (4.14) by replacing the indices k = −n
2 + l by k̃ = n

2 + l for l = 0, 1, . . . , n2 − 1 and
leaving them unchanged for k = 0, 1, . . . , n2 − 1.

If we want to use the FFT/IFFT in MATLAB, the differentiation matrix in (4.19)

4.3. Convergence Analysis 97

should thus be reordered,

D̂F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
i

2i
. . .

(n2 − 1)i
n
2 i −(n2 − 1)i

. . .
−i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

4.3 Convergence Analysis
The two sources of error in the fully discrete spectral method described above are as
follows:

1. quadrature: uk
DFT→ ûk;

2. truncation:
∑

k∈Z
uk →∑n/2−1

−n/2 ûk.

We have already studied the error induced by the truncation of the Fourier series at the
continuous level; see Theorem 4.2. However, we have not yet considered the quadrature
error that results from using grid point values to compute ûk rather than evaluating the
integral (4.4) exactly. The next result quantifies this error.

Theorem 4.6 (aliasing). Let uk be the Fourier series coefficients defined by (4.4) of a
2π-periodic function u, and let ûk be the discrete Fourier coefficients defined by (4.16).
If the series

∑
k∈Z

uk is absolutely convergent, then

ûk − uk =
∑
l∈Z

l
=0

uk+ln. (4.22)

Proof. Starting with the definition of the discrete Fourier transform (4.18), we substitute
the Fourier series representation of u(xj) from (4.13) to get

ûk =
1

n

n/2−1∑
j=−n/2

u(xj)e
−ikxj =

1

n

n/2−1∑
j=−n/2

∞∑
l=−∞

ule
ilxje−ikxj .

We now switch the order of summation, which is possible because the series is abso-
lutely convergent, and apply the discrete orthogonality relation (4.17) to conclude that

ûk =
1

n

∞∑
l=−∞

ul

n/2−1∑
j=−n/2

ei(l−k)xj =

∞∑
l=−∞

uk+ln,

from which we obtain the required result after subtracting uk from both sides.

With Theorems 4.2 and 4.6, we can now give a precise estimate of the error of the
discrete Fourier spectral method.

98 Chapter 4. The Spectral Method

Theorem 4.7 (spectral convergence). Let f : [0, 2π] �→ R be 2π-periodic and
p ≥ 1 times differentiable with f (p)|[0,2π] of bounded variation, and let u be samples
of the exact solution of (4.2) on the grid (4.12) with n ≥ 4 even. If uh denotes the
approximate solution obtained by the discrete Fourier spectral method, then it satisfies
the error estimate

||u− uh||2 ≤ C

np+1
, C some constant. (4.23)

Proof. To simplify the notation, we also define the set of frequencies used in the trunca-
tion K := {−n

2 ,−n
2 + 1, . . . , n2 − 1}. Using the Parseval–Plancherel identity implies

‖u− uh‖2L2 = 2π
∑
k∈Z

|uk − ûk|2 = 2π

(∑
k∈K

|uk − ûk|2 +
∑
k/∈K

|uk|2
)

= 2π

⎛
⎝ ∑

k∈K\0

1

k4
|fk − f̂k|2 +

∑
k/∈K

1

k4
|fk|2

⎞
⎠ , (4.24)

where we used in the last step (4.7) and the differentiation matrix (4.19) from step 2(b)
of the discrete Fourier spectral method. We now estimate the first sum in (4.24) using
Theorems 4.6 and 4.2:

∑
k∈K\0

1

k4
|fk − f̂k|2 =

∑
k∈K\0

1

k4

∣∣∑
j
=0

fk+jn

∣∣2 ≤
∑

k∈K\0

1

k4

⎛
⎝∑

j
=0

C

|k + jn|p+1

⎞
⎠2

≤
n
2 −1∑
k=1

C2

k4

⎛
⎝∑

j≥1

1

|k + jn|p+1
+

1

|k − jn|p+1

⎞
⎠2

+

−1∑
k=−n

2

C2

k4

⎛
⎝∑

j≥1

1

|k + jn|p+1
+

1

|k − jn|p+1

⎞
⎠2

. (4.25)

Now the first double sum in (4.25) can be estimated by

C2

n2p+2

n
2 −1∑
k=1

1

k4

⎛
⎝∑

j≥1

1

| kn + j|p+1
+

1

| kn − j|p+1

⎞
⎠2

≤ C2

n2p+2

n
2 −1∑
k=1

1

k4

⎛
⎝∑

j≥1

1

jp+1
+

1

|j − 1
2 |p+1

⎞
⎠2

,

where we replaced the denominators by their lower bounds, given the range of k. Now
since both infinite sums in j converge for p ≥ 1, the sum over k is bounded, so the first
sum in (4.25) is bounded by a constant divided by n2p+2. Similarly, for the second sum
in (4.25), we obtain the bound

C2

n2p+2

−1∑
k=− n

2

1

k4

⎛
⎝∑

j≥1

1

| kn + j|p+1
+

1

| kn − j|p+1

⎞
⎠2

≤ C2

n2p+2

−1∑
k=−n

2

1

k4

⎛
⎝∑

j≥1

1

|j − 1
2 |p+1

+
1

jp+1

⎞
⎠2

,

4.3. Convergence Analysis 99

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��

��
��
��

��
��
��
��

1
|k|2p+6

1
|k|2p+6

n
2
−1 n

2
n
2
+1 n

2
+2 n

2
+3−n

2
+1−n

2
−n

2
−1−n

2
−2−n

2
−3

k

Figure 4.4. Estimation of a sum by an integral.

and this term is also bounded by a constant divided by n2p+2. We therefore obtain for
the first sum in (4.24) the bound

∑
k∈K\0

1

k4
|fk − f̂k|2 ≤ C1

n2p+2
(4.26)

for some constant C1. Now for the second sum in (4.24), we use Theorem 4.2 to esti-
mate |fk| by |k|−(p+1). Then using an integral to estimate the sum as in Figure 4.4, we
obtain

∑
k/∈K

1

k4
|fk|2 ≤

∑
k/∈K

C2

|k|2p+6
≤ 2C2

∫ ∞

n
2 −1

1

k2p+6
dk

=
2C2

2p+ 5

1

(n2 − 1)2p+5
=

2C2

2p+ 5

1

(12 − 1
n)

2p+5

1

n2p+5

≤ 2C2

(2p+ 5)(14)
2p+5

1

n2p+5
,

where we used in the last steps that n ≥ 4. We therefore obtain the estimate

∑
k/∈K

1

k4
|fk|2 ≤ C2

n2p+5
(4.27)

for some constant C2. Together with (4.26), we thus obtain

‖u− uh‖22 ≤ 2πC1

n2p+2
+

2πC2

n2p+5
, (4.28)

which implies (4.23) for some constant C.

We see that even though the continuous solution u has two more derivatives than the
right-hand-side f because of the integration, the discrete Fourier spectral method only
converges as if u had the same regularity as f . The extra regularity is lost because of
the quadrature on f , with the first term in (4.24) dominating the overall estimate (4.28).
Without the quadrature effects, only the second term in (4.28) would be present, and the
method would converge at a higher rate corresponding to the higher regularity of the
continuous solution u rather than to the less regular right-hand-side f .

100 Chapter 4. The Spectral Method

To compare this error estimate with the ones we have obtained for the finite differ-
ence and finite volume methods, we use again the grid size h := 2π

n and obtain from
(4.23)

||u− uh||2 = O(hp+1),

which is spectral accuracy. It is thus just the regularity of the right-hand-side f that de-
termines the rate of convergence of the spectral method. If f is infinitely differentiable
(globally as a periodic function), then the method converges faster than O(hp) for every
p; this is called exponential convergence or spectral convergence.

We show in Figure 4.5 the convergence we observe when the periodic one-dimensional
Poisson problem (4.2) is solved with the right-hand sides shown in Figure 4.3. We see
that the convergence rate is as predicted by Theorem 4.7, except for the third and fifth
cases, where the order of convergence is even one higher than expected. These results
were produced with the following MATLAB script:

p=10;
for j=1:6
nmax=2^(p+3); [ur,x0]=FFPoisson1d(f{j},0,2*pi,nmax); % reference solution
n=2*2.^(1:p);
for i=1:p,
[u,x]=FDPoisson1d(f{j},0,2*pi,n(i)); % finite difference
errfd(i)=1/sqrt(n(i))*norm(ur(1:nmax/n(i):nmax+1)-u); % solutions

end;
for i=1:p;
[u,x]=FFPoisson1d(f{j},0,2*pi,n(i)); % discrete spectral
errff(i)=1/sqrt(nd(i))*norm(ur(1:nmax/n(i):nmax+1)-u);% solutions

end;
if j<6
loglog(nd,errfd,’--’,n,errff,’-.’,n,1000./n.^j,’-’);
legend(’Finite Difference Method’,’Spectral Method’,[’h^’ num2str(j)])

else
loglog(nd,errfd,’-.’,n,errff,’-’);
legend(’Finite Difference Method’,’Spectral Method’)

end
xlabel(’number of points’); ylabel(’error’);

end

Here, the functions f{j} are defined using the MATLAB script on page 91, and the
finite difference solver FDPoisson1d and spectral solver FFPoisson are implemented
as follows:

function [u,x]=FDPoisson1d(f,a,b,n);
% FDPOISSON1D solves the 1d Poisson equation with periodic boundary conditions
% u=Poisson1d(f,a,b,n); solves the 1d poisson equation with right
% hand side function f and periodic boundary conditions using centered finite
% differences and n+1 mesh points. Note that f is made to have mean zero.

h=(b-a)/n; x=(a:h:b)’; % finite difference mesh
e=ones(n,1);
A=spdiags([e -2*e e],-1:1,n,n)/h^2; % finite difference matrix
A(n,1)=1/h^2;
b=feval(f,x(1:n)); % check mean in the right
bs=sum(b); % hand side and remove if
if abs(bs)>100*eps, % necessary
warning([’right hand side function mean ’ num2str(bs) ’removed’]);
b=b-bs/n;

end;
b(1)=0; % replace redundant equation
A(1,1:n)=ones(1,n); % by mean zero constraint

4.3. Convergence Analysis 101

number of points
10 0 10 1 10 2 10 3 10 4

er
ro

r

10 -1

10 0

10 1

10 2

10 3

Finite Difference Method
Spectral Method

h1

number of points
10 0 10 1 10 2 10 3 10 4

er
ro

r

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

Finite Difference Method
Spectral Method

h2

number of points
10 0 10 1 10 2 10 3 10 4

er
ro

r

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Finite Difference Method
Spectral Method

h3

number of points
10 0 10 1 10 2 10 3 10 4

er
ro

r

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Finite Difference Method
Spectral Method

h4

number of points
10 0 10 1 10 2 10 3 10 4

er
ro

r

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Finite Difference Method
Spectral Method

h5

number of points
10 0 10 1 10 2 10 3 10 4

er
ro

r

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

Finite Difference Method
Spectral Method

Figure 4.5. Illustration of the convergence of the discrete spectral Fourier method
compared to the finite difference method for right-hand sides with increasing regularity from
Figure 4.3. One can clearly see that the same spectral code converges faster and faster as the
regularity increases.

u=A\b;
u(n+1)=u(1); % solution is periodic

function [u,x]=FFPoisson1d(f,a,b,n);
% FFPOISSON1D solves the 1d Poisson equation
% u=FFPoisson1d(f,a,b,n); solves the 1d poisson equation with right
% hand side function f, boundary values a and b using the fast Fourier
% transform. Note that f needs to be periodic.

102 Chapter 4. The Spectral Method

x
xn = −1 1 = x0xj = cos(jπn)

Figure 4.6. Chebyshev points are the projection of equally distributed points from a
circle onto the x-axis.

h=(b-a)/n; x=(a:h:b)’; % finite difference mesh
b=feval(f,x(1:n));
bh=fft(b); % check mean in rhs and
if abs(bh(1))>100*eps, % remove if necessary
warning([’right hand side function mean ’ num2str(bh(1)) ’removed’]);
bh(1)=0;

end;
bhint(2:n/2)=-bh(2:n/2)./([1:n/2-1]’.^2); % ordering of -k^2 in
bhint(n/2+1:n)=-bh(n/2+1:n)./([-n/2:-1]’.^2); % the FFT implementation
bhint(1)=0; % fix average to 0
u=ifft(bhint);
u(n+1)=u(1); % solution is periodic
u=real(u)’; % make numerically real

Note that FFPoisson1d uses the highly optimized MATLAB built-in functions fft
and ifft as subroutines.

4.4 Spectral Method Based on Chebyshev Polynomials
For nonperiodic problems, we need to use nonperiodic basis functions for the spectral
method, and a typical choice is to use polynomials. Since interpolating polynomials
tend to suffer from excessive oscillations when one uses equidistant grid points, a phe-
nomenon that was already pointed out by Runge, it is necessary to redistribute the grid
points.

Definition 4.8 (Chebyshev points). The Chebyshev points on [−1, 1] are defined by

xj = cos

(
jπ

n

)
, j = 0, 1, . . . , n, for x ∈ [−1, 1]. (4.29)

The change of coordinates x = cos(θ), which concentrates grid points near the
boundary (see Figure 4.6), has a second remarkable property: It changes the periodic

4.4. Spectral Method Based on Chebyshev Polynomials 103

Figure 4.7. Left: Chebyshev polynomials oscillate on the interval [−1, 1] similar to
trigonometric functions. Right: The same Chebyshev polynomials on the slightly larger interval
[−1.1, 1.1], which shows how rapidly they grow outside the interval [−1, 1].

functions 1, cos(θ), cos(2θ), . . . into polynomials:

T0 = 1,

T1 = cos(arccosx) = x,

T2 = cos(2 arccosx) = 2 cos2(arccosx)− 1 = 2x2 − 1,

...

Tn = cos(n arccosx).

The polynomialsTk are the Chebyshev polynomials. As one can expect from the change
of coordinates, they oscillate like cosines, but they are not periodic. Maple knows the
Chebyshev polynomials; with the commands

n:=8;
for i from 0 to n do
p[i]:=simplify(ChebyshevT(i,x));

od;
plot([seq(p[j],j=0..n)],x=-1..1);

we obtain the graph of the first few Chebyshev polynomials shown in Figure 4.7. The
idea of the Chebyshev spectral method is to look for a solution of the form

u(x) =

∞∑
k=0

ukTk(x). (4.30)

In order to obtain an efficient method, we need

1. a fast Chebyshev transform (like the FFT);

2. an easy-to-invert formula for the derivative (like the diagonal differentiation ma-
trix (4.19)).

104 Chapter 4. The Spectral Method

For the first point, we note that the Chebyshev grid points are xj = cos(jπn), and
hence if we truncate the expansion (4.30) to obtain a fully discrete Chebyshev spectral
method, we get

u(xj) =

n∑
k=0

ûkTk(xj) =

n∑
k=0

ûk cos(k arccos(xj)) =

n∑
k=0

ûk cos

(
kjπ

n

)
.

This last sum is just a discrete cosine series, and the discrete cosine transform can be
computed efficiently with an algorithm similar to the FFT; see Problem 4.3. In addition,
we can also expect the truncated sums to converge spectrally to the infinite Chebyshev
series because of this relation to the Fourier series.

For the second point, we compute the derivative,

d

dx
u(x) =

d

dx

n∑
k=0

ûnTk(x) =

n∑
k=0

ûk
d

dx
Tk(x)

!
=

n∑
k=0

p̂kTk(x), (4.31)

and we thus need a fast method to determine the coefficients p̂k from the ûk.

Lemma 4.9. The coefficients p̂k and ûk are related by the differentiation matrix D̂C ,⎛
⎜⎜⎜⎝
p̂0
p̂1
...
p̂n

⎞
⎟⎟⎟⎠ = D̂C

⎛
⎜⎜⎜⎝
û0
û1
...
ûn

⎞
⎟⎟⎟⎠ , (4.32)

where

D̂C(i, j) =

{
j − 1, i = 1, j > 1, j even,

2(j − 1), i > 1, j > 1, i+ j odd.

Before proving this lemma, we show for illustration purposes the differentiation
matrix for the n = 5 case,

D̂C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 3 0 5
0 4 0 8 0

0 6 0 10
0 8 0

0 10
0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Note that the matrix is singular, as was the case for the discrete Fourier spectral method,
but this will be fixed by the boundary conditions; see (4.34). Once this is done, the fact
that the matrix is upper triangular means the associated linear systems can be solved
easily without using Gaussian elimination, just like the diagonal matrices (4.19) in the
Fourier case.

Proof. From Tk = cos(k arccosx), we obtain for the derivative

T ′
k(x) = − sin(k arccosx)

(
− k

sin(arccosx)

)
.

4.4. Spectral Method Based on Chebyshev Polynomials 105

We can therefore relate the derivatives of the Chebyshev polynomials to the Chebyshev
polynomials themselves for k > 1,

1

k + 1
T ′
k+1(x)−

1

k − 1
T ′
k−1(x) =

sin((k + 1) arccosx) − sin((k − 1) arccosx)

sin(arccos(x))

= 2 cos(k arccosx) = 2Tk(x), (4.33)

where we used the fact that sin(A + B) − sin(A − B) = 2 cos(A) sin(B). Using the
explicit expressions T0 = 1, T1 = x, and T2 = 2x2 − 1 for the first three Chebyshev
polynomials, we can write the relation (4.33) in matrix form,

(T0, T1, . . . , Tn−1) = (T ′
1, T

′
2, . . . , T

′
n)

⎡
⎢⎢⎢⎣
1 0 − 1

2
1
4 0 − 1

4
1
6 0 − 1

6
. . .

. . .
. . .

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:M

.

We can thus rewrite the relation (4.31),

(T ′
1, T

′
2, . . . , T

′
n)

⎛
⎜⎜⎜⎝
û1
û2
...
ûn

⎞
⎟⎟⎟⎠ !

= (T0, T1, . . . , Tn−1)

⎛
⎜⎜⎜⎝

p̂0
p̂1
...

p̂n−1

⎞
⎟⎟⎟⎠

= (T ′
1, T

′
2, . . . , T

′
n)M

⎛
⎜⎜⎜⎝

p̂0
p̂1
...

p̂n−1

⎞
⎟⎟⎟⎠ .

Comparing the coefficients, we thus obtain⎡
⎢⎣ 0

... M−1

0 . . . 0

⎤
⎥⎦
⎛
⎜⎜⎜⎝
û0
û1
...
ûn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
p̂0
p̂1
...
p̂n

⎞
⎟⎟⎟⎠ .

The inverse of M is easy to compute using the factorization

M =

⎡
⎢⎢⎢⎣

1
2

1
4

1
6

. . .

⎤
⎥⎥⎥⎦ (I −N)

⎡
⎢⎢⎢⎣
2

1
. . .

1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
2

1
4

1
6

. . .

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
2 0 −1

1 0 −1
1 0 −1

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ ,

where the matrix N is given by

N :=

⎡
⎢⎣0 0 1

0 0 1
. . .

. . .
. . .

⎤
⎥⎦ .

106 Chapter 4. The Spectral Method

We can now computeM−1, using the fact that (I −N)−1 = I +N +N2 + · · · ,

M−1 =

⎡
⎢⎢⎢⎣

1
2

1
. . .

1

⎤
⎥⎥⎥⎦ (I −N)−1

⎡
⎢⎢⎢⎣
2

4
6

. . .

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
2

1
. . .

1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
1 0 1 0 1 . . .

1 0 1 0 1 . . .
. . .

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
2

4
6

. . .

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
2

1
. . .

1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
2 0 6 0 10 . . .

4 0 8 0 . . .
6 0 10 . . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1 0 3 0 5 . . .

4 0 8 0 . . .
6 0 10 . . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ ,

which completes the proof of the lemma.

The following MATLAB code implements the Chebyshev spectral method for solv-
ing uxx = f on the interval [−1, 1]. Here, instead of implementing the discrete cosine
transform from scratch, we take the values of f at Chebyshev points and do an even ex-
tension before feeding it to the built-in MATLAB function fft; see Problem 4.4. The
inverse cosine transform is computed similarly. Next, the boundary conditions are given
by the two additional equations

uL = u(−1) =

n∑
k=0

ûkTk(−1) = û0 − û1 +− · · ·+ (−1)nûn,

uR = u(1) =

n∑
k=0

ûkTk(1) = û0 + û1 + · · ·+ ûn.

(4.34)

These equations will replace the last two rows of D̂2
C , which are identically zero.

function [x,u]=ChebyshevPoisson1d(f,uL,uR,n)
% CHEBYSHEVPOISSON1D Chebyshev spectral solver for the 1d Poisson equation
% [x,u]=ChebyshevPoisson1d(f,uL,uR,n) solves uxx=f on [-1,1] with
% u(-1)=uL, u(1)=uR using n points (excluding end points)

n=n+1; % Number of intervals
xi=(0:pi/n:pi)’; % Interpolation points
ff=f(cos(xi)); % Sample f at Chebyshev pts
fhat=fft([ff(1:end-1);ff(end:-1:2)])/(2*n); % Discrete Cosine Transform
fhat=fhat(1:n-1); % (first n-1 coeffs only)
fhat(2:end)=fhat(2:end)*2;

D=zeros(n+1); % Differentiation matrix
for j=1:n,
D(j:-2:1,j+1)=2*j;

end;
D(1,:)=D(1,:)/2;
A=D^2; % Square to get Laplacian

4.5. Concluding Remarks 107

A(end-1,:)=(-1).^(0:n); % Left boundary condition
A(end,:)=ones(1,n+1); % Right boundary condition
b=[fhat; uL; uR]; % Right hand side
uhat=A\b;
x=cos((0:pi/n:pi)’); % Sample points
uuhat=0.5*[uhat(1:end-1);uhat(end:-1:2)]; % Inverse DCT
uuhat(1)=uuhat(1)*2; uuhat(n+1)=uuhat(n+1)*2;
u=ifft(uuhat)*2*n;
u=u(1:n+1);

To illustrate the Chebyshev spectral method, we use it to solve the problem uxx = f
on [−1, 1], where f , uL, and uR are chosen so that we have the exact solution

u(x) =
1

1 + 25x2
.

In Figure 4.8, we plot the numerical solution obtained by the Chebyshev spectral
and finite difference methods for the same number N of degrees of freedom for N =
4, 8, 16, 32, 64. For very small N , both methods perform poorly; the finite difference
method only becomes reasonably accurate for N ≥ 16 and the Chebyshev method
for N ≥ 32. To understand this, consider the plots in Figure 4.9, where we show the
function f and its discrete cosine transform. We see that f drops off sharply near x = 0;
if the finite difference method does not take enough samples of f near this trough, i.e.,
when N is not large enough, then it cannot possibly get an accurate answer, just as
we observed in the solution plots. Similarly, the largest entries in the discrete cosine
transform of f occur for k ≤ 30, which is the minimum number of degrees of freedom
needed to obtain a reasonably accurate solution. Beyond about k = 30, we see that
the Chebyshev spectral method converges exponentially thanks to the regularity of the
right-hand-side f , and it rapidly converges to within machine precision; see the bottom
right panel of Figure 4.8.

4.5 Concluding Remarks
Spectral methods are based on a global expansion of the solution using a set of basis
functions which have support throughout the domain. We have barely scratched the
surface in our treatment: For more details and techniques, we refer the reader to the
excellent volume by Trefethen [61]. In the form we have seen them in this chapter,
spectral methods have the following advantages and disadvantages, denoted by plus
and minus signs, respectively:

+ For smooth solutions, the spectral method gives highly accurate approximations,
much more accurate than the finite difference or finite volume methods can.

− The spectral method in the form presented here can only be used on simple, rect-
angular geometries.

We will see, however, in the next section on the finite element method how arbitrary
geometries can be decomposed into regular patches for the numerical approximation
of PDEs, and this approach can be combined with the spectral method on each patch,
leading to the spectral finite element method.

108 Chapter 4. The Spectral Method

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1
N=4

Exact solution
Chebyshev method
FD method

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
N=8

Exact solution
Chebyshev method
FD method

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
N=16

Exact solution
Chebyshev method
FD method

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=32

Exact solution
Chebyshev method
FD method

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N=64

Exact solution
Chebyshev method
FD method

4 8 16 32 64 128 256 512 1,024

10
−15

10
−10

10
−5

10
0

N

E
rr

or

Chebyshev method
FD method

Figure 4.8. Numerical solution of the Chebyshev and finite difference methods for
N = 4, 8, 16, 32, 64 degrees of freedom. Bottom right: error of the two methods for different N .

4.6 Problems

Problem 4.1 (periodic Poisson problem). We search u : [0, 2π] → R solution of

uxx = f(x),
u(0) = u(2π),
ux(0) = ux(2π).

1. Find the conditions on f such that this equation has a solution. Is the solution
then unique? (Hint: Use Fourier series.)

4.6. Problems 109

0 10 20 30 40 50
0

1

2

3

4

5

6

k

fk

−1 −0.5 0 0.5 1
−50

−40

−30

−20

−10

0

10

20

x

f(
x)

f(x)
N=4
N=8
N=16
N=32

Figure 4.9. Left: The magnitude of the first 50 discrete cosine coefficients. Right: The
right-hand-side function f and the points sampled by the finite difference method for different
values of N .

2. Discretize the problem using a finite difference method and check if similar con-
ditions hold for the existence and uniqueness of the discrete solution.

3. Implement the method in MATLAB using the header

function [u,x]=FDPoisson1d(f,a,b,n);
% FDPOISSON1D solves the 1d Poisson equation with periodic boundary conditions
% u=Poisson1d(f,a,b,n); solves the 1d poisson equation with
% right hand side function f and periodic boundary conditions at a and b
% using centered finite differences and n+1 mesh points. Note that f is
% made to have mean zero.

4. Implement the discrete Fourier spectral method in MATLAB using the built-in
fft function. Use the header

function [u,x]=FFPoisson1d(f,a,b,n);
% FFPOISSON1D solves the 1d Poisson equation.
% u=FFPoisson1d(f,a,b,n); solves the 1d poisson equation with right
% hand side function f, periodic boundary values at a and b using the
% fast Fourier transform. Note that f is made to have mean zero.

5. Compare the performance of the two methods for

f(x) =
1

2− cos(x)

modified such that a solution exists. Use n = 4, 8, 16, 32, 64 points, and plot
graphs of the error using a logarithmic scale. Can you explain the kind of conver-
gence you observe?

Problem 4.2 (Chebyshev polynomials). For n = 0, 1, 2, . . . and x ∈ [−1, 1], the
Chebyshev polynomials are defined by

Tn(x) = cos(n arccos(x)).

Prove the following properties of the Chebyshev polynomials:

110 Chapter 4. The Spectral Method

1. The functions Tn(x) satisfy the recurrence relation

T0(x) = 1, T1(x) = x, Tn+1 = 2xTn(x)− Tn−1(x).

Hence, Tn is a polynomial of degree n whose leading coefficient is 2n−1.

2. |Tn(x)| ≤ 1 for x ∈ [−1, 1].

3. Tn cos(kπn)) = (−1)k for k = 0, 1, . . . , n.

4. Tn(cos(
(2k+1)π

2n)) = 0 for k = 0, 1, . . . , n− 1.

5. The polynomials Tn(x) are orthogonal for the weight function 1/
√
1− x2, i.e.,

∫ 1

−1

1√
1− x2

Tn(x)Tm(x)dx =

⎧⎨
⎩

π if n = m = 0,
π
2 if n = m �= 0,
0 if n �= m.

Problem 4.3 (calculating the discrete cosine transform via the FFT). Recall that the
discrete Fourier transform of a vector (Fj)

N−1
j=0 is given by (f̂k)

N−1
k=0 , where

f̂k =
1

N

N−1∑
j=0

Fj exp(−2πijk/N).

With this definition, we have the reconstruction formula

Fj =

N−1∑
k=0

f̂k exp(2πijk/N), j = 0, 1, . . . , N − 1.

1. Let N = 2n be even, and assume that the vector (Fj)
N−1
j=0 is real and satisfies

FN−j = Fj . Show that f̂N−k = f̂k for k = 1, . . . , n and that

Fj = f̂0 + (−1)j f̂n + 2

n−1∑
k=1

f̂k cos(jkπ/n).

2. Explain how to compute the discrete cosine transform using FFT as a subroutine.

Problem 4.4 (discrete Chebyshev spectral method). The goal of this question is to
implement the discrete Chebyshev spectral method to solve the problem⎧⎨

⎩
uxx = f in Ω = (−1, 1),
u(−1) = uL,
u′(1) = gR.

(4.35)

1. Using an appropriate mesh point distribution, show that a fast Chebyshev trans-
form can be obtained by using a fast cosine transform. Implement the following
MATLAB functions for the fast cosine transform and its inverse:

function y=FCT(x)
% FCT gives the fast cosine transform using the fft

4.6. Problems 111

function y=IFCT(x)
% IFCT gives the fast inverse cosine transform using the ifft

2. Using the property Tn(1) = 1 and the parity of the Chebyshev polynomials,
obtain an equation for the Dirichlet boundary conditions.

3. Show that T ′
n(1) = n2 and obtain an equation for the Neumann boundary condi-

tion.

4. Modify the differentiation matrix seen in Lemma 4.9 to take into account the
boundary conditions.

5. Implement the discrete Chebyshev spectral method to solve (4.35) and test it for
different values of f , uL, and gR.

function [u,x]=ChebyshevPoisson1dNeumann(f,ul,gr,n)
% CHEBYSHEVPOISSON1DNEUMANN solves the Poisson equation
% [u,x]=ChebyshevPoisson1dNeumann(f,ul,gr,n) solves the one
% dimensional Poisson equation on the interval (-1,1) with
% right hand side function f, Dirichlet boundary condition
% ul on the left and Neumann boundary gr on the right, using
% n grid points. The solution is returned in u with associated
% grid points x.

Chapter 5

The Finite Element
Method

Die Endpunkte dieser Ordinaten bilden die Ecken von ebenen Dreiecken, aus welchen die
kleinste Fläche bestehen soll und von deren Projection auf die Ebene der ξη die eine Hälfte
dieser Dreiecke in der Figur schraffirt sich zeigt.a

Karl Schellbach, Probleme der Variationsrechnung, 1852

Das wesentliche der neuen Methode besteht darin, dass nicht von den Differentialgleichun-
gen und Randbedingungen des Problems, sondern direkt vom Prinzip der kleinsten Wirkung
ausgegangen wird, aus welchem ja durch Variation jene Gleichungen und Bedingungen
gewonnen werden können.b

Walther Ritz, Theorie der Transversalschwingungen einer quadratischen Platte mit freien
Rändern, 1909

c

Boris Grigoryevich Galerkin, Rods and Plates. Series occurring in various questions con-
cerning the elastic equilibrium of rods and plates, 1915

Un intérêt immédiat de la formulation variationnelle est qu’elle a un sens si la solution u est
seulement une fonction de C1(Ω̄), contrairement à la formulation “classique” qui requiert
que u appartienne à C2(Ω̄). On pressent donc déjà qu’il est plus simple de résoudre [la
formulation variationnelle] que [la formulation classique], puisqu’on est moins exigeant
sur la régularité de la solution.d

Grégoire Allaire, Analyse numérique et optimisation, Éditions de l’École Polytechnique,
2005

aThe end points of the ordinates form corners of planar triangles, which rep-
resent the smallest areas, and the projection on the plane of the ξη of half of
these triangles is shown shaded; see Figure 5.1 (left).

bThe most important feature of the new method is that one does not start with
the differential equations and boundary conditions of the problem but rather the
principle of least action, from which by variation the differential equations and
boundary conditions can be obtained.

cAmong approximate solution methods, the method of Ritz has gained
widespread application in recent times. Briefly, this method consists of the fol-
lowing.

dAn immediate advantage of the variational formulation is that it makes sense
if the solution u is only a function in C1(Ω̄), in contrast to the classical formu-
lation, which requires that u be in C2(Ω̄). One can thus already foresee that it is
easier to solve the variational form compared to the classical one since it is less
demanding on the regularity of the solution.

113

114 Chapter 5. The Finite Element Method

Figure 5.1. Left: the two-dimensional triangular finite element space in Schellbach
1852. Right: finite element computation by Courant which he presented on May 3, 1941 in front
of the AMS during a meeting in Washington; see [8] for a published transcript. Reprinted with
permission from the American Mathematical Society.

The finite element method is the most flexible method for the numerical approxima-
tion of PDEs, and it is also the one with the most solid mathematical foundation since
it is directly based on the techniques of the calculus of variations. The essential ideas
go back to Walther Ritz [49], who was the first in 1908 to introduce the systematic use
of finite dimensional approximations of the function spaces in which the solution lives.
Ritz focused on the minimization formulation; see the quote above from 1909, where
the approximation idea is very natural: Instead of minimizing over all functions from
the entire infinite dimensional space, one just minimizes over a finite dimensional sub-
space. The approximate solution does not generally coincide with the global minimum,
but the approximation becomes better and better as the dimension of the approximation
space increases, provided that appropriate functions are chosen; see [49] and [50] for
eigenvalue problems, where Ritz uses his physical intuition to choose known eigenfunc-
tions of one-dimensional vibration problems to approximate two-dimensional vibration
problems. Galerkin then proposed to use the the same finite dimensional approach as
Ritz, but instead of going to the minimization formulation, he works directly on the
differential equation [20], using an approximation space spanned by sine and cosine
functions. Prior to the work of Galerkin, affine functions on a triangular mesh had al-
ready been proposed by Schellbach in 1852 to solve a specific minimization problem
in the context of minimal surface computations. By refining the mesh and passing to
the limit, he obtained the corresponding differential equation; see the quote above and
the left panel of Figure 5.1. In 1922, Hurwitz and Courant also used affine functions on
a triangular mesh in a footnote in [31] as a means to prove existence of a solution, but
this auxiliary construction disappeared already in the second edition. Courant, however,
then revived this approach as a fundamental solution procedure in a presentation in front
of the AMS in 1941, emphasizing that the main achievement was really due to Ritz and
giving a concrete practical example of how the method works on triangular meshes [8];
see also Figure 5.1 on the right.19 The name of the method appears for the first time in
the title of a proceedings paper by Clough [7], who reinvented the method with collab-
orators [62], without being aware of the earlier work in the mathematical community.
For more information about the historical development of the finite element method, see
[22] and the references therein.

19The square-shaped domain actually represents a cross section of a submarine, and by symmetry, only
1/8 of the domain needs to be computed (ABCD).

5.1. Strong Form, Weak or Variational Form, and Minimization 115

5.1 Strong Form, Weak or Variational Form, and
Minimization

The finite element method is based on the calculus of variations, which is best explained
with a simple example. Consider the Poisson equation in one spatial dimension,⎧⎨

⎩
−u′′ = f in Ω = (0, 1),
u(0) = 0,
u(1) = 0,

(5.1)

where f is a continuous and bounded function, and we thus search for a twice contin-
uously differentiable solution u. This formulation of the problem is called the strong
form of the problem.

In order to obtain a finite element discretization of (5.1), one does not work directly
with the strong form but rather a reformulation of the problem shown below.20 One
introduces a function space V , where we choose here21

V := {v : v continuous, v′ piecewise continuous and bounded in Ω, v(0) = v(1) = 0}.
(5.2)

If u is a solution of the strong form (5.1), then multiplying (5.1) by any function v ∈ V
and integrating over the domain Ω, we obtain from integration by parts

−
∫ 1

0

u′′(x)v(x)dx =
������
−u′(x)v(x)

∣∣∣∣1
0

+

∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx.

If we define the inner product

(u, v) :=

∫ 1

0

u(x)v(x)dx, (5.3)

we obtain the so-called weak form or variational form of the original problem (5.1).

Definition 5.1 (weak or variational form).

Find u ∈ V such that (u′, v′) = (f, v), ∀v ∈ V. (5.4)

We have already seen the idea of multiplying the equation by a function followed
by integration for spectral methods (see (4.6)), and Galerkin did indeed motivate this
approach first using a sine series in 1915; see [20, pp. 169–171].

Ritz started, however, in 1908 with a minimization problem [49]; see also the quote
at the beginning of the chapter, which is very natural from a physical point of view
and was also the starting point for the calculus of variations. The important physical
functional for our simple example (5.1) is

F (v) :=
1

2
(v′, v′)− (f, v), ∀v ∈ V. (5.5)

20Historically, in the calculus of variations by Euler and Lagrange, the strong form was obtained at the end,
so we are going backward here.

21We follow here at the beginning the simplified approach of Grégoire Allaire with this choice of V . To
use the powerful tools of analysis for variational formulations, V should be a Hilbert space, and we will later
use the more suitable choice V = H1

0 (Ω), which is defined in section 5.4.

116 Chapter 5. The Finite Element Method

To see why, let u be a solution of the variational form (5.4) of the original problem (5.1).
We then have for any function v ∈ V that

F (u + v) =
1

2
(u′ + v′, u′ + v′)− (f, u+ v)

=
1

2
(u′, u′)− (f, u) + (u′, v′)− (f, v)︸ ︷︷ ︸

=0,u solution of (5.4)

+
1

2
(v′, v′)︸ ︷︷ ︸
≥0

≥ 1

2
(u′, u′)− (f, u) = F (u).

Hence, if u is a solution of the variational form (5.4), it also minimizes the functional
F . We can therefore reformulate the problem also as a minimization problem.

Definition 5.2 (minimization problem).

Find u ∈ V such that F (u) is minimal. (5.6)

We have so far shown that if u is a solution of the strong form (5.1) of our problem,
then u is also a solution of the weak form (5.4) of our problem, and if u is a solution
of the weak form (5.4), then u is also solution of the minimization problem (5.6). We
now show that the converse is also true when u has sufficient regularity; this is how the
calculus of variations was developed. Suppose that u is a solution of the minimization
problem (5.6). This implies that

F (u) ≤ F (u+ εv) ∀v ∈ V because u+ εv ∈ V. (5.7)

We consider now the function F (u+εv) as a function22 of ε and expand the expression,

F (u+ εv) =
1

2
(u′ + εv′, u′ + εv′)− (f, u+ εv)

=
1

2
(u′, u′) + ε(u′, v′) +

ε2

2
(v′, v′)− (f, u)− ε(f, v).

Since F has a minimum at u, this function has a minimum at ε = 0, which implies
∂
∂εF (u+ εv)

∣∣
ε=0

= 0. We therefore obtain for all v ∈ V

∂

∂ε
F (u+ εv)

∣∣∣∣
ε=0

= (u′, v′)− (f, v) = 0 =⇒ (u′, v′) = (f, v), (5.8)

which shows that u is a solution of the weak form (5.4). Finally, let u be a solution
of the weak form (5.4), and assume in addition that u has a bit more regularity, e.g., if
u ∈ C2(Ω) ⊂ V . We then obtain from the weak form, using again integration by parts,
that

(u′, v′) = (f, v) ∀v ∈ V =⇒ −
∫ 1

0

vu′′ +
�
�
�

u′v
∣∣∣∣1
0

= (f, v),

or equivalently ∫ 1

0

(u′′ + f)vdx = 0 ∀v ∈ V.

22It took Euler 20 years to introduce this way of thinking to clearly explain the derivatives introduced by
Lagrange in the calculus of variations.

5.2. Discretization 117

We now show by contradiction that this implies the strong form of the problem,

u′′ + f = 0 on (0, 1).

Suppose u′′ + f �= 0: Then by continuity, there exists x ∈ (0, 1) such that u′′ + f �= 0
in a neighborhood of x. If we then choose a function v that has the same sign in this
neighborhood and is zero everywhere else, we obtain

∫ 1

0
(u′′ + f)vdx > 0, which is a

contradiction. Therefore, we must have that −u′′ = f and u is solution of the strong
form (5.1) of our problem. By showing these equivalences, we have traveled on the
“highway” of the calculus of variations (see also the quote of Ritz at the beginning of
this chapter) and obtained the following theorem.

Theorem 5.3 (equivalence of the strong, weak, and minimization forms). The strong
form of the problem (5.1) implies the weak or variational form (5.4), which in turn is
equivalent to the minimization (5.6). If, in addition, the solution is sufficiently regular
with u ∈ C2(Ω), then both the minimization (5.6) and the weak or variational forms
(5.4) imply the strong form (5.1).

5.2 Discretization
Following the idea of Ritz, we restrict ourselves to a finite dimensional subspace of V
to obtain a numerical method. We introduce the subspace Vh of V defined by

Vh := span{ϕ1, . . . , ϕn} ⊂ V, (5.9)

where ϕj , j = 1, . . . , n are a set of given functions. If we write the weak or variational
form using only functions from the approximate subspace Vh, we obtain the Galerkin
approximation.

Definition 5.4 (Galerkin approximation).

Find uh ∈ Vh such that (u′h, v
′
h) = (f, vh) ∀vh ∈ Vh. (5.10)

If we write uh as a linear combination of the functions in Vh,

uh =

n∑
j=1

ujϕj ,

requiring (5.10) be satisfied for all vh ∈ Vh is equivalent by linearity to requiring it to
be satisfied for all functions ϕi, i = 1, . . . , n. The Galerkin approximation (5.10) then
implies ⎛

⎝ n∑
j=1

ujϕ
′
j , ϕ

′
i

⎞
⎠ =

n∑
j=1

uj(ϕ
′
j , ϕ

′
i) = (f, ϕi),

and we recognize that this is just a linear system of equations,

Ku = f (5.11)

with the stiffness matrix
Kij := (ϕ′

i, ϕ
′
j) (5.12)

and fi := (f, ϕi).

118 Chapter 5. The Finite Element Method

0 = x0 x1 xi−1 xi xi+1 xn+1 = 1xn

x

ϕi

1

Figure 5.2. Hat function ϕi around the mesh point xi.

Instead of computing the integrals for fi or an approximation by quadrature, one
can also first approximate the function f as a linear combination of the functions ϕj

that span Vh,

f(x) ≈ f̃(x) :=
n∑

j=1

f̃jϕj(x) ∈ Vh.

Using f̃ instead of f in the Galerkin approximation (5.10), we obtain⎛
⎝ n∑

j=1

f̃jϕj , ϕi

⎞
⎠ =

n∑
j=1

f̃j(ϕj , ϕi) =:M f̃ ,

where we see a second matrix appear, the so-called mass matrix:

Mij = (ϕi, ϕj). (5.13)

In this case, the linear system obtained from the Galerkin approximation would be of
the form

Ku =M f̃ . (5.14)

Example 5.5. We introduce on the domain Ω = (0, 1) a mesh 0 = x0 < x1 < x2 <
· · · < xn+1 = 1 and let Vh be the space of piecewise linear hat functions ϕi (see Figure
5.2) such that

ϕ′
i =

⎧⎨
⎩

1
xi−xi−1

= 1
hi
, xi−1 < x < xi,

−1
xi+1−xi

= − 1
hi+1

, xi−1 < x < xi,

0 otherwise.

We can then easily compute the corresponding stiffness matrix K and mass matrix M
by evaluating the integrals (5.12) and (5.13),

Kij = (ϕ′
i, ϕ

′
j) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
hi
, j = i− 1,

1
hi

+ 1
hi+1

, j = i,

− 1
hi+1

, j = i+ 1,

0 otherwise,

Mij = (ϕi, ϕj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
6hi, j = i− 1,
1
3 (hi + hi+1), j = i,
1
6hi+1, j = i+ 1,
0 otherwise.

5.2. Discretization 119

If all the mesh cells have the same size, hi = h for all i, then

K =
1

h

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎦ , M =

h

6

⎡
⎢⎢⎢⎢⎢⎣
4 1
1 4 1

. . .
1 4 1

1 4

⎤
⎥⎥⎥⎥⎥⎦ ,

and we see that the stiffness matrix K we obtain corresponds to the same approxi-
mation finite differences would give us (see (2.5)), up to a factor of h, which we find,
however, in the mass matrix. It is thus important to realize that the discrete linear system
(5.11) or (5.14) obtained from a Galerkin approximation would need a division by h in
one spatial dimension to be interpreted directly as an approximation of the differential
equation.

Lemma 5.6. The stiffness matrix K and the mass matrixM are symmetric and positive
definite.

Proof. We start with the stiffness matrix K . From its definition, the symmetry follows
directly, Kij = (ϕ′

i, ϕ
′
j) = (ϕ′

j , ϕ
′
i) = Kji. To see that K is also positive definite, we

have to show for any vector u that uTKu ≥ 0, and equality with zero implies u = 0.
We compute

uTKu =
n∑

i=1

n∑
j=1

ui(ϕ
′
i, ϕ

′
j)uj =

⎛
⎝ n∑

i=1

uiϕ
′
i,

n∑
j=1

ujϕ
′
j

⎞
⎠ = (u′h, u

′
h) = ||u′h||2 ≥ 0

for the function uh(x) :=
∑n

j=1 ujϕj . Now if ||u′h|| = 0, then the derivative of uh
must vanish identically, u′h = 0, which means that uh(x) must be the constant function.
Since uh ∈ Vh, uh(0) = uh(1) = 0, which means that the constant function uh must
vanish identically, and hence K is indeed positive definite. The proof for the mass
matrix M is similar.

Instead of using the weak form (5.4), as Galerkin did in 1915, Ritz originally used
in 1908 the equivalent minimization problem (5.6) with functions only from the approx-
imate subspace Vh in (5.9). We then obtain the Ritz approximation.

Definition 5.7 (Ritz approximation).

Find uh ∈ Vh such that F (uh) from (5.5) is minimized. (5.15)

Writing uh again as a linear combination of the functions in Vh,

uh =
n∑

j=1

ujϕj ,

120 Chapter 5. The Finite Element Method

the minimization problem (5.15) turns into the finite dimensional minimization problem

F (uh) =
1

2
(u′h, u

′
h)− (f, uh) =

1

2

⎛
⎝ n∑

i=1

uiϕ
′
i,

n∑
j=1

ujϕ
′
j

⎞
⎠−

(
f,

n∑
i=1

uiϕi

)

=
1

2

n∑
i=1

n∑
j=1

ui(ϕ
′
i, ϕ

′
j)uj −

n∑
i=1

ui(f, ϕi) −→ min,

and we recognize that this is just a finite dimensional quadratic form to be minimized,

1

2
uTKu− uT f −→ min, (5.16)

with the same stiffness matrix and right-hand-side function as in the Galerkin formula-
tion, Kij := (ϕ′

i, ϕ
′
j) and fi := (f, ϕi).

A necessary condition for u to be a minimizer of the quadratic form in (5.16) is that
the derivative with respect to u must vanish,

∇u

(
1

2
uTKu− uT f

)
=

1

2
Ku+

1

2
KTu− f = Ku− f = 0, (5.17)

where we used the fact that K is symmetric; see Lemma 5.6. Hence, the necessary
condition for a minimum gives the same linear system as the Galerkin approximation,
Ku = f . To see why this condition is also sufficient, we compute the second derivative
by taking a derivative of (5.17), and we find for the Hessian the matrix K , which is
positive definite by Lemma 5.6. Solving the approximate minimization problem (5.16)
of Ritz is thus equivalent to solving the Galerkin approximation system Ku = f , which
illustrates the equivalence in Theorem 5.3 also at the discrete level. This approach of
finding an approximate solution is nowadays called the Ritz–Galerkin method.

5.3 More General Boundary Conditions
We had for simplicity assumed in our model problem (5.1) that the boundary conditions
are homogeneous Dirichlet conditions. We now consider a more general case with
inhomogeneous Dirichlet and Neumann boundary conditions, namely, the strong form⎧⎨

⎩
−u′′ = f in Ω = (0, 1),
u(0) = gL,
u′(1) = gR.

(5.18)

To find the variational formulation, we multiply again by a test function v and integrate
by parts,

−
∫ 1

0

u′′(x)v(x)dx = −u′(x)v(x)
∣∣∣∣1
0

+

∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx. (5.19)

Note that the Neumann condition gives the value of u′(1) = gR, and this value appears
in the variational formulation (5.19) from the boundary term after integrating by parts.
Thus, in order to keep this information in the variational formulation, one must not
impose v(1) = 0 in the test space; instead, the test function should only vanish at
x = 0, v(0) = 0, and the value v(1) should be left arbitrary, in contrast to (5.2). In
addition, we know that the solution satisfies u(0) = gL, so the set of trial functions in
which the solution is sought needs to enforce this explicitly. If we denote by H1(Ω)
the space of trial functions with no constraints on boundary values,23 then the weak

23This space will be defined precisely in section 5.4.

5.4. Sobolev Spaces 121

0 = x0 x1 xi xn+1 = 1xn

x

ϕ0 ϕn+1

1

Figure 5.3. Hat functions ϕ0 and ϕn+1 to include inhomogeneous Dirichlet and Neu-
mann boundary conditions in the finite element formulation.

or variational form in the case of inhomogeneous boundary conditions and Neumann
conditions can be written in inner product notation as

find u ∈ {H1(Ω), u(0) = gL} such that
(u′, v′) = (f, v) + v(1)gR ∀v ∈ {H1(Ω), v(0) = 0}. (5.20)

This shows why the Dirichlet condition is called an essential boundary condition in
the finite element community: It has to be imposed explicitly, with the corresponding
boundary value in the set of trial functions and with value equal to zero in the set of test
functions. The Neumann condition, on the other hand, is automatically included in the
variational form and is thus called a natural boundary condition in the finite element
community.

Example 5.8. If we use again the hat functions from Example 5.5 to approximate
the weak formulation (5.20) with inhomogeneous Dirichlet conditions together with
boundary conditions of Neumann type, the approximate solution we seek would be of
the form

uh = uLϕ0 +

n+1∑
j=1

αjϕj ,

where ϕ0 is the piecewise linear function equal to 1 at x = 0 and 0 at all the other mesh
points and ϕn+1 is the additional half-hat function needed for the Neumann condition
at x = 1; see Figure 5.3. The associated linear system would become

Ku = f +

⎛
⎝−uL(ϕ′

0, ϕ
′
1)

0
gR

⎞
⎠ ,

where the stiffness matrix K is now of size (n+1)× (n+1), one bigger than with the
Dirichlet condition on the right.

5.4 Sobolev Spaces
Before analyzing the method and considering its generalizations, we need to introduce
Sobolev spaces, which underpin much of the theory of elliptic PDEs and finite element
methods. The interested reader should refer to [16] for a detailed discussion of such
spaces.

122 Chapter 5. The Finite Element Method

Definition 5.9. Let Ω be an open, bounded, simply connected subset of Rd (d ≥ 1). The
space L2(Ω) consists of the set of Lebesgue measurable functions u : Ω → R whose
L2-norm ‖u‖L2(Ω) is bounded, i.e.,

‖u‖L2(Ω) :=

(∫
Ω

|u(x)|2 dx
)1/2

<∞.

Next, we introduce the notion of weak derivatives. Let ϕ be a test function, i.e.,
an infinitely differentiable function whose support is contained in a compact subset of
Ω. Then whenever u is continuously differentiable, we have the integration by parts
formula ∫

Ω

∂u

∂xi
ϕdx = −

∫
Ω

u
∂ϕ

∂xi
dx, i = 1, . . . , d.

Note that the boundary terms that usually arise from integration by parts vanish because
ϕ = 0 on ∂Ω.

In the case where u may not be differentiable, we say that a measurable function v
is the weak partial derivative of u with respect to xi if we have, for all test functions ϕ,∫

Ω

vϕ dx = −
∫
Ω

u
∂ϕ

∂xi
dx.

This can be generalized for higher-order derivatives: for a multi-indexα = (α1, . . . , αd),
the weak αth partial derivative of u exists if there is a function v such that∫

Ω

vϕ dx = (−1)|α|
∫
Ω

u
∂|α|ϕ

∂xα1
1 · · ·∂xαd

d

dx

for all test functions ϕ, where |α| = α1 + · · ·+ αd. In this case, we write v = Dαu.

Definition 5.10. Let k > 0 be an integer. Then the Sobolev space Hk(Ω) consists of all
functions u ∈ L2(Ω) such that for all |α| ≤ k, Dαu exists and is in L2(Ω).

Example 5.11. Let Ω = (0, 1) ⊂ R. If u is a continuous, piecewise linear function,
then u ∈ L2(Ω), and u′ is a piecewise constant function that is also in L2(Ω). Thus,
u ∈ H1(Ω). This shows that the space Vh defined in (5.9) is in fact a subspace of
H1(Ω).

Remark 5.1. If Ω is an open interval in one dimension and u ∈ H1(Ω), one can
show that u is absolutely continuous and differentiable almost everywhere in Ω, and its
weak derivative coincides with its derivative in the classical sense. However, in higher
dimensions, functions in H1 need not even be continuous, and the classical and weak
derivatives do not necessarily coincide.

Next, we define the subspace Hk
0 (Ω), which is useful when dealing with Dirichlet

boundary conditions.

Definition 5.12. Let C∞
c (Ω) be the set of infinitely differentiable functions whose sup-

port is a compact subset of Ω. We define the subspace Hk
0 (Ω) to be the closure of

C∞
c (Ω) in Hk(Ω), so that f ∈ Hk

0 (Ω) if and only if there is a sequence (fk)
∞
k=1,

fk ∈ C∞
c (Ω), such that ‖fk − f‖Hk(Ω) → 0 as k → ∞.

5.4. Sobolev Spaces 123

Roughly speaking, Hk
0 (Ω) consists of functions in Hk(Ω) for which “Dαu = 0 on

∂Ω” for all |α| ≤ k − 1. The reason we cannot use this as the definition is because u
is not even continuous in general, so we cannot speak of the value of Dαu at a bound-
ary point for a general function u ∈ Hk(Ω). To get around this problem, we instead
consider the set of all functions inHk(Ω) that are “well approximated” by smooth func-
tions that vanish on the boundary, i.e., the set of all functions in Hk(Ω) that are limits
of sequences in C∞

c (Ω). This set is naturally closed and is the smallest closed subset of
Hk(Ω) that containsC∞

c (Ω), which is why it is called the closure ofC∞
c (Ω) inHk(Ω).

For second-order PDEs, the most commonly used spaces are L2(Ω), H1(Ω), and
H1

0 (Ω). It can be shown that they are Hilbert spaces (i.e., complete inner product
spaces) when equipped with the inner products24

(u, v)L2(Ω) =

∫
Ω

u(x)v(x) dx, (u, v)H1(Ω) =

∫
Ω

(u(x)v(x)+∇u(x)·∇v(x)) dx,

with the latter being valid for both H1(Ω) and H1
0 (Ω). Moreover, this inner product

induces the following norm on H1(Ω) and H1
0 (Ω):

‖u‖H1(Ω) :=

(∫
Ω

u2(x) + |∇u(x)|2 dx
)1/2

.

For H1
0 (Ω), it turns out one can use a different norm ‖ · ‖a, defined using only the

gradient:

‖u‖a :=

(∫
Ω

|∇u(x)|2 dx
)1/2

.

In fact, the two norms are equivalent in the sense that there exist positive constants c
and C such that

c‖u‖H1(Ω) ≤ ‖u‖a ≤ C‖u‖H1(Ω) ∀u ∈ H1
0 (Ω).

This result is a consequence of the very important Poincaré inequality, which we state
below.

Theorem 5.13 (Poincaré inequality). Suppose Ω is a bounded, open subset of Rd.
Then there exists a constant C, depending only on Ω, such that

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) ∀u ∈ H1
0 (Ω). (5.21)

Note that the requirement u ∈ H1
0 (Ω) is essential; an inequality such as (5.21)

cannot hold for generalH1 functions since we can simply take as a counterexample the
constant function u ≡ 1, whose L2 norm is nonzero, but ∇u = 0 identically. To avoid
this complication, we need to consider functions of zero mean, i.e.,H1 functions v such
that

∫
Ω
v = 0. If we assume in addition that Ω has a smooth (at least C1) boundary,

then for an arbitrary u ∈ H1(Ω) we have

‖u− ū‖L2(Ω) ≤ C‖∇u‖L2(Ω), (5.22)

where ū = 1
|Ω|
∫
Ω
u(x) dx is the mean value of u in the domain Ω, so that u − ū has

zero mean. The proof of (5.21) and (5.22) can be found in [2]. Instead of proving

24From now on, we will make no the distinction between classical and weak gradients, as we will only
work with functions for which the two concepts coincide.

124 Chapter 5. The Finite Element Method

Theorem 5.13 in its generality, we illustrate it by deriving an estimate in the one-
dimensional case when Ω is an interval of length H , which we can take to be (0, H)
without loss of generality. Since u ∈ H1

0 (Ω), we must have u(0) = 0, so that
u(x) =

∫ x

0
u′(ξ) dξ for all x ∈ Ω. Using the Cauchy–Schwarz inequality, we obtain

|u(x)|2 =

∣∣∣∣
∫ x

0

1 · u′(ξ) dξ
∣∣∣∣2 ≤

∣∣∣∣
∫ x

0

1 dξ

∣∣∣∣
∫ x

0

|u′(ξ)|2 dξ ≤ x

∫ H

0

|u′(ξ)|2 dξ.

Integrating again with respect to x yields∫ H

0

|u(x)|2 dx ≤ H2

2

∫ H

0

|u′(ξ)|2 dξ, (5.23)

so (5.21) is satisfied with C = H/
√
2.

We have seen in section 5.2 that the discrete Galerkin problem (5.10) has a unique
solution because the stiffness matrixK is symmetric and positive definite; i.e., we have
uTKu > 0 whenever u �= 0. In the continuous setting, we need a similar property to
ensure that the weak form (5.4) has a unique solution.

Definition 5.14. Let a(·, ·) be a bilinear form on a Hilbert space H, i.e., a mapping of
the form H×H → R such that a(λu + μv,w) = λa(u,w) + μa(v, w) and a(u, λv +
μw) = λa(u, v) + μa(u,w) for all u, v, w ∈ H, λ, μ ∈ R. Then

1. a(·, ·) is bounded if there exists a constant α > 0 such that

a(u, v) ≤ α‖u‖ ‖v‖ ∀u, v ∈ H;

2. a(·, ·) is coercive if there exists a constant β > 0 such that

a(u, u) ≥ β‖u‖2 ∀u ∈ H.

Note that a(·, ·) need not be symmetric; i.e., we may have a(u, v) �= a(v, u). The
following theorem is central to the proof of existence and uniqueness of solutions.

Theorem 5.15 (Lax–Milgram). Let a(·, ·) be a bounded, coercive bilinear form and
� : H → R be a bounded linear functional. Then there exists a unique element u ∈ H
such that

a(u, v) = �(v) ∀v ∈ H.

For a proof of this theorem, see [16]. We now illustrate the power of this theorem
by proving that the weak form (5.4) of our model problem has a unique solution.

Theorem 5.16. Let f ∈ L2(0, 1). Then there exists a unique function u ∈ H1
0 (0, 1)

such that
(u′, v′) = (f, v) ∀v ∈ H1

0 (0, 1).

Proof. Let a(u, v) = (u′, v′) and �(v) = (f, v). Then a(·, ·) is bounded since

a(u, v) =

∫ 1

0

u′(x)v′(x) dx ≤
(∫ 1

0

|u′(x)|2 dx
)1/2(∫ 1

0

|v′(x)|2 dx
)1/2

≤ ‖u‖H1(0,1) ‖v‖H1(0,1) <∞

5.5. Convergence Analysis 125

since u, v ∈ H1(0, 1). Moreover, by the Poincaré inequality (5.23), we have ‖u‖L2(0,1) ≤
1√
2
‖u′‖L2(0,1) for all u ∈ H1

0 (0, 1), so that

‖u‖2H1(0,1) = ‖u‖2L2(0,1) + ‖u′‖2L2(0,1) ≤
3

2
a(u, u).

Thus, a(·, ·) is coercive with constant β = 2
3 . Finally, the linear functional �(v) :=

(f, v) is bounded since the Cauchy–Schwarz inequality implies that

|�(v)| = |(f, v)| ≤ ‖f‖L2(0,1)‖v‖L2(0,1),

so the functional is bounded with constant ‖f‖L2(0,1). Thus, the Lax–Milgram theorem
implies that the problem (5.4) has a unique solution u ∈ H1

0 (0, 1), as required.

Remark 5.2. Note that a(·, ·) is only coercive in H1
0 (Ω) but not in H1(Ω) since

a(u, u) = 0 for any constant function u �= 0. Thus, the existence and uniqueness
result does not hold if we let V = H1(Ω) instead of V = H1

0 (Ω). Indeed, if we have
homogeneous Neumann boundary conditions at both x = 0 and x = 1, then a solu-
tion only exists if

∫ 1

0
f(x) dx = 0, and it is not unique because one can always add an

arbitrary constant to obtain another solution; see also Remark 4.1 in Chapter 4.

5.5 Convergence Analysis
We now present a convergence analysis of the finite element method for a one-dimensional
model problem, { −u′′ + u = f on Ω = (0, 1),

u(0) = u(1) = 0.
(5.24)

The one-dimensional setting allows us to present all the important ingredients without
resorting to overly technical calculations. A similar proof can be derived in higher
dimensions, but the required estimates become more involved; see [2].

The weak form of (5.24) can be written as

find u ∈ V such that a(u, v) = (f, v) ∀v ∈ V, (5.25)

where (·, ·) = (·, ·)L2 and the bilinear form a(u, v) is obtained through integration by
parts,

a(u, v) =

∫ 1

0

(u(x)v(x) + u′(x)v′(x)) dx.

Note that a(u, v) coincides with (u, v)H1 in this case;25 if u, v ∈ H1
0 (0, 1), then

(u, v)H1 ≤ ‖u‖H1‖v‖H1 <∞.

Thus, H1
0 (0, 1) is the largest space in which the variational formulation make sense, so

an appropriate choice for the test function space V is V = H1
0 (0, 1).

In order to obtain a finite element method, we divide Ω = (0, 1) into subintervals
x0 = 0, x1, . . . , xN = 1, and choose for the test function space Vh the space of continu-
ous, piecewise linear function which vanish on the boundary. This leads to the Galerkin
approximation

find uh ∈ Vh such that a(uh, vh) = (f, vh) ∀vh ∈ Vh. (5.26)

25Since we always have Ω = (0, 1) in this section, we will omit the domain (0, 1) in the subscripts and
abbreviate (·, ·)H1(0,1) as (·, ·)H1 , etc.

126 Chapter 5. The Finite Element Method

Since Vh is a subspace of V , the boundedness and coercivity conditions on a(·, ·) hold
trivially in Vh, so the Lax–Milgram theorem (Theorem 5.15) ensures the existence and
uniqueness of the discrete solution uh of (5.26). We would like to analyze the conver-
gence of uh to the continuous solution u as h→ 0, i.e., as the mesh is refined.

The convergence analysis of a finite element method generally consists of the fol-
lowing three steps:

1. a best approximation result (Céa’s lemma);

2. an interpolation estimate;

3. a duality argument (the Aubin–Nitsche trick).

We now show in detail these three mathematical results for our model problem.

Lemma 5.17 (Céa’s lemma). Let u be the weak solution and uh the solution of the
Galerkin approximation. Then the approximation uh is optimal in the H1 norm,

‖u− uh‖H1 ≤ ‖u− wh‖H1 ∀wh ∈ Vh. (5.27)

Proof. The inequality is obviously true if u = uh, so we only consider the case where
u �= uh. Since Vh ⊂ V = H1

0 , we obtain from (5.25)

a(u, vh) = (f, vh) ∀vh ∈ Vh,

and the Galerkin approximation gives

a(uh, vh) = (f, vh) ∀vh ∈ Vh.

Taking the difference of these two equations yields

a(u− uh, vh) = 0 ∀vh ∈ Vh.

But a(·, ·) coincides with the H1 inner product, so we have shown that the error u− uh
is orthogonal to Vh in this inner product. In particular, since uh − wh ∈ Vh whenever
wh ∈ Vh, we have (u − uh, uh − wh) = 0 for all wh ∈ Vh. Hence, for any wh ∈ Vh,
we have

‖u− uh‖2H1 = (u − uh, u− uh)H1

= (u − uh, u− wh)H1 − (u− uh, uh − wh)H1

= (u − uh, u− wh)H1

≤ ‖u− uh‖H1‖u− wh‖H1 ,

where we used the Cauchy–Schwarz inequality in the last step. Dividing both sides
by ‖u − uh‖H1 (which is nonzero by our assumption that u �= uh), we obtain (5.27).

Remark 5.3. For a general bilinear form a(·, ·) that does not coincide with the H1

inner product, a similar argument can be used to show that

‖u− uh‖H1 ≤ α

β
‖u− wh‖H1 ,

where the constants α and β are as in Definition 5.14.

5.5. Convergence Analysis 127

Next, we turn our attention to the interpolation estimate. The key result is that the
error between a function u and its piecewise linear interpolant uI depends on the mesh
size h and the second derivative ‖u′′‖L2 . However, we first need to show that u′′ exists
almost everywhere, which is not obvious because the Lax–Milgram theorem only tells
us that u ∈ H1

0 (Ω). The following lemma shows this.

Lemma 5.18 (higher regularity). Let u be the weak solution of −u′′ + u = f on
Ω = (0, 1), u(0) = u(1) = 0 with f continuous. Then u′ is differentiable almost
everywhere, and u′′ = u− f almost everywhere.

Proof. Let w = u − f , which is continuous because f is continuous by assumption
and u ∈ H1

0 (Ω) is absolutely continuous (see Remark 5.1). Then for all test functions
ϕ ∈ C∞

c (Ω), we have

(w,ϕ) = (u, ϕ)− (f, ϕ) = (u, ϕ)− a(u, ϕ) = −(u′, ϕ′).

Thus, w is the weak derivative of u′, so u′ ∈ H1(Ω). Referring again to Remark 5.1,
we see that u′ is differentiable almost everywhere in Ω, with its derivative given almost
everywhere by the continuous function u′′ = w = u− f .

Remark 5.4. The above argument uses the fact that Ω is one-dimensional in a very
essential way. The proof in higher dimensions is much more involved; see [2].

From now on, we identify u′′ with its continuous version. Next, we prove the inter-
polation estimate.

Lemma 5.19 (interpolation estimate). Let u be the weak solution of −u′′ + u = f
on Ω = (0, 1), u(0) = u(1) = 0 with f continuous. If uI is the piecewise linear
interpolant of u on the grid {xj}Nj=0 with h = max |xj − xj−1|, then there exists a
constant C > 0 independent of h and f such that

‖u− uI‖H1 ≤ Ch‖f‖L2.

Proof. Assume again that u �= uh; otherwise, there is nothing to prove. By definition,
we have

‖u− uh‖2H1(0,1) =

∫ 1

0

|u′(x)− u′I(x)|2 dx+

∫ 1

0

|u(x)− uI(x)|2 dx. (5.28)

We first bound the derivative term. We have∫ 1

0

|u′(x)− u′I(x)|2 dx =

N∑
i=1

∫ xi

xi−1

|u′(x) − u′I(x)|2 dx.

Since the integrand of each term is differentiable, we can integrate by parts to get∫ xi

xi−1

|u′(x) − u′I(x)|2 dx = (u− uI)(u
′ − u′I)|xi

xi−1

−
∫ xi

xi−1

(u(x)− uI(x))(u
′′(x) − u′′I (x)) dx.

128 Chapter 5. The Finite Element Method

The boundary terms vanish because u and uI coincide there. We also see that u′′I = 0
because uI is linear on [xi−1, xi]. Thus, we are left with∫ xi

xi−1

|u′(x) − u′I(x)|2 dx = −
∫ xi

xi−1

(u(x)− uI(x))u
′′(x) dx.

Summing over all i gives

‖u′ − u′I‖2L2 = −
∫ 1

0

(u(x)− uI(x))u
′′(x) dx,

to which we can apply the Cauchy–Schwarz inequality to obtain

‖u′ − u′I‖2L2 ≤ ‖u− uI‖L2‖u′′‖L2 . (5.29)

Next, we estimate the L2 norm of u−uI . Since u−uI is inH1 and vanishes at xi−1 and
xi, we can use the one-dimensional version of the Poincaré inequality (5.23) to deduce∫ xi

xi−1

|u(x)− uI(x)|2 dx ≤ h2

2

∫ xi

xi−1

|u′(x)− u′I(x)|2 dx.

We now sum over all intervals to obtain

‖u− uI‖2L2 ≤ h2

2
‖u′ − u′I‖2L2 . (5.30)

Combining (5.29) and (5.30), we get

‖u− uI‖2L2 ≤ h2

2
‖u′ − u′I‖2L2 ≤ h2

2
‖u− uI‖L2‖u′′‖L2.

Dividing both sides by ‖u − uI‖L2(0,1), which is again nonzero by assumption, gives
the interpolation estimate

‖u− uI‖L2 ≤ h2

2
‖u′′‖L2 . (5.31)

By reintroducing (5.31) into (5.29), we get

‖u′ − u′I‖2L2 ≤ h2

2
‖u′′‖2L2 . (5.32)

Thus, the definition of the H1 norm gives

‖u− uI‖2H1 = ‖u′ − u′I‖2L2 + ‖u− uI‖2L2

≤
(
h4

4
+
h2

2

)
‖u′′‖2L2 ≤ Ch2‖u′′‖2L2 . (5.33)

Now using the fact that∫ 1

0

f2 =

∫ 1

0

(−u′′ + u)2 = ‖u′′‖2L2 + ‖u‖2L2 − 2

∫ 1

0

u′′u

= ‖u′′‖2L2 + ‖u‖2L2 + 2‖u′‖2L2 , (5.34)

we conclude that ‖u′′‖L2 ≤ ‖f‖L2, and the result follows from (5.33).

5.6. Generalization to Two Dimensions 129

Finally, we prove the convergence estimate using a duality argument due to Aubin
and Nitsche.

Lemma 5.20 (Aubin–Nitsche). Let u be the solution of the variational formulation and
uh the solution of the Galerkin approximation. Then

‖u− uh‖L2 ≤ Ch2‖f‖L2. (5.35)

Proof. Assume again that u �= uh. Let ϕ be the solution of the auxiliary problem
−ϕ′′ + ϕ = u − uh, ϕ(0) = ϕ(1) = 0, which has the error on the right-hand side.
Since u− uh is continuous, the auxiliary problem has the same structure as the original
problem, so we can mimic the calculation in (5.34) to obtain∫ 1

0

(−ϕ′′ + ϕ)2dx =

∫ 1

0

(ϕ′′)2 − 2ϕ′′ϕ+ ϕ

= ‖ϕ′′‖2L2 + 2‖ϕ′‖2L2 + ‖ϕ‖2L2 = ‖u− uh‖2L2 ,

which leads to the estimate

‖ϕ′′‖2L2 ≤ ‖u− uh‖2L2. (5.36)

Now the variational formulation of the auxiliary problem is

find ϕ ∈ H1
0 (Ω) such that a(ϕ, v) = (u − uh, v) ∀v ∈ H1

0 (Ω).

Choosing for the test function v = u− uh, we get

‖u− uh‖2L2 = a(ϕ, u− uh) = a(ϕ, u − uh)− a(ϕI , u− uh) = a(ϕ− ϕI , u− uh),

where we used Lemma 5.17. We can now use the Cauchy–Schwarz inequality and
(5.36) to obtain

‖u− uh‖2L2 ≤ ‖ϕ− ϕI‖H1‖u− uh‖H1

≤ C1h‖ϕ′′‖L2 · C2h‖f‖L2 ≤ Ch2‖u− uh‖L2‖f‖L2,

which leads after division by ‖u− uh‖L2 to the result announced in (5.35).

5.6 Generalization to Two Dimensions
We now show how the hat function approximation can be generalized to higher spatial
dimensions and consider the two-dimensional model problem in the strong form{

ηu −Δu = f in a polygon Ω ⊂ R
2, η ≥ 0,

u = 0 on ∂Ω.
(5.37)

As in one spatial dimension, we multiply by a test function v and integrate over the
domain to find∫

Ω

(ηuv −Δuv)dx = −
∫
∂Ω

∂u

∂n
vds+

∫
Ω

(ηuv +∇u · ∇v)dx =

∫
Ω

fvdx.

130 Chapter 5. The Finite Element Method

Defining the bilinear forms

a(u, v) :=

∫
Ω

(ηuv +∇u · ∇v)dx, (u, v) :=

∫
Ω

uvdx, (5.38)

we see that a natural choice for the function space to search for a weak solution is
V := H1

0 (Ω) since it is the largest space in which the above integrals are well defined.
Thus, the weak or variational form is

find u ∈ H1
0 (Ω) such that a(u, v) = (f, v) ∀v ∈ H1

0 . (5.39)

By the Lax–Milgram theorem, the above problem has a unique solution. Proceeding
as in the one-dimensional case, we see that (5.39) is equivalent to the minimization
formulation

find u ∈ H1
0 (Ω) such that F (u) := 1

2a(u, u)− (f, u) is minimized. (5.40)

A Ritz–Galerkin approximation is obtained when one replaces the infinite dimen-
sional function space H1

0 (Ω) by an approximation Vh; thus, we have the Galerkin ap-
proximation

find uh ∈ Vh such that a(uh, vh) = (f, vh) ∀vh ∈ Vh (5.41)

and the Ritz approximation

find uh ∈ Vh such that 1
2a(uh, uh)− (f, uh) is minimized, (5.42)

which are also equivalent.
For a typical finite element approximation, one often uses a triangulation of the

domain Ω, as we have seen already in the historical examples in Figure 5.1.26 One then
defines the approximation subspace Vh by

Vh = span{ϕ1, . . . , ϕn},

where every ϕj is a hat function; i.e., ϕj is an affine function on each triangle, and

ϕj =

{
1 at xj ,
0 at xi �= xj ;

see Figure 5.4 for an example. One thus needs a mesh generator to be able to do fi-
nite element computations in two space dimensions. A very simple procedure using
MATLAB to create some initial meshes is NewMesh:

function [N,T,P]=NewMesh(G);
% NEWMESH generates a simple new mesh for predefined domains
% [N,T,P]=NewMesh(G); generates an initial coarse triangular
% mesh. Use G=0 for the default square, G=1 for a triangle, G=2 for
% a space shuttle and G=3 for an empty micro wave oven, and G=4 for a
% chicken in a micro wave oven. The result is a table of triangles T
% which points into a table of nodes N containing x and y
% coordinates. The triangle contains in entries 4 to 6 a 1 if its
% corresponding edges are real boundaries. P can contain for each
% triangle a material property.

26Courant 1941: “Instead of starting with a quadratic or rectangular net we may consider from the outset
any polyhedral surfaces with edges over an arbitrarily chosen (preferably triangular) net.”

5.6. Generalization to Two Dimensions 131

x

y

u
ϕi

ϕj

ϕk

Figure 5.4. Examples of hat functions in two dimensions.

P=[]; % default no material
if G==1, % triangle
N=[0 0; 1 0; 0.5 1];
T=[1 2 3 1 1 1];

elseif G==2 % space shuttle
N=[0.07 0; 1 0; 1 0.4; 0.8 0.23; 0.25 0.23; 0.15 0.16; 0.07 0.15; 0 0.1
0 0.05; 0.93 0.4; 0.5 0; 1 0.1; 1 0.15; 1.12 0.08; 1.12 0.17; 0.15 0
0.07 0.07; 0.8 0; 0.25 0; 0.9 0.1];

T=[1 17 9 0 0 1; 9 17 8 0 0 1; 8 17 7 0 0 1; 1 16 17 1 0 0; 17 6 7 0 1 0
16 6 17 0 0 0; 16 19 6 1 0 0; 19 5 6 0 1 0; 19 11 5 1 0 0; 5 11 4 0 0 1
11 18 4 1 0 0; 18 20 4 0 0 0; 18 2 20 1 0 0; 2 12 20 1 0 0
20 12 13 0 0 0; 20 13 4 0 0 0; 4 13 10 0 0 1; 10 13 3 0 1 1;
12 14 13 1 0 0; 14 15 13 1 1 0];

elseif G==3 % empty microwave
N=[0 0; 5 0; 0 3; 5 3];
T=[1 2 4 1 1 0; 1 4 3 0 1 1];
P=ones(1,2);

elseif G==4 % chicken in a microwave
N=[0.8 0.9; 1.4 0.4; 2 0.3; 3 0.3; 3.5 0.4 % inside
4 1 ; 3.5 1.6; 3 2 ; 2.5 2.2; 2 2.4
1.4 2.4; 1 2 ; 0.5 2 ; 0.3 2.2; 0.2 1.9
0.3 1.6; 0.5 1.8; 1 1.8; 1.3 1.4; 1.5 1.8
2 2 ; 1.5 1 ; 2 1 ; 3 1 ; 3.5 1
0 0 ; 1 0 ; 2 0 ; 3 0 ; 4 0 % outside
5 0 ; 5 3 ; 4 3 ; 2.5 3 ; 1.5 3
0.8 3 ; 0 3 ; 0 1.9; 0 1 ; 5 1.5];

T=[13 14 15 0 0 0; 15 16 17 0 0 0; 15 17 13 0 0 0; 17 12 13 0 0 0
17 18 12 0 0 0; 18 20 12 0 0 0; 18 19 20 0 0 0; 12 20 11 0 0 0
20 21 11 0 0 0; 21 10 11 0 0 0; 21 9 10 0 0 0; 1 22 19 0 0 0
22 20 19 0 0 0; 22 23 20 0 0 0; 2 22 1 0 0 0; 2 23 22 0 0 0
20 23 21 0 0 0; 23 9 21 0 0 0; 2 3 23 0 0 0; 3 24 23 0 0 0
23 24 9 0 0 0; 3 4 24 0 0 0; 24 8 9 0 0 0; 24 7 8 0 0 0
24 25 7 0 0 0; 24 5 25 0 0 0; 4 5 24 0 0 0; 5 6 25 0 0 0
6 7 25 0 0 0; 26 27 1 1 0 0; 27 2 1 0 0 0; 27 28 2 1 0 0
28 3 2 0 0 0; 28 29 3 1 0 0; 29 4 3 0 0 0; 29 30 4 1 0 0
30 5 4 0 0 0; 30 6 5 0 0 0; 30 31 6 1 0 0; 31 40 6 1 0 0
32 33 40 1 0 1; 33 7 6 0 0 0; 33 8 7 0 0 0; 33 34 8 1 0 0
34 9 8 0 0 0; 34 10 9 0 0 0; 34 35 10 1 0 0; 35 11 10 0 0 0
35 36 11 1 0 0; 36 12 11 0 0 0; 36 13 12 0 0 0; 36 14 13 0 0 0
36 37 14 1 0 0; 37 38 14 1 0 0; 38 15 14 0 0 0; 38 16 15 0 0 0
38 39 16 1 0 0; 39 1 16 0 0 0; 1 17 16 0 0 0; 1 18 17 0 0 0
1 19 18 0 0 0; 39 26 1 1 0 0; 40 33 6 0 0 0];

P=[5*ones(1,29) ones(1,34)];

132 Chapter 5. The Finite Element Method

else % default square
N=[0 0; 1 0; 0 1; 1 1];
T=[1 2 4 1 1 0; 1 4 3 0 1 1];

end;

This code produces a few domains with initial triangulations, and it is very easy to
add further domains. For example, for the default square (see Figure 5.5, top left), we
obtain the two matrices

N =

⎛
⎜⎜⎝

0 0
1 0
0 1
1 1

⎞
⎟⎟⎠ , T =

(
1 2 4 1 1 0
1 4 3 0 1 1

)
.

N indicates that there are four nodes (xj , yj), j = 1, 2, 3, 4 in this mesh, namely, (0, 0),
(0, 1), (1, 0), (1, 1), and the mesh contains two triangles as indicated in T , one con-
sisting of the nodes 1, 2, and 4 in counterclockwise order and the other one consisting
of the nodes 1, 4, and 3, also in counterclockwise order—a consistent ordering is im-
portant later when computing on the triangles. The remaining three entries in each
triangle indicate which sides of the triangle represent a real boundary of the domain;
e.g., 1, 2, 4, 1, 1, 0 for the first triangle means that the edge linking nodes 1 and 2 is a
boundary, indicated by the first 1, and the edge linking nodes 2 and 4 is also a boundary,
indicated by the second 1, but the edge linking node 4 to node 1 is an interior edge,
indicated by the last 0. Optionally, one may specify in the matrix P a coefficient that is
piecewise constant on each triangle; see G=3 and G=4 in the code above. Such a coeffi-
cient often represents a physical property that appears in the PDE and can be taken into
account later by the finite element code. The resulting initial mesh can be visualized
using the function PlotMesh:

function PlotMesh(N,T,P);
% PLOTMESH plots a triangular mesh
% PlotMesh(N,T,P); plots the mesh given by the nodes N and triangles
% T. The real boundaries are drawn in bold and for small meshes
% the node numbers are added as well. If P is given as an input argument,
% P contains an element by element physical property

clf; axis(’equal’);
if nargin==3 & ~isempty(P), % display material property
for i=1:size(T,1),
patch(N(T(i,1:3),1),N(T(i,1:3),2),P(i));

end
end
for i=1:size(T,1), % plot mesh
for j=1:3,
line([N(T(i,j),1) N(T(i,mod(j,3)+1),1)], ...
[N(T(i,j),2) N(T(i,mod(j,3)+1),2)],’LineWidth’,T(i,j+3)*3+1);

end
end
m=size(N,1);
if m<100, % dislay mesh nodes for
for i=1:m, % small meshes
text(N(i,1)+.01,N(i,2)+.02,num2str(i));

end
end

5.6. Generalization to Two Dimensions 133

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2

3 4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2

3

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2

3

45

67

8

9

10

11

12

13

14

15

16

17

1819

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

1 2

3 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

1

2
3 4

5

6

7

8

9

1011

1213

14

15

16

17 18

19

20

21

22 23 24 25

26 27 28 29 30 31

323334353637

38

39

40

Figure 5.5. Five initial meshes one can produce using NewMesh.

We show in Figure 5.5 the five initial meshes one can generate with NewMesh using
the MATLAB commands

for i=0:3
[N,T]=NewMesh(i);
PlotMesh(N,T);

end
[N,T,P]=NewMesh(4);
PlotMesh(N,T,P);

134 Chapter 5. The Finite Element Method

For the last mesh, we also plot the material property using different colors for dif-
ferent values. Once we have an initial mesh, we would often want to refine it to obtain
more triangles, which are required for a more accurate result. For meshes generated with
NewMesh, this can be achieved using the following MATLAB routine RefineMesh:

function [Nr,Tr,Pr]=RefineMesh(N,T,P);
% REFINEMESH refines the mesh by a factor of 4
% [Nr,Tr,Pr]=RefineMesh(N,T,P); refines the mesh given by the nodes N and
% the triangles T and physical property P on each triangle by cutting each
% triangle into four smaller ones. The boundary is traced so that the new
% triangles still contain the information that they are touching the
% boundary.

Nr=N; % new node list starts with old one
nn=size(N,1);
Tr=zeros(size(T,1)*4,6); % triangles start from scratch
nt=0;
if nargin==3
Pr=zeros(1,length(P)*4);

else
Pr=[];

end;
NewNid=sparse(nn,nn);
Nid=[1 2;1 3;2 3];
for j=1:size(T,1), % quadrisect all old triangles
i=T(j,1:3); n=N(i,:); % old nodes of current triangle
for k=1:3
i1=Nid(k,1);i2=Nid(k,2);
if i(i1)>i(i2), tmp=i1; i1=i2; i2=tmp; end; % to only store once
if NewNid(i(i1),i(i2))==0
nn=nn+1; Nr(nn,:)=(n(i1,:)+n(i2,:))/2;
i(k+3)=nn; NewNid(i(i1),i(i2))=nn; % store node

else
i(k+3)=NewNid(i(i1),i(i2));

end
end
Tr(nt+1,:)=[i(1) i(4) i(5) T(j,4) 0 T(j,6)]; % insert 4 new triangles
Tr(nt+2,:)=[i(5) i(4) i(6) 0 0 0];
Tr(nt+3,:)=[i(6) i(4) i(2) 0 T(j,4) T(j,5)];
Tr(nt+4,:)=[i(6) i(3) i(5) T(j,5) T(j,6) 0];
if nargin==3
Pr(nt+1:nt+4)=P(j);

end
nt=nt+4;

end;

This procedure cuts each triangle into four smaller triangles, keeps track of new
nodes that have to be added, and decides whether each new edge is on the physical
boundary of the domain. Now refining triangles is often not enough to produce a good-
quality mesh, which should be smooth and have triangles that have no obtuse angles.
A simple procedure to improve mesh quality is known as mesh smoothing: One simply
replaces the coordinates of each node by the average of those of the neighboring nodes

5.6. Generalization to Two Dimensions 135

and repeats the process several times.27 The procedure SmoothMesh does this:

function N=SmoothMesh(N,T,bn);
% SMOOTHMESH smooth mesh closer to improve mesh quality
% Nr=SmootheMesh(N,T,bn); modify node positions iteratively to get
% closer to a Delauny triangulation, by iteratively assigning to
% nodes the averages of neighboring nodes. Node numbers in bn are
% not allowed to have their position be modified

nn=size(N,1);
Nn=zeros(nn,1);
nt=size(T,1); % number of triangles
if nargin<3
bn=[];

end
for i=1:nt % first find boundary nodes
for j=1:3
if T(i,3+j)==1 | T(i,mod(3+j+1,3)+4)==1
if isempty(find(bn==T(i,j)))
bn=[bn T(i,j)];

end
end

end
end
for i=1:nt % construct neigboring node list
for j=1:3
if isempty(find(bn==T(i,j))) % not a boundary node
for k=1:2 % add neigboring nodes from triangle
id=find(Nn(T(i,j),2:Nn(T(i,j),1)+1)==T(i,mod(j+k-1,3)+1));
if isempty(id)
Nn(T(i,j),1)=Nn(T(i,j),1)+1;
Nn(T(i,j),Nn(T(i,j),1)+1)=T(i,mod(j+k-1,3)+1);

end
end

end
end

end
for i=1:10
for j=1:nn
if Nn(j,1)>0
N(j,:)=mean(N(Nn(j,2:Nn(j,1)+1),:));

end
end

end

Using the MATLAB commands

[N,T]=NewMesh(2);
[N,T]=RefineMesh(N,T);
[N,T]=RefineMesh(N,T);
PlotMesh(N,T);
N=SmoothMesh(N,T);
PlotMesh(N,T);

27This simple procedure can produce invalid meshes on nonconvex domains due to mesh tangling, so it
should be used with care!

136 Chapter 5. The Finite Element Method

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.6. Twice refined mesh of the initial shuttle mesh, before and after mesh smoothing.

xjxjxj xkxkxk

xlxlxlϕj
ϕk ϕl

Figure 5.7. Finite element shape functions on the triangle with vertices xj , xk, xl.

we obtain the two meshes shown in Figure 5.6. One can clearly see the initial coarse
mesh in the refined mesh, before mesh smoothing is applied.

Once a triangular mesh is generated, one can compute the associated stiffness matrix
K and mass matrixM in two dimensions, just as in the one-dimensional case. The algo-
rithm for doing so is, however, substantially more complicated than in one dimension,
especially when one tries to integrate hat functions against each other for an arbitrary
triangular mesh. This is where the true finite elements come in, as we will see next.

5.7 Where Are the Finite Elements?
Instead of considering the hat functions for computing the stiffness matrix K and the
mass matrix M in a global manner, it is much better to consider the so-called finite
element shape functions defined on each element (triangle), as illustrated in Figure 5.7.
The finite element shape functions are the restrictions of the hat functions to each finite
element, and the required integrals for the construction of the stiffness matrix can be
computed element by element,

∫
Ω

∇ϕi · ∇ϕjdx =

ne∑
k=1

∫
Tk

∇ϕi · ∇ϕjdx,

where ne is the number of elements Tk in the triangulation. To simplify the notation in

5.7. Where Are the Finite Elements? 137

1

10
ξ

η

Φ

Φ−1

(xj , yj) (xk, yk)

(xl, yl)

Figure 5.8. Linear map Φ to transform a reference element Tref into an arbitrary finite
element Ti.

what follows, we introduce the elementwise inner product

(∇ϕi,∇ϕj)Tk
:=

∫
Tk

∇ϕi · ∇ϕjdx.

In a finite element program, one first computes the element stiffness matrix Ki on each
element Ti with vertices xj , xk and xl by computing

Ki :=

⎡
⎣(∇ϕj ,∇ϕj)Ti (∇ϕj ,∇ϕk)Ti (∇ϕj ,∇ϕl)Ti

(∇ϕk,∇ϕk)Ti (∇ϕk,∇ϕl)Ti

Sym. (∇ϕl,∇ϕl)Ti

⎤
⎦ =:

⎡
⎣ p11 p12 p13

p22 p23
Sym. p33

⎤
⎦ .

One then adds this element contribution Ki at the appropriate location j, k, l in the
global stiffness matrix K ,

K = K +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
p11 p12 p13

0 0
p12 p22 p23

0 0
p13 p23 p33

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

j k l

j

k

l

and similarly for the global mass matrix M . This is called the assembly process.
In order to compute the element stiffness matrix Ki and element mass matrix Mi

on the element Ti with vertices xj = (xj , yj), xk = (xk, yk), and xl = (xl, yl), one
introduces a linear map Φ from a reference triangle Tref to Ti, as illustrated in Figure
5.8. The element shape functions on the reference triangle are very simple:

N1(ξ, η) = 1− ξ − η,

N2(ξ, η) = ξ,

N3(ξ, η) = η.

The linear map Φ can then be defined using the element shape functions themselves,28

Φ(ξ, η) =

(
x(ξ, η)
y(ξ, η)

)
=

(
xj
yj

)
N1 +

(
xk
yk

)
N2 +

(
xl
yl

)
N3.

28If this is possible, the element is called an isoparametric element.

138 Chapter 5. The Finite Element Method

Using the change of variables formula from multivariate calculus, the integration on
every element Ti can be performed on the reference element Tref ,∫

Ti

g(x)dx =

∫
Tref

g(Φ(ξ, η))|J(ξ, η)|dξdη,

where |J(ξ, η)| = detJ(ξ, η) is the determinant of the Jacobian of the map Φ,

J(ξ, η) =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
=

[
xk − xj xl − xj
yk − yj yl − yj

]
.

To illustrate these computations, we now compute a concrete entry of the element
stiffness matrix Ki: ∫

Ti

∇ϕj · ∇ϕkdx.

To do so, we will need the two relations,

ϕj(Φ(ξ, η)) = N1(ξ, η) and ∇ϕT
j J(ξ, η) =

(
∂N1

∂ξ
,
∂N1

∂η

)
.

We then obtain

∇ϕj = J−T (ξ, η)

(
∂N1

∂ξ

∂N1

∂η

)
=

1

detJ

[
∂y
∂η −∂y

∂ξ

−∂x
∂η

∂x
∂ξ

](−1
−1

)
.

We can now compute∫
Ti

∇ϕj · ∇ϕkdx =

∫
Ti

∇ϕT
j ∇ϕkdx

= |detJ |(−1,−1)J−1J−T

(
1
0

)∫
Tref

dξdη︸ ︷︷ ︸
= 1

2

=
1

2|detJ | (yk − yl, xl − xk)

(
yl − yj
xj − xl

)

=
(yk − yl)(yl − yj)− (xk − xl)(xj − xl)

2|(xk − xj)(yl − yj)− (xl − xj)(yk − yj)| .

Such cumbersome computations can be performed very easily using Maple. We start
by computing the transformation Φ:

X:=a+b*xi+c*eta;
Y:=d+e*xi+f*eta;
xi:=0:eta:=0:X1:=X;Y1:=Y;
xi:=1:eta:=0:X2:=X;Y2:=Y;
xi:=0:eta:=1:X3:=X;Y3:=Y;
xi:=’xi’;
eta:=’eta’;
solve({X1=x[1],Y1=y[1],X2=x[2],Y2=y[2],X3=x[3],Y3=y[3]},{a,b,c,d,e,f});
assign(%);

5.7. Where Are the Finite Elements? 139

We then compute the Jacobian and its determinant:

with(linalg):
J:=jacobian([X,Y],[xi,eta]);
Jd:=det(J);
Jinv:=inverse(J);

Next, we define the local shape functions:

l[1]:=1-xi-eta;
l[2]:=xi;
l[3]:=eta;

Finally, we compute the resulting formulas for the element stiffness and element
mass matrices on a single element:

K:=matrix(3,3);
M:=matrix(3,3);
for i from 1 to 3 do
for j from 1 to 3 do
M[i,j]:=int(int(l[i]*l[j]*Jd,xi=0..1-eta),eta=0..1);
gradi:=multiply(transpose(Jinv),grad(l[i],[xi,eta]));
gradj:=multiply(transpose(Jinv),grad(l[j],[xi,eta]));
K[i,j]:=int(int(multiply(gradi,gradj)*Jd,xi=0..1-eta),eta=0..1);

od;
od;
for i from 1 to 3 do
for j from 1 to 3 do
temp:=simplify(K[i,j]*Jd);
print(factor(select(has,temp, x)) + factor(select(has,temp, y)));

od;
od;

2 2
1/2 (-x[3] + x[2]) + 1/2 (-y[3] + y[2])

- 1/2 (-x[3] + x[2]) (x[1] - x[3]) - 1/2 (-y[3] + y[2]) (y[1] - y[3])
1/2 (-x[3] + x[2]) (x[1] - x[2]) + 1/2 (-y[3] + y[2]) (y[1] - y[2])
- 1/2 (-x[3] + x[2]) (x[1] - x[3]) - 1/2 (-y[3] + y[2]) (y[1] - y[3])

2 2
1/2 (x[1] - x[3]) + 1/2 (y[1] - y[3])

- 1/2 (x[1] - x[3]) (x[1] - x[2]) - 1/2 (y[1] - y[3]) (y[1] - y[2])
1/2 (-x[3] + x[2]) (x[1] - x[2]) + 1/2 (-y[3] + y[2]) (y[1] - y[2])
- 1/2 (x[1] - x[3]) (x[1] - x[2]) - 1/2 (y[1] - y[3]) (y[1] - y[2])

2 2
1/2 (x[1] - x[2]) + 1/2 (y[1] - y[2])

for i from 1 to 3 do
for j from 1 to 3 do
print(simplify(M[i,j]/Jd));

od;
od;

1/12
1/24
1/24
1/24
1/12
1/24

140 Chapter 5. The Finite Element Method

1/24
1/24
1/12

Note that the last two double loops are only for formatting purposes, so one can read
the results more easily and put them into MATLAB. To compute the element stiffness
matrix, the function is

function Ke=ComputeElementStiffnessMatrix(t);
% COMPUTEELEMENTSTIFFNESSMATRIX element stiffness matrix for a triangle
% Ke=ComputeElementStiffnessMatrix(t); computes the element stiffness
% matrix for the triangular element described by the three nodal
% coordinates in t=[x1 y1;x2 y2;x3 y3]. Note that the labelling must be
% counter clockwise

x1=t(1,1); y1=t(1,2);
x2=t(2,1); y2=t(2,2);
x3=t(3,1); y3=t(3,2);

Jd=-x1*y3-x2*y1+x2*y3+x1*y2+x3*y1-x3*y2; % formulas from Maple
Ke=1/Jd/2*[(x2-x3)^2+(y2-y3)^2 ...

-(x2-x3)*(x1-x3)-(y2-y3)*(y1-y3) ...
(x2-x3)*(x1-x2)+(y2-y3)*(y1-y2)
-(x2-x3)*(x1-x3)-(y2-y3)*(y1-y3) ...
(x1-x3)^2+(y1-y3)^2 ...
-(x1-x3)*(x1-x2)-(y1-y3)*(y1-y2)
(x2-x3)*(x1-x2)+(y2-y3)*(y1-y2) ...
-(x1-x3)*(x1-x2)-(y1-y3)*(y1-y2) ...
(x1-x2)^2+(y1-y2)^2];

and to compute the element mass matrix, the function is

function Me=ComputeElementMassMatrix(t);
% COMPUTEELEMENTMASSMATRIX element mass matrix for a triangle
% Me=ComputeElementMassMatrix(t); computes the element mass matrix
% for the triangular element described by the three nodal coordinates
% in t=[x1 y1;x2 y2;x3 y3], where the nodes are labeled counter clock
% wise

x1=t(1,1); y1=t(1,2);
x2=t(2,1); y2=t(2,2);
x3=t(3,1); y3=t(3,2);

Jd=-x1*y3-x2*y1+x2*y3+x1*y2+x3*y1-x3*y2; % formulas from Maple
Me=Jd/24*[2 1 1; 1 2 1; 1 1 2];

Remark 5.5. We used exact integration in this simple example to evaluate the entries of
the element stiffness and mass matrices. In practice, this integration is often done using
quadrature rules, and one chooses the order of the quadrature rule to still obtain an
exact integration since only polynomial functions are integrated. The same quadrature
can then also be used to integrate the inner products with the right-hand side, which are
then naturally approximated.

It remains to program the assembly of the element stiffness and element mass ma-
trices, which can be done as follows:

5.7. Where Are the Finite Elements? 141

function u=FEPoisson(f,g,N,T);
% FEPOISSON solves the Poisson equation using finite elements
% u=FEPoisson(f,g,N,T); solves the Poisson equation on the
% triangular mesh given by the list of triangles T and nodes N
% with Dirichlet boundary conditions given by the function g and
% forcing function f.

n=size(T,1); m=size(N,1);
bn=zeros(m,1);
K=sparse(m,m); M=sparse(m,m);
for i=1:n,
Ke=ComputeElementStiffnessMatrix([N(T(i,1),:);N(T(i,2),:);N(T(i,3),:)]);
Me=ComputeElementMassMatrix([N(T(i,1),:); N(T(i,2),:); N(T(i,3),:)]);
bn(T(i,1))=bn(T(i,1)) | T(i,4) | T(i,6); % on the boundary
bn(T(i,2))=bn(T(i,2)) | T(i,4) | T(i,5);
bn(T(i,3))=bn(T(i,3)) | T(i,5) | T(i,6);
K(T(i,1:3),T(i,1:3))=K(T(i,1:3),T(i,1:3))+Ke; % assemble
M(T(i,1:3),T(i,1:3))=M(T(i,1:3),T(i,1:3))+Me;

end;
b=M*feval(f,N(:,1),N(:,2)); % right hand side and
for i=1:m, % boundary conditions
if bn(i)>0,
b(i)=feval(g,N(i,1),N(i,2));
K(i,:)=zeros(1,m); K(i,i)=1;

end;
end;
u=K\b;

Using the MATLAB commands

[N,T]=NewMesh(2);
[N,T]=RefineMesh(N,T);
N=SmoothMesh(N,T);
[N,T]=RefineMesh(N,T);
N=SmoothMesh(N,T);
[N,T]=RefineMesh(N,T);
N=SmoothMesh(N,T);
engine=inline(’400*exp(-100*((1.05-x).^2+(0.125-y).^2))’,’x’,’y’);
friction=inline(’exp(-(0.5*(x-0.1).^2+80*(y-0.05).^2))’,’x’,’y’);
u=FEPoisson(engine,friction,N,T);
PlotSolution(u,N,T);
axis(’equal’);view([0 90]);

we obtain the result shown in Figure 5.9. To visualize the solution, we used the
PlotSolution function

function PlotSolution(u,N,T,P);
% PLOTSOLUTION plots a solution given on a triangular mesh
% PlotSolution(u,N,T,P); plots the solution vector u on the mesh
% given by nodes N and triangles T also coding u using color.
% Note that often view([0 90]) then gives a good 2d color contour plot.
% If the fourth argument P is given, then according to P the color is
% shifted

for i=1:size(T,1),

142 Chapter 5. The Finite Element Method

Figure 5.9. Finite element solution of the Poisson equation on a domain representing a
space shuttle.

if nargin==4 & ~isempty(P) & P(i)<=1
patch(N(T(i,1:3),1),N(T(i,1:3),2),u(T(i,1:3)),u(T(i,1:3)),’EdgeColor’,’none’);

else
patch(N(T(i,1:3),1),N(T(i,1:3),2),u(T(i,1:3)),u(T(i,1:3)));

end
end;
colorbar;

Remark 5.6. The assembly procedure we have shown in FEPoisson is quite slow when
one uses a very refined mesh. A much faster assembly can be achieved by replacing the
line

K=sparse(m,m); M=sparse(m,m);

by the three lines

ii=zeros(n,9); jj=zeros(n,9); % 9 entries for element matrice
Ka=zeros(n,9); Ma=zeros(n,9);
[I,J]=ndgrid(1:3,1:3); I=I(:)’; J=J(:)’;

and the the two lines

K(T(i,1:3),T(i,1:3))=K(T(i,1:3),T(i,1:3))+Ke;
M(T(i,1:3),T(i,1:3))=M(T(i,1:3),T(i,1:3))+Me;

5.8. Concluding Remarks 143

by the two lines

ii(i,:)=T(i,I); jj(i,:)=T(i,J); % assemble vectors
Ka(i,:)=Ke(:)’; Ma(i,:)=Me(:)’; % for speed

and then assembling the matrices using the sparse command in MATLAB by putting
between end; and b=M*feval(f,N(:,1),N(:,2)); the line

K=sparse(ii,jj,Ka); M=sparse(ii,jj,Ma); % fast sparse assembly

Further speed can be gained by working on the transposed matrices when inserting the
Dirichlet conditions,

K=K’; % only for speed: deleting columns is faster!
for i=1:m,
if bn(i)>0,
b(i)=feval(g,N(i,1),N(i,2));
K(:,i)=0;K(i,i)=1;

end;
end;
K=K’;

With these modifications, the shuttle example refined seven times to get a mesh with
81920 elements, and 41537 nodes can be assembled and solved in 12 seconds on a
laptop, while the first version takes 133 seconds to solve the same problem. Refining
once more, we arrive at 327680 elements and 164993 nodes, and the problem can be
solved in 2.5 minutes with the fast assembly procedure, while it takes 32 minutes using
the first version. With the fast assembly procedure, this small code becomes a quite
efficient and versatile base for computing finite element approximations.

5.8 Concluding Remarks
Finite element methods are the most general methods currently available for the approx-
imate solution of PDEs, and they are now used in virtually any area of applications.
Finite element methods have the following advantages and disadvantages, denoted by
plus and minus signs, respectively:

+ The finite element method gives a systematic way to obtain discretizations for
PDEs.

+ The finite element method works for arbitrary geometries and meshes.

+ The finite element method is based on the solid mathematical foundation of vari-
ational calculus.

+ Higher-order convergence can be obtained by using higher-order or spectral finite
elements.

− The method is a bit more complicated to implement than a finite difference method.

There are many finite element software packages; a Wikipedia page dedicated to this is
currently showing over 40, among them FreeFem++, which is especially suited for the
rapid testing of finite element simulations, since the problem can be specified directly
in terms of its variational formulation, and many finite elements are available.

144 Chapter 5. The Finite Element Method

5.9 Problems

Problem 5.1 (strong form, weak form, and minimization for Neumann boundary
conditions). We consider the problem of finding u ∈ H1(a, b) which minimizes the
functional

J(u) :=

∫ b

a

[
p(u′)2 + ru2 − 2fu

]
dx− 2[u(b)B + u(a)A], (5.43)

where p ∈ C1([a, b]), p > 0 and r, f ∈ C0([a, b]), r > 0 and A,B are two constants.

1. Show that the minimization problem (5.43) is equivalent to the following varia-
tional problem: Find u ∈ H1(a, b) such that ∀v ∈ H1(a, b),∫ b

a

[pu′v′ + ruv] dx =

∫ b

a

fvdx+ v(b)B + v(a)A. (5.44)

2. Show that the variational problem (5.44) is equivalent to the strong formulation:
Find u ∈ C2(a, b) ∩ C1([a, b]) such that⎧⎨

⎩
−(p(x)u′)′ + r(x)u = f(x), in Ω = (a, b),
−p(a)u′(a) = A,
p(b)u′(b) = B.

(5.45)

Problem 5.2 (advection-diffusion equation). We want to solve the advection-diffusion
equation

νuxx + aux = f, in Ω = (0, 1), (5.46)

with ν > 0 and homogeneous Dirichlet boundary conditions.

1. Derive the variational form of the problem.

2. Use hat functions to define a Ritz–Galerkin approximation and compute the stiff-
ness matrix K of the problem.

3. Compare the stiffness matrix K to the discretization matrix one obtains using
centered finite differences. Explain your findings.

4. Compute the mass matrix M of the problem to get the complete linear system

Ku =M f̃ .

5. Implement the method in MATLAB and test it for different values of ν, a, and f .

Problem 5.3 (Poisson equation with Neumann boundary conditions). Consider the
Poisson equation ⎧⎨

⎩
−uxx = f on Ω = (0, 1),
ux(0) = 0,
ux(1) = 0.

1. Show that this problem has a solution only if the compatibility condition
∫ 1

0
fdx =

0 is satisfied and that in this case the solution is not unique. What condition can
one impose on the solution u to obtain uniqueness?

5.9. Problems 145

2. Derive the variational formulation of this problem, and obtain again the compati-
bility condition from the variational formulation.

3. Derive the minimization formulation of the problem and again from it the com-
patibility condition.

Problem 5.4 (stiffness and mass matrix). Consider the Helmholtz equation{
Δu+ k2u = 0 in Ω,
u = g on ∂Ω.

(5.47)

1. Show that from the discretized variational formulation: Find u ∈ Vh such that

−(u′, v′) + k2(u, v) = (f, v) ∀v ∈ Vh,

where Vh = span{ϕ1, . . . , ϕn} ∈ V , one obtains the linear system

−Ku+ k2Mu = b,

where K is the stiffness matrix and M is the mass matrix and b contains the
Dirichlet boundary conditions.

2. Discuss the existence and uniqueness of a solution to the above variational prob-
lem.

3. Assume that a triangulation of the domain Ω is given. Compute on a triangular
element with nodes (x1, y1), (x2, y2), (x3, y3) the element stiffness and mass
matrices using Maple.

Problem 5.5 (simulating a chicken in a microwave). The goal of this problem is to
simulate the heating of a chicken in the microwave. Instead of using the full Maxwell’s
equations in three dimensions, we will first introduce some simplifications that give rise
to a two-dimensional Helmholtz equation, which we then solve using the finite element
method. For a result, see Figure 5.10.

1. The electric and magnetic field in a microwave oven satisfy Maxwell’s equation

∇×E = −μHt,

∇×H = εEt + σE,

where the vector E denotes the electric field and the vector H the magnetic field
and ε is the permittivity, σ the conductivity, and μ the permeability. In air we
have εa = 8.85e− 12, σa = 0, and μa = π4e− 7, whereas in chicken the values
are εc = 4.43e− 11, σc = 3e− 11, and μc = π4e− 7.

(a) In a microwave, the source is time harmonic, i.e., a multiple of eiωt for
ω = 2πf , where f = 2.45e9 is the frequency. The solution is therefore also
time harmonic,

E = E(x)eiωt, H = H(x)eiωt.

Show that in this case Maxwell’s equation becomes

∇×E = −iωμH,
∇×H = iωε̃E

for a complex parameter ε̃, which you also need to derive.

146 Chapter 5. The Finite Element Method

−250

−200

−150

−100

−50

0

50

100

150

200

250

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5.10. Simulation of a chicken heating in a microwave. Note how the chicken
contains hot spots; this is why microwave ovens have turntables and why more modern ovens
change the frequency slightly while heating. Observe that hot spots are concentrated in a layer
of about 3 cm from the surface and are rare in the center of the chicken. This shows that the mi-
crowave oven heats from the outside toward the inside, and the waves will penetrate further only
when the chicken meat is completely dry. So the chicken is too big to be cooked in a microwave
oven.

(b) If we assume now that the variation in the z direction is small, i.e., ∂zE =
∂zH = 0, derive a new equation for the third component of the electric field
E3:

ΔE3 + ω2με̃E3 = 0.

This equation is called the Helmholtz equation.

2. Implement and test the simple mesh generator described in this chapter.

3. Implement the general finite element code explained in this chapter using the
fast assembly procedure from Remark 5.6, and test your code on the square with
various refinements using as boundary condition g = x + y and ω = 0. What
result should you get? Does your computational result agree with this?

4. Simulate now the situation of the chicken cooking in the microwave. The mi-
crowave source can be modeled by the boundary condition

g = inline(’100*(x==0.5 & 0.1<=y & 0.2>=y)’,’x’,’y’);

You should get a result like the one shown in Figure 5.10. Is this enough resolu-
tion? Try to refine and compare. Can you explain what you observe?

Bibliography

[1] B. Andreianov, F. Boyer, and F. Hubert. Discrete duality finite volume schemes for Leray-
Lions type elliptic problems on general 2D-meshes. Numerical Methods in PDEs, 23:145–
195, 2007. (Cited on p. 84)

[2] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods. Texts in
Applied Mathematics 15. Springer Science+Business Media, 2008. (Cited on pp. 1, 123,
125, 127)

[3] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial, 2nd ed., SIAM,
2000. (Cited on p. 50)

[4] C. G. Canuto, M. Hussaini, and A. Quarteroni. Spectral Methods in Fluid Dynamics.
Springer-Verlag, 1987. (Cited on p. 1)

[5] G. Ciaramella and M. J. Gander. Iterative Methods and Preconditioners for Systems of
Linear Equations. In preparation, 2017. (Cited on p. 50)

[6] J. Clerk Maxwell. On Faraday’s lines of force. Transactions of the Cambridge Philosophical
Society, 10:27, 1864. (Cited on p. 31)

[7] R. W. Clough. The finite element method in plane stress analysis. In Proc. ASCE Conf.
Electron. Computat., Pittsburgh, PA, 1960. (Cited on p. 114)

[8] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations.
Bulletin of the American Mathematical Society, 49:1–23, 1943. (Cited on p. 114)

[9] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der
mathematischen Physik. Mathematische Annalen, 100(1):32–74, 1928. (Cited on pp. 46,
51, 59)

[10] R. Dautray and J.-L. Lions. Analyse mathématique et calcul numérique pour les sciences
et les techniques. Collection du commissariat à L’Energie Atomique. Série Scientifique.
Masson, 1984–1985. (Cited on p. 34)

[11] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Sci-
ence and Technology: Volume 1. Physical Origins and Classical Methods. Springer
Science+Business Media, 2012. (Cited on p. 34)

[12] S. Delcourte, K. Domelevo, and P. Omnes. Discrete Duality Finite Volume Method for
Second Order Elliptic Problems. Hermes Science Publishing, pp. 447–458, 2005. (Cited on
p. 84)

[13] J. d’Alembert. Recherches sur la courbe que forme une corde tendue mise en vibrations.
Academie Berlin, pp. 214–249, 1747. (Cited on pp. 28, 30)

[14] J. d’Alembert. Recherches sur les vibrations des cordes sonores. Opuscules Matématiques,
1:1–73, 1761. (Cited on p. 30)

147

148 Bibliography

[15] W. Engelhardt. Ohm’s law and Maxwell’s equations. In Annales de la Fondation Louis de
Broglie, Vol. 41, pp. 39–53, 2016. (Cited on p. 32)

[16] L. C. Evans. Partial Differential Equations. Graduate Studies in Mathematics 19. AMS,
2002. (Cited on pp. 121, 124)

[17] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Handbook of Numerical
Analysis, 7:713–1018, 2000. (Cited on pp. 1, 80, 83, 84)

[18] P. Forsyth and P. Sammon. Quadratic convergence for cell-centered grids. Applied Numer-
ical Mathematics, 4(5):377–394, 1988. (Cited on p. 83)

[19] J. Fourier. Theorie analytique de la chaleur. Chez Firmin Didot, père et fils, 1822. (Cited
on pp. 18, 19, 20, 22, 87)

[20] B. G. Galerkin. Rods and plates: Series occurring in various questions concerning the elastic
equilibrium of rods and plates. Engineers Bulletin (Vestnik Inzhenerov), 19:897–908, 1915.
(in Russian). (Cited on pp. 89, 114, 115)

[21] M. Gander. Iterative methods for Helmholtz and Maxwell equations. Oberwolfach Pro-
ceedings, 2013. (Cited on p. 37)

[22] M. J. Gander and G. Wanner. From Euler, Ritz, and Galerkin to modern computing. SIAM
Review, 54(4):627–666, 2012. (Cited on p. 114)

[23] S. Gerschgorin. Fehlerabschätzung für das differenzenverfahren zur lösung partieller differ-
entialgleichungen. ZAMM—Journal of Applied Mathematics and Mechanics/Zeitschrift für
Angewandte Mathematik und Mechanik, 10(4):373–382, 1930. (Cited on pp. 46, 51)

[24] D. J. Griffiths. Introduction to Electrodynamics, 3rd ed., Prentice Hall, 1999. (Cited on
p. 32)

[25] B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time Dependent Problems and Difference Meth-
ods. Wiley InterScience, 1996. (Cited on p. 1)

[26] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: Structure-
preserving algorithms for ordinary differential equations, Vol. 31. Springer Science+
Business Media, 2006. (Cited on p. 15)

[27] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer-Verlag, 1987. (Cited on p. 15)

[28] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, Vol. 1. Springer-
Verlag, 1991. (Cited on p. 15)

[29] E. Hairer and G. Wanner. Analysis by Its History. Springer Science+Business Media, 2008.
(Cited on p. 90)

[30] H. Helmholtz. Theorie der Luftschwingungen in Röhren mit offenen Enden. Journal für
reine und angewandte Mathematik, 57:1–72, 1859. (Cited on p. 37)

[31] A. Hurwitz and R. Courant. Vorlesungen über die allgemeine Funktionentheorie und ellip-
tische Funktionen. Julius Springer, 1922. (Cited on p. 114)

[32] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element
Method. Cambridge University Press, 1987. (Cited on p. 1)

[33] I. Kleiner. Excursions in the History of Mathematics: The State Space Method, Vol. 178.
Springer Science+Business Media, 2012. (Cited on p. 30)

Bibliography 149

[34] H.-O. Kreiss and J. Oliger. Comparison of accurate methods for the integration of hyperbolic
equations. Tellus, 24(3):199–215, 1972. (Cited on p. 90)

[35] C. Lanczos. Trigonometric interpolation of empirical and analytical functions. Journal of
Mathematics and Physics, 17(1):123–199, 1938. (Cited on p. 88)

[36] L. Lapidus and G. F. Pinder. Numerical Solution of Partial Differential Equations in Science
and Engineering. Wiley InterScience, 1999. (Cited on p. 1)

[37] E. Leonhard. Principes généraux du mouvement des fluides. Académie Royale des Sciences
et des Belles-Lettres de Berlin, Mémoires, 11:274–315, 1757. (Cited on p. 34)

[38] R. J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Ap-
plied Mathematics, Cambridge University Press, 2002. (Cited on p. 1)

[39] J. Liesen and Z. Strakos. Krylov Subspace Methods: Principles and Analysis. Oxford Uni-
versity Press, 2013. (Cited on p. 50)

[40] A. J. Lotka. Elements of Physical Biology. Williams & Wilkins, 1925. (Cited on pp. 9, 10)

[41] S. Lui. Numerical Analysis of Partial Differential Equations, Vol. 102. John Wiley & Sons,
2012. (Cited on p. 1)

[42] R. W. MacCormack and A. J. Paullay. Computational efficiency achieved by time split-
ting of finite difference operators. American Institute of Aeronautics and Astronautics,
Aerospace Sciences Meeting, 10th, San Diego, Calif., Jan. 17–19, 1972, 8 p. 1972. (Cited
on pp. 69, 70)

[43] P. W. McDonald. The computation of transonic flow through two-dimensional gas turbine
cascades. In ASME TurboExpo: Power for Land, Sea, and Air, ASME 1971 International
Gas Turbine Conference and Products Show, American Society of Mechanical Engineers,
1971, V001T01A089, doi:10.1115/71-GT-89. (Cited on pp. 69, 70)

[44] T. Narasimhan. Fourier’s heat conduction equation: History, influence, and connections.
Reviews of Geophysics, 37(1):151–172, 1999. (Cited on p. 19)

[45] I. Newton. Principia mathematica. Newton’s principia, 1686. (Cited on p. 6)

[46] E. M. Purcell. Electricity and Magnetism. McGraw-Hill, 1985. (Cited on p. 32)

[47] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equa-
tions. Oxford Science Publications, 1999. (Cited on p. 50)

[48] L. F. Richardson. Weather Prediction by Numerical Process. Cambridge: University Press,
1922. (Cited on p. 46)

[49] W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematis-
chen Physik. Journal für die reine und angewandte Mathematik (Crelle), 135:1–61, 1908.
(Cited on pp. 87, 114, 115)

[50] W. Ritz. Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rän-
dern. Annalen der Physik, 18(4):737–807, 1909. (Cited on pp. 87, 114)

[51] J. A. Ruffner. Reinterpretation of the genesis of Newton’s “Law of Cooling.” Archive for
History of Exact Sciences, 2(2):138–152, 1963. (Cited on p. 17)

[52] C. Runge. Über eine methode die partielle differentialgleichung δu = Constans numerisch
zu integrieren. Zeitschrift für Mathematik und Physik, 56:225–232, 1908. (Cited on p. 46)

150 Bibliography

[53] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, 2003. (Cited on
p. 50)

[54] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, 2004. (Cited on
p. 50)

[55] A. Steiner and M. Arrigoni. Die lösung gewisser räuber-beute-systeme. Studia Biophysica,
123(2), 1988. (Cited on p. 9)

[56] A. Steiner and M. J. Gander. Parametrische lösungen der räuber-beute-gleichungen im
vergleich. Il Volterriano, 7:32–44, 1999. (Cited on p. 9)

[57] G. Strang and G. J. Fix. An Analysis of the Finite Element Method, Vol. 212. Prentice Hall,
1973. (Cited on p. 1)

[58] J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Chapman
& Hall, 1989. (Cited on pp. 1, 52)

[59] V. Thomée. From finite differences to finite elements: A short history of numerical anal-
ysis of partial differential equations. Journal of Computational and Applied Mathematics,
128(1):1–54, 2001. (Cited on p. 46)

[60] A. Toselli and O. Widlund. Domain Decomposition Methods—Algorithms and Theory.
Springer Series in Computational Mathematics 34. Springer, 2004. (Cited on p. 50)

[61] L. N. Trefethen. Spectral Methods in MATLAB. SIAM, 2000. (Cited on pp. 1, 107)

[62] N. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp. Stiffness and deflection analysis of
complex structures. Journal of Aeronautical Sciences, 23:805–23, 1956. (Cited on p. 114)

[63] V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi.
Memoirs of The Academy of Lincei Roma, 2:31–113, 1926. (Cited on p. 9)

Index

An italic page number indicates that the term appears as part of an exercise in a problem section.

advection term, 27, 60
centered discretization, 60
downwind discretization, 60
upwind discretization, 60

advection-diffusion equation,
16, 27, 37, 59, 60, 68

advection-reaction-diffusion
equation, 27, 59

Alembert, J. le Rond d’, 28
Ampere’s law, see

Maxwell–Ampere law
assembly

finite element, 137, 140, 142
finite volume, 84

backward Euler, 36
boundary condition, 16, 17, 19,

20, 30, 49, 69
Dirichlet, see Dirichlet

boundary condition
homogeneous, 22, 24, 30, 42
Neumann, see Neumann

boundary condition
Robin, see Robin boundary

condition
with finite differences, 56
with finite volumes, 69, 71

bounded variation, 90

centered scheme, 61
Chebyshev

points, 102
polynomial, 103, 109
spectral method, 102

conservation laws, 42
control volume, 69, 70
convection-diffusion equation,

27
see also advection-diffusion

equation

crude oil production, 10
curl, 5, 33
curl-free, 36
current density, 32

differential operator, 5, 58
order, 58

differentiation matrix
Chebyshev spectral, 104
finite difference, 95
Fourier spectral, 95, 96

diffusion, 26, 27
equation, 19, 25, 37
see also heat equation

Dirichlet boundary condition,
24, 46, 49

with Chebyshev spectral, 106
with finite differences, 49, 56
with finite elements, 121
with finite volumes, 71, 72

discrete cosine transform, 104,
110

discrete maximum principle, 53,
68

divergence, 5, 33
theorem, 19, 42

downwind scheme, 59

electric permittivity, 32, 37
element stiffness matrix, 137
elliptic problems, 34
essential boundary condition,

121
Euler, Leonhard, 35

constant, 39
incompressible equations, 34

explicit method, 36

Faraday’s law, see
Maxwell–Faraday law

finite difference
centered, 47, 57, 59
convergence, 51
downwind scheme, 59
five-point star, 48, 49, 55
ghost point, 57
in time, 35
method, 1, 45, 55
nine-point star, 55
one-sided, 56–59
program, 64
relation with finite volumes,

74
upwind scheme, 59

finite element
convergence, 125
method, 1, 114
program, 137
shape functions, 136

finite volume
cell centered, 72, 74, 85
convergence, 80
method, 1, 69
program, 83
relation with finite

differences, 74
vertex centered, 72, 85

forward Euler, 36
Fourier

coefficient, 89, 94
discrete transform, 94
Fast Fourier Transform (FFT),

96
law of heat flux, 17
series, 22, 88, 93
spectral method, 95

Fourier, Joseph, 18
FV4 scheme, 78

151

152 Index

Galerkin approximation, 117,
125, 130

Gauss law, 33
Gauss–Green theorem, 41

see also divergence theorem
ghost point, 57
gradient, 5

weak, 123
grid function, 53

hat functions, 118
heat equation, 16, 17, 19, 24, 36

time-harmonic, 37
see also diffusion equation

Helmholtz equation, 145
see also wave equation

Hooke’s law, 28

initial condition, 6, 16, 17, 20,
30

initial value problem, 6
isoparametric element, 137

Laplace equation, 25, 36
see also Poisson equation

Laplacian, 5
discrete, 48

local truncation error, 55
Lotka, Alfred J., 9
Lotka–Volterra model, 9, 41

magnetic permeability, 32
Maple, 38

curl, 5
D (operator), 3, 4
derivative, see diff (function)
diff (function), 2, 4
divergence, 5
dsolve, 7
expression, 4
functions, 4
gradient, 5
Laplacian, 5
linalg package, 5
ODE solution, 39
partial derivative, 3
sequence operator $, 2

mass matrix, 118, 136
global, 137

MATLAB, 38
data fitting, 12
delsq, 65
fft, 96, 102, 106
Fourier coefficients, 96
ifft, 102

linear system, 39
numgrid, 62
ODE solution, 8, 39
ode45, 8, 13
plotting, 39
sparse, 83, 143
spy, 64

Maxwell’s equations, 31, 145
Maxwell, James C., 32
Maxwell–Ampere law, 32
Maxwell–Faraday law, 32, 36
mesh, 69, 70

arbitrary, 69
Cartesian, 74
cell, 119
dual, 76
generator, 130, 146
parameter, 58, 62
point distribution, 110
primal, 76
rectangular, 48, 70
refined, 142
refinement, 83, 84, 114, 126,

134
size, 48, 55, 59, 65, 93, 127
smoothing, 134
tangling, 135
triangular, 114
uniform, 48
visualization, 132

minimization formulation, 119

natural boundary condition, 121
Navier, Claude-Louis, 34

Navier–Stokes equations, 17,
33, 37

Neumann boundary condition,
24, 46

with Chebyshev spectral, 111
with finite differences, 56, 67
with finite elements, 121
with finite volumes, 72, 85

Newton, Isaac, 7
law of cooling, 17, 40
law of motion, 6, 28, 29
Principia Mathematica, 7

ODE, see ordinary differential
equation

Ohm’s law, 32
order

differential operator, 58
local truncation error, 67, 68
multi-index, 15

of differentiation, 15
partial differential equation,

15
Runge–Kutta method, 8

ordinary differential equation
(ODE), 1, 6

reduction to first order, 6
Oseen equations, 34

partial derivative, 3
partial differential equation

(PDE), 1, 15
classification, 15
elliptic, 16, 25
hyperbolic, 16, 30
order, 15
parabolic, 16, 19
separation of variables, 20, 42

PDE, see partial differential
equation, 87

pendulum, 6, 39
analytical solution, 8
implicit solution, 7

periodic boundary condition, 88
compatibility condition, 89
with finite differences, 108
with Fourier spectral method,

95
Poisson equation, 16, 25, 36, 46,

51, 56
population dynamics, see

Lotka–Volterra model
predator-prey interaction, see

Lotka–Volterra model

reaction equation, see advection-
reaction-diffusion
equation

reaction term, 27
reference triangle, 137
Ritz approximation, 119, 130
Robin boundary condition, 57

centered, 57
one-sided, 57
with finite differences, 57
with finite volumes, 73

Runge–Kutta method, 8

semidiscretization, 35
shape functions, 136, 137

local, 139
shifted Laplace equation, 37
sparse

linear system, 50, 71
matrix, 50

Index 153

spectral
Chebyshev-based method,

102, 110
program, 106

convergence, 90, 93, 100
Fourier-based method, 88, 95

convergence, 98
program, 101

method, 1, 87
steady state solutions, 36
stiffness matrix, 117, 120, 121,

136
element, 137
global, 137

Stokes, George G., 34
Navier–Stokes equations, 17,

33

Stokes equation, 37
strong form, 115, 120, 129
structured

linear system, 71
matrix, 50

Taylor series, 38, 47, 62, 66, 76,
79, 81, 88

test function, 120, 122, 127, 129
space, 120, 121, 125

time-harmonic, 37
total variation, 90
TPFA, see two-point flux

approximation
trial function, 121

space, 120

truncation error, 48
estimate, 52

two-point flux approximation
(TPFA), 71, 78

upwind scheme, 59, 61

variational form, see weak form
Volterra, Vito, 9

Lotka–Volterra model, 9, 41
Voronoi cells, 70

wave equation, 16, 28
time-harmonic, 37
see also Helmholtz equation

weak form, 115, 117, 120, 130

FA12 F
A

12

9781611975307

90000

ISBN: 978-1-611975-30-7

9 7 8 1 0 0 0 0 0 0 0 0 9

ISBN 1-00000-000-1

ISBM: 978-1-611975-30-7

ISBM: 978-1-611975-30-7

Numerical Analysis
of Partial Differential
Equations Using
Maple and MATLAB

Martin J. Gander
Felix Kwok

Fundamentals of AlgorithmsFundamentals of Algorithms

N
u

m
erical A

n
alysis of P

artial D
ifferen

tial
E

qu
ation

s U
sin

g M
aple an

d M
A

T
L

A
B

M
artin

 J
. G

an
der • Felix K

w
ok

This book provides an elementary yet comprehensive introduction to the numerical solution of
partial differential equations (PDEs). Used to model important phenomena, such as the heating
of apartments and the behavior of electromagnetic waves, these equations have applications in
engineering and the life sciences, and most can only be solved approximately using computers.

Numerical Analysis of Partial Differential Equations Using Maple and MATLAB provides

• detailed descriptions of the four major classes of discretization methods for PDEs (finite
difference method, finite volume method, spectral method, and finite element method);

• self-contained convergence proofs for each method, using the tools and techniques required for
the general convergence analysis but adapted to the simplest setting to keep the presentation
clear and complete; and

• runnable MATLAB® code for each of the discretization methods and exercises.

This book is intended for advanced undergraduate and early graduate students in numerical
analysis and scientific computing and researchers in related fields. It is appropriate for a course on
numerical methods for partial differential equations.

Martin J. Gander is a full professor in mathematics at the University of Geneva.
He was previously a postdoctoral fellow at École Polytechnique and professor
of Mathematics at McGill University. He has held visiting positions at Paris 13,
University of Nice, RICAM, University of Amiens, Xi’an Jiaotong University, Institut
National Polytechnique de Toulouse, University Henri Poincaré, and the CNRS.
Professor Gander held the Pólya Fellowship at Stanford, a TMR Fellowship from
the Swiss National Science Foundation, and an FCAR strategic professorship from

Quebec. Together with Felix Kwok, he won the SIAM 100-Dollar 100-Digit Challenge, and with Albert
Ruehli the best paper award at the 19th IEEE EPEPS conference. His main research interest is in
numerical analysis, specifically parallel iterative methods for space-time problems.

Felix Kwok is an assistant professor at Hong Kong Baptist University, before which
he spent six years at the University of Geneva. In 2017, he held a visiting position
at Université Côte d’Azur. He was awarded a Canadian Governor General’s Silver
Medal for academic excellence at McGill University and was the recipient of FCAR
and NSERC doctoral fellowships while at Stanford. Together with Martin J. Gander,
he won the SIAM 100-Dollar 100-Digit Challenge, and in 2018 he was the recipient
of the HKBU President’s Award for Outstanding Performance as a Young Researcher.

His research interests are in scientific computing, particularly the numerical solution of PDEs and its
applications in physics and engineering.

For more information about SIAM books, journals,
conferences, memberships, or activities, contact:

 Society for Industrial and Applied Mathematics
3600 Market Street, 6th Floor

Philadelphia, PA 19104-2688 USA
+1-215-382-9800 • Fax +1-215-386-7999

siam@siam.org • www.siam.org

	1.9781611975314.fm
	1.9781611975314.ch1
	1.9781611975314.ch2
	1.9781611975314.ch3
	1.9781611975314.ch4
	1.9781611975314.ch5
	1.9781611975314.bm

