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This book is designed for the students who are preparing for various National Level competitive
examinations and also inspires to enter into Ph.D. Programs by qualifying the various entrance

exams.

The content of the book is divided into tWo parts: first part introduces the ordinary di.fferential :
equations while the second one introduces partial differential equations. The chapter one givesa
brief introduction of differential equations and eIaborates various methods to solve the ordlnary |
dlfferentlal equations of first order. The second chapter named “ General Linear Dl_fferentlal
Equations” explains how to solve the differential equatrons.of higher order and the methods to find
. their general, particular and. singular solutions. In Chapter th'ree, the solutions of initial valu_e_
problems-are' being explained by using'Lipschitz condition and by general methods. It also explains- -
- Green's function and-Sturm Llouv1IIe S problem which gives non-trivial solutlons of aboundary value
problem. The fourth chapter introduces the. partlal differential equations and various kind of
methods to solve them. Chapter five includes the behaviours of second order differential equations
and the transformation to reduce them into the canonical form. Apart from this, the solutions of Heat

and Laplaceequatlonsarealsodrscussed S e me

: rhe practlce sets are mtroduced at the end of the top|cs which |ncIudes a varlety of questlons from |
| previous year papers of CSIR UGC NET, IT-JAM; TIFR, NBHM and GATE These questlons are.
* carefully selected so thatthe students can apply mathematrcal knowledge in solvmg the questiornis.
In addition to it, the solved e_xample_s'are also given at the end of every chapter which will help in
- deep understanding of the topics discosSed. The key points provides the quick revision of every
_* chapter. Also, awell-thought question bank, in the form of various aSSigl_n ments is 9N§[}.at_ theendof -

.each chapter which covers entire prescribed topics, so as to facilitate students to do more and rnore L

practice and hence secure good results.

| Whrle compllmg th|s book more stress is g|ven on probIem solvmg technrque rather than Ianguage o

or exact mathematlcal symbols Any suggestrons for the |mprovement of the book erI be hlghty o

N apprecrated _
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: equatzons and also the method of solvzng first order dlﬁ"erentzal equatzon

| DIFFERENTIAL EQUATIORS | | CHAPTER - 1 l

CHAPTER - 1
INTRODUCTION TO DIFFERENTIAL EQUATIONS AND
DIFFERENTIAL EQUATIONS OF FIRST ORDER

INTRODUCTION - : .
Dzﬁ"erentzal equations arzse ﬁom many problems in Algebra, Geometry, Mechamc
this Chapter we shall study how a dzﬁ'erentzal equatzon ‘look: like, what are its
and the degree of the dszerentlal equation and we shall learn different ki i

3Chemzstry In
the order
: -dzﬁ’erentzal

§IL DIFFERENTIA_L EQUA TION o |
dy d’y d'"y) | | | g

- O,‘ whzch expresses a relatzon between dependent- and
dde P ?

independent variables and their derivatives of any order, is called a differential equatzon We may also
define it as, “An equation 1nvolv1ng unknown functions and their derzvatzves w.r.l. one or more
independent variables”. '

An equation f [x y,—

eg. (i) ﬂ =x+3 (ii). d_y ¥'sinx - (zzz) + px =0

d_y_gx 0 __= + 92 _ ._azz Pz _ 2, 2
R T

There are two types of d@']j‘erentzal equa_tzons:-

- (i) Ordinary (i) Partial
. DEFINITIONS:
(i) Ordinary Differential Equation: An ordznary differential equation is the equation which involves one
independent variable and dzjferentzal co- efficients w.r.t. it. Thus (i) to (iv) are ordinary differential
equations.

(i)  Partial Differential Equation: A partial dzﬁ"erentzal equation is the equation which involves two or
more independent variables and partial derzvatzves w.r.t any of them Thus (v) and (vz) are partzal__'
dzﬁ‘erentzal equatzons - :

" _. (iii)". Order of thferentzal Equatzon T he order of a dszerentzal equatzon is the order of the. hzghest

* derivative it-contains. In the. above examples the order of (z) and (zz) is 1, the order of (zzz) is 2, the
~ order of(zv) is 3. : :

(iv) Degree of dtffetenttal equation: The degree of the dzﬁ”erentzal equatzon whzch can be’ wrztten as‘a -
- polynomlal in the derivatives is the degree of the hzghest ordered derivative which then occurs.




‘ DIFFERENTIAL EQUATIONS CHAPTER - 1 I

dy 7
eg. 2}’:’\/5%'1‘7)’—

dx -
This differential equation is of degree 2 (obtained by making it free from fractions)

(v)  General Forms. An 'ordinaty differential equation of order one is of the form /(x, Y, %] =0.
sraLnd : X

dydy

An ordznary differential equation of order two is of the form /{x y,— Ol
X

] 0, etc. In general, an

o . SN dy &y . dy
ordinary dszerentzal equation of order n is of the form f|x,y d dx2 ’ ,d =0 or

f(x,yy',y”,. .Y')=0.

§ 12 LINEAR DIFFERENTIAL EQUATION

| dy d’y d"y) S
A dszerentzal equation f| x, ¥ y z, w—— | =0 is said to be linear iff the function fis a linear
S & dy : d"y | |
Junction of the varzables y,— PRy i.e., iff the dependent variables and its derivatives occur
in the f rst degree and are not multzplzed together. _
n-1 . '
: Thus P, ((: y +P, : Y o *P y=Q where P, P, ....,P, and Q are functions of x only and P,#0 is the

~ general linear di jferentzal equatzon of ordern..
..'The above-equation is said to be homogeneous iffo zs a zero ﬁmctzon and non-homogeneous iff Qisa
non-zero function.

Exdmble 1. Obtain the dijj’erential equation of all eircles- of radiusr. .

Solution: The équation of the family of circles of radius r is (x — a)z +o=b'=r . )
 whereaand b are arbztrary constants. -
_Since equation (i). contains two_arbitrary constants, we dzﬁ%rentzate it two times w.rt. x and the
dszerentzal equation wzll be of second order. '

_szferentzatmg (z) w.r.t. x, we get 2(x—a) +2(y—b)

.Dzﬁ”erentzatmg(zz) W.rL X, weget] + (y b)d y + [jy] =0 ()
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§ 13

(i)

i)

I’

s 14

From (iii), we have y—b = -

(V)
&y "
dxz
' ‘ 2]
o : e - \dx) |dx
Putting the value of (v - b) in (ii), we obtainx —a = ~——5——5— ..(¥)

. dPy/dx®

| Substztutzng the values of (x — a) and (y-b) in (i), we get

REIEREE

Fyidéy . (Pyody

= @] -2

This is the required differential equation.
TYPES OF 'SOLUTIONS OF DIFFERENTIAL EQUATIONS

Solution. The solution of a diﬁ”erential equation is a relation between the variables involved such that this

_relation and differential co-efficients obtained from there satisfy the gtven di ﬁ"erentzal equatlon This is
' also called primitive or mtegral of the dzﬁerentzal equation.

General Solution T he s'olution of a dﬁerential' equation yVhich contains as many arbitrary constants as

_the order of the differential equation, is said to be general solutton T his is also called complete pnmltlve
 or complete solution of the differeritial equatzon ' '

oy _
e.g. the general solution of EF'+ y =0is y =c cos X+ ¢, sinx.

Particular Solution. T he particular solution of a differential equatzon is that which is obtazned from the

general solution by giving partlcular values to arbztrary constants.
2 .

& g the partzcular solutzon of +y—0 is y = cos x.
X .

Smgular Solutton A solutzon whzch cannot be dertved from the general solutzon by gzvzng partlcular

values to the arbztrary constants and has no arbztrary constant is called smgular solutlon

'EQUATIONS OF FIRS T ORDER AND FIRST DEGREE
A general d ﬁ%rentzal equatzon of first order and | first degree is of the form —X f(x,y) or

de + Ndy = 0, where M N are ﬁmctzons of X and y both
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u Existence and Uniqueness Theorem Statement: Iff(x, y) and % are continuous _functions of x and y in

—i

a region D of the xy-plane and if P(x,,y,)€ D, then there exists one and only one function; say ¢(x), which
in some neighbourhood of P (contazned in D) is the solution of the differential equation

Y ftc) and 865)=,

Fo‘llowing are some of the Standard methods to solve differential equations:

1. Variable separable form o 2. Reducible to variable separable.
3. Homogeneous equations. 4. Reducible to homogeneous form
5. Linear differential equations of first order 6. Reducible to linear form

7. Exact a’zﬁ"erentzal eif‘uatzons

v
e

Case L. Varzable Separable An equatzon whose var. bles are separable and can be put in the form
- g(x)dx+h(y) dy=0 is called an equation of varlable"separable form Integrating, Ig (x) dx+ Ih ) a’y—c _

where c is an arbitrary constant This is the general solutzon of the dzﬁ"erentzal equatlon
Case 1L Equatzons Reduczble to variable separable T 0 solve the equation j— = f(ax + by + c) - )

Putax+by+c=zsothata+bﬂ=.d—z, ie., ﬂ—— E—a
' dx dx dx b {dx

Puttmg in(l), - [~—a] f( ) :> —a+bf (z), which is of the. type “Variable Separable” and hence

can be solved..

Method to Solve: _ _ _
: (i) Putax + by +c=z '(ii) Separate the variables z and x. (iii) Integrate both sides.

Case I1I. Homogeneous Equations:
Deﬁmtzon -Homogeneous Function. A function is-said to be homogeneous of the nth degree in x and y if it can
be put in the form x"/(lj .
L)

. .eg¢(xy) x*x’y +xy+y

Def mtzon Homogeneous Equatlon An equatzon inx and y is. saza’ to be homogeneous equaaon zf zt can be put' -

in the form g—i = ;ix y)) where f(x y) and O (x, y) are both homogeneous functzons of the same deg1 cein
xandy.r . S o -
(0} To solve the equation %Y = ;(( )) where f(x,y) and §(x, y) are  both homogeneous functzons of the same
E ST (X,

degreeinxandy.

| .
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F (i) Puty = vx so that %Z_ =v+x gv (ii) Proceed as in Case I
o - dx

(i) . Sometimes the equation is not homogeneous even then it can be solved by the same method as for .
' homogeneous equatzons

. Example 1. Solve: Xy dx— (' +y)dy =0
2
d Xy
dy = *‘“_3 (1)
X +y”
Since each of the functions X’y and X’ + ¥’ are homogeneous functzons of degree 3, so the given |
di ﬁ‘erentzal equation (1) is homogeneous. .

Solutton The given differential equation is- x yde—(x’ +y )dy =0 =

3

Putting y=vx and sh_us %=v:rx% in(l), we get v+x%= ‘XT-\?W
L "
:>v+x—d—v— v =X Qv -V :>x—d—v=—————v Y v
dx 4+vd L dx 148 dx- 14+v3
= =——V—é = x(1 +V)dv =~"dx = 1+v° dv .
dx = 1+v S v X
11 |
3(—4-+—-]d ___CE
v -V X
. o2
Integrating both sides, we get Y +logv=-logx+C
- .II.II.HC-
=5 tlogv-+tlogx=
, - . _3v3 & _.g___ L
| o 1t Yolag [op=
g - -—~+log 1=C [vv=yk]
. -8y ) oL
1 X% e .
_:> ~3- y—3 + log y = C, which-is the r_eguzred solution.
Case . Equattons Reduczble to Homogeneous equattons
To solve the equatzon ﬂ = m.
dx. "X +hpy+cCp
o .Methoa' tosolve R o
' (z) Putx X+ h y= Y+ ko -
: .(zz)_ Equaze the constant terms of numerator and denomznator to zero and find the values ofh and k.

(i) Proceed as in case III

dy x+y+2 _

- -VExampleZ
SRR dx.x y- -3.
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e Fy+2
Solution: Given iy_ _Xryre
x x- y 3

Let x=X+h, y= Y +h :“Z dY  _ dY _X+Y+(h+k+2)

dX T dX X-Y+(h-k-3)

i.e., choose h, k such that

h+k+2=0 . ... (i)
h-k-3=0 e (ii)
Solving equation (i) and (ii), we get
b= 1_; k =_§
2
& x+v Ty
ax X-Y 1_2’_
X .
Puiting Y= Xv = ﬂ =y @
dX dX _
iv_=kl;1:' dX_l—vd . dv  vdv _dX

=—— -dv > — — =
_dX lv_ X 1+v: 1+v- 1+v X

s | y? A AN/
= ?logX +10g(1+FJ—logc=2tan {—)Z] as v=—
Y 2tan"[l]
:>log{(X +Y%)/¢)= 2tan (X]:>X +Y* =ce X
DAY fsY st |
= .x—E + y+§ =ce , Where c is arbitrary constant.

Example 3. Solve % =_c()s (x+y) +sin(x+y).

L dy _dv - dy dv
dx dx dx  dx

So, the gzven dlﬁ‘erentzal equatzon reduces to 3V —1= cos vtsin v

Solutton Putx+y v, s0 that] +—=

_ dx
"-—‘>ﬂ -1 +cosv+smv -
o : o
'_By separa_ting_the variables‘-'we have - 1 —dv =dx
: _ -0 - 1+cosv+SsinyY '
. . 1
. On integration, we get |————dv = |[1. +C-
.r.zzn_egra .zo_.n W-eg-e_ -[1+cosv+sinv' Y -[1 dx _ o L
- | | . —tan’ @ _2tand
“—‘>I '_ 1 ' dv=x+C | cosZH— ——, Sin 9:-_—.-?—
+1—t-an2(v/2)'+- 2tan(v/2) I+tan 6 .  1+tan’d

" l+tan’(v/2)  1+tan’(v/2)
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sec 2 (v/2)
2(1+tan(v/2))

dv=x+C =log|Il+ttan(v/2)|=x+C

= log

1+ tan [ ; y J‘ =x + C, which is the required solution.

" Case V: Linear Differen_tidl Equations of first order =

Definition: A differential equation is said to be linear differential equation of first order if the dependent variable
and its differential co-efficients occur in the first degree only and are not multiplied together.

Thus % +Py =, where P and dreﬁinctions of x only is called linear differential equation of the first

order and thus g;+Px 0, where P and O are functions of y only is also called linear differential

equation of the first order

. Another Definition: The"diﬁ"erential equation of the form y'=p(x)y+q(x) ...(1) is said to be linear differential
equation of first order, where y is the dependent variable and x is the independent variable. If q(x)=0,
then (1)'is called homogeneous linear differential equatzon otherwzse it is called non-homogeneous
- linear differential equation

The solution of d—y + Py =Q, where P and Q are functions ofx only, is given by
X X . .

' y([._F ) ='I (LF)Q dx+ C,_ where LF = integrating factor and C is constant and LF. = !t _
Example 4, Solve (] +x ) +2xy 4x =0 subject to the initial condition y(O) 0.

2x 4x?

Solutton T he given dszerenttal equatton can be wrttten as ] + 5= 7 (i)
_ dx 1+x o 1+x
dy: e _ 4x?
This is a linear differential equation of the form ix + Py Q where P= o and Q= I
; +X +X

Wehave IF. = oJP

| .'Mu:l'tiplying hoth sides of(i) by LF. '(1 +’x'2-), ..w‘e get (1 + xz)“d—Y --'+j2xy =4

' 2% [{1+x°)dx :
eI ..=..elog(1+x_ ) = 1 +__x :

g ,"-'_Integrating both sides w 7.t %, we . get v +x ) I 4x° dx +C= y(] +x ) = —3— +C

It is given thaty =(), when x= 0 So 0= 0+C iy =g

: Hence y( +x )- % is the requtred solution

. _Case VI Equatlons reduable to Ltnear d fferentlal Equatlon :
To Solve the equatzon —= + fﬁ/ Qy where P and Qare ﬁtnctzons of X. j

<
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Method to solve
(i) Dividing throughout byy".
(ii) Putting y' "=z and get the linear equatton inz.
(iii)  Proceed as in Case V. -

Example 5. The solution of (dy/dx)+2xy=2xy’, is _ : o _
@ y=()/ld+e™) B y=1il-ce’) (@ y=1/+ce”) @ y=(x)/i+e")

d .
Solution: Ans (c). Dividing by y we get y~’ Zz— +2xy =2x

Putttng y'=v,sothat —y (dy/ dx) dvldx, or (dv/ dx) 2xv ~2x, which is linear
whose LF. = e e o ot 7 - : ' '

So, solution is ve™ =J(—2x)e"‘2dx:-[e’dt, putting (—_xz) =t (1)

or y_le"2 =e' +c=e " +e, (using (1)) . |

or y'= 1‘4.—(:e"z or y= 1/(1'+'ce’2 ), which is the required'solution.

L The solution of the ordinary different (0). _0_- ' : ) (TIFR-2010)

Cos (D) iszero. ~ .7

(IITJAM 2010

(IIT -JAM 2012)

o f‘5s1n(x)
g

at each"" L
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Case VII: Exact Differential Equatton .
The equation Mdx + Ndy = 0 (where M, N are functions of x and y) is exact if Mdy + Ndy is the exact
differential of a function of x and y; say F, i.e., dF = Mdx + Ndy.

The equation Mdx + 'Ndy = () is exact if oM _N and its solution is

dy dx
Ide + I(térms of N not containing x) dy = ¢, a constant.

(treating y as constant)

Integrating Factors .
If a differential equation is multiplied by a functzon u(x, ) so that the resultmg equation becomes exact,
. then p(x, y) is called an integrating factor and is denoted by LF.
The number of integrating factors of Mdx + Ndy = 0 is infinite.

Integrating factors by inspection of Terms:

(i) xdy ~ ydx —or—%orj—or 21 5
Xy XY x4y

(i) udy + i
(xy)

(1) xdx + ydy : i yer

Five Rules for finding integrating fuctors
. Rule I: If the equation Mdx+Ndy=0 'is"hbmogene'ous'in x and y i.e. if M, N are homogeneous functions of the

~ same degree in x and y, then - !
BN : : Mx+Ny

is an integrating factor provided Mx + Ny#0.

| Ex'ampk 6. Solve.' *ydx-(x’ +y3)dy=.0-

: Solutwn Here M =%’ y N=x’y’

IF— I .-3-~.13- 4=_l4_
Mx+Ny Xy-xy-y -y

BT G AL .o WY
Now muiip yqz_g : ){z:'z_{egra{zngfac_to_r, H _e equatzon ecomes — X _y_;—__ )

s . yooy
w2y (1 o
“or sz—dx-—f—dy or _y d[ ad J

oy Ty 3)’

3 2 -
X 3 . .
Integrating, we get logy = §—3+ k. = y=ce® , where c is an arbitrary constant.
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Rule I : If the equation Mdx + Ndy = 0 is of the form f,(xy)y dx + f,(xy)x afy = (), then T 1 Ny is an integrating -

faétor provided Mx — Ny # 0.

Example 7. Solve (1 +xy)ydx+(1 -xy)xdy =()

Solution: The given equation is of the form f,( xy) ydx + £;5( xy) xdy =0
Here M=(1+xp)y, N-( 1 -xy)x -

1 - 1 - 1

IF= =
Mx—Ny Ty 22y

. Multiplying throughout by 1 - it beconﬁe& 1 +L dx+ _ 1 ! dy =0,
2x°y" - 2x? y 2x ) 2xy® 2y
whzch is an exact dzﬁ”erenttal equation.

’

1 1)1 1 1
. The solution is —| —— |+—logx——logy=c or log————=-c.
2y\'x) 2 2. y Xy

oM oN

3)(—'_5)(— .If(x)dx__
N

Rule III: If in the equatien Mdx + Ndy =(, is an

is aﬁmction of x only = fix) (say), then e
integrating factor. '

Example 8. Solve [y+§ y® +%x2]dx+i-(x.+:x.y2 )a'y =0

Sqlutio'_n:. [y+%y3 +%x2]dx+;1{(x+xy2).dy=0‘

AfM o) 4 '2_.i;i":'_._4_ | 5
o [ ' J"(x+xy2)[l+y.. ] x(+y )4( . y') = x

which is a function of x only, hence I.F = eI Crot X

The equation becomes (4x y+§_ 2y} 2 de+ (x* +x*yHdy=0 ' Kl
T he solution is x*y + %x“ _y3 +§- x* =k or3x*y+x*y’ +x° =, where c is an arbitrary constant ‘.
S R | 9N E)M : ; '. RN x .: .'.:J.-f'(Y')dY
Rule 1V: If in the equation Mdx + Ndy =0, — == isafunction of y only = f(y).(say), then & "~ .isan

ox o
zntegratmg Jactor. M . .

Example 9. Solve (xy +y)dx+2(x y +X+)’4) dy=0

Solution: Here M_ ?xyjfy, N =20y xty’)

EO=
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T (aNaM] L 4y SN S
) xy” +2-3xy° —1)=—, which is a function of y only.
: ) y(o'+l Y % -_
~LF. —ejydy—e““—y

Multzplyzng throughout by y, it becomes (xy +) de+(24° Y’ +2xy+2y ) dy=0, whzch is an. exact
dzﬁ”erentzal equation

" The solution is %xzy“ +xy? 4;'% Y =c

Rule V: If the equation is x*y’ (mydx + nxdy) + Xy’ (pydx + qudy)= 0, then Yisan integrating factor, where
a+th+1_ b+k+1 r+h+l s+k+1 : : -

)

m nop g

PRACTICESET—JZ':' o

) dyu 0, then the value of a is

1. Ify'is an integrating factor of the differential equation 2xy - ,
- : : . ST (IITJAM2011)

(4) 4 B4 o © (D) 1

2. The differential equation (1 + x’y’ + axzyz) dest (2 +-x.3y2--_-.l- x’y) dy = 0is exact, if 0. equals
: - o - T _ ' - (MT-JAM 2012) - - ~-

5 0 "'::j'exact .then -
N (IIT-JAM 2014)~
C)b=2c=4 (D)b 2 a —2c o

2xy +y
315
x= 2y

- ‘...:}An zntegratzng factor. of the' lfferentzal eéquation . ?d% - (IIT-JAM2015) ,

(C)_y_ _' o

| 5 -_ ' -Ifxy is an: zntegratzngfactor of(6y + axy) dx + (6xy + bx) dy 0 where a; b € R then _ 7
e (GATE— 2017)
o (A) 3a 5b 0- (B) Za b 0 L (C) 3a+ 5b 0 (D) 2a + b 0 .

thé et iuion (i

(GATE_-;I 999)

x4+ bY,O?Sx)dxﬂf(Zsm_X—l."ray —)dy-...; O-,iszexqetfqr,- }- :
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§ LS. EQUATION OF FIRST ORDER AND HIGHER DEGREE

A differential equation f[X, Y, gyJ 0, where degree of = d lis sazd to be non-linear differential
- dx

equatian of first order and higher degree. It-is generally of the type

dy 0 dy n-1 dy n~2 . dy
P, [E{) +P, [E;) +P, (a;) +.. +Pn_1-5— +P =0, whereP P, Py, P,_, P, are functions of

y
x and y. For convenience; we write — = p and the above equatzon takes the form

dx
Py +P,p rpp ...+P"'_lp +P =0.

Type I : Equations solvable forp.
Let fx,y.p)=0 .(1) be the given di jferentzal equatzon of “first order and degree n> L

. (1) is an equation of degree n solvable for p, . LHS. of (1) can be expressed as the product of n.
lznear factors in p.

Let (1) be written as (p—f,) ) - (p -£) =0, where Tolfo o, are-functzons of x and y.

- Now, solutzons of given equatzon (1) are gzven by n equations p~f, =0, p~f,=0, .., p-f,=0or
_—fl( 2 ¥ —X—fz(x ). ,——f (x y)
These equations can be solved by the methods already known to us. Let the solutions 'of these n
equations be F, (xy,c,)=0 Fyx,y,¢,)=0, .. Fxyc)=0

Since the gzven equation is of thef rst order, .. it cannot have more than one independent arbitrary

constant

Letc, =..=C,=C say.

*, The general solution ofgzven equatzon (1)is F, (x ¥, c) F, (x y ) .. F (%, y, c) 0o - : L

Type II: Equatzons solvable for y _ S . :
Let the given di jferentzal equation be f(x, y.p)=0 - R o (D)
Since (1) is solvable for y, - ' .

S (1) canbe expressedasy =glp) A ) B
Differentiating (2). w.r.tx, % =.-p=h(x p,%) , R )

o which is an equatzon in two variables x and p- Integratzng (3), let its solutzon be F (x D c) 0 v (4)
- The elimination of p between (2) and (4) gives' the general solution of (1 ) S R
If the elimination of D between: (2). and () isnot posszble the. values of X and y may be obtalned in terms "
of the parameter p; sayx = f,(p, ¢), y =fp, ©).
T hese two equatzons together constztute the solutzon of (1 ) in the parametrzc form

Type III: Equations solvable for x - LT T
“Leét the given d ﬁerentzal equatton be f(x y, p) 0 S A (1)
Since (1) is solvable for x, . : : S .
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*. (1) can be expressed as x =g(y, p) : o (2)
Differentiating (2) w.r.t. y, & _1_p [y,p,d—p] . w(3)
dy p dy
which is an equation in two variables y and p. ) S
Integrating (3), let its solution be F(y,p,c)=0 ' : o (4)

Tlte elimination of p between (2).and (4) gives the general solution of (1).

Type IV: Clatraut s Equatton
An equation of the form y=px + f(p) ..(1) is known 'as' Clairaut’s equation

dp dy
Di erenttattn wzth respect tox we have +x—+ V===
iffe 3 P ety (2 e [ I p}

or [x+f'(p)]zx=0

d—p—O or x+f(p) 0

dx _ o
dp . — S S
X _p, givesp=c _ (2
L =0, givesp _ | oN

Thus eliminating p from (1) and (2), we get y—-cx+f(c) ~(3), as the general solution of (1 ).
Hence, the solution of the Clatraut s equation is obtained on replactng pbye

Remark 1: If we eliminate p from x+ f'(p)=0 and (1), we get an equation involving no constant. T his is the
singular solution of (1) which gives the envelope of the family of straight lines-(3).~

Remark 2: Equattons reducible to Clairaut’s form: Many equattons of the first order but of htgher degree can
be easily reduced to the Clairaut’s Jform by making suitable substttuttons '

Example 1. Solve (px — y)(py +x).=a’p.

Solution: Put x’=u and y'=v, s.t., 2xdx=du and 2ydy=dv
: P _ _ _ |
dx y.x oy du | . _
- Then the given equation becomes (X—P x- y][ﬁ y+ x]=a _)f
- or (uP—v)(P+1)=d’P or uP—v= e P
T o P+l . S
-~ Its General solution is v = uc - a_zc/(c +1)ie, y=c-d’c/c+1).

_'or' v ﬁaP;aZP /(P ,+1.), whtch is Clairautfsfbrnt. : ‘: N -_ "

Type V. Equattons not containing x ) L _
The differential equation, not contatntngx is of the form fly, p) 0 T ) R
_ Two cases arise:. : -
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- Case L. When (1) is solvable for p. Then p = g(y), i.e., % =g(y) = _gc_:% =dx
dy

Integrating, I —gm = x + ¢, which is the General solution.

Case II. When (1) is solvable fory. Then y = h(p), and we can proceed as earlier.

: 2 ' : 2
Example 2. Solve y(1-log )’)Q +(1+log y)[ﬂ] =0

" Solution: The given equation does not contain x dzrectly

d
. Putting 9. D, SO that i ay_dp pﬂe

dx Cdx dy
The gzven equation becomes y(l log y)p d—+ 1+ log y)p? =0 or . 1 a+ log y) dy
| dy Y- log y)

1+logy
~logp=-[——52
oer '_Iy(l—logy)

lng =—J’gdt+cl' :

dy +c (put log y=t)

logp=J’(l+t.—int.+cl =t+2log(t—_1)+c1 =log y +2log(log y —1) +logc,

"=logp=logle,yogy-1?). .
dy

—— —=cdx
ylogy-1)*

~dy . 2
f—y == 10 —l -
== =X _gy.)

=c¢,x+c, orl-logy= , which is the requzred solution.

logy-1 - %, cx+c2

Integratzng -

I - Type VI, Equatzons not contazmng y _ S
The differential equation, not containing y, is of the form f(x p) 0 - ' (1)
Two cases arise: : - :

Case I When (1) is solvable for p- Then p= g(x) Le. % = g(x) = dy g(x) dx

. _ Integratzng, y+ c= Ig dx which zs the General solutzon
o ':Case II When (1 ) is solvable forx Then x h(p) and we-can proceed as earlzer

| dy -
- Example 3. Solve (l+x ) +1+ =0. -
. Solutzon The gzven equatzon does not contazn y- dzrectly

Puttzng ﬂ = p s0 that d—zl-_ dp *the gzven equatzon reduces to (1+ X )—+1+ pt= O
ax: dx® - dx _ dx

| . <_14>.'-
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"or ap + dx =0
C1+p® 1+x? _
: PR " 4 ptx . +x
Integrating, tan 1p+ta.n ! x=tan 1c1 or tan™! P =tan 1c1 or P =c,
S : 1-px o 1-px
: ' '.dy ci—x 1 1+cl2- '
or prx=c,(1-px) or p=-—>=-"1 =— -1
P _ _1 P E P dx l+cx  (1+ex
Integrating. v = 00D 1 b is the reoui .
Integrating, y = ——=log(l+¢,x) ~—x+c,, which is the required solution.

1 . G

Example 4. Solve: ydx + (x —~y )dy /8
'Solutton The given dtﬁ'erentzal equation is ydx+(x— )dy 03—3—:— + = y =y’ (D),

Thisisa lmear dzﬁ"erentzal equation of the form :— +Px = Q where P = 1 and Q-y
, -y Yy

.
Ide e[;dy

“IF. =€

= elog y' =y .
Multiplying both sides of (i) by LF. =y, we obtain y% +x=y

- R y | |
Integrating both sides w.r.t. y, we get xy=I y dy+c [Using: x(LF.) =I QAF)dy+C]

4 . B . ¢ ew®

= xy=yT +C, -wh'ic_h is the required solution.

Example 5. Solve x % +y=x)’

Solution: The given dzﬁ”erentzal equatzon can be wrztten as . —% y Ls =x
y o xy . . _
d
Putting y~ = v 50 that 5 oAy v ory* @1 9_ get—1 (—j—+ 1v—x2
dx  dx dx 5 d dx x ) .
= — ——v=-J. :
x x - - -0
: T?zzs is the standard form of the lmear dzjj’erentzal equatzon havmg 1ntegratmg factor C
*JF—J_fz“m;%- L
Multiplying both sides of (z) by LF. and integrating w.r.t. x, we get v —1? = J—sz_ i ?dx _
= —\% =,—-x_2-+C =y 5_x = _—g-x'z +.C, which is_‘the' required solution. o




T > 5 General solutzon is the solutzon whzch contazns as many arbztrary constants as the. order of ’the dyfkrentzal
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PRACTICESET 3
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1. ~ One of the points which les on the solution curve of the dzﬁ"erentzal equation (y x) dx+(x +y)dy =0,

with the given condition y(0) = 1,is - : . T-JAM 2016)
) (1, 2 B) (2, -1) ©@n - D)L 2) ' '

2. -Conszder the ODE on R y (x) f(y(x)) Iffis an even functzon and y is'an odd ﬁtnctzon then

.  (CSIRUGC NET DEC-2015)

(4) —y(-x) is also a soluttan _ : (B) Y- x) is also a solution., . T
(C) —v(x) is also a solution. (D) y&)y (x) is also a solutzon. .

3. Lety beasolution of y =e __yz -1 on [0,1] which satisfies y(0)=0" Then = = = *"  (GATE-2008)
(4) 9(9>0 for x>0 CBy&<0forzx0 . . . |
(C) y changes sign in [0, 1] _ (D)'yE_O for'x?O ' L

- 4. Consider the equatz‘on _SX =1+ F2()y(), y(0) = i 120 w.h.ere.f ia--a.baunded continuous function on
- . dt R . . ) o . .

[0,2). Then S T (SR UGC NET DEC-2011)

(4) This equation admits a unzque solution y(t) and further llm y(t) exists and is finite

(B) This equation admits o linearly zndependent soluttons
(C) This equation admzts a bounded solutzon for wh' h{l;_llm y(t) does not exist -

" (D) This equatzon admzts a unzque solutz : _dfurther, llm y(t) =00

YPOINIS: ..

» A Dzﬁ"erentzal Equatzon exp 5

4 relation between dependent and 'j_'ndependent variables and. their
. derzvatzves ofanyord"" ' R - it L o

B Z?heOrderofadlﬁ"erent'lalequatzonzsthehlghestorderderzvatlvezt Contazns e e R

P - 'The degree of the dzﬁ"erentzal equatzon whzch can be wrztten as a polynomzal in the derzvatzves is” the'--'t? h
R _degree of the. hzghest ordered derzvatzve whzch then oceurs.. ' o '

o > _ Adzﬁ"erentzal equatzon is lznear zﬁr the functzon f zsalznear functzon of the varzables y,Z _iz ;- ,ny S

equatzon

<16> -
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> For linear differential equations of first order -d—y‘+ Py =/Q wh e"P

DIFFERENTIAL EQUATIONS

- partzcular values'to arbitrary constants.

> The solution whzch cannot be derived ﬁ'om the general solutzon and has no )
singular solution. : :

dx  ¢(xy)’

degree inx andy. Puty = vx so that %! =v+x (;_v and solve.
‘ - S X X ,

»  Homogeneous Equation %Y - fxy) Y)  where f, ) and § s, ) are bo

; Q are’ ﬁtnotions of x only,"_
thesolution is given' by y(I F)=|a F)Q dx+ C where )

_'o”tt‘ng factor and C is:constant and
IF—e“’“‘ Lo S

>
S
SOLVED QUESTIONS FROM PREVIOUS PAPERS
L The minimum posszble order of a homogeneous lznear ordznary dzﬁ%rentzal equation-with real cotistant -

» coeﬁ" cients havzng x? sin(x) asasolutzon isequalto .~ S (GATE-2015) '

:Solutton (Ans: 6) As we Tnow (D*+1 )y=0 dzjferentzal equation has solutzon y=c, cosx +¢, sinx and a _factorx - -

is multzplzed fo lznearly zndependent solutzons when we.. have repeated roots and if a again the roots
-repeats we multzply X to the same. :

- => for solution X sinx, roots must be repeated 3 tzmes o L
Thus the linear and homogeneous dszerentzal equatzon must be (D + I ) y= 0
-.It is ofora’er 6 ' : . S
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: . dy ; .
2. The equation of the curve satisfying smyZchos y(l—xcosy) and passing through the origin is

(IT-JAM-2013)
Solution: (Ans: sec y =x + 1) Given sin y% =cos y(1-xcos y)
:>Q =coty—xcosy.coty :Q—coty -—;—xeosy.coty
= secy tan.y%¥sé¢y=—x . - (1)
Putv =secy

:>£i1—secytanyﬂ
dx dx

' - dv :
.. (1) becomes ——v=—x
'() i

. —| dx -
IF=e J =e _
". Complete solution is v-e™* = —_Je_‘- xdx+c
Svet=xe te tc Dv=x+l+ce’ =secy=(x+1)+ce”

* As the curve passes through origin. i.e. (0,0)
So, sec 0 = (0+1 )+ce

> I=l+c=>c=0 .
Hence the requzred equatton of curve satzsjjzmg the gzven a’zﬂerenttal equatton is sec y=x + L

3. thch of the followmg is an mtegratmg factor of xa’y ydx 0 2 (GATE - 2001)
o ’(A) | R oL o= | N
_ S Xyt xy o : y
“Solution: (A), B), O : : :
‘Here_M =-y; N—x_ _ . .
Clearly M _ =-1, aﬂ: 1 = ij‘i;‘: N
: dy  ox . - dy o

= This eqution.is hot;exa'c},‘._
. -y 1 .
By option (4), —>dx+—dy =0
Ao oo av
dy o x* Ty &
. - =P-now equation’is exact. +
L . Hence, option (a) is correct.

B R LT T L P



DIFFERENTIAL EQUATIONS CHAPTER - 1

By option (b), M'=—2_—y—,'N'— ad

x4y ey’
M’ _ (X" +y*)=D)~ (2)’)(—)’) —x’ +y
"oy (" +y*)* (x* +y)
oN' (x +y ) - 2x)(x) _ -x*+y?
ox Py (& +y%)?
BM' dN' o
= —— = —, hence equation is exact
dy o '
= option (b) is correct.
Byoption (c), M'='_—1,N'=l
x y
aM' Ozil\ﬂ = equatzon is exact /
ay ox .
= option (c) is correct
Byoptzon @, M'=—x;N'= zc—
y .
oM’ ON' 2x  dM' ON
— =0, —=— D—Fr—
dy dx y  dy  Ox -

=> It will not act as integrating factor

" = Option (D) is incorrect
- ‘Hence, options (4), (B) and (C) are.correct.

4 The mmal value problem i’ —x) Al A (2x 1 )y y(xo) Yo has a unzque solution if (%4 v, equals _
(GA TE-2002)

wen  oman @mw- vf@mv
~ Solution: (a) The given equation is. (x* - x)— = (2x l)y, ___(xo) ....... Yo
- dy _ (2x 1)
) dx Xt -x
o "dy (2x 1)
= 1)

: a’y x+x 1 3 (x 1)
@ s ) x(x ) x(x D, v

L a’y [ 1 . 1]- e
A N
dx x-— 1 x)

R <
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o ody dx dx
Integrating, — = ——+—, we get
y

x=1 x
log y = log[x(x— 1)]+logk = y=ke(x-1)
From option;
By option (4), y(2) =1
1=k21 k=t
2

— /3 has.unique solution in this case
" For other options (B) and (D) initial value problem has no solution, whereas for option (C) it has
infinitely many solutions. :

5. Integrating factor of (x7 y:+3 y)dx + (3x8 y— x)dy =0 is x"y", where (GA TE-2002)
(A m=-T,n=5 (B) m=—-1,n=5 (C) m=-T,n=1 (D) m=-1, n=-1
 Solution: (C) The given equation is (x7 y+ 3y)dx + (3x8 y- x)_dy =0

Hefe M x7"y2 +3y. N = 3x8y X

By options, for option (A), if x~ Ty s integrating factor‘:> (A) is zncorrect

M'=x7"y’ (x7y2 +3y); N'=x Ty Bxty - x)

M'=y" +3x7y% N'=3xy - x%y°
] A aNl
—aM—=7y6+3x'7(6y) — =3y —(-6x7")y’
dy _ ox s
oM' oN' ..
+ ——, it is not exact
dy ox. L

= )_6—7 y® is not integrating factors

- For option-(B), m=~1,n=5, ie.if x™'y’ isan integrdtihg factor
M|__ x—lyS(x7y2 + 3y) Nl_ x—-lyS (3x8y _ x)

CM'=x%y" +3x7y%N'= 3x7 6Ly’

gy—'=7x(’y +3x0 (6y) —21x6y6
am v
3y . ox

SR it is notan 1ntegratzngfact0r o -
For option: (), m=-7;n=L if x~ y is mtegratzng factor:> (B) is zncorrect
M'=x Ty(x'y? +3y) N'=x y(3x y- x)
M'= y+3x7y2N' 3xy ~x%y |
oM M

-——3y +3x ‘7(2y)——-3y +6x ’7 =——,'hen;:eiti§exéct '
dy ox .. _ay ox :

<20)
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For Option‘ (D), m=-7, n=-1,if "'y isan integrating factor -
M'=x7y" (x7y2+3y) N'=x"y (3xy x)
M'=y+3x7;N'=3x—x~ Syt
t N'
ay Tox .
It is not exact
Hence option (C) is correct.

. 6. The solution of Ey =‘y2, ¥(0)=1 does not exist for all ' ~ (GATE-1995)
(4) xe (-o,1) (B) 'xe[O al wherea >1 (C) X€ (-9, oo) (D) xe[1, a] where a > 1

Solution: (B), (C), (D) The given dlfferentzal equatton % = y and y(0) =1

d -2+1
: —X =dx, Y =x+¢, —=x+c -
v -1 -y
Applying initial condition, -1=0+c =>c=
-1 . '
=x-1
Yoo
X 1-x

The solution can’t exist at x=1 and as option (B), (C) (D) zncludes x= 1
= Solutzon does not exzsts for Vx gzven in option (B) (C) D). '

A The general solutzon of the dszerentzaZ equation dy/ dx+tanytanx=cosxsecy, is  (GA TE-2001 )
(A) 2sin y=(x+ c- sin x cos x) secx . (B)siny=(x+c)cosx . :
(C)cosy = (x +. c) sinx I (D) secy = (x +c¢) cosx

Solutton The glven dszerentzal equatton is ﬂ +{an y tanx=cosx secy
dx

cos.ya +8m y tanx =CO0SX

dy dt - d :
putszny = t = cos —=— :>—+z‘ tanx cosx
yd_x i ( ) |

: It is a lmear dzﬁ‘erentzal equatzon of f rst order E
IF e[tanxdx =g —~logcosd _Secx

The solutzon is given by t(I F ) I(I F)cosxdx+c

(secx)t —fsec xcos xdx+c
{secx)t —x+c =siny= (x+c)cosx

= optzon (B) is correct.”

o
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ASSIGNMENT - 1.1

NOTE: CHOOSE THE BEST OPTION -

| dy  x ' S ' _ “
L = x — + ——isof degree -
y=x_ & f deg
| o dx - |
(4) zero ' (B) two o (C) three _ _ (D) one
o differential equati 5y, 2 4y f
. The differential equation iso
_ quatt | I d | _
(A) first order (B zero order (C) second order "(D) none of these
d%y | |
3. The degree of the differential equation o2 +n'x=0is-
. dx ‘ - ;
(A) zero (B) one - (C) two -(D) three

4. The differential equation f(x, y)[(ji 3} + ¢(x, y)ﬁiix'"j)J +...= 0 is of order
. . X ) .

. Ap (B) g C)m - (D) none of these |

. 5. The number of arbitrary constants a general solution of first order differential equation contains is
(A) zero (B) one . (C) two (D)-three

6. The.differential equation gy + Py = Q where P and Q are functzons of X only, have the zntegratzng'

factor—
@t e g (D)
7. A solution of a differential equation which contains no arbitrar}t constants is—
- () particular solution : (B) general solution
- (© primitive solution 7 _ : o (D) none of these

8 4 general solution of a lznear dyj’erentzal equatzon wzth constant coeﬁ‘ cients is—
" (4) sum of partzcular solution and complementary functzon '
(B)--product of particular solution and complementary functzon )
(C) quotient of particular solution and complementary functzon
(D) noneof these. ' :

9. Given adifferential equation of order n, then its complete 'prim'ttive contains—. -

(A) n—arbitrary constants - ~ (B) more than n—arbztrary constants
 (C) less than n—arbztrary constants B (D) no arbitrary constant
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10. The necessary condition for the differential equation M(x y)dx + N(x, y)dy = 0 to be exact A
oN oM aM oN oN

W35 ()———g- © 5= CEES

11; If the solution of differential equation contains as many arbitrary constants as the order of a dszerentzal
 equation, then the solution is called :
(A) particular solution ' (B) complete primitive
(C) singular solution o ' (D) none of these

12. In linear ordinary dszerentzal equation, the dependent varzable and zts differential coeff czents are not
multiplied together and occurs only in—

(A) first degree _ (B) second degree (C) third degree . (D) fourth degree
- 13 If M(xy)dx + N(x,y)dy 0 and aaﬂ = aa— then the differential equation is
' _ y X ' ,
(A) exact _ . (B) not exact ( C) linear (D) non-linear

4. Ifa dzﬁ"erentzal equation de + Ndy =0 is not exact and let F(x, y) be such that FM dx + FN dy =0is
exact, then the function F is called a/an
(A) differentiable function (B) arbitrary functzon
(C) integrating factor - . (D) none of these

- 18, If differential equation Mdx + Ndy 0-is of the form ﬁ( )y'dic+ f2 (xy)xdy = 0 and Mx-Ny=0,
then an mtegratmg factor is ' o

-(A) Mz~ Ny ' (B My (©) L (D) None of the above
| | Mx-Ny

16. The dszerentzal equatzon % +Py=0Qis s linear differential equation of first order if—
(A) P, Q are functzons of x only - =~ (B) P, Qare functions of y only

QP Q are functions of x and y | (D) None of these

17."The order of the differeritial 'equdtion is def‘ned as the
(B). h10hest order derivative occurrzng in the equatzon
. (C) highest power among the powers. of the derivatives occurring in the equatzon .
"(D) highest power of the varzable occurrzng in the equatzon B

~ 18. The degree of a di ﬁ’erentzal equatzon is defined as the
A highest.of the orders of the differential coefficierits occurrzno init.
(B) _highest power of the highest order differential coefficient occurring in it..
) any power of the hzghest order dzﬁ‘erentzal coefficient occurring in it.
" (D) highest power among the powers of the differential coefficients occurring in it.

s
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19. A linear differential equation
(A) is necessarily of first order
(B) is necessarily of first degree
(C) may or may not be of first degree but is of f rst order
(D) is either of first order or of first degree.

20. The degree of dzﬂerenttal equatzon satisfying the relation \1+x* + 1/1+ y = (x\/lJr y? - y1+ 52 ) is
(4) 1 . B2 - . (C).3 : (D) none of these

21. Determine the type of the followzng dzﬁ"erenttal equation %L.sm(ﬂ. y) sinx

(A) Linear, homogeneous _ _ (B) Nonlinear, homogeneous
(C) Linear, non homogeneous (D) Non linear, non homogeneous

NOTE: MORE THAN ONE OPTION MAY BE CORRECT

22. The equation e dx + & dy = 0 is not of order— | _ _
(4) zero : (B) one - (C) two _ _ (D) three

" 23. The equattonj Y v+ w’x=0is of-
x2

(A) order zero _(B) order two ' (C) degree two (D) degree one

. * S

' : 5 \32
24. The differential equation (Qj [Q] -4= O is of

_ dx’. dx o
(4) order 2 I(B) degree 3 ~ (C)order 4 : (D) degree 6
25 Which of the followzng dzﬁ’erentzal equatzons is not of f rst order and second degree?
4) | —=| +sinx{—| +xy=x B) x +xy’ =e"
”{dxz]_ %) 7 ® [dxj >
C) ==+ +xy=e" D) 1+x"}—+ 1 +—| =0
© G+ em=e . o s )dxz &) =
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ASSIGNMENT - 1.2

NOTE: CHOOSE THE BEST OPTION

1./ What is the order and degree of the differential equation [1 + GV - py" =07
- (A) First order, second degree ' " (B) Second order, first degree
(C) Second order, second degree (D) Third order, second degree

' - 2 AV '
‘ \}/ Order and degree of the differential equation Z_gg_ = [ p+ [g%] ] are respectively

@21 N B) L (C)Z,i_ B (D) 2.4

3. If de + Ndy = O is a differential equation and [aﬂ_aﬂ] is a function of y alone, say_f(y) then

_ ox dy

integrating factor is : : : .

(4) e o (B & - (C) e I O (D) None of the above
4. The integrating factor for the Leibnitz linear equatlong—y- +Py=Qis

(A) Ide o (B)Ide - (Qexp l de . (D) exp Ude)

5. The homogeneous dszerentlal equation M (x, y) dx -+ N{x, y} dy = .0 can be reduced to a di ﬂerentzal
equatlon in which the variables are separated by the substitution

C@y=w (B) xy =v Ox+y=v . D)x-y=v
o » dy_y3_.".'
- 6.. Thedifferential equation —= = *—is
Co _ dx - x2 _
(A) homogeneous ' (B) non-homogeneous

(©) exactfequatio_n ' : (D) none of these
_ 7 Conside}‘ the following d'ﬁerential equaiions -

'_(z)x(y) +y”{1+<y gk }2+ 2{(y)”}-=_.0.

¥ he sum. of order of f rst dlﬂerentzal equatzon and degree of second d ifferential. equatzon is, -
. (A)6 o (3)7 N .(D)'9 |

8 For -non homogeneous equation y'+p(x)y— r(x) zf y, and y? are zts solutlons then the solutlon Of
' Jlomogenous equatzon y'+p(x)y 0, is ‘ o
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(A)y=y-, (B)y = % ' Cy= Y_2 (D) None of these
' 2

Y

9. The integrating factor of yidx + 1+ xy)dy =0is

(4)e’ Be Qe  De”
10. An integrating factor for ydx — xdy =0is

(4) xly (B) y/x (O — _ (D)

. : . xz + yz x? +y

11. For the differential equation y' 4-p_(tc)y =r(x) to be homogene'-ouS,

W20 Bry=0 (©) rt) = pi&) D=0
12. The general solution of the differential equation  ydy — xdy- =0, is ,

(A) §=c o (B) x+y=c - (© xy=c. o (D) x—’y_=c_ _

13. (1) The solution of ordinary diﬁ’erentitzl equation of order n have n arbitrary COnstants.

(2) The solution of partial differential equation of order n have n arbitrary ﬁtncttons
Which of the following statements is true?

(A) 1is true 2 is false =~ .~ (B) 1 is false 2 is true
(C) 1 and 2 both are true .. S (D) I'aiid 2 both are Jalse

- . 14. The solution of differential equation ydx+xdy'=0 is L ST
(Axy=c (B)x=y+c (C)x_yzc . (D) none of these

15. The general solution of f rst order dzjj’erentzal equatzon dy =cos X, is gzven by
_ dx ‘

(A)y =cos x

(B) y =sinx o

(C) y = cos x +c, c an arbitrary constant
D)y= sin x + ¢, ¢ an arbitrary constant

16 The general solutzon of the d ﬁ’erentzal equatzon @’._ T _
(A)x vy =d -(B)x ~y =d (C)x-'_ o Daty=an

" 17.. The particular solutzon of the znztzal value problem xdx + ydy () xo =4,, ==3is o
(A)y-+J25 x? (B)y +J— (c)y=_4x I (D)y -3x

s The equatzqn x=‘.‘100.s@t"a) can be expressed s
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2 2 _ : :
(4) X~y (B) d—: =_p'x (C) x_yg _ : (D) none of these
dt? ot o

19. The general solution of % + % y=xis

(A)xy=%x4+c (B)xy=c | (€ §=c - (D)noneofthese'

. dy , 1 3.
20. Solut, 24+ _y=
ouzenofdx 2 X is | | .
(4) e"’gy =x (B)y=x - (C) logx=y _ (D) none of these

21. The equation of the curve, for which the angle between the tangent and the radzus vector is twice the
vectorial angle is r* = Asin 29 This satisfies the differential equation
(A) r(dr!/d@)=tan26 : . (B) r(d9/dr)—tan20
(C) r(dr!d@)=cos26 (D) r(d61dr)=cos28

~ 22, Let m be the order of a differential eqitation. Then
(4) m is not unique : o (B) m is unique
(C) m may or may not be unique (D) m may be infinite

NOTE: MORE THAN ONE OPTION MAY BE CORRECT

. - 23. The differential equation 22% + }1.,_(3_3’] =0isof
' dx® X _

(4) second degree = (B) first degree (C) first order ) (D) second order
24. The equationy dx +xdy =0 is _ : -
. .(4) exact differential equation : (B) non-exact differential equatzon
(C) partial differential equation - . (D) of first order :

25. Which of the following is not true for the statement
" - “The complete solution of a differential equation contains arbitrary constants” ?
" (4)-more than the order of equation- - . (B) can’tsay
, (C) eqital. to the order of equatibn P (D) less than the order of equatzon :

- 26. thch of the followzng dzﬁ‘erentzal equatzons is not lznear 2

W)L ey msin R (B)y;m—fo_
Ndy _ y 2 dy —sinxiet
O+ )% 45 =0 - o (D +{1+x) y=sinx+e
©+y)7] sin x | S () _dx( yy
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27. Consider differential equation '] + y| = 0. Which of the following statements is true?

(A) General solution exists

(B) General solution exists but contains no arbztrary constants

(C) It has particular solution which is bounded.

(D) None of the above '

28.. Given, % =2xy. Solving the abo_ve differential equation gives

R (B) logy=x+loga (C) log)’:l_x_ - D y=ae
)y oga

: dx = tan ydy . Solving the above differential equation gives
X : ' ‘

(4) logx=-log cosy + C : - (B) log(x cos y)=C~
(C) log (x siny)=C 0 (D)xcosy=¢"

30. Consider a family of, parabolas y’ = 4a (x + a), which of the Jollowing statements is trhe?'
(4) The differential equation satisfied by the . given system of parabolas y'=4a(x+a) . is

dy\’ dy
—_— +2x =0
y-[dx] AR

(B) Dzjﬁrenttatmg the equation with respect to x, we have Zy% = 4a

L - )

(C) No'di ﬁerentzal equation for the gzven equation exists
(D) None of these

<>
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ASSIGNMENT - 1.3

NOTE: CHOOSE THE BEST OPTION

L. The Soldtion of the differential equation (2ax + by) ydx + (ax+2by) xdy = 0'is
(4) axy’ +bxy =c (B) ax’y’ + bxy =c
- (Qap' by’ =c | ' -(D)axy+by2=c

2. Dzjferentzal equatzon x(l - )dy+(2x y—y—ax )dx 0 has an mtegratmg factor
J-2x -1 & . J'2x ~1 dx

®) e
I 2;‘2_21 . . .
x(1-x%)

(4) e

©) e (D) none of the.above

. p _
3. The solution of zz— =2 represents_

y . ' _ o
(4) a family of circles centered at (1,0) (B) a family of circles centered at (0,0)

(€)a famzly of circles centered at (-1,0) " (D)a family of straight lines with slope -1.

4. The solution ofﬂ 4 YOS x+5in y+ Y= 0is
X smx+xcosy+x _
(4) y sinx + (siny + ) x =c o (B) y sinx +(sinx + x)=¢

(C)y =sinx +ysiny +c¢ ' o (D) none of these

'5. The solution y = Acos(x+ B) is equivalent to atsinx+ i) cos X, where
(4) a=AsinB,f=AcosB (B)a=BsinB,f=BcosB
" (C)a=-Asin B, f = Acos B B (D) none of the above
. dy e 2
6. General solution of _x +2xy = 2¢7™" is

(A y=(2x+ce ' . (By=Xe"

(C) y= e’ 7 _ (D) none of these ‘

' 7.. The solutzon of the dtﬁ"erentzal equatzon (x +y- 2) dyldx = (x + y) is o B
(A)(y+x)—log(y x+])+c (B)(y x)*log(x +y D#ec - S
(C)y 2x—10_g(x_+y Dt+e ;"__- (D)y+2x_—log(x ty+)+e .ol

8. The solution of the differential equatzon y.=px +4J4+p*

(A)(y—cx) - ~.__ T L (B)(y—cx) 4c
(C)(y cx) +c =( L _(D)(y_cx) _+4c_____—

| _<29> |
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9. The solution of (x— y*)dx+2xy dy=0is

» ¥
(4 ye"—A ’ (B) xe* =A
(©ye” =4 o D)y’ =4

10. The general solution of (d_yj = [lj + tan (_y_J is -
. : dx x X

(4) sin[l]=c -  (B) cos [ZJ cx
X o - x
- (C) sin[l]=cx ' (D) cos [l] c.
X : X
- 11 Dzjferentzal equatzon xdy- ydx—ledx 0 has the solution
(4) y+x =X _ - (B) y+x —czx

(), y. x =0x o o - (D) y -x =c,X

- 12. The differential equation of the family of circles of radius r’ whose centers lie on the x-axis is
(4) ydyldn+y*=r* (B) yl(dy/ dx)+1]=r*
© yl@ylan+)=r" o D) yYldyldy* +1]=7*
13. Tl he_prz"m.i_tive of the diﬁ’erentiol-equotion (2xy4ey -'i-.2xy.3 +y)dx + (x*y*e’ —=x*y* —3x)dy =0 is
@) 3’ +(xH y)+ (xly’y=c . o B) K¢’ =(5*1y)+(x/y)=c
(_C) x'e’ +(x2/ y)—(‘x/ y3)-:c | . (D) x'e’ —(x?/y)—.(x/ y)=c¢
14: Let (y—c)* =cx be the przmztzve of 4x(dy!dx)’ +2x(dy/a’x) y=0. The number of zntegral curves whzch
will pass through (L,2)is - _ o L - :
~ (4) one - (B) two | .' (C) .three _ o (D) four.

I5. 4 solutzon curve of the equatzon xy 2 y passzng through ( 1 2) also passes through '

wen OO @62 D
1 6 The'solutto'ri of_th_e dz'ﬁ’ereh‘tio'l etju_atioh'-(dy /fdx) +-(_y_'/-x) =iyt under' the 'condit'ion'that, y =1when x: I
3 '(A)4xy x* +3 (B) 4xy y +3 | (C) 4xy X' +3 | (D) 4xy ¥y +3.
17 TT he famzly of strazght lmes passing through the orzgzn is represented by the dzﬁ”erentzal equatzon _
S Ydx+xdy=0 . IR (B) xdx+ ydy=0 . '
+ (C) xdy— ydx ,0.-_ L _,(D) ydy—xdx=0.

O
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~ NOTE: MORE THAN ONE OPTION MAY BE CORRECT

1 8. Which of the following is not the integrating factor for the dszerentzal equation
(x+1)— y—e3‘(x+1)

“4) — | : - (B) x+1
x+1 : '

(©) - S D)

X< +1

19. Which of the followmg isa solutzon of. y”+y 0? -
(4) y=sinx _ -~ (B)y=cosx

_(C)y 3cosx B o (D)y=sinx+%

20. Which of the following is a solution of xy"+y=02?

Wry= L By==2
©x=fhy o D=7

21.. Which of the following is not the generdl solution of the differential equation sinxdx+ % =0?

Jy.
(A)2JV+Cosx'=c _ _ .- (B 2&—c0s’x=c
(C)'ZW = sin x R (D)_sm,x+cos'x= Wy
| 22. The general solution of the d ﬁ‘erentzal equatton dy/dx + y d¢ = @(x) f where ) isa functzon of x alone -
s not gzven by _ ' _ . | | _ ‘
(4) y=p+ce? - " (B) y=¢+1-ce?

© y=¢=l+ce (D) y=g-l+ce”

23, The solution of (x+ y)*(dy/ dx) = a’ is not glven o
(4) y+x=atan{(y=c)/a} S )y xatunGe)

(C)y x—tan{(y c)/a} (D) a(y x) tan{(y c)/a}

) thch of the followmg mformatzon are true for the dy‘ferentzal equatzon?
E(x +y*)dx = (xy")dy = o

(4) E is an.exact dzfﬁerentzal equatzon ,. . ._(B)-:l'htegr-a"tingfdctnor:ofE'i&'ic'f’-‘ -
_(C) Solution of Eiis log x _3y_3 =C . (D) Solutionof E is IOg'x—--———; T=C

<31> :
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CHAPTER - 2
LINEAR DIFFERENTIAL EQUATIONS

_-INTRODUCTION DR _
Int this. chapter we will learn how to solve a homog‘_
“to ﬁnd partzcular mtegral and general solutzon _
. singular solutzons The method of undetermz 7
solvmg a dzﬁ’erentzal equatzon Here we lea , \
and also to solve the szmultaneous d fferentzal equatzon In the E ; ‘

ogeneous differential equation i.e. how

dindrj/ points

' §21. DEFINITIONS

() Linear Combination. Iff, f,, ..., f, are n functions defined on the interval I and ¢, é:z, ...,C, are n-arbitrary
constants, then the functlon e fite o ite,f, zs called linear combination of Sy So f,over
eg. ¢ +2¢ —4e%isa linear combination of e, ¢ ¢ [Herec,=1,¢c,= 2 c,=-4].

(i) L‘inearly Depend_ent. The functions f \ fz, . f-0f x are said to be linearly dependent over dn interval I iff
'  there exist constants c,, ¢, ..., ¢, (not all zero) such that ¢ f, + ¢,f, + ... + ¢ f, =0 forallx in I
In particular, two functions f, and £, are linearly dependent on [a, b] lﬁ’ there exist two constants c,, c,
(not both zero) such that ¢ f, + c.f, = 0 forall x in [a, b]. :
e.g. The functions x-and 2x are linearly dependent on [0,1] because there exist constants

(=2, ¢c,=-1)st.c,fy+c, fy=0ie (J() + (-1)(2x) = 0.

_ (iiz) Linearly Independent The Junctions f, S S of + are said to be linearly independent over an interval I
o iff’ there exist constants ¢ Co such that.c,fi¥ey fyt ... ¢, f,=0 for all x in- I then ¢=0 Y i=12,..
e. g The ﬁmctzonsx and x’, are linearly zndependent on [ 0 j

Conclusions:
() Ifffy f are linearly dependent then at least one of them is a linear comblnatzon of others _

(ii) ¥fhyeo j:, are linearly independent, then none of them.is llnear combinatz'on of others.
(iii) - Wronskian. Letf, f,,..., f, be nreal functzons over I each of which has a derlvatzve of order (n 1 ) over
I then the determznant ' :

. f(n<l) 'f(n:l)-'.,_ :,. f(n | |

s called Wronslaan of, f, £y ]f, overI 7i hus the Wronskmn Wm fz . f,.) is ztself a real valued functzon
onl lisvalueatxis denoted by W, .. 1) 6) or by WU, 10 9],
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W) If fi, s fi are linedrly dependent on an interval, they are linearly dependent at each point in the
interval. However, if f,, f,;..., f, are linearly independent on an interval, they may or may rot be

linearly independent at each point; they may, in fact, be linearly dependent at each point, but with
. different sets of constants at different points.

. t ’ i
eg.  fi()= [ ] L= { ] fi(t)and f,(t) are linearly dependent at each point in the interval

0<t< 1. But f,(tyand f,(t)are linearly independent on 0 < t <1

" Conclusion: If W(t.f, ...f,) over Lis non-zero, thenf,f,....f, are linearly independent over I (provzded they are
solutions of same differential equatzon)

' Example..Show that the following functions are linearly dependent: ,
(i) 1 , sin’ x, cos’x (i) &, ", coshx - (ii))x, €, xe, (2-3x) €.

§ 22 GENERAL LINEAR DIFFERENTIAL EQUATION

. Defi nition. A general linear d ifferential equatzon of order n is

n-1 - ’
d V+Pd Y+.+Py=0, | | (1)
X

P,V 4p
dx"
where P,P,P,.. P, and Q are functions of x defined on some interval I. When Q 0, then (1 ) is said

to be homogeneous. When Q # 0, then (1) is said to be non-homogeneous.

" Existence _and Uniqueness Theorem

Statement IfP, P,,...P, and Q are contimious functions of x over an open interval I and if x, € I be the real

number and Yy ¥y ¥, are arbitrary real numbers, then there exists one and only one ﬁtnctzon say
&(x), which in some neighbourhood of x,, is a solution of the dzﬁ"erentzal equation

9 +Py(" Y +sz(" 7+, +P,y Q 5.t ¢(xo) =Y O'e) =y s 7 ) =y

2 2 L Hom ogeneous Linear thferentzal Equation.

T, heorem L Let fi(x). and fz(x) be two lznearly zndependent solutions of P d y +P, ;iy +Py=0 ..(I)

over an open interval I, where P P P are all contznuous functzons of x and Po(x) ¥+ 0 on I If f(x) is any

B solutzon of (1) then f af,+[3f2 where o, [3 are some constants. |

Conclusion: Each Solution,of P, d_Z +P, g_y +P2y=0 is linear combinatio'n of two linearly independentsolutions.

Theorem 2.' Let Po%'-l»- P, -g—y + sz = 0, where P, P, P, are all continious funetions of x over an open interval -

T and Py(x) # 0, -th_en-,there._ exist linearly indep_endent Soludbn&ﬁéc),"and (%) such that = -
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Sixy)=1, f(xy)=0; f,’(xo)= 0,f'(x,) = 1; wherex, € I

- Conclusion: Above two results assure that a homogeneous linear differential equation of order 2 has two L.I
solutzons and any other solution is a linear combination of these two solutions.

Extensmn Let fl(x) %), ... f(x) be n lznearly zndependent solutzons of
1 in-2
p &Y p &Y p & J
dx® X! d
over an open interval I, where P, P,,.., P, areall continuous ﬁmctzons of x and P ox) F0on L If f(x) is
any solutzon of (1), thenf=cf, + chZ +..+c, f,wherec, ¢,...., c, are constants.

+. +P,y—0 o . o (l)

Herec,f +c2f2+... +c, f, is the general solution (or complete primitz_'ve) of the given differential equation.

: /
. 2.2.2. Non-homogeneous Linear Equation. _ .
' Letf, (x) be any particular solution of Py +Py "+ +Py=0 ..()

where P P,..., P, Q.areall continuous functzons over an.open znterval Iand Po(x);tO on I and f(x) be
any solution of Pay” + Py(" Y+ .4Py=0, - (2) :
then f(x) = fy(x) + 1, (x) is also a solutzon of the gzven equatzon

* I f1 S s f are L.1 solutions of (2) then c,f, + c,f2 +..t c,fn, where Cp €y €, are arbitrary constants,
is called the complementary function of ( 1).

~* . Let f, be the complementary furiction and f, be the partzcular solution of the non- homogeneous linear
 equation Py ™+p Pl D, ~tPy =0, where PyP,. P, Q are all continuous functzons over an open

interval I and P (x)¢0 on [ jf f is any solutzon of thzs equatzon then St for some partzcular values of
Cp Cpees Cy o S

Remember: General solution of a non-homogeneous equation is Complementary Function + Particular Solution.

2 T

_thferentzal Operators D denotes Z D denotes dd— - Dk denotes EdT
: . x 2 .o dx

Thus the polynomzal P,,D +P, D" ho+ P in D is sazd to be dzﬁerentzal operator of order n, where
S 8 P,.....,.P are functzons of x. It is usually denoted by L ' :
ThusL P,,D +PD" Ty AP -
42

- ; | -"eg Conszder the equatzon 3d—y -5 jy +7y =é In the operator form the equatzon is e
. X< .. QX . ’

| (3D —5D+7) y e, where the operator zsL 3D 5D+ 7.

o "'.BaStc Laws If L z L and L are any three d jferentzal operators then the followzng laws hold

- 'Closed

() Under'additio'n:- L, + L, is a differential operator. '_
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(ii) Under multiplication: L,L, is differential operator.

Commutative: .
(i) Under addition : L, +L,=L,+L, (i) Under multiplication : LL,=L,L,

‘Associative: ) ' _
(i) Under addition : (L;+L)+L; =L (L, +Ly) (i) Under multiplication :(L,L,)L;=L(L,Ly)

Distributive:
()L(,+L)=L,L,+LL, () (L, +L])L3 =L,L3+L2L3

Exponential Shift: If f(D) is any polynomzal inD wzth constant co- eﬁ‘ cients, thene f (D)y f (D a)(e ),
where y is any function of x.

§ 2.3 :LINEAR DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS .
Deﬁnition : A linear differential equation with constant coefficients is one in which the dependent variable and its
differential coeffi czents occur only in the first degree and are not multiplied together
d n-1 y . dn -2 y .
dxn1+PZdn27|— +P"y Q

(where P, P, P,....P are constants and Q is a function of x) is the linear equatzon of the nth order.

ThusllJ dy +P,
dx"

* Ify=y, y=y2 Y=y, aren lznearly independent partzcular solutions of the equatzon
: ' n-1,, - n-2
dy + P, d”y +P d

. R

Py 2
' solutzon is y—c1y1+c»iz+ +c,y

Yop+ P,y =0, where P, P, P,.., P are constants then the complete

Auxiliary Equation (A.E.) :
Auxiliary equation is obtained by equating to zero the symbolic co-efficients of y.
Thus, D" +a, D" +a, D"+ .. +a, = 0is the auxiliary equation. '

Method to solve the eountion:

P”::l‘/ t P, :::_)1/ +P, :;2_)2/ +... +lP,y=_0, where Py P\, P, ..., P, are constants
‘-."_(i_)__ - Wrzte the eouatlon in the swmbolzc for7n os (Pob "+P D" 1+P2D" ‘4 | +P )y 0.
(i) Wrzte down the auxiliary equatzon (AE) as: Pom +P1m +_P2m ¥, .+P. 0 Solve it form |

(liz) - From the roots of A.E., Vrite down the correspondzng part of the complete solution (C.S) as follows.' -
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No. | Roots of A.E. : Corresponding parts of C.S

(i) One real root m,. - ¢, e™
(ii) - | Two real and distinct roots m,,m,, e, ™+, e‘"‘Z"
(iii) | Two real and equal roots m,, m, e™ (c, + c;c)
(tv) | Threerealand equalroots m,m,m. - | e™ (¢, +cx+cyx’)
' One pair of imaginary and different roots S
v) otB . e™ (c cosPx+c,sinPx)
) Two pairs’ of imaginary and. equal roots = :
(vi) atip otp e [cosBx(c,'+c?x)+sinﬁx(c3+ cx)]
' Vi - § o dy dy d'2y _
* Ify=Y is the complementary solution of the equation P, +P, +P, +..+P y=0 ...(1
1 Paxt T ax" 2 ax" ”

and y=uisa partzcular solutzon (containing no arbitrary constants) of the equation

Fo SXZ +P, gn;_{ +P, g = °y +‘ +P V= 0 ... (2), where Qisa funcnon of X, then the complete solution of
)isy=Y+u ' ' '

(1) -Complementary Function (C.F.):The part Y is known as complementary function.
(t'z) Particular Integral (P.1): The part u is known as particular integral.

Remark: Particular integral (P.I) is nof unique for a differential equation

Inverse Operator ﬁ : f(1—D) Q is that functzon of x whzch is zndependent of arbztrary constants and which when
operated on by f(D) gives Q Thus f(D) —(—) Q Q. Hence %D) is the inverse operator of f(D)

* - — Q is the parttcular zntegral of the equatzon fD)y= 0.

( ) T
® . The symbol 5 stands for zn-tegr'atzon.' :
| ' _ —Q Jde no arbztrary constant is bezng added
. B, D— Q=é" JQ e dx, no arbztrary constant is bezng added
: -a

" Method to solve the 'equation'
. n-1 n-2
P, Y ip Y yp Y
S dx" dx™ % dx™

+...+P y=0, where P P, P, .., P, are constants and Q is a function of x
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Remember: ' ]

(i) Write the equation in the symbolic form as: (P,D" + P rD" "+ PZD" P+ +P,)y 1

(ii) Write down auxiliary equation (A.E) as: PD" + P .D"" "+P,D"" r 4+ P =0. Solve itfor D.

(i)  Write down complementary ﬁmctzon (C.F.) by the same method as for writing down C.S. zf R.H.S is zero
instead of Q.

(iv)  Find particular integral (P.1) [For P.I, see 1.5]

v) ThenC.S. isy=CF.+ Pl :

§ 24, FIVE STANDARD CASES OF PARTICULAR INTEGRALS

(a) " Method to evaldate ?(%3 e_‘”r : Putp =a provided f(a? F0. -
Case of Failure. '
'Method to etfaluate ﬁ e ,when fla)=0 .. _
=y 1 g

e
d
5o o1

Note: If by using the said rule, the denominator again vanishes, repeat the rule and so on.

)] Method to evaluate

sinaxor _1_cos ax : Put D’ = -a’ provided fl-a’) #0.
tD?) fo* S '

Case of failure

Method io evaluate =\ sinax or - _‘1 ~—cosax when f(ioz) =0: sin ax = x. _l_e sin ax.
. f(D?) f(D*) f(D?) d .2
. _ - golfesn
f(D12) cos ax =x.T_1____cos ax. |
—_— 2 ]
o [f{D)]

Note: If by using the.said rule, the denominator again vanishes, repeat the rule and so on.

‘V (g . Method to evaluate?—(][—ﬁ X where m is posztzve znteger is as follows

(U From f{D), take the lowest degree term outside. Then the remaznzng factor will be of the type [ 1+ (l)(D)].:'_: o

- . (i) Take [It ¢(D)] to the: numerator and expand it by Bzonomzal Theorem (- Dm * ( ") = 0)
(ii)  Operate each term onx". ,

Remember - o | . _ | _
R, (1 D) —1+D+D + t'ooq. - '_.(il)"'(_1-|:-D)7-1=_.1'—D+,-D.-'7—_-...__t__0,6°]- P
- (i) (1-D’=1 +'2D:~+. 3D_. todooo (i) (1-D)’ =1+ 3D_.+___6D2. + .10
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(d)  Method to evaluate ﬁ (e* X), where X is any function of x.

1 ax = ax 1
(D) EX=c. f(D+a)X

In other Words, take € outside and in f{D) write (D + a) for every D so that f{D) becomes f{D+a) and

operate with x alone by the previous methods. -

1
f(D+a
(e -Method to evaluate% (x X), where X is any function of x.

1 o 1 Ty
o e o ()

| Example 1. Solve (D* +2D’-3D?) y=3e™ +4sinx

Solution: AEism'+2m’-3m*=0 .
=>m=001,-3
CFisy=(c, +c,x)+c,e” +c,e™

3
- on putting D=2, P.I of 3¢** is Eez"

4sinx -
D*(D*+2D-3)

_ 4sinx. o sinx.

(-D(=1+2D-3) (D=2)

(D+2)smx 2 (cos x + 2sinx)
D -4 -1-4

“Plof 4sin x.=

2 ,
= g (2 sin x+CoS x)
General Solution isy = C.F. + P.1

_. y"—f(01+-cix)+c3e +__c4 +5(231nx+cosx) +§6e

ExamplezFlndplof@—3ilx+2y:x2 +x

Solution: P1Ifor x* +x is ;(x +x)
' . D*-3D+2 _
o : o 1 -3D _
S — 1 —(x2+x) = [1+—] (x? +x)
' D*-3D 2 2
'Z[HT] | N o




‘ DIFFERENTIAL EQUATIONS | - CHAPTER - 2 I

[ 72_ 2 _ 2 : | 2 2
-1 I- b"-3D + D" -3D (x2+x)—1 1+3—D—B—+9D | %)
2| L 2 2 20 2.2 4

1, 3., 7T.,, i, 3 7.11,,
5 (x +x)+2D(x +x)+4D2(tc_l+x)} z[x lx+2(2x+ )_+4(2)} 2(x +4xf5)

: d’y _dy
Example 3. -2 22 1 y=x2e¥
pie 3. i’ P y:

Solution: A.Eism’-2m+1=0 = m=1,1
~CFisy= (c +e,x)e”

x2e 3x Co | '
PIfor x*e* will be’ ____ o ' . .
| (D-1p* o .
=e3..t ——L—T x2 ___e3x ;2 _x2 ) . ) d
_ (D+3-1) o (D+2) - : B R

3
=t {[n }
4
3x
= [x -—2x+~ 2]
4 _ 4

.. General solution is y= (c1+c2x)e + &

e

(2x —4x+3)

3x

(2x —4x+3)

¢ e

) 2.5, LINEAR DIFFERENTLAL EQUATIONS WITH VARIABLE COEFFICIENTS :

n-1 n-2
d"y £P, d y
dx n-1 dx n-.
and Q are functions of xis. called linear dzﬁ"erentzal equation with varzable coefficients.-

. o |
Definition. A differential equation of the Jorm P, j—y +P, +..+P y=0, where P,P,P,.., P, .
y ,

2.5.1. Cauchy’s Homogeneous- Linear Equation' =

Definition. A homogeneous lznear equatzon is of the form Pox" dy +P,x'” d" y0+ +P = Q(x) where B
. dx" Skt '

. P,P,. P are all real constants and Q(x) isa ﬁznctzon of XS called Cauchy s lznear equatzon S

- '.—.'Method t solve

()  Putx=¢ie, Z-logx x>0 . L
(i) -Putdi—esothatxD =5, %D’ e(e 1) YD =00 .-.._(e-"n+._1). N

‘Puttzng these in the given equatzon we get

(PP (0-1)...0-nt1) + PO(O-]) ... (B- n+2l + +P] y = Q (e) whzch is lznear equation wzth constant
L coefﬁctents and solve for yin terms of z. N
(i) Putz=logx, and we get the required solution.

<4o§
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Example 1. Solve x

- Solution: The given equation may be written as x°

25.2,

- ()

 An equatzon of the form P, (a+bx)

d’y 5d’y L, dy

AT I AP A A |

o d

2zdy dy+y=;1€__

Putting x=¢’, theequatzonbecomes[e(ﬁ N(6-2)+28 (8-1)-0+1y=¢” or (9 DB+ D)y=e"
AEis (m-1)’(m+1)=0 or m=1,1,-1 ~

. CF = (¢, +c,2)e" + ;e = (¢, +¢,log 0)x +c;x

An Pl= 1 e—Z= 1 1 e_z = 1 le_z = —l—e_z 1 1
(D-—l)-z(D+1) D+1) (D—I)‘2 (D+1)4 - 4 D-1+1
1, 1 | |
=—ze ‘=—1Ilogx.
4 4x

Hence, the solution is y=(c, +c, logx)x+c—3+zl—logx.
: x 4x

Legendre’s Linear Equation.

"dny VP atby) d:"1y+ ..... S S

where P, P,,...,P, areall real constants and Q(x) is a functzon of x'is called Legendre s linear equation.

Method to solve: - _
) Puta +bx = €, ie, z=log (a+bx), a+bx >0. . _ S T e =
“(ii) Put% =0, so that (a+bx) D = b8, (a+bx)’ D’ =600 :1),...,(a+bx)' D"=b"0 (0-1) ...(e;n’+1).
2 . . . Y. :
(iii)  Putting these in the given equation, we get .
P e®-1)..0-n+D)+P,HOO-1)..0-n+2)+ . . +Ply=0 [ e'b ] ,
which is linear equation with constant co—eﬁ?cients and solve for y in terms of z.
Put z = log (a + bx), and, we get the required solution.

2.

o -lExampleZ Solve (1+x) e +(l+x)—+y 400310g(1+x)
. X dx

Solutton Puttzng l+x=¢= z = log(1+ x) equatzon becomes CICE I) + 0 + ]] y 4cos z

.'PI— 1
%

or (92 +1)y 4COSZ

AEism +1—0 or m=%i ', CF =ce0sz+e,) =6 cos[log(x+'1)'+c2]

+14cosz—-5(4cos )= 4(25m z] Zzsmz —210g(x+1)smlog(x+1)

Hence the solutzon is y = cl cos[log( x+ 1) + c2] + 2 log( X + 1) sin log( X + 1)




| DIFFERERTIAL EQUATIORS : CHAPTER - 2 I

§ 2.6. EXACT DIFFERENTIAL EQUATION

. Definition: A differential equation f [flx—'?}” %’ ,y] = X, is said to be exact if it can be derived by
differenitiation merely, and without any further process from an equation of the next lower order

d y dn 1y : 'dn—2y ' . .
The condttzon that the dtﬂerentlal equation Py—+ P, + P, +..4+ Py =X where
?dx" ™ dx™2 S
P, P,,‘PZ, ... P, are functions of x, is exact is P-P',_ +P", ,~P", ;+ ..+ (1) RO(") =0

PRACTICESET -1

‘. Given that, there is a common solution to the Jfollowing equations P : ¥y + Zy = e"yz y(O) =], :
Q:y" +2y' + ay = 0, Find the value of a and hence find the general solatiop_o_f Q. @TJjAM 2014) -

2 The general solution of the differential equation with constant_-.\c'oeﬁic_ients%+b%+cy_=.0 ,

approaehes zero as x —> 9, if o - o o (IITJAllI 2016) -
(A) b is negative and c is positive _ © (B) b is positive and c is negative
- (C) both b and ¢ are positive . ' (D) both b and c are negative
. 2 P
3 Conszder the equatzon ofan .ldzal planar pendulum given by X =- sm X, where x denotes the angle

_of dzsplacement For suﬁ“ czently small angle dlsplacement the solutzon is given by. (where a, b are.

-constants) S (CSIR UGC NET JUNE-201 :
. (A)x(t) acosht+bsznht R (B)x(t) ~a+bt A S
:(C) x(t) = aé'+be”. S (D) x (D= costrﬂ-.bjszn £ .
4 '-IfD d , th nthe alue ‘f 1 S T (G-A.TEHM200»9) o
. =—, the value o is T S - -
. -"lo x . logx. Io x.
. (A)logx L T, (B) ......... i | (C) ng g

5. . Let y,(x) x and yz(x) x |x| forx € [R. Conszder the followzng statements

dy’

S S d?
: _-_(P) y,(x) and yz(x) are lznearly zndependent soluttons of X dxy 4xd +6y OOnR

o '(Q) The Wronsktan yl(x) (x) yz(x) (X) 0 forallxe IR.

— thch of the above statements hold T. RUE? .
L (A) Both P andQ (B) Only p (C) Only Q

S
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§ 27 INTEGRATINGFACTOR

Definition: An integrating factor of a differential equatzon is that factor such that 1f the equatton is multzphea’ by
it, the resulting equation is exact.

Rules For Finding The Integrating Factor

Rule 1. When the coefficients P, P, P,..., P are of the fdrm kx or the sum.or difference of the terms of the said |
form, then x" is the integrating factor. : :

Rule 2. When the coefficients P. P,P,.., P, are trzgonometrzc functtons then by trial we shall obtain some
trigonometric function as the mtegratmg factor N :

§ 2.8 SIMULTANEOUS DIFFERENTIAL EQUA TIONS |
. ) ) - . . ) R ) N d . ) .
A pair of linear differential equations %x +ax+by=f(t) and _dl +ex+dy = g(t) '
t t
(a, b c dare constants) is called Stmultaneous linear differential equation w1th constant coefficients,
here x and y are dependent variables and t is.an mdependent variable.

2.8.1. Workmg Rule: :
(i) Eliminate one of the dependent varzable say y from given equattons
(ii)  After eliminating y, we get a linear di jferentzal equation in x and t, which can be solved to get x = ¢(t)

(iii)  Now put x and % in any of the given equatzons to obtain y wt).
dt

() x= ot )_and y = W(1) gives the requzred sz_)l_utzon.

- Example 1. Solve %x; =-wy and ?)t} =WX. dlso, show that the point (x, y) lies on a circle.

Solution: We are given the system of eqdatz’ons:— .

dx
—+wy=0
i 6
Q-ch:()
. _ _
We can-write this system as :
“Dx +wy =0 .= () B T S
T ....'ii where-D=—_ o
wx -Dy =0 - (u) - '()' - dt
e operate D on (i) andmultzply (ii) by W, we get D x+wDy o __...'._(z"iz) o
: -wx wDy O
" On ada’zng these two equatzons we get (D + w )x 0 ) L .._‘-,_;(iv) o

It's auxiliary equatzon is m + w =0 = m= +w¢ . S
So; solutton is x= c1 coswt + ¢, sinwt . (V) where c, and cz are arbztrary constants
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Now ? =—c,wsinwt+c,wcoswt : (Vi)
t _

" Put (v) and (vi) in the equation » =-wy then —c,wsin wt +c,wcoswt =-wy
/ ; _

or y=c, sin wi — ¢, COS Wt - (Vi)
(v) and (vii) gives the requzred solution.
On squarzng and adding (v) and (vii), we get

x'+y" = (c;coswt +c, sinwe)” +(c, sin we — ¢, cos we)*

x*+y? —cl +c = [(cl +cz)”2]2 which zsaczrcle '
- So, the poznt (x, y) lies on a circle. - :

Example 2. Solve j— =y and %—:—— 2y+x

/
Solution: We are given —dz=y (i) and —=2y+x ' ©L(iD)
o dr dt -
 From equatzon (i ) & —dt:>I dy Idt
| y - -
logy =t+logc = logy =loge’ +logc > y=cd o _ ... (iii)

dx
Nowfromequation (i), E—=2y+x:>%x—=2ce'+_x
t dt

= ? =% =2ce , which is a linear dszerentia_l equatiOn. _
= At / _ _

LF.=e I =¢", 50 the requzred solution is xe —IZce £ 'dt+c1

_xe’_'—20t+cl ix—the +ce'

So x = 2cte + c,e' and y = ce' are the required_éolntions.

Example3 Solve%+d—+2 x+y= 0 ((Il—+5x+3y 0

dt :
- -Solution: We can express the given system-of equatzons as (D +2x+@D+1)y= 0. s

Sx+D+3)y=0 (i)

- Multiply (i) by (D+3) and (i) by(D+1) and then on subtractzng | -
(D+3)(D+2)x 5(D+1)x 0:>(D +1)x 0 (i)

ItsAEzsm +] = 0=>m iz o S | _

: Sox-c, cost+czsznt o (iv)
'g——c 'smt+c cost E B Ll - _— (v) |

O susacting i) from @ weger” S -35-2y=0 = 2y =2 gy py 23]
: ' om (i) we —=3x=2y= =—- =—|—=
e BT et T T P e T 0
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Put the values of x and % from (iv) and (v)
y =-;—[— ¢, sint +c¢, cost - 3(c, cost +c2sint)]

yz—%[(czf3cl)cost¥(cl+3c2)sint]- _ - | (Vi)

Hence (iv) and (vz)' gives the required solution.

2 ' 72

Example 4. Solve 3—;—376—-4y+3=0 and % +y+x+5=0
Solution: The given system of equatlons can be written as (D 3)x 4y =-3 (i)
andx+ (D’ + y=-5 - ..(ii)
multzply equation (i) by (D’ + 1) and second by 4 and on addlng (D*+1) (D* -3)x +4x
=—D’+1)3-20 . '
:>(D —2D'+ Dx=-3- 20=-23 o . S
= D'-2D"+ Dx=-23 ' : ' . ' : (i)

Its auxlhary equation is (m’ 1) =0=>m=], 1 1 1
CF=(, +c2t)e +(c; + c4t)e

=B o 2By
(D*=1)? 1 _
So, solution of (iit) will be x =(c1 +cyt)e +(e3'+ che” _-—_23 S ()
%~(cl+c2t)e +c,e - (c3+c4t)e +C4e | ) (v)
2 o .
—Fx;(c_1 +eyt)e’ +2ce +e e’ ~2ce” . U

S e
Now from the given first equation y =?}[%_2§-3( x—1)J _
ror 7 ’ _
" _ . .
Now, , putx and =/ from (lv) and (vi)

= —[(C' + czt)e‘ + 2cze' eyt C4t)e" = ZC;e"'-— 3{(Ci +eyt)e’ +(cy +cit)e - 24}]. g
o So, (zv) and (vu) gzves the requzred solutmn ' U

282 Solving Homogeneous system of dtﬂrerenttal equatwns w1th constant coeﬂ" cients by usmg Etgen'.'
- _Values. : S
- The homogeneous system of dzﬁ'erentlal equatzons of the type

~

EC




DIFFERENTIAL EQUATIONS

7’
X, =ayx tayx, +. ta,x

In"*n

g _
Xy = Ay X HauX, ..t ay X,

X, =aux +a,x, +..+a where q's are constants V i, j

;~a11 @, -"ab._ A 1%
Itis equt'valent to system X' = AX, where A= a“an ol g 42|, x|, where'xl’—_—g_
ce . X'H. . .

anl an2 | ann_l -x:l | X

It can be solved by using eigenvalues and eigenvectors as:

Method to solve:

1. Form simultaneous homogeneous system of equations to the form X' AX
2. Find eigen values \of matrix A .

3. If V A algebraic multiplicity = geometric multzplzczty then find ezgen vector X, of each eigen value A

The solution of the system is X =ce' X, +c,e™ X, +..+c, X
: : . Or

if for a eigenvalue ), algebralc multzplzczty > geometric multzplzczty.
Then

(i) Find posszble linearly independent eigen vectors of A
Let algebraic multzplzczty is m and geometric multzplzczty is n, where m — n=p, m>n, or
p>0,mn peN ' '
F znd m lznearly zndependent ezgen vectors then ‘weare to f nd remaznlng p vectors

(i) Solve |A k,j|Y X whereX is eigen vector of 7L f nd Y,
(iii) - So‘lve'|A kk[| Y,=7, andfnd Y, and soon -

So,wegetY, .., Y, vectors -
Now, the solution of the system is

. . o ro- Pt
e Zce X, +be'l"(tX --+Y)+b | Ly, RS AT L L A A
. 2 B VTR P
wherec andb b are all constants ' | |
- .-:'ExampleS Solve the system of equatzons xl x1+x2 and x2 2x2
o R N ' X1t ] x
. .._Solutton Itis equzvalentto the formX' AX Le-| ¢ _0 7] %
-'Cons_ider matrix A. ]

|  The eigen values ofA are 1,2, (by solving |4 - M = 0)

<46> ]
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Let M, =1, \,=2, letX) be its eigen vector
For\, =1, solving (A-D) X,=0

| 0 1y |0 -
10 1y o] =270
 Eigenvector is X, = ol corresponding to A, = |
For ), =2 letX ,be eigen vector. Then (A —2) X, =0

=11y '_0 '
L0 0y [of @ Fr=0=y=y,

. 1] , '
- Eigen vector is X, :i:l] corresponding 1o eigen value 7\,2 =2
) . - .. " .t . . 2 ]. 21 ]_ 4
hence, the solution is' X =c,e'X, +c,e” X, =c¢ 0 +e .
=x =ce +c,e” and x, = c,e’" are required solution

Example -6. Consider the system of differential equations X =}c2, X =x, x; :x1. ~3x"2 +3.x3
i 0 10] [x

n

Solutton It is equivalent to the form X' = AX, where X xl = A=0 0 1| X'=x
' ST ','..1—33"‘)(3

For matrix A, the eigen values of Aare gzven by equatzon |4 - M| = |
on solving, weget A, = I, A, = I, A, =
For f ndzng eigen vectors X, correspondmg toh, = 1 put (A DXx,=0 .
-1 10 %[ [0 '
0 -11 12 |= 0| whererank (4-) =2
_ +1 -3 2] »l 1|0 '
Geometric multiplicity of A, = lis 32 = 1

" (By Rank Nullity Theorem, p(4)-+nullity A = no. of columns)
_ Geometrzc multzplzczly < Algebrazc multzplzczly

= only 1 linearly zndependent ezgen vector exzsts correspondmg to0 7L = 1

"_"-(A M) X=0 ,
on solving, we get X =|1| i.e. éigen-vector of A=1
T 0 f nd otker two vectors solve (A 1) Y X 1 wkere X=[1 Y y, | i8 to be find out

| ")’3‘ -

<>
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-1 - 1 -1

on solizing, weget Y= 0| {onsolving ¥, =|1|y,+| 0|, ignoring I part }
| 1 ! 1|

For Y, solve (4 -\ )Y, =Y, where A, = |

1

“on solving, we get Y, = O

0
| N 1 [-1] 1, [-11 [n
The solution is ce'|1|+c,e’ 1t+| 0 +cye 14| ole+]o
! 1 1 1% L1 o

This is the required solution.
§2.9. VARIATION OF PARAMETERS

2.9.1. Let y"+Ry'+Sy =0 (D
where R, S and Q are functions of x, be any given linear equation. of the second order. When the
complementary solution of (1) is known or can be found, we proceed as under: _ '
The corresponding homogeneous equationis y" + Ry’ + Sy = 0 w2 ...
Lety = c,u + c,v be the general solution of (2) and hence the complementary solution of (1) where u, v
are linearly independent functions of x over an interval, say I.

Let us seek a particular solution of (1) by considering y = Au + By ~(3)
where A, B are functzons of x, and determine the functions A, B so that (3) is a solution. of (1)
Differentiating (3) w.r.t. x, we get'y'= Au' + Bv' + A'u + By : . (4)

Now, instead of being involved in the derivatives of order higher than one of the functions 4 ana’ B, we
choose some particular functions of A'u + B'v. '

“For simplicity, we c_hooséA’u+B =0 _ o (5)
Then (4) becomes y' = Au' + Bv' . .. (6)
Differentiating (6) w.r.t. x, we get, y" = Au" + Bv" + A'u +BY - (7)

- Substituting the values of y, y' and y" from (3), (6) and (7) in (1 ) we get
(Au" + Bv" + A'u' + BY) + R (Au' + Bv!) + S(Au + Bv) = Q
o orA(u"+ Ru' +8u) +B("+Rv'+Sv)+(A'u+BV)=Q _ (8)
. Butu, v are (particular) solutions of (2).
S u"+Ru' +Su—0andv"+'Rv'+Sv=o. R o L
o Therefore (8) reduces 1o A'u —Q o S '...‘_(9)

Now the equatlons (5) ana’ (9) wzll have solutzons forA ana’ B’ provzded e v ?ﬁ 0.
V'

But this determinant is preczsely the wronskian of the functions u, v. Since the functlons u vare
linearly independent over I, therefore, ‘wronskian of the functions u, v is non-zero over I T herefore the
.. equations (5) and (9) are solvable for the functions 4', B, and by integration we can obtam the
. functions 4 and B. : :
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Thus, the equation (3) will give us a particular solution of (1) and hence we can f nd the general
solution of (1).

Remark: The above procedure of finding a particular solution is called the method of variation of parameters.

‘Example 1. Solve :_y +y= tan x by the method of varzatzon of parameters.
x?
Solution: The given equation can  be re-written as D'+ Dy=tanx v (1)

[ whzch isa partzcular solutzon of (. ] )

2.9.2

- Now, A’=—sznxtanx = =
“ On integration, we 'get-A =sin x — log
' Putting V'al_ues of A aﬁd B lS (3),' We gety = {smx -log]

| The general solutlon of ( I ) is y C cos'x + C, sinx +[smx -log

The corresponding homogeneous equation is (D’ + Dy = 0 B - (2)
ItsAEzs m+1= 0:>m—+z -

‘. the complementary function of (1 )isy,=C,cosx+ C,sinx
Now we seek a particular solution of (1) by variation of parameters.

Let y=A4 cosx+Bsinx ‘ : 7 w3 .
_Dtjferentzate (3) w.r.t. x, we get ¥ ~A’cosx+B 'sin x—Asmx+Bcosx _ : ..(4)
We choose A'cos x + B'sinx =0 . . (3
() becomes, y'=-Asinx x + B cos x ' _ (O
,szferentzate w.r.t. %, y"=A'sin x+B' cos x—Acosx—B Sin x ()

Substituting the values of y, y" from (3) and (7)in (1), we get
—A'sinx+B'cosx-Acosx ~Bsinx+Acos x+Bsmx tan x. . (8)
or —A'sinx+B'cosx=tanx o
Next, we find values of A’ and B' from (5), (8)
Multiplying (5) by cos x and (8) by sin x and subtractzng, we getA (cos’x + sin x) 0-sinxtanx

S A= —sinx tanx

__Agam multzplymg (5) by sin x and (8) by cos x and addzng we get
. B'(sin’x + ¢os ’x) = cos x tanx orB'= szn X

_sin.x l-cos®x _ -

- —gosx| -
" cos X cos x . COoS X

an| S4=| -
o .

A'=cos x ~sec x. -

Also, B' = sin% => B =—cosx

tan| —+— [ | cosx—cosx sin'x
4 2 - . ¥
] COSX—~COSX Sin X

tan +— |
gt 743

An alternattve approach 7 _ : :
o Method of varzatzon of parameters is quzte general ana’ applzes fo y"+py '+qy—X ()

.-_. ‘where p, g, and X are functions-of x. It gives P.L.= -y ,__I.%)ﬁdﬁyz I%dx,_(W#O) Q)
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whe}e y,-and y, are the solutions of y"+py' +qy =0 , ' «(3)
and W= » is called the Wronskian of y,, 2
Y. Y :

Proof: Let the C.F. of (Dbey=cy, +cy,
Replaczng ¢, ¢, (regarded as parameters) by unknown functions u(x) and v(x), let the P.L.be

y=w,tvy, . L (%)
Differentiating (4) w.r.t. x, we get y' = wy', +vy', + u'y, + vyz . ()
y_uy1+"y2 . (6)
On assuming that u'y, +v'y, =0 - w (7)

- Differentiate (5) and substitute in (1), then noting thaty, and y,, satzsﬁz 3 )

we obtain u'y', +vy', =X 7 . _ . (8)

Solvzng (7) and (8) we get u'= y\:_VX v'= Y1_V\;( , where W=y y'sy.y,
On integrating, we get u=— .[y\';lv_xdx v= IM dx.

W
Substituting these in (4), we get (2).

_ | . v
Example 2. Using the method of variation of parameters, solve d_g +4y =tan 2x
Solution: Since given equation is (D*+4)y= tan 2x. |

(i) - Tofind C.F.It'sAE.is m'+4=0..m=1%2i Thus CF. isy =c,cos 2x +c, sin 2x.

(ii) - Tofind P.I, herey, = cos 2x, y, = sin-2x and X = tan 2x

. W.= Y1 Yo| _ | cos 2x sin 2x |
T vl Te2sin2x 2cos 2x _
Thus, P =—y, YoX e+ p (VX dy =—cosdy [SIN2X 1N2X gy 4 cin cos2x tan2xdx
u .}’1IW )’zjw cosx‘[__z. dx sznxjmz “*dx

= ~%cosl2x J(sec 2x — cos 2x)dx +%sin 2x Jsin 2x dx

= ~%cos 2x [log |sec 2x + tan 2x| - sin 2x] ~LYsin 2x cos 2x = —%cos 2x log |sec 2x + tan 2x|

~ Hence, the C.S.is y = c, cos 2x + c, sin 2x —i—cos 2x log |sec 2x + tan 2x|

- :Example 3. Solve, by the method of varzatzon of parameters y -2y +y= exlogx
" Solution: Since given equation is (D =2D+1D)y=¢€logx ' : '
) TofndCF It’s A.E. zs(m—]) =0,

.:>m 1,1.Thus:C.F. isy= (c,+c2x)e

@ '_TofridPI' |
' Herey,—e yz—xe and X = e’ logx

<5°>
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X
2x
e

. W=\y1 Vol (" xe
Yy Yol lef (1+x)e*

X X X j. X
thus P.1L = -y, VJV dx +y, J%d" = Jxe -:éx'ogx dr +xé* l e -ee zlxos;)_( dx

== J.xlogxdx'ﬂrxe’-J.logxab_c=—e‘[§logx—f%.§dx]+x.e‘ (xlogx—j%.xdx]

_  x X2 X2 ox ' __1 2 x|
=—¢ | —logx——|+xe (xlogx—x) =—x€ (2 logx—3)
12 4 . S |
Hence, C.8. is y=(c ,+c2x)e‘+ %xzex(;?logx -3).

2.9.3. Method of undetermined coeffi c1ents :
- To Fird the P1 of f(D) y = X, We assume a trial solutzon containing unknown constants whzch are
determined by substitution in. the given equation. The trial solution to be assumed in each case,
" depends on the form of X. thus when :
(@) X =2&%, trial solution = ae™* _
(i) X 3sin 2x, trial solution =a 1szn2x + a2c0s2x

(i)~ X=2x, trial solution = a X+ a2x +asx+a,

However, when X=tan x or sec x, this method fazls since the number of terms obtained by
dzﬁ"erentzatzng X = tan x or sec x is infinite.
The above method holds as long as no term in the trial solution appears in the C.F. If any term of
By the trial solution- appears in the C.F., we multiply this trial solution by the lowest positive integral
power_ of X, which is large en_ough so_  that none of the terms, whzch are _then present appear in the C.F.

2.94. Linear Ordmary Dgtferentzal Equattons of second order- wzth variable coeffi c:ents
o d? d ' ‘ '
£, dy +Qy = .- )

where P, Q, R are functions of x only, is called Lmear Ordinary Dlﬁ”erentzal Equation of second order

An equatzon of the form —=

294, ()T he complete solution when one integral is known'

Lety=u bea known mtegral in the CF of(I) Le,y=uisa solutzon of
g2

d’y dy

d2+de+Qy o e
._Let y ='uv be the solutzon of (1) ) | _ ‘
dy - du dy L dty  d du dv -dzv ‘
y-uv:>———v——+ ==V 2+2_—— 2
| dx T R o

2 2. . .
hence (1) becomes v'd—'l;+21u'—£11+:'ufi—%+P ﬁi_’f_+ud_]+qu_
N aw Taa et Ud

ECH)
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L dv dv(_d
:uﬂ+dv[2ﬂ+Pu \{E+P“+Qu]—R :>u'—v v(2gu Pu]=R (from (3))

e dx Cdx? . dx

2 L - .
= d :+[P+£d—uJ£v—=£ ' (4

dx ude jdx u _ -

dv d*v dp

Now putting —=p = — = —=-

PS5 =P ™ " e | | |
Equation (4) = =~ dp [P+zd—qu=£ o . . o L(5)

dx u dx u : ' '

which is linear with p as dependent variable -

L2 2

IF. = eI[P ! ‘b‘]dx =eIM.eI’7du —uzefm :
 hence, solution of (5) is pu ZeI i J.[Eu 2eJ.Mf ]dx + ¢, 7.
: u

| <Jea J'de

:p=£2—e . [J'Ruelmdx]-
u .

_Integraiing, v = CZ+CI_[ Iu:dx I 3 U e[% :l

y = v is a solution of (1)
-fpax-
Second part of the complementary function is uJ'——dx and partzcular zntegral is

=LJ

2.9.4. (i) To find one integral in C.F. by mspectton,ze to find a solution of D*y+PDy+Qy=0 ...(_1)
1 y=x is a solution of (1) sz+Qx 0 2. y=x 'is a solution of(])zf 2+2Px+Qx =0
3. y= e isasolution of (Dif 1+P+0=0 4‘y— e’ ;sasolutzon_of(])lfl P+Q=0
5. y= €™ isasolution of (1) if m2+mP+Q=0 ' |
6. y= x" isapart 0fC.F.-ifm(m—1)+ Pmx+Qx” =0 7

2
IfmalznearequatzonAd +BZ_y+ Cy=0(x) A+B+C= Othen y=e" zsapartofCF
& | - |

-[Pai

e

- "'-".Example4 xixz _2(x+l)ix (x+2) (x 2)

Solution: dy 2(x_+1)dy x+2y, [x—zje". | o o
Here I +P+Q =J-2—(x'—1)+x+2=-0 =y =¢ isapart of the C.F. -

- R
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' 2 2
Putting y=ve‘:>£)i=e‘(ﬂ+vj :>Q=e" ﬂ.pzﬁ.ﬂ, _
dx dx ' dx

Equation (1) = e [va+2dv v};MeI [ﬂ‘_’+vi|+(x+2) ve":(x_z)e" '

dx X
L dv, ( 2Ax+1) v( 2x+1) x+2]_-x—2
= =
IF. = =1
.x x2 !

X
s
dc .\ x) dx
| 1
X
3 2

"2
Cp x=2 pdv (2dx 11
?—Ide—'[?" —=—4—+c
X

C,x
:>p=clx.2—-x+1' :>v=c2+‘T——_+x

' - {_ X ¢
Hence, complete solution is y =ve" =e (x ——+d e+ 62] .

2

o d dv
Example 5. Solve x—z_ +(x - 2)——X -2y=x
' dx dx-

o o d’y [x-2)dy (2 B
“Solution: Given equation can be re-wr.itten a's-——'.l + =< —y — = ly=x - ()
! 2 .

: - dx x Jdx \x)
We hive 1-P+(Q= I-X-—z—2 =0
X X
. >y=etisapartof CF.~

s y=vetis complete solution of (1)

: dy (dv dly [d v _dv ]
e Lyl and & av.
dx -( j M_?afﬂﬁv

. Equatton (1):> e d——2éi v [+ x= ze"‘ (ﬂ—v]—%\}e"" =x*
e #-@xr:x_' | e

d_v dv( x—2 A x=2.2 ..’.dp' -(x+'2).-- e 'dv'...
=D ——— -2 =y Xl oyl | s
_dxz- dx[ X ] ‘{ X x) o dx x p=r dx p-

P
P =.'[x2 dx+¢
X

<%;>
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2 x 3 x | 3 x 2 x
= p=cxe +xe :>v=c2+Jxedx+cljxedx 4
=+ xe —J.3x2e"dx+c1J.x2_e"dx =c,+ x’e* + (¢, = 3)x%e" = I 2xe*dx)
=c, +x’e" +(c, ~3)[x’e* —2xe* +2¢*]

=xe +( —3)x2e"—2(c -3 )xe* +'2(c'l' 3)e +c,
oy=ve *=x° +(c, —3)x* —2(01. ))c+2(c1 )+c2

2.9.5. Removal of the f irst dertvattve (Reductton to Normal form)
_' When unable to obtain a part of C.F. of solutzon of dx iz + Qy (1)

Put y=uv where u is some function of X

2 12, L 2
Q=ufl1'+v@and—dl=u—d—v+2@iﬂ+vﬂ

dx dx dx dx* dx dedx  dx’

du _dudv  d di &)
()= v—+2——+u — + V-—+U — | +Quv=R
dx’* dx] ,

dxdx d* dx
v [ 2du] dv [du du ] -
= U—+ P+=~— |u—+v|—+P—+Qu|=R ' (2
ar [ u } dx [dx2 dx QJ o .
Now to remove the term of the first derivative in (2) we choose u's. t.
du P L
P+Z@—O Pl de=0 mu=e ? . (3
.U dx u 2. _ o T T .
; dv v|dw _du R ' ' ' '

) =>——+— +P— +Qu|= . o (4
CESS {dx. de]u_- e
— 2 "2 R .
..éu—z'—lPu : £lr—l:—=—~l—-tt’ilf—'l'uﬁl—a :}I'd—il:_—-l —1P2u+u£.:lP2uf—E'£
dx 2 dx _ 2 dx dx dx 212 dx 2 dx

dv [1 1 1 R. ' '
., dv |1, 1dp 1, | R
@ 4P 2 dx 2P —%_[de
d*v - P?* 1d4dP 1 de"' d’v . _
= & v[Q 75 dx} e’ Lt A=z o (5)
L . . ) 2 - 1 Pdx .-
which is in _normalfo'rm where X = (Q —lﬂ—P— = Re ‘[ -
| d’y dzy dy S R
Exam le6 Solve — X o - : S (1
y T SRR TR

Solutton Since sum of the coeﬁ" cients is zero :>0ne of the solutzon of ODE is y = e o
" Letv be another solution of (1) : :

_ Then puttingy = ve”in (1), we get .

RO
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2 2 3 3 2.0 .
dl:e‘-éz+v ,d—y=e" d—‘i+2ﬂ+v :dize." é—v+3é—v+3iv—+v
dx dx dx | dx dx dx
equation (1) o |
Cldv dv _dv dv _dv dv
e LA LA LT +2— vlet —e* v+ —|+xve" =0

[df a2 dx ] a2 "] |
d*v dv
)

d’v : d
:_?+(3 x)zx—+(3 2x - 1dx 0522

x)%+'(2—2x)p=o' - w(2)

(wWhere p _.__) _
hence P = 3-x Q= 2 2xand( -2)2+(=2)(3- x)+(2 2x) = 0 > p=e* isasolutzonof(Z)

e'“[%— 2q}md Zx—f e‘“[d 9_4% +4q}

. 2. ‘dp
Puttm p=qein (2) = X =
- dx* dx

o
= e-“{%—4-dix+ 4q}+ (B-x) e_'z{%— 2q}+(2— 2x)ge > =0

32 :
fi—q,—-_(1+x)£q—='0
dx

de

Let u = ﬂ
dx .
du x2 . x+£ 3 X"i .
Then —=(1+x)u = logu=x+-—+logc, Du=ce * =>q= J.udx—J.cle 2 +c,
C dx 2 - _ N .
-, _ _

[ el SR Co T :
~p=e xJ l +ce 2 ,:>V=J.pdx=J. e_z"J.c'le e dx+J.cze"2"dx+c3'

2 2

- ' | : Co —Eaes |
Hencey = ve* . =y=c¢|——e"|e. 2dx+—€|e *dx|——c,e™ +c.e,
ey ) J 2j_. T2 e

< which'is the -'fe(;_uired solution.
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e the s -of-values ofk-for whzch all”

o

_ (CSIR UGC NET SAMPLE PAPER)
ery. solutzon is perzodzc i

ere- exzsts a non perzodzc solutzon P

' § 2.10. WRONSKIAN.
2.10.1. Definitions:

(i) fo fo o) foarem ‘given functions and Cp €y, C, are m constants, then the expresszon
cf +c2f,+ +cmf is calledalmear combmatwn of the functwns f, fz f

e

(1) Wronskian of n Vector Functions: -

_ Conszdernvector functzons ¢| ¢2, ‘ deﬁned by v
) QOT RO O]
law]  laol o leo) L

56>
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¢}l ¢12 oo ¢ln
then, the n X n determinant defined by ?2‘ ?22- ¢2f‘ , (2)
¢nl ¢n2 ¢nn

is called the Wronskian 0f n_vector functions ¢l,¢2, ,¢ At is denoted by W(P:Jz(; ), and its
value at t be denoted by W(¢1,¢2,...,¢")(t.). |
(iii) . Wronskian of n Functions
Let f, f, ... f, be n real valued functions, each of which is differentiable at least (n — 1) times in the
interval a < x < b, then the determinant f‘ - f oo f " | is called the Wronskian of then
fﬁn;l_) f(zn—Z) f(n—l)
.funch'ons and it is denoted by Wi, 1, 1) : '
Theorem 1. Consider the LDE of 2 order P, (x) vy + P,(x) y'+ Px)y=0. (D)
where P(x) # 0 and P (x), P (x), P,(x) are continuous functions of x € [a, b].

“(4) Then two solutions y, andyz of equation (1) are L zﬁ‘W(y,, y) 0N x € [a, b]- -
(B) Two Solutlonsy, andy, ofequatzon (1) are L.D. lffW(y,, )= OVxE [a b]

Not_e: (1) If given that y, and ¥, are two solutzons of a dzﬁ”erentzal‘equatzon and D.E. is not given then

if W,y)#0 = y,andy,areL.l and
if W{,y) =0, thenwecan’t say anything

Remark: A set of functions can be zndepena’ent even when thezr Wronskzan is za’entzcally zero.
eg. x 7 x| in[-1,1]

Theorem 2. If y,(x) and y,(x) are two funcnons for which W(y b y) 0 for each x in an interval I then each sub
- interval I, of I contains a sub znterval I, over which y1(x) and y,(x) are dependent.

: Theorem 3 T he Wronskzan of the two solutzons of the equatzon P (x) y + P, (x) y + P (x) y 0 is ezther' s

' zdentzcally zero or never zéro N x € [a, b] [where P (x) %0 and Po(x) P,(x), P,(x) are contznuous" o
_ functions on the given znterval] : _ .

Results: Censider thedifferentidl equation P, (x) y”+P (x) y'+'PZ(x) y—O on x€ [a,b] _ _' (1) S o

where P(x) # 0 and Po(x) P 1(x) Pz(x) are contznuous functzons on [a b] '
Let Y and y,are the solutions of the di fferentzal equation then '
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(1) Ify,andy, have common zero at a point x,€ [a, b] theny,andy,are L.D.

(2) Ify, and y, have relative maxima or minima at a-common point, x, € [a, b] then y, and y, are L.D. .

=y, andy, have maxima/minima at common point.

(3) Ify,and y,are LI soluttons of (1) andy, (xo) =0 andyz (xo) =0 then P (x,)=P,(x,)=0.
- (4)  Let {f, f;} be the one set of two L.I solytions of equatzon (1) and let {g, g,} be the another set of L. l

solutions of (1 ), then there exists a constant ¢ # 0 such that W(f,f7) =cW (g, g)
(5) Ify, and y, are LI solutions of equation (1) on [a, b]. A function‘- f(x)= A _deﬁned on [a, .b] such
. e _ > 0=, _
that yz #0 on [a,b], then fis monotonic on [a, bj.
- (6) Ify, and v, form a fundamental set of solutions of (1) on - © < x < o0 then there is one and only one
(i.e. unique) zero of y 1 between the consecutive zeros of y, and vice-versa. '

: /
2.10.2. Abel’s formula :

This formula is applied when Wronskian is given at one point and we have to find Wronskzan at any
another point. If y y, and y, are two solutions of the equation P, (x) y" -l; Py +Px)y=0 ..(1)

B [where Pb () # 0 and Py(x), P,(x), Py(x) are continuonsfunctions on the given interval]
A
0

then W (y,,y,)=ce *® wherec=W (y »v,) (x,) and x,€ interval -

- Examples L Lot y, and y, are two L.I s_olnti_ons of )_cy"—2x2y'- + _e_"y =0 and y,(0)= 1, yz(0)=-1,.ﬂ =1,.

dx_t=o

L)
X0
- Solution: Given D.E: isxy" — 2y + & y=0

=1, ther W(2) =7

RO,
By Abel’s formula W (x) = ce J_P"(’)

‘J‘—-Z,r dx _ CeJZxdx 2

x S W(0)=(:

W(x)=rce :

| A_zso, W(O):E 1“_:_1-+1_=2 [ ()
from (1) and (2) we getc -2 | ; o
:>W(x) ce' :>W(x) 2e’ :>W(2) 264

| l"Example 2 Lety, andy2 be two L.I. solutzons ofy +szn xy 0 0 <x < 1 and let g(x) w (y,, y7) (x) then '

(A)g(x)¢0 0n[0 1] o (B)g(x)<00n[0 ] _
(C) g vamsh at only one poznt of [0 1 ] _ (D) g vamsh at all poznts of [0 1 ]
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Solution: As y, and y, are L.I. solutions, so theorem is applicable here.
Since W(y, y) %0 NV x € [0,1] = g(x)#0 on [0, I]

=> Option (4) is correct 7
LG

Also, by Abel’s formula W (x) = e h® - =¢ (say)
S W =c Vel SWE=0 Vxe [0 1] :g(x) 0 VxE[O I
= Optzon (D) is correct. : :

PRACTICE SET 3

L= Consza'er the ODE .u (t) + P(t)u (t)+ Q(t)u(t) R(t) te [0, I] _
- There exist continuous functions P, Q and R defi ned on [ 0, 1]% .
such. that the Wronskian W of u; and u, is o
- (A) W)= 2%- 1 ,0<t<1
Q) W() =cos2mt, 0<i<]

zeros of y,(x) in (a b) then o
4) Y1(x) =(¥- xo)qo(x) is_contiy

lof wo. lznearly mdependent soluttons y y and b2 of the equatl

ef and yz' = xez" then the value of P(O) is -
( )2 2.

(B) }’1}’2 }’2}’1_ : (C) nyz YZYJ " y

- §211 ORTHOGONAL TRAJECT ORIES »
" ¥ -~ Two families-of curves such that every member of either family cuts each; member of the other. famlly at
right angles are called orthogonal trajectories of each other. :
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~ The concept of the orthogonal trajectories is of wide use in applied mathematics especially in field
problems. For instance, in an electric field, the paths along which the current flows are the orthogonal
trajectories of the equipotential curves and vice versa. In fluid flow, the stream lines and the
equipotential lines (lines of constant velocity potential) are orthogonal trajectories. Likewise, the lines
of heat flow for a body are perpendicular to the isothermal curves.. The problem of finding the
orthogonal trajectories of a given famzly of curves depends on the solution of the first order differential

: equatzons

2.11.1. To find the orthogonal trajectories' of the fam_ity of curves F(x,p,c)=0.

() Form its differential equation of the form f{x,y,dy/dx)=0 by eliminating c. :
(ii)  Replace, in thzs differential equation, dy/dx by — dx/dy, (so that the product of their slopes at each point

dy
of intersection is - 1 ) such that E #0

- (i) Solve the dzf]erentzal equation of the orthogonal trajectorzes ie., f(x,y, dx/dy) 0.

Example 1 If the stream lines (paths of fluid partzcles) of a ﬂow around a corner are xy = constant, find their
orthogonal trajectories.

Solution: Taking the axes as the walls the stream lines of the ﬂow around the corner of the walls is
xy=c . o : _ ..(i)
Differentiating, we get, x% ty= 0 *...(ii) as the differential equation of the given family (i).

dy dx S
Replacing .—= by - —— in (ii), we obtam S
placing — ~by & (ii),

Y
as the differential equatzon of the orthogonal trajectorzes

'x['_;ﬁ]+y=00rxdx'—ydy=0 . T : : ...(117)

Integrating (iii), we get x-y'=cas the requzred orthogonal trajectorzes of(z) ie., ., the equzpotentzal
lmes _ _ ] _ .
- . . . . o 2 )
Example 2 Fi znd the orthogonal trajectorzes of the famzly of confocal conics —+
' a’

X /1?1, where N is the
tA '
parameter :
2y dy “Qor oY sl

b>+Adx . +/l 2, or
a (dy/dx).,

T Solutwn Dy’ferentzatmg the gzven equatzon we get — +

2

y: — :.. xy B
VA d(dyldy

E D o (i~ 2
a> a*(dyl dx) dx
- which is the dzﬁ”erentzal equation of the given famzly o

RO

=xy ..(i)
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Changing dy/dx to —dx/dy in (i), we get (a’-x’) dx/dy = xy as the differential equation of the orthogonal
trajectories.

B : 222
Separating the variables and integrating, we obtain Iydy = _[ == dvte

--'0";'){2 =61210gx—%xz +e orx +y' =2d logx + ¢ [ ¢ =2]

"+ which is the equation of the required orthogonal trajectories.

Example 3. F ind the orthogonal trajectories of a system of confocal and coaxial parabolas.

Solutwn The equation of the Jamily of confocal parabolas havmg x- axis as their axis, is of the form

2112,

0

i)

_— 4a(x +a) : . : (1)
Differentiating, y —Z—i =2a . ' : ) (D)

Substztutmg the value ofa from (11) in (z) we get y =2y %[x+ ; y ZyJ
X

: N2 - _ ' .
pe., y(‘f—;} +2x%—y=0 | o - . = | - (iii)

as'the differential equation of the family. Replacing % by - ;ﬂ in (iii),
' Y :
' \2. ' '
we obtainy | — dx| —ng'— =0or y a’y] + 2xd—).)—' y-=0 , Which is the same as (iii)-
o \dy dy dx dx _

Thus we see that a system of confocal and coaxial parabolas is self- orthogonal, i.e., each member of
the family (i) cuts every other member of the same famzly orthogonally

To find the -'orthogonal a'ajeetories of the curves' F(ro,0) = 0.

Form its differential equation of the form f(r, 0,dr/do) =0 by eliminating c. |

L2 48

Replace in thzs di ﬂerentzal equatzon 5—by y
- ar

., [ for the gzven curve through P(r,6) tan¢ = rdG/dr and for the. orthogonal tra]ectory through p

1 dr

- tany —tan(90 +¢)_-cot¢;___ A

rdé -

" Thus for gettzng the dzﬁ"erenttal equatzon of the orthogonal tra]ectorzes

rﬁzs to. be replacedby_lﬂg L
Ldr "d. .

dr ... : -, df S
—.isto bere lacedb =] .

N
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(iii)  Solve the differential equation of the orthogonal trajectories i.e., f (r 0,—r* ‘;HJ 0
r

Example 4. Find the orthogonal trajectories of the cardioids r = a(1-cos 6).

Solution: Differentiating r = a(l-cos 6) w.r.t @ ' ()
I dr ' :
we get — =asin @ ' S (i
get o ] _ - (D)
Eliminating a from (i) and (ii), we obtain _a'_r l n smﬁa = cotg which is the differential equation -
o r cos _
of the given family. '
Replaeing dr/de by ~ ¥ d6/dr, we obtain l[_ r? ﬁ] = cotgo'ré’: + tangdﬁ =0
- r dr r 2

' a’r (sin( 8/2))d@
as the differential equatzon of orthogonal trajectorzes It can berewrittenas — = ~———————

r- cos(8/2)
Integrating, log r = 2logcos (0/2) +log c or r = ¢ cos’ (8/2) = —;— c(I+cos0) or_t* =da'(l +cos0)

* which is the equation of required _orthogbna_l trajectories.
§ 2.12. SINGULAR SOL UTIONS

. Singular Solutton . A solution that contains no arbitrary constant and cannot be derived from complete
przmztzve by substituting partzcular values to arbztrary constants.

e.g.  The general solution of y=xy" y? is y= cx—c. However, another solution is y = x’/4 which cannot be

' _ obtazned from the general solution by substituting any value for constant c. This second solution | isa
Singular Solution. For a relatzonsth between the general and singular solutions consider the
following graphical relationship.. : :

Referrzng to. f ig., it is seen that y=cx-c represents a family of strazght lines tangent to the parabola :

=X /4. The parabola is the envelope of the famzly of strazght lines.

<62> S
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The envelope of a family of curves G(x, y, c) = 0, if it exists, can be found by solving simultaneously the
equations 9G/dc = 0 and G = 0. In this example Gy, c)=y-cx +¢ and 9G/Ac = —x+2c.
Solving simultaneously —x + 2c=0 and y — cx+c’= 0, we get x =2c,y =’ or y = X'/4.

Envelope: A curve which touches each member of a family of curves and each point is touched by some
member of the family is called the envelope of the family of curves.

Complete primitive (General solutions) and Singular solutions: If family of curves represents the complete
primitive of a differential equation of first order, then envelope represents a szngular solution of a
differential equation. '

D'is'crtmm_ant: . _ :
(@) - A discriminant of a quadratic equation ax’+ bx + ¢ = 0 is b’ — 4ac. -
) If 0 (x, y, ¢) is the solution of the differential equation f(x, y, p) = 0 then

(i) p- discriminant is obtained by eliminating p between f{(x, y; p) = 0 and gf—p =

(ii) c- discriminant is obtained by eliminating ¢ between-Q(x, y, c) = 0 and %3 0
T, ac-locus.' p- discriminant gives equal value of p, these values may belong to two curves of the systent that are
not consecutive. The locus of such points is called Tac-locus.

. Nodal-locus: c-discriminant gzves equal value of c, but these values may belong to nodes (double point with
~ distinct tangents) which are also ultimate point of zntersectzon of consecutzve curves. Locus of such
poznts is called Nodal- locus

Cusp-locus c- discriminant gives equal values of c but these may belong to the cusp (i.e. double point with
coincident tangents), which are also ultimate points of intersection of the consecutive curves. This
locus is called cusp locus. :

d The p- discrim’inant equated to zero _rnay i_nclude'the-envelope as a factor once, the cusp locus once and
- tac-locus twice. (p ~ ~ECT’ = /. ‘ '
® - Thec- discriminant ‘equated to zero may znclude the envelope once, the cusp -locus thrice and nodal

locus twice. (c ~ EClN "0)

o ° "__ I ¢(x,y) 0is the szngular solutzon then ¢(x,y) is also a factor of both p- dzscrzmznant and
L e a’zscrzmznant PRV e . : -

T 0 obtam the smgular solutton of the Clazraut ) equatzon ie.y=px+ f( ), we proceed as follows -
) Find-the general solutzon by replaczng p by ciey=cx+ f(c) '

o (iz) : szferentzate thzs wrt. cgzvzng we get X +f (r)=0.
(zzz) Elzmznate i from these equatzons fo get szngular solution

_<6_3>' |
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Example 1. Solve p = sin(y-xp). Also find its singu.lar solution. :
Solution: Given equation can be written as sin”p =y - xp ory = px + sin”’p, which is a Clairaut’s equation.

", its solution is y = cx + sin”'c. ' , (i)

..(ii)

To find the singular solution, diﬂferentiate (i) wrt.cweget, 0=x+
l-c¢

To eliminate c from (i) and (ii), we re-write (ii) as ¢ = [(x*-1) ]’/Z/x
Now, substituting this value of ¢ in (i), we get y = [(x’ 1)]"2 +sin” {[( ])]”2/}
which is the requzred singular solution.

Example 2. Find szngular solution of y* —2pxy+ p (x - =m’ .
Solution: The given equation can be written ds (x> -1)p* -2xyp+(y* -m 2)-0- (1)

or (px—y)l=p+mtory= pxx+/(p? +m?), which is the Clairaut sform .
Hence, the general solution is :

y =cxi\/-(c2 +m?) .

(y-cx)! =c*+m?

orc (x -1)-2xyc+(y*-m?*) =0 - : :
Hence from (z) and (zz) both x and c-discriminant are 4x 2 _4(x* - 1)(y* ~m>) =0

or y2 +m’x* =m?* which is the singular solution.

_A PRAC_TICESE.T—%f

(IIT-JAM 201 7)

’,ses through (0 I) and mtersects each curve: of the famzly y=ci
' s (GA TE-201 6)

(D)(1 1)

(CSIR UGC NET JUNE—201 5)

= X+
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§ 2.13. REGULAR AND IRREGULAR SINGULAR POINTS
A point x,)is a singular point of the D.E. y” + P(x) y' + Q(x)y=0 ..(1) if one or the other (or
both) of the co-efficient junctions P(x) and Q(x) fails to be analytic at x, A point x, is a regular
singular point of the D.E. y +P(x) y +0)y = 0if the functions (x-x,) P(x) and (x—xo) Q(x) are
analytic and irregular otherwzse

Consider Legendre’s equation of the form y’ - " 2x = Y g (p * 1)
: -X 1-x*
‘itis clear thatx landx =-I are ;ingular points. Now, x=1 is regular because

. (x-1 )P(x)= and (x-1 ) Ox)= (L‘M are analyticatx = 1.
x+1 _ :
x=-1is also regular for similar reasons.

1. , 2_ 2
ConszderBesselsequatlonoforderpasx y'+x y’ +(x p)y 0 ory +[ Jy +[x P ]y:‘(}

Also, x=0is a regular singular poznt because xP(x)—] and x* Q(x)=x"-p’ are analytie at x=(0.

Example 1. For the differential equation 4x’y" +6x%y +y= 0, point at infinity is (GATE-1997)
(4) an ordinary point _ (B) a regular singular point |
(C) an irregular szngular point (D) a Critical point
' Solutzon (B)
Given, 45’ y T46x" y 4y =0 ’ o (i)
We transform the independent variable x to t by the relation t = 1 or x= %
: x

- Now'y" = :2—1 & ::> y’ 1 d y + 23 i and gzven differential equation (i) transform fo 4t
. x° dt Yt X dt _

odly o ody . | .

4t o +2dt+y—0 (1)

The point at « _is transformed to the origin _

‘From equation (ii), we note that the origin is regular singular poznt

Hence, the point at « is a regular singular point of the given equation.

§2.14. &
" Definition: Let A be a square matrix, then the infinite series_¢* —1+: At+ A —Z At
T o e S o =12
""" (D)

. converges for every A and t, so that eA_' is defined for.all square matrices.

: 'Computatwn of ¢

To- compute the elements of e (1 ) is not generally useful However it follows ﬁom Cayley-Hamzlton |
T heorem applzed to the matrvc As, that the znﬁnzte series.can. be reduced toa polynomzal int. Thus we .
have : = ' :
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Theorem 1 If A is a matrix having n rows and n columns, then
C=, AT, AT L A At o], -(2)

where @y, Q.. a,, are functions of t which must be determined for each A.
e.g. If Ais.a matrix having n rows and n columns, then for n=2, ¢* = o/ At + o, I (3
when A has three rows and three columns, then n=3 and ¢* = a, A’t* +a At + e, ..(4)

Theorem 2. For a matrix A having n rows and n columns define

rdy=a, A +a, A e, 2 v A, o ' (5)
Then, if A; is an eigenvalue of At, e* =r(4) e ..(6).
Furthermore, if /lvl is an eigenvalue of multiplicity k, k>1, then the following equations are also valid
d | :
et =—r(A)
dA oy
dZ
e* =—r(A) A7) -
ar ", (7)
. dk -
e* ==——r(d)
. d/lk 1 i

Note that theorem 7.2 involves the eigenvalues of At; which are t times the eigenvalues of A. When B
computing the various derivatives in (7), one first calculates the appropriate derivatives of the
expression (5) with respect to A, and then substitutes ) =J. The reverse procedure of first

substituting A= /l. (a function of t) into (5), and then calculating the derzvatzves with respect tot can - § ~

give errored result. -
- eg : Let A have four rows and four columns and let A =5t and A = 2t be ezgenvalues of At of .

multiplicities three and one, respectively. Then n = 4 and r(/l) a3/13 +a2/12 +oA+ay ,
r() =3a,0 + 20,4+ @, , r(A) = 6,4+ 20, ' Co '
Since A = St is an eigenvalue of multiplicity three, it follows that e = r(5),e> =r(5t); and
¥ = r"(51). Thus, € =a,(51) +0,(50)* +0,(5) + o o
¢ =30a;(5t)" +20,(50)+ |

& =6a,(50)+20,

; Also since A =2tis an ezgenvalue of multzplzczty one, it follows that ¢* = r(2t)
or X = a3(2t) +a (2t) +orl(2t)+a0 ’ o

' Thus we have four equatzons in the four unknowns a 5

' Method of Computation: For each ezgenvalue ﬂi of At, apply Theorem (2) to obtazn a set of lznear equatzons :
When thzs is done for each ezgenvalue the set of all equations so obtaznea’ can: be solved for' '

Qy, %5, . These values are then substltuted znto equatzon (3); whzch is then used to compute e
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| 1
F Example 1. Find ¢* for A= [; 1],

' ' at+a, ot
Solution: Since ¢* = a, At + a1 { e ! ] (8)

9at  at+a,
“and from equation (5), r(}) = a )\ + d@ The eigenvalues of At are \, = 4t and ., = -2t, which are both

of multiplicity one. Substituting these values successively into equation (6), we obtain two equations é"

=410, +o,and € = 210, +
o : I . _
Solving these equations for o, and o, we find that ¢ = gl~(e4‘ —e™) and o, = 3 (e" +2¢7™)
. C- 6t . :

) i i : . 1 364' +3e—2t e4r _e—’lr
Substituting these values into (8) and simplifying, we have ¢* ==

6|9e* —=9¢7* 3¢ +3e7H

‘Example 2. Find ¢* for A.=[ (1) _ 1}

ol
Solution: Since * =alAt+a0[=[ o 1 ] ‘ _ :(9)
o _ - AR A : : _

and from equation (5) r(\) = o\ + o, The eigenvalues of At are A, = it and A, = -it, which are both of
multiplicity one. Substituting these values successively into equation (6), we obtain

e'= o, + o et = o, (i) -+ 0"ol

| > Sblving these equations for o and o, and using Euler’s relations, we find that -
| b osint 1 | |
o= -e™)=2 | g =2 (e e ) = cost
' 2it - - t 2 .
P cost sint

Substituting these values into (9), we obtain e* =| .
| S | -sint “cost

(GATE-2005)
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3 For the ordinary differential equatzon (x—1 ) — +(cot 7'€x) +(cosec 7'Ex)y 0 which of the followzng C

statement is true? o _ S (GATE-2006)
(4) 0 is regular and 1 is irregular (B) 0 is irregular and 1 is regular L
(C) Both 0 and 1 are regular (D) Both 0-and 1 are irregular -
4. For the differential equation t (t - 2)* y" + 1’ +y 0,t=0is e ] (GATE-1996)
(4) an ordinary point - - ~ (B) a branch point. : E
(C) an irregular point (D) a regular singular point
KEY POINTS y
> The functions f, Sy o f, Of x are said to be linearly a’ependent over anznterval 1 iff there exist co‘nstant_s.._g

Cp Cp s C, (not all zero) such that ¢ f; + ¢,f, + ... + ¢, f, =0 forall xin Landifall c,=0 Y x € Ithen
linearly independent. : o : '
> If W1 ....t,) over I is non-zero, then f, J— are lznearly 1ndependent over I (orovzded they are

solutions of same dj ﬁ%rentzal equation) - : : : : 1

» For a homogenous differential equation of order n, and f, f, ..., f,are linearly independent solution of zt
then their linear combination ¢, f, + ... + c,f is also its; solutzon ' i
. . : . - 3

> For non-homogeneous linear equatzon if. f,, fz v J, GrE L I solutzons of (2), thencf, + cfy + ..+ cf, where
€p Cp ..., C, arE arbltrary constants zs.}_f lle he complementary Sfunction of (). General sol. of a hor: L
homogeneous equatton is c fion + partzcular solution. : :

»  For particular 'integfal' o put D' = a proyided'f(a) £ 0. When f{a) =0 then 'f:—D)eé.
1 ax. . ’ - . .

- e
d
ide

> 'Eo:rf'l’;.]_:_o.f%;l;z_).sin‘-ax'or"'f('l;é)’cosax; PutDz =.-a2.'pf'ovidedf(-_a2) #0. B L

' > , . For PI of —(—) X tahe the lowest degree term outszde Remaznmg factor wzll be of the type [ l+ ¢(D)] 13

T ake [ I+ ¢(D) ] to the numerator and expand it by anomzal Theorem S

s
f(D +a)

> : '--.ForPI of (e X) whereXzs anyﬁtnctton ofx use ——-( X) = ¢"
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> PLf f(D f(D)]X

> For Cauchy s homogeneous lmear equation, Pox d" V +Prx"‘1 d™y +. +P,y Q(x) where P, P,...,

dxn -1

P,l are all real constants and Q(x) isa function ofx. Putx = &, ie, z=logx, x> 0and di =6 so that -

xD=8,D*=0(8-1),.., X'D" =0 (6-1) ... 8- n + 1) and solve.

> For Legendre’s linear equatzon P d’y +P (a+bx)™" d. .y +...+P' (y)" = 'Q(x).— Put a+bx= €,
_ dx" dx" .
i . ie,z=log (a+bx) a+bx >0 and _—e 50 that (a+bx) D = b8, (a+bx) D= b2 e(e ).
14
: (a-__l-b_x)" D'=b"6 (8-) ...(8-n+1) and solve.

17 > For ? +ax+by'= f() and ?+cx+dy= g(t).Eliminate one of the dependent ‘variable say y from
given equations and solve linear differential equation in x and t then put x and X in any of the given
fi : equations, to obtain y = W(t).

> For differential equation )f"+py'+qy=XPT= e I ;y\h/ev—x’dx-lhy d J‘ % dx, (W#0), where'y . and y, are

. W(w AP —g
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Forthe D 4P} f 400t funtions

x =, then 3, is d regular singular point otherwise irre,

» A point whichis not & singular point s called an o

IR TR TR T

SOL VEILQ UES TIONS F RDM PRE WO US PAPERS

L “For homogeneous linear ordinary. dzjferentzal equatzon the lznear combination of two solutlons is
‘again a solution of the equation”. The statement is o ' ' " (GATE-2002)
(A) true (B) false .~ (C) neither true nor false (D) can’t say
* Solution. (4) For homogenous linear ordinary differential equation of order n, ify,, y,, ..., y, are solutions of it
. Then, oy, + oy, + ... + @, is also solution of it -
Lfy] =0 S
Ly, =0

Hence, the given statement IS true. -
_ Optzon (A) is correct

_ L[yn]—O =L [oy+ +0‘,J’,J ocL[yI]+ +o Ly ]=0

2 Lety= (p(x) and y \y(x) be solutzons of y" - ijz’*.(sin xz)‘y =0 such that d)(O):? Lo = land
v(0) =1, \|f'(0) 2. Then the value of the Wronskzan W(q) Y atx= 1 is (GA TE-2004)
CI. B Qe (D)e

Solution. (C) The given differential equatton isy" - ny + (smx )y 0 '
¢(x) and. \y(x) are its solutions '

L _ -




st

12)

fit |

and
04)

- Solution. (4, B) The given differential equation is Y+ 9 =0 A E is m’ + 9=0

I DIFFERENTIAL EQUATIONS " CHAPTER-® I

LONR0IS i1

Now wlg, )=, ", | atx =0 W(K0),y©)= H 2]
Do v 4 VOO0 ol
25), '

Now, W(x)=W(0)e (5 =W(0)e"
W) =W(0)e'=e
= Option (i C) is correct answer
The value of the Wronskian of the functions xz_, 3x+2,2x+3 .is.. o N (GATE—1999)
4o (B) 2+ x (0 1047 (D) =10

Solution. Given functions are x*, 3x + 2, 2x + 3

X’ 3x+2 2x+3 ‘
W = 3 2 |=2[6x+4-6x—-9]=-10

12 0 0

= Option (D) is correct.

Which of the followmg pair of functzons isa lznearly zndepena’ent pair of solutzons of y'H9y=07?
_ _ (GATE-2001)

(4) sin 3x, sin 3x— cos 3x | (B) sin-3x + Cos 3x 3sinx~4sin’x '

(C) sin 3x, sin 3x cos 3x o (D) sin 3x + cos 3x, sin 3x cos 3x

Its roots are L. 3i
The solution of equation is y = ¢,cos3x + ¢, sin3k

 The linearly ihdepena’_ent solutidns_are_cos3x and sin3x
For option (4), | |

" Clearly, sin3x and sin3x — cos3x are its. solutions

Now, ¢, (sin 3x) + ¢, (sin 3x — cos 3x) =10 ,
(c, +¢c,) sin 3x—c,(cos 3x) =0 =>¢, + ¢, = 0 and—c,=0=>¢,=0=c, =
Both are linearly'independent : .

- By optzon (B) ¢,(sin 3x + cos 3x) + cz (3sznx 4 sin x) 0 e

| .' cl (sm3x+cos3x)+cz(szn3x) 0 Ce T c
jte))sin 3x+ccos3x=0=>¢c, + cz 0, ¢c)= 0=>¢;= c,=0.
- Both solutions are, lz_nearly z_nd_ependent : | '

Foroption (C), sin 3x‘_.,c7(_5s 3x_=%_sin6x -

It is not .-90'_l_ution of differential _ecjuc_z.tio_r_l o
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= option (C) is incorrect
For option (D), sin 3x cos 3x again not a solution of dijj"éiential equation

= Option (D) is incorrect.
= Options (4), (B) are correct.

5 The di ﬁ"erentlal equatzon whose lznearly mdependent solutlons are cos 2x; sin 2x and &, is
(GATE-2001)
(4) (D +D’+4D)y=0 (B) (D3 -D’ +4D-4) y =0
(C)(D’+D*-4D-4)y=0" (D) (D’ -D’ - 4D +4) y=0

_Soh_ltiomFo’r cos- 2x, sin 2x and ¢" to be solution of differential eqﬁatz’on, the A.E. must have roots * 2i and 1. |
ie D+ D-1)y=0 | |
(D' +4D-D'—4)y=0
D -D+4D-4)y=0
=> Option (B) is correct.

6.  Ify= Zcm'x”"' is assumed to be a solution of the dtﬁ"erential. eéudiion 'xzy'—_ xy =3(1 + )y =0,
| then the value&'of rare ' . | (GATE-2012)
(4) 1 and 3 (B)-1and3 (C)land-3 - - (D)-land-3

Solutzon B) y= Zc X"
om=0 -

y’='ZC,,, (r_l'_m)'xﬂ-m—l -

m=0

y = ZCm (r+m)(r+m ~Dxm?
m=0 ‘ .
Substituting the values in the dzﬁ’erentzal equatzons Xy’ xy =-3(0+x ) y= =0

L X Zc (r+m)(r+m Hx™m? ch (r+;m)x'+"‘-_‘-43(1+-x2-).zcﬁxf+'!‘-7=-0'

=0 | m=.0. i
.7 :>Zcm (r+m)(r+m 1) (r+m) 3]xr+m +Z 3C r+m+2 0 :

:Takem 0 :>r(r 1) r- 3 0 i>r—r r- 3 0 :>r—2r 3 0
:>r—-13 ' ' '

=
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ASSIGNMENT -2.1

NOTE: CHOOSE THE BEST OPTION

- . d% d o ' . - ' _
L. Given an equation _:)51 =Y and a solution of itisy = a, + a, sinh x + a; cosh x, where a,, a, a, are
arbitrary constants then this solution is o o
(4) particular solution ~ (B) complete primitive

(C) singular solution  ~ (D) none of these

2. Ingeneral s‘ohttion, the arbitrary constants are , | .
(4) dependent (B) independent () dependent variables (D) none of these

3 T he equation of the envelope of the famzly of curves represented by the general solution of the dszerentzal -
equation is called .
(A) complementary solution . - '(B) partzcular solutzon
(C) singular solution L (D) none of these

4. General solution of nth order ordinary linear (homogeneous) differential equation contains
(4) every solution (B)some solutio_ns - (C).no solution (D) None of these

5. “The nth order ordinary lznear homogeneous dzﬁ‘erentzal equatton has no solution other than general '
solution”. The statement is

(A) always true - (B)always fals'e_ () _partially true . (D) partially false -

6. Consider the differential equatlon D)y =e“, where f(a)=0 and f{D)=0 is the-correspon'ding auxiliary
equation, then ' - :
(A) a particular zntegral may or may not be obtalned
(B) no particular integral can be obtained
(C) a particular integral can always be obtazned

(D) none of the above is true in this case = S .. - ‘ ' .
.‘1 - O(x) equal to
T T
Wefoa o mefoldd @ eferdia @ ok

8. The c-discriminant when equated tozero__in_clude nodal loeas LT
' (A)once o - (B) twiee L (C) thrzce - (D)noneofthese -

9, The c- dzscrzmznant and the p—dzscrlmznant both contazn o o
 (A)envelope - -~ " (B) tac-locus " (C) nodelocus (D) none of these

T<7‘s>
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10. If any equation contains n-arbitrary constants, then the order of differential equation derived from it is
(4) n B)n-1 (G2 (D)n+1_

11. The solution y=As §in x+ B cos (x+¢) contains three arbitrary constants they are really equivalent to
- (A) only four constants . - (B) only three constants
(C) two only ' _ - (D) none of these

12. The set of orthogonal trajectories to a family of curves whose di ﬁ"erentzal equatton is ¢(r,8,dr/d6) =0,
_is found by the differential equations

| dr) oY
(A)(ﬁ(r,e,_r;;g]—() _ (B)(x{r@rdj 0

(C) {r,e,—riﬁjzo - ‘ D) ¢{ g-1 ﬂ]
' ' dr S

13. The linearity prznc le for ordmatjy differential equatton holds for '

(4) non — homogeneous equation , (B) non linear equatzon
(C) linear differential equation - (D) none of the above
. . ;
14. General solution of 22)(—! + 5 E): +2y=0is
A N :
(A) y =de™ (B)y=Be? (C)y =Ae™ + Be 2 (D) none of these

15, The dzﬁ‘er ential eqztotion, d.e-riv'edﬁom. y= Ae” + Be”* h'ave_the order, (Where A, B are constants) -
. (4)3 (B2 _ ()1 A (D) none of these

- 16. The differential equation associated with the primitive y = Ax* + Bx+C is given by _

(A)d_f-zg (B)ﬂ_.':'ZA ' (C)—dl—"ZAx—'BzO (D) none of these
dx’ _dx2 - x ' )
. 3y d2y dy
17. General solutton of ——6—+11 6y 0is
- dx® . dx® . dx .
(A)y Ae +Be2"+C3" L (B)y 3¢ L
(C)y A +Be2x T e (D) noneofthese :

NOTE MORE THAN ONE OPTION MA Y BE CORRECT

.:5_ -4..

: | ' d d
' 18 The number of arbztrary constants in the complete przmztlve of dzﬁ’erentlal equatzon —X+27dx~f—()zs/
| arenot R S F S _
ws (B)4 S (C)I o .(D)6 -

<74> | i ~ 1 |




l DIFFERENTIAL EQUATIONS | CHAPTER - © I

19. The nth order ordinary linear homogeneous 'diﬁ’erential equétion donot have
(A) n-singular solutions (B) no singular solution
(C) one singular solution ' - (D) two singular solutions

© 20. Singular solution of dzﬁ’erentzal equation contams _
(4) arbitrary constants - (B) can be obtained from general solution
(C) do not contain arbztrary constants _ (D) cannot be obtained from general solution

~ 21. Consider two statements . .
(a) Singular solution contains no arbztrary constants.
(b) Singular solution can be obtained from complete przmztzve '

Which of the following statements is/are true? _ y
(4) (a) is true _ (B (b) is false :
€) (a) and (b) both true - _ (D) (a) and (b) both false -
. xa’y L 2 o
22, If — gy =2y has a solution Y =2X" then the solution is not
(4) general solution _ 3 ~ (B) complete primitive
- (C) particular solution (D) singular solution

23. For a given di ﬁ’erentzal equation which of the, following is false
(A ) an envélope gives a singular solution  (B)node locus gives a Solutzon
(C) cusp-locus gives a solution _ - - (D) em_)_elope does not give a szngulc_zr solution
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ASSIGNMENT - 2.2

NOTE: CHOOSE THE BEST OPTION

The general solution of the differential equation

we (e, +¢,%)c0s2x+(c, +c,x)sin2x}
o (B) e’ (e +c2x)cosx+(c3 +c4x)smx}
©) e e, +c2x)cosx+(c3 +c4)sm2x} '

' "(D)e {(cl €os X + c, Cos 2x+c3 smx+c4 smlx)}

-

d’y

2d2y dy

1. ———2——+2 =0, s
_ - d’  dx®  dx
(4) (cle‘ +ce™ + c3e3") (B) (cle" + c,e* + c3e2")
(C) (c, +c,x )e* +ce™. (D) None of the above
4 y dy _ :
2, E + o 2y =0, has the solutzar?
(4) y = c,e‘z" +c, e (B)y = ce ™
(Cy=ce®+ce +c, (D) None of these
] : _
3. Thedifferential equation % —y=0, has the solution
-'(A) e*+C (B) &* ) e* (D) none of the above
3 2 _ '
4. d'y i —d—l dy + 4y = 0, has the solution
dx®  dx? d
(4) y=ce” +xce” + x'ce” (B) y =c,cos 2x + ¢, sin 2x
Cy= c,e'x + czcos 2x + cj sin 2x (D) None of these
5. T he solutzon of (D* +1)° y= 0 D d ldx, is
o (A) Acosx+Bsinx (B) ¢*(Acosx+Bsinx) 7
- (C) (Al_-_l-_AZ)cosx+(A-3 +A,)sinx. (D)(A +Ax)cosx+ (A, + Ax)sinx.
6. The partzcular zntegral of (D3 D)y e +e”, L L _
(4) 1F2)(e”" +e7) (B)(1/2)x(€ +e"‘) ©) (12)x(e*—e™) (D) U)x*(e"~e™).
7. Thesolution of (4% ds*)+y =0, satisfying the condition y(0) =1, y(z/2) =2, is
; (A) Cos‘x+2-sin x (B) cos x'+s'i'n' x - (C) 2cosx+sinx  (D)2(cosx+sinx) -
: Theprzmztzve of (D2 2D+5) y=0,D= d/aix is -

O




- 10.

11.

12..

I3

14 . :
@)X +4y=0  (By=x+l (@ y+x=l N D)y ~4x=0."

15
16

17. o .
i __(A) x(x a) =0 | _(B)xra_—,lO-' B " (C)x=a o (D).none of these

“18.

DIFFERENTIAL EQUATIONS | CHAPTER - ©

d -
Let p= d—y, then y = px+1—p* has the solution
x -
(4) y=cx - (B) y= cx+\/1 ~c? () y=x+c (D) y=c +c,x
The difference of two solutions of non homogeneous nth order ordinary dlﬁ"erentzal equation is a solutzon
of corresponding homogeneous equation. The statement is -

(A) always true (B) always false (©) partially_ true (D) partially false

If y, is the solution of non-homogeneous nth order ordznary dzﬁ"erentzal equation and Y, is the solutzon of

- corresponding.homogeneous equatton Then the solution y, + y, is also a solution of

(4) homogeneous equation _ _ (B) non-homogeneous equation .
(C) both (4) and (B) o " (D) none of these

The oftfzogdnal traj'ector'ies of the parabola y2 =4a(x+a),a being the pa,raméter' are the curves given
by : _ ‘ C : ' '

@ Y =bxtb) @)y =dblx=b) ©y = dbx (D) y* =4by.

The singular solution of the differential equation y = px +p’, ( p=dy/ dx) is
(A)4y 27 =0 (B4’ +27y’ =0 C(© 4 -27¢=0 () 4x*+27y’ =0

Whichorie of the following is not a solution of (dy /dx)z + x(dy /dxj_— y=0.

If D=d/dz and z=logx, then the differéntiqi_equation x(dzy_/dx?)'+.2(.dy /dx) = 6x becomes
(4) D(D -1)y =6¢* "(B) D(D-1)y =6¢ © - (C) DID+D)y=6¢" (D) D(D+1)y=6¢".
The singular solution bf the difﬁ:feh_tial equation yz {1+(dy/dx)'} = R*is -

(4) y=RI2 _ (B) y=R . -(C_) y=3R/2 (D) y=2R

The c- dzscrzmznant of the equatton (y- c) = x(x— a) is

The solutlon of the d jj’erentzal equatlon [x sm[ Ddy [ y sin[l] - x)dx =0 is -
x x :

o (C) cos[ ] logx constant | _ - 'II_(D_) 'sin[lj';lc-)gxzcons;‘ant:_

TS
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4 3 2
19. For the differential equatzon d—x - H d_y =
dx*  Tdx®  dx?

(A) every solution converges to 0 as x —> o°

~ (B) every solution is bounded on [0, o)
(C) every solution has countable number of zeros in [0, )

(D) there exists a solution, which is not bounded on [0, *0)

20. Integrating factor of the D.E. (y2 +2X ) de+ (25 -xp) dy =0, is

(A) x1/2y ~5/2 (B) x y ~5/2 (C) x—S

2. -1/2 512 ~5/2
Yy

(D) X

21; If y(x) and y_,(x) are solutions of y "+ x y +(1 0)y=0 such that ¥,(0)=0,y/(0) = 1 and
‘ %,0)=-1, y,(0)=1 then the Wronskian W (y,y,) on R

(A) is never zero i (B) is identically zero
(C) is zero only at finite number of pomts (D) is zero at countably infinite number of
points. : : .

NOTE: MORE THAN ONE OPTION MAY BE CORRECT

22, Which of the following cannot be the solution of differential equation?
(4) Envelope (B) Cusp locus o (C) Node-locus (D) Tac-locus

23.- A particular integral of the gzven dzﬁ"erentzal equatlon f (Dz) =sinax is not gzven by

‘m—f( )sz() - (B)y—;;wsz( ko - ﬁ
(©y S‘““",ff() _— | D) y==if Fla)#0 |

f@” T f

24 The c-discriminant contains which of the following? : ‘ :
{A) The envelope. (B) The tac-locus (C) The cusp-locus (D) node-locus
d*y 1
-~ 25, The general solution of T— y= sinx is Ae + Be* —Esmx (A B are constants) Which part of this

. -_-"solutzon lS nota partlcular zntegral 7

7 @&””““' @&w&* ym%m;

26 Thé p—discriﬁinant contains which of the following? P SR '
(A4) The-envelope - (B) The tac-locus () The cusp-locus . (D) node-locus
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DIFFERENTIAL EQUATIONS

Ify, and y, are two solutions of y" + p(x) y' + q(x)y = 0, then for general sblution,of this given equation,
y,and y, are not B

- (A) lmearly independent (B) lznearly dependent (C) proportional = . (D) dependent
Tl he singular solution(s) of the a’zﬁ"erentzal equation 4xp* = (3x - a). is/are not given by
(A)x—00nly ‘ N (B) 3x —a = 0 only _
(C) x— a—00nly D)x=03x~-a=0&x-a=0
2
Given d___6 dy +13y =0, then its
¢ dr ,
(A) auxiliary equation is m* —6m+13=0 _ (B) auxiliary equation is m* +6m~13 =0
(C) general solution is y = e* + Acosx+ Bx (D) general solution. y = Ae®"* 4+ B
2
Given, il— dy +4y =50e", then
d*  dx o
(4) (D-2)y=50e" ' | (B) (D+2)*y =¢*
(C) general solution is y= 25x2 *+(A+Bre” (D) no solution exist
szen (x+c)+y' =7, then
(4) this equatzon is equzvalent to (x+ c) r*—y?

(B) thzsrequatzon is equivalent to X+ c=r"- y2

(C) -the p-discrimin.ant.is V(' =r?) =0 o
(D) the p-discri'minant is y-r)=0

'szen cy=c’x+1, then .
: (A) elzmznatzon of ¢ gzves y= i‘2«/— | - . (B) elimination of c gives-yz_ =4dx
(C) elimination of c gzves y= 4x (D) elimination of c gives y=3x+2
. PR
Fonthe equation —X +3y= e
dx _ '
.(A) Integratmg factor is e '_ . : o (B) Integratzng ﬁzctor is cosx _ _
o ‘(C) Solutzon of the equatzon is °y 'ée +Ce D (D) Solutzon of the equatzon is y e’ +1

L, -
. (4) - The p-discriminant is -4x"y* ~4(z* '1)(y2 m)=0

Given,-'_').)z‘-pxi"_ (p? ), then -

- (B) Thec- -discrimininant is 4xy+6x +2y O

(C)  The singuilar solution.is y* +m'x

2 .

(D) No singular solution exist
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' dv 2dv
35. For theequation __Tv +——=0
' dr° rdr
_ A . : : - A . - . .
(A) v=—+ B is a solution of given equation (B) v=—+ B is not a solution of given equation
r _ r : .
v A, L : ' A . . . -
(C) — =—— is a solution of given equation- (D) — =—— is not a solution of given equation
dr | Codr . )
. dy . x,- 0<x<1
36. The general solution ——+y = f(x), where f(x)=1 ° and y(0) =0 is
o dx S 0, x=1
21-¢™), 0<x<l1 - - 2e™* ~1),, 0<x<1
@ y=20e O ®) y={2¢ 7Y --
2¢ (e -1), le_ 2¢e"(e~1), x=1

1-¢™* <x< o
© y= 20-e7), 0= x<l S (D) none of the above
2¢"(1-e),x21 ' '

- : ' ' : g : : -
37. If Ly=xe*lnx (x>0) when L=[%+P§X+Q} and two L.1I. solutions of Ly=0 are xe" and €, then P.I. is

2 .3 3 2 27 _'2 37 |
4) xe’[gfnx 4x }+e“[—;—£n—x9—] (B) xle‘[%fnx 4x :|+e"|: ; Enx;x } _
) ¥ x=x1 |=xr x+x ) . . S T
© xze.x [—;Kn 2 }+e‘[ 3 In 5 } (D) None of these _ 7 _ :

38. Lety andy, be solutions of Bessel’ s equatlon £t y +ty +(t —n )y 0 on the interval 0 < t <@ wzth
J’J(I) 1, yl(l) 0, y,(H=0 and yz(l) 1 then valueofW(y, y) (1) is

@i ® 1 © (loft) o V(D)o_'

TS
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 ASSIGNMENT - 2.3

NOTE: CHOOSE THE BEST OPTION

L T he dtﬁ”erenttal equatzon j—y +6 31 +9y=50e™ have partzcular integral
: X s

2x

- (A) (B) 2¢* eV (D) none of these

: o S d
2. The complementary Sunction of the differential equation Ey +4y =cos nx is

@ ce* B e+ c2x)e 4 © ce™ (D) None of the above
3 IfO(y) =0isa smgular solution, then O(x, y) is a factor of

(4) p - dtscrzmmant only 2 : (B) ¢ - discriminant only
(©€) p and c - discriminant both : (D) none of these

4. Ify, and y, are two soluttons of tnttzal value problem y”+p(x)y’+q(x)y 0 yx,)=y, y'(xo)—yo and the'
" Wronskian W(y,y,)=0, then y, and y, are

- (4) linearly dependent (B) linearly independent
(C) proportional (D) none of these
5. Thevalue of Wronskz'an W, X, x3) is -
7 W Bj 2 ©Qx (D) none of these
" 6. The equation y= Ae™ + Be™ is solution of thé differential equation given by -
Ay"'-8'+15y=0 B)y"+8&'=0 C)y'+8'=0 - (D) y"+8y't15y=0
d*y

7. T he particular solution of the given differential equation PR 2% +2y=¢" is given by

'(;4)'e*' (B)I/Ze" U3 (D) does not exist

-8 IfP= —Z— then solution of d jferentzal equatzon P? —5P +6 0is
. "

_.'.(A) (y-dx=c)(y- 3x -c)=0" | A (B) (}’ 2x c)(y 3x c)=0..
(©y (y -x= e)(y Sx ¢)=0 Lo e | (D)noneoftheabove o

- 9. For : y + 4y tan 2x solvzng by variation of parameters the value of Wronskzan Wi is

W ®m @ o

10. ‘Soli)ing by Variatioa of parameters y" 2y +y = ¢ log x, the value of Wronskzan can be

e B2 € e T (D)noneafthese

§81>
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11. Solving by variation of parameters the equation y"+y=sec x, the value of Wronskian is

@1 ()2 . (©3 (D)4
12. The solution of the differential equatzonﬂ = M , is
dx X 2x3y3
) .

(A)x3y2+ X_=_)£ (B)x3y2+ Z_=x

y ¥ .

2 - :
(©) x* +x7 =c - : " (D) none of these

13. If a differential equatidn_ has the-general solution (x + ¢ )* + y*(3 - y)=0, the singular solution is

Ay=0 (B)y=1 o - (C)y=3 : (D) none of these
14. Lety =px—2p’, then its singular solution is - _
(4) 8y =x B)X-4y=0 . (©)x'=2y D)X=y
1 5 The solution of the differential eguatzon Z’xy -3 Zy +2y—e " y=3 and 2} =3 whenx=0,is -
» :
(A)y=2¢"+e* —xe* ‘ (B)y—2e +e” —xe*

(C)y=é+2¢" —xze’ . y : D)y=¢-e" +xe*

16. The number of singular solutions of differential equation p2 + y2 =1is
(A) zero _ (B)one .. . (€) two © ° D) three

e o Loy d
17. The solution of the differential equation (¥’ ¥’ + xy). d_y =]1is
. : X

y 2 yiiy

.(A) LI (B)x =25 +Ade
X .

yl2

© l=2-y +4e D) x =2+ rAe"?
X .

18. General solutzon of the dz/ferentzal equatzon (cosx—sznx) Z; +2sinx D - (cosx + sinx)y = 0 (gzven that _

dx
. y=sinxisa solutzon) is

(4) c,cosx+c2xsmx o " L (B) c,sznx+c2xsznx Lo
'- (C) c,sznx+c2 S (D) c,sznx+c2
-19. The solutzono differential equation ——-+ —=0,is
f diff q _xydx dx ydx
(A)y'--=Al_nx +B - . . . (B)y=4ANl x+B

©Cy=Alnx+B . -~ . (D)y Alnx+B

<8‘.2>‘ : | E — ‘ J
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. 2 )
20. The particular integral corresponding to the differential equation% —3—2—1+2y=e‘, is given by
Wxe ®) 16e (© ¢ (D) — xe*

21. If the di ﬁ‘erentzal equation is of the type f(D).y = sin ax, where f(D) is a polynomial in D containing the
' odd powers in D only, then
(4) A particular integral can be obtained
(B) No particular integral can be obtained
(C) -Particular integral in this case is constant

(D) Particular integral is gzven by f zf f(=a*)#0

22. The general solution of (dy/dx*)—(dy/dx)=2y =10cosx is
(4)y=ce" +cze *—3cosx—sinx
(B) y=ce" +c2e *—3cosx
(C) y=ce "+, —3cbsx-i-sinx
(D) y=cie™* +c,e” +3cosx+sinx.

23. The solution of x*(d*y/dx*)~3x(dy/dx) +4y =0is

@y=( +ene” | ®) y=(c,~c,0e™
(C) y=(c,+c,x)log x - S ’ (D) y=(c, +c,logx)x*.

24. The partzcular zntegral of the dlﬁ’erentzal equatzon s y -13-% dy + 12 y =36, is given by
. dr’

46 (B) 3 L ©e (D) -36/13

25, Thep - discriminant of the differential equation y = px + B , is _
(A))’Z:x - ' B)y=x (©)y =4 (D) none

- 2. The solution of the di jferentzal equatzon y +(3z l)y —3zy -0,.is _ _
| (A) y= .cle +_c2e L (B)y ce +c2e . ©y= cle +cze (D)’y.;jc@”-"ﬂf&f”ff

27. The equatzon whose solutzon is self orthogonal is -
4) p-(/p)=p*
(B) (px+ y)(x+ yp) — Ap =0, p=dyl . p¢0
(©) (px=yNx+yp)-p=0 =
(D) (pr+y)x=yp)-Ap =0, p#0,p=dyldx

<33>
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28. The solution of (dzy[ arx )—Y=Kk, (k=a non—zero constant) which vanishes whenx =0 aﬁd which
tends to finite limit as x tends to infinity is

@y=k(+e*) @ y=kE"-])
(C) y=k(e*+e*=2) . - . D)y=ke-1).
29, The general solution of d* ¥/ d? +2(a'y/ dx)+ y =e™cosx , is
' (A)(C +C x+smx) ' L . - (B)(C,+Cpx— sinx)e”™

(€) (C,+Cyx+cosx)e™™ - : . (D)(C, +C,x~cos x)e”

30 I yl(x)=x and 'yz(x)zxé" are - two linearly  independent  solutions  of _

d2
x2—y—x(x+2) +(x+2)y 0, then the ‘interval on which they form a ﬁmdamental set of
dx-

7
Ve

“solutions is _ _ . : . ,
(A)x>00rx<0 . - | (B)-1<x<®
(C)-I<x<2 | - . (D)0 <x<co

31. Suppose that y, and y, form a fundamental set of solutzons of a second order ordinary di ﬁ"erentzal

equation on the interval -00 < t < +00, then -

(4) there is only one zero of y, between consecutive zeros of y,

(B) there are two zeros of y, between consecutive zeros of y,

(C) there are finite number of zeros of y, betwéerconsecutive zeros of y,
(D) none of the above. -

32. If ¥, (%) and y,(x) are solutzons of Y+ xy + (1 x ) y =xsinx, then whzch of the followmg is also its

. solution? . . . . : . S
(A y,(x)+ yz(X) o | _ (B) y,(X) —y;(X) o
(©) 2y,(x) - y,(x) . ' - D)y -2y,(x)

33. For which of the folloWing' pair of functions y,(x) & y,(x) , continuous functions p(x) and q(x) can be B

determined on [-1, 1] such that y,(x) and  ¥,(x) give two linearly mdependent solutzons of
Yy +px)y +q(x)y=0, xe[- 11] - L

(4 () = xsin(x), )’2(x)—COS(X) . (B) yl(x) xé‘ yz(x) sm@) T
©. yl<x> e“,y2<x> el (D) yl(x> -’ yz(x> cos(x) R

_ NOTE MORE THAN ONE OPTIONMAYBE CORRECT

34 (e x) is hot equal to

—a

| '-'.(A)-.x. N @P12e™ o "-?('C.)i x_'zéf’*f‘ o oDy xe™

Zos
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35. A particular integral of (d*y/dx*) - (dy/dx)—2y =cosx+3sinx is not
(A) sin X (B)cos x - (C) —sinx (D)~cosx

36. The solution of (D*+8D* +16)y=0 is not given by
() ce” +ee ™ e +ee” |
B) (¢ + c,x)e” +(c; + ¢, x)e
(C) (¢, + c,x)cos 2x + (¢, + ¢ x)sin 2x 7
(D) (Ic1 +¢,x)cosh 2x + (c; + ¢, x)sinh 2x -

37. The p-discriminant of eqﬁdtion }.IszZL +y =¥ =0, is not . : .
4y =0 B)y' =r Oy r)=0  D)y'=0

38. Ify, and yz are -linedrly independent solutions of the };omogeneous equation
' L(y) yi+p ) y + pz (x) y-=0 Then p(x) -and p,(x) are not given by
W5 = s ViV~ 1Y
(4) pl(x)_————, p,(x) = YYo= Ny
| wx) 77 ~w(x)

(B) pl(x)=‘{yly2—_ y-'yz]’ py(x) = LA

'; w(x) W)
© p=2220% pz(x)=—{M} |
. w(x) oL oWl
W= {——”2 s p2<x)'=-—[——yf.y5‘-yl’y:5]:
1 wix) ] L w
. 39. The equation Ey_z[dy 410y =0 has characteristic roots.
; ' o : ) o |
(4) 1+3i (B) 1-3i _ _(C)1+—2—i _ | .'(_D) 1—%1‘
40. Given, the equatzonx Acos (pt Q) then '
- d2 N N
- =—p 2dx .
: () a
d2 ' :
() iy
- : L d x_dx d2
: D I t A d X
,.( )ezmzna zon of pan X gzves s dt dt

<.és>
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dx o
41. Given, — = tan ydy Solving the above equation gives
x

(A) logx =-logcosy + C - ' (B) log (x cosy) =C
(C) log (x siny) = C . : (D) x cos y = &°

42. Given, sinx, cosx, sin2x, then
" (4) the wronskian of given functions is 3sin2x
(B) the wronskian of given functions is zero

: /4
(C) the functions are linearly independent in [0,'"2"]

(D) the functions are linearly dependent in (0, )

43. Particular  Integral of the Jollowing differential equation (D2;4D+4)y— " logx is obtained by |
integrating _ ,
xlog x x(log x)*
W= o ) Moga)
‘lo x)’ o xlog x )’
(©) (_g_)_ (D) ( g ]
2 . 2
44. Anintegral curve of x(4ydx+2xdy)+ y (3ydx+5xdy) 0 is not 1
@xty Tra’y’ =1 o ' B Yy +xyt =1
© 'y +x'y’ =1 N S AR S A

e
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r - ASSIGNMENT - 24

NOTE: CHOOSE THE BEST OPTION .

1. The c-discriminant relation of the differential equation X p2 +x yp=1, is given by (where p = % )

A)x (' +4)=0 | B xwy-2)=0
@ x-y)=2 D) Yxry)=2
2. The partzcular solutzon of ‘(iix_y +y—cos(2x 1), is
.(A) g[cos‘(.?x— 1)-3] o (B) -——[cos (2x — 1) 8 sin (2x D]
(C) é [cos (éx_ + 1) 48] | ' "~ (D) None ofthese'

3. PIL 0f(D+2)(D 1) y=e',is

“ _". e

(C) Ex3e’ S (D) None of the above
.

4. The solution of the.differential equation"‘:;x-g)+.4y =sec’2x, using the method of variation of

parameters is

11 '
(4) y c1c0s2x+czsm2x—z+4sm2x loglse02x+tan2xl

) (B) y=cl0052x—c2+sm2x+zsm2x 10g'|séch+tan2x|

Oy =(c, +c2x)_e_2‘ +Zlogl sec2x+tan2x|

- (D) y= Cl cos 2'x'-E'cz'_s_ih 2x +% —-;1{ sin2x

L B IR d y dzy dy S .
5. The solutzono the dz erem‘zale uatzon——2 -5—+ 6y =e¥ s
3 f ﬁ‘ quation— =--2 P R |
3x
e (B)y= Ae +Be3"+Ce2"+ 10

10.

Wy-ac +‘Bej’f . _C_e'z-" +

3z

| (C)y E A__e" * Bé'jx ;'Ce-2i+ xle() > xe

10

(D)y Aé’ +Be3"+C
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6.  The solution of the differential equation :dix_y ~xty+l Sfor y(-ﬁ—] = 1 VIS

x+y-1 3
' 1 ' 2
(4) y=x+log(x+y)—-§ (B) y =x - log(x +y)'+§
' 1
(C)-2y=x-10g(x+y)+§ ' (D) 2y =x +log (x +y) +1
d’y . dy . | . o du
7. Ife”u(x)isaPl of -2a y, + a’y = f{(x) where a is any constant then s is equal to
» _ "
(4) fx) L B f)e”
© fx) € . (D) fix) (¢ + ™)
&’. The general solution of X d a4y, d_y = y Q,is
Yt e dx
(4) ax + by =c _' (B) ax’ +by =0
(C)ax2+by2=1 | ‘ (D)ax+by2=0

9. The complementary functzon for the differential equation (D*+D*+ )y=ax’ +besin 2x is
(A) e* +e*

] 3 4B
(B)e’”[cl cos 3'12_3—x+c_2 sin ng +e ”2[c3 cosTx+c4 sme

Q) &*|c, cos_£x+c2 sinﬁx te” c3_cés £x+ c, sin l'/Ex
. (D) none of these
n—-l
10. The linear differential equation of order n P, Z” J +P d + +Py=0(x). ‘where P,,P,..., _Pn'and Q
'l are functions of x alone, is exact if _
. . (A) I)n _\P'n—l-.l_P".n—-Z-.l_“..'—I)On :O ’ (B) I)n—P' ~] +P":';—2+' +P" =0
- (©) ﬂ_—P?,,_1+P"n_2+...+_(—-1)” PO" =0 o (D) B—P', 4P =4[~ 1)”“P" 0

n—-l1

1I. T he orthogonal trajectorzes of the gzven famzly of curves. y = ka are given by

(4) X +y =constant . . - B (B) )C2 —k)? constant .' N
L (©) kot +)/?=cons_tant . N - (D) x2+k)? =__constant .
- 12. The particular integral of the differential equation T 231% y =08 3x is given by L

- (A4)-3/25sin 3x. - R " (B) ,-3/25 cos3x. .. .
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(C) 1/50 [-3 sin 3x - 4 cos 3x] (D) -1/25 [3 sin 3x - 4cos 3x]

: d?
13. The particular integral of differential equation KZ +a’y=sinax, is

(4) (~x/2a) sin ax '(B) (-x/2a)cosax
(C) (x/2a) sinax =~ _ ' ﬂ)) (x/2a) cos ax

. 14. The particular integral of the di ﬁ”erentzal equatzon (D2 ' ) =sindx Is given by

xsindx —sindx
‘A = . : B) y=
(4) y 0 , (B) y= 0
(©) yz—xcos4;c | : (D y=—xcos4x

g8 L ' 20
- 15. The patticular integral of the differential equation. (D2 +9) = cos 2x+sin 2x is given by

4) )’_.3(0052)”'5“12’5) L . (B) y————(cos 2x + sin 2x)

1 . - .
'(C)")’ = g(cos 2x+sin 2x) (D) y—13(0032x sin2x)

2
16. The particular integral of the differential equation &y —6% +13y=2¢"sin2x, is given by

d¥
(4) 1 xesin2x R (B 2L cosax
2 o B
'. ©) —% xeFsin2x -(D)'-—%xé’” cos 2x

17. The particular integral of the di_ﬁ"érential equation (D2 -2D+ 1_) y=xe*sinx, is given by .
) e*(xcosx+sinx) - I (B x(é" COS X+ sin x) ' '
- (C) e"_sin x(x+1) B - D _—e"()_cSinx+ZCosx)

" 18." The differential equation x(a,’y/dx) ~(x=3)*=0has p - dzscrzmmant as x (x 3)2and c - dzscrzmmant as
o _--x(x 9)? = 0. The singular solution is S S '
‘;{m)xs O 0 @)x9 =0
©= D &u 9=0

= 19.. The equation 8ap’ =21y, where p=dyldx, has si'ngu'la_r' solution
Cowy=0 @ oy=c
- (©y=a-dla . (D)y=6-cla

| <89> .,
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20. The differential equatzon of the orthogonal trajectories of the system of parabolas Y= ax2 is

(4) Y=x"+y . (B) y=x~Y"
(© y'=~(x/2y) B D) y'=x/(2y)

21. The general and singular solutions of (a’y_/ a’x)2 +x(dyldx)—y=0, are :
(4)(y —cx)(y - x*14-c,) ——70', x* +4y=0 (B) y=cx+c’ ';_-x2 +4y=0
(C) x*+y* =cxy+c*; ()" —4(x* + y*) =0 (D) None of these

22. The singular solutioﬁ of p=log(px—-y),is o

© (4) y=x(logx-1) = o (B) y = xlog x—1
(C) y=logx-1 ' (D)y=xlogx

23. The general solytjon of Zx“z +y=201is

4 y= exP(jE][cl cosﬁ+c2s1n jf] exp [é][c, cos ji +c, sin %J
(B) y - c,sinx + é2c0sx + cSinh x+c cosh x A - '
(C) y=cé+ce +ce”+c,é
(D) y=csin 2x+c,cos2x+tcgsinh2x + c coshx

‘24 The singular solution of the differential equation (px~y)* = p*—1, is
. (A)x2+y2=1 . Co -.(B)xz_yzz.l
(C) £ +2y* =1 o (D) ¥ -2y*=1

25.. The number of liﬁearly independent solutibns of

(d* y/dx )-(d?y/dx*) - 3(a’2y/dx )+5(a’y/dx) 2y= 0 of the form €™ (abemgarealnumber) is
(A) one - : (B) two '
(C) three ' (D) four

' - 0 9\2
26. The singular solution of ¥y = px+a(1+ pz') is
(4) parabola . o (B) hyperbola
(C) circle = S - (D) strazght line

27 Let y,(x) and ¥, (x) be solutzons of y" X+ y +. (sm x) y = 0 ‘which satzsﬁ) the boundary condztzons k _

-y, ) =0, Y "(0) =1 and y,(0) = 1, y," “(0) Orespectzvely Then - o T
(4) y, and y, do not have common zeros " (B)y, and y, have common zeroes -

(C) eithery, or y, has a zero of order2 =~ (D) both y, and y, have zeroes of order 2

&>
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NOTE: MORE THAN ONE OPTION MAY BE CORRECT

28. €7 (ccosv3x+c, sin 3x)+c,e”™ is not the general solution of
o (A)(d¥yld)+4y=0 . (B) (d°y/dx’)+8y=0

(€ (d3'y/_dx3) -8y=0 (D)(d*y!dx®)—2(d*y!dx*) + (dy /dx)-2=0
29, Which of the followirzg transformation cannot reduce the differential equation

: _éé.’.ilgg z = iz(log Z)z into theform P(x)(u) Q(X) ?
dx x x
- (A)u=logz ' (B)u——
- | | logz
- Qu =e*. . ) u=(logz)’

30. The largest'y_alue of ¢ such that there exists a function h(x) for—-c<x<c such that h(x) is a solution of

% =1+y2 with h(0)= 0 is not given by

T . . -z
4 3 . B By
© % o | D) 7
31 The smgular solutzon ofx (dy/ dx) -2y (dy /dx) +4x=0,(x>0)is
AWy=x" . L Co (B)y=-x" o
€) (y_ 2x) (y+2x) ' (D) _None of the above

32 Conszder the Assertzon (A) and Reason (R) given below;
Assertion (A): the singular solution of y=2xp+p*is given by ¥ +y—O
" Reason (R): The pandc dzscrzmznants are equal and given by x* +y=0. The correct answer is
. (A)Aistrue o (B) R is true
: -(C) Ais false e 1 = : (D) R is false

33. Conszder the Assertion. (A ) and Reason (R) gzven below '

-‘Assertzon (A) T he curves y ax and X +3y —C form orthogonal tra]ectorzes

"~ The correct arswer is
- (A)Aistrue. . A (B) R is true _
- (C) Ais false . - . (D) R is false -
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' CHAPTER - 3

INITIAL AND BOUNDARY VALUE PROBLEMS

§3.1. INITIAL VALUE PROBLEM
311 Fuhdamental Existence Theorem

Theorem 1. Consider the differential equation

dny dn—l —2y
Fy(x) T + P (x) = Y +P, (x)

+..+ P, 1(x)—+Py F(x) : (D) |

 This is a linear differential equatzon in y of order n and P (x)-‘#OP P,P,.. ,P,,,.F (x) are continuous
~ functions of x in [a, b] and if there exists constants C,, C,..., C,_ ,such that '
Y6y = Cy ¥ () = Cp, ¥ () = Cy oy ¥ 5) = C,, - )
(Here C,’s may or may not be distinct) ' '

. then equtztion (1) has unique solution. .

Remark: Fundaméntal Existence Theorem gives sufficient condition for the existence of unique solution.
Also, if Py(x) = 0 for some x € [a, b] then the solution of.the given solution may not e'xis_ts br_ may not .

be unique.

Theorem 2. If F(x) 0and y(x) =y (xo) =..= y"”(xo) = (), then equation (1) has one and' enly one (unique)
solution which is y(x) OVxe [a b] ; ' A '
" Note : '
/. In I VP the solutlon of D E f (x y) —Z—' at y(ro) J’o must satzsﬁz the two supplementary condztlons :
. (l) Solutzon satzsfv the DE. _ _
. (i) Solution satlsﬁ/.the initial condition i.e. y(x,) =y,

(2) The D.E. f{x,y)= Eyat Y(xy) =¥, has a unique solution that is valid in some interval about the

initial point x, if -

. <93> -
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(i) The function f{x, y) is continuous in some domain D of xy-plane.

0
(ii) The partial derivative —i is also continuous function of x and y.in D and (x,, y,) be a point in D.
Ty _

Remark: This condition is suff cient:

3

Also If f (x) =—, then contznuzty of. f(x, y) isa. suﬁ' czent condition for the exzstence of the solutzon in

~some domain D. If a = f(x, y), y(x%) # Y, and |x~x,|<a, |y ~Y)| Sbwherea, b areﬁnite, then

(i), :If fx, y) is continuous over the given interval and

'(iz)__ ftx, y) is bounded over the given interval then IVP has atleast one solution in the interval
|x —x,| £ h; where h = min (a, b/m) and |f{x)| < m over the region given R.

(iii) If fix, y) satisfies the Lipsehité' condition then IVP has 'a unique solution in the given interval.

Remark: Condition (3) is suff cient condztzon but not necessary..

4).

3.1.2.

Also, if by putting the given condition (z e. y(x,) =y, in the general solutzon of the gzven equation, if
the value of
(i) c= 0, then unigue solution.

(ii) ¢ . 0 = 1, no solution

(iti) c.0_“—‘_ 0, then z‘nﬁnztely _many_-solutions.

szschztz Cona'ztzon
Let f be defined on D, where D is ezther a domain or closed domazn of the X~ plane Then, the ﬁmctzon f
is said to satisfy a szschztz ‘condition (with respect to yinDif3a positive constant k such that

e y)=fisy) ISkl =yl ()

B for every pair of points (x, y,) and (x, ¥) which belong to D. The constant k being independent of '
Xy, and is called the Ltpschltz constant. The class of all functions satisfying the Lipschitz condztzon

' _ From the definition, we note that zf f €. sz (D, k) the

(1) with the szschztz constant k in'a domain D C R’ is denoted by Lip (D, k).

f( YO = (% y,)]

<k forally,iyz
Ty, )’2|

: ‘-Hence to show that f(x y) satzsf es szschztz condztzon wzth respect toyin D c [R zt is enough zf we'

_. prove that if (6 y) = f Gy 2)) zs bounded for all (x y) E D C [R The least upper bound of the

N7y S
expresszons on the left hand szde of the above znequalzty as (x, )E D gzves the szschztz constant k

T
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Note: In the above definition, by a domain D we mean a non-empty connected open set in R’. Hence, the line
segment joining any two points of D lies entirely in D.

Theorem 1. Let f{x, y) be a continuous function defined over a rectangle R={(x, y):| xx)|< a, |y —y,| <b}
of ‘

where a, b > 0. If —— exists and continuous on R, then f{x, 'y) satisfies Lipschitz condition with respect

f (x, )|

toy in R and the Lipschitz constant k is given by k= lub
. )e R

Proof: Since —— is continuous in a closed rectangle R, it is bounded in R so that its least upper bound exists

an Letk= lub J — f(x, y)' ) | ' | _ ()

()< R dy

Let (x y,) and @, ¥, be any two poznts of R. Then by the mean value theorem of dzﬁerentzal calculus-
there exists a point &, where § is between y,and ¥, such that

flxy) - f(x, )’2)—|:ayf(x ‘f):l(yl )’2) (x g)GR | ‘ (3)

Using (2) and (3), we obtain |f(x y) =fx y)| < k [y, y,| for all (x, y,) and (x, y,) in R. This proves
that f(x, y) satisfies Lipschitz condition with szschztz constant kinR.

Note: The condition given in the above theorem is only sufficient but not necessary for a functlon f(x y) to
S satzsjfv a Lipschitz condition in R as illustrated by the followzng example:

Example L The functzon Jx, y) =y [y| satisfies the szschztz condztzon on R {(x y) |x| < ] |y| <p for .

)
which i does not exist in R.

y
Since 1x|<] we get |f(x y,) f(x,y)| < [y, ¥, whzch show thatf(x y) € L (R ]) '
Y ¥
_ Now—— X zfy>0and _:—x zfy<0

Hence, gi does not exist at any_po-z_'nt (x, 0e R for wht_ch x#0
. Y. ' : _

, ExampleZ Check whether the ﬁmctzon f(x y) =y satzsf es szschztz condztzon in . o
0] Ry={63): W< L, 0<y<2) ' o
(zz) R {(xy) .=a, b<y<cabc>0}

S
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Solution: To prove

- Example 3. Show that the function f(x,y)=(y+y?) coszx
_ . : _ _ x

Solution: Now f(x,y,) - f(x.y,) =(y, + y'f)'c(;#_(yz_ 2)

() we first note that f(x, 0) = 0

Now [[G9)~ 1 i
ow| =0 | I ”zlyi_O . | (1)

Since (x, 0) € R, C R’ therefore (4) tends to oo so that the left hand side of (1) is unbounded
as y—0. Hence, the function does not safisfy the Lipschitz condition in R -

(i)  Now ai=—;—y—”2. Since y€[b,cl, ?)i < L ,b#0. -
. y

ay ‘ 2Jb
Therefore, f{xy) satisfies Lipschitz condition in R,

'satisﬁes‘szs_chitz condition in ly| €I and
1 o B
[x-1I< ) ‘and find the Lipschitz constant.

COS X

C"”[(yl y;)+<yl—y2>(y,+y2)_1

Hence, | f (x,3,) - £ (x, yz>|<'c‘;”'l =Ny + )1 (D)

o { _ _
- Since |.x—_,1|<—2—,we__have %g x<§— . - (2)-

Maximizing the right hand 'side bf (1) using (2) We get .

G- Fry S ol =y 31=121y, - ¥

"y

T herefore, |f(x, y,) f(x y)IS12 |y, y2| which shows that f(x,y) satisf les szschztz cona’ztzon in the given '
‘region with the Llpschztz constant 12; o

Example 4. F md the largest znterval in whzch the solutzon of VP exzsts

y 55 +9y y(O) 0, |x|<1|}’|<1 .

: Solutton T he given D. E isy = 5x + 9y

Since f (x, y) is.a continuous. functlon over the given interval .

(i) fix, y)is bounded over the given interval

- S0, there exists a solutzon of the problem.
Now lx 0[ <h h i (a b/m)

..<9.5> ' | _
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: 1. : ' 1 1
© =>h=min(l, —), wheremax f{x,y) =14 = 1x-0I<— = [x|<—
- S fey) | 4 14
= ——sti
14 14
Thus the largest interval is [_ L’ L}
'14_ 14

Example 5. Consider the

L2
dx

+1yl=0 and initial condition y(0) = 0

* Solution: Sum of two non - negative terms equal to zero iff they are separately equal to zero.

= ykx)=0is a solution of given ODE which also satisfies the initial condition.

Note: Before separating the variables, check if RH.S. becomes zero by putting y=0 as well as L.HS. and
y = 0 satisfies the initial condition then y = 0 is-a solution of the given D.E. '

o . gy Lo L '
Example 6. Consider IVP Ey = y3;y(0) = 1 then how many solutions does the IVP has?

Solution: The given differential equation is % =y’ & =dx

1
2 2 . ) . . - -.y3
5:—' . )
= ¥y’ ==(x+0)

3

- Here initial condition is y (0) %1. B
which gives. ¢ = >

s0 in this problem ‘c’ is unique -
= y3= g[x + ~2—] is the unigue solution of the given IVP. e

o .'then_how many Solutidris does ihé'given 1 VP has? -

* Solution: Given equation is xay'—y=2x2. = _d_y__l.y =2x; which_iSqlineai‘ iny:’
: . o ] . . ; 1. .. ) -
- S f—dx 1 -
- ThuslF.=e * =—




B | | f.'(C) a= 3and[3 = -4
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Solution of (1) is y- ='j2x.ldx
X X

= Y=2x+c = y=2x"+cx
x : .
Since initial condition is y(0) = 0
=> 0 =0, so here we can’t find ‘¢’

= Given IVP has infinite solutions. -

PRACTICESET— 7

The zmtzal value problem x(t) 3x2’3,x(0) 0 in an mlerval aroun N _
i ﬁ*:(CSIR GC NET SAMPLE PAPER)'

(4) np solution S e
(B) a unique solution '

(C) finitely many lznearly mdependent solutzons
(D) infi nztely many lznearly mdependent solutzons
T he mztzal value problem xg—y + :y +xy 0 y(0) (d _(GATE—2006)
(A) a unique solution ot

(C) infinitely many Solutions 'arly independent solutions

) ’T he initial value problem o (GATE—2011)

' ";(A) znf mtely many ‘

(0) 1 whereoc BE IR then

| -'_'.(A)oc 3and[3 4
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§3.2. STURM - LIOUVILLE BOUNDARY VALUE PROBLEMS

Definition. Consider a boundary value problem which consists of

(i) A second order homogeneous linear dzjferentzal equation of the form
Yy o
: dx[p(x)—}[q(x)ﬂr(x)]y 0, «(5)

‘where p(x), q(x) and r (x) are real functions such that p(x) has a continuous derivative, q(x) and r(x) are

contznuous on a<x<b; and p(x)>0 and r(x) >0 for-all values of x on a real interval a<x<b; Nisa -

‘param eter zndependent of x,

(i) Two supplementary homogenouo boundary conditions
| (a)+ A,y (@) = _' - | :
.y(b)+ B,y'(b)=

where A, 4, B, and B are real constants, such that A and 4, are not both zero; and B, and B, are not-
both zero. - :

This type of boundary value problem is called a Sturm _Liouville Problem or ‘Sturm — Ltouvtlle
Syste_m :

Note : Two important particular forms of the supplementary homogenous conditions (6) are

@) y@=0y®=0. . : | A7)
(i) ¥ _(a) 0._y b =0 SR S (8
| : CdYy . .
Examplel Conszder the boundary value problem d—xz'*'/lv)’ o .09
with y(0) = 0, y (1) = 0 o - - 10
Now, equatzon(9) may be written aS»- d [ dy } +[0+A. l]y 0 - __.(11)' o

Recalling the Sturm — Liouville proble_m di[ p(x) ;}Hq(x) +Ar(x)]y=0, -

y(a)=0, y(b) 0, (Partzcular case) : :
' Now equatzon (1 1 ) is of the same form as Sturm-Lzouvzlle problem where p(x) =], q(x) 0 and r(x) 1;

Example 2: Find the non —trzvzal solutions of the Sturm Lzouvzlle problem

R
y(O) Oy(ﬂ) 0o e (2)

(O
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Solution. For finding the non - trivial solutions, we consider separately the three cases, namely A = 0,
A <0, and ) > 0. For each case, we first find the general solution of the differential equation (1) and
then determine the two arbitrary constants involved, so that the supplementary conditions (2) are also

satisfied. Now, we proceed as follows:

Case 1: When \= 0 _ .
For the case when \ = 0, then dzﬁ"erentzal equatzon (1) reduces to

d 2. ) .
dxf =0, l(3)
- The general solution of equation is y = ¢  tex : ..(4)

Applying giyen conditions (2) to the solution (4).
On applying y(0)=0, we get ¢,= 0. _ .(5)
On applyingy (m) =0, wegetc, +cm=0.

- Using (5) i.e. ¢, = 0, we get c; = 0.
Thus, for the solution (4) to satisfy the conditions (2), we must have ¢,=0 and c,=0.
Therefore, solution (4) becomes y(x) 0, for all values of x.

Thus, for the case when the parameter 7\.— 0, we get only the trivial solution of the given problem.

Case Il : When L. <0
. Let A=-00, oc¢0 _

Then equation (1) gzves j—}—)—a y= 0.
: X

N T he aulezary equationis m’- o = 0 whzch gzves m =0, -0
T herefore the general solution of the equation is of the form '

y= c,e "+c,e o | ..(6) -
- Applymg the conditions (2) to the solutzon (6). . | ,
- On applyzngy (0) 0, we get c, + cz 0 ' w(7)

On applying y (1) = 0, we get- c,e "y cze = 0. - (8)

Now, we must determzne ¢, and c, such that the system consisting of (7) and (8) is satlsf ed. Obvtously
¢, = ¢, = 0 is asolution of this system, but these values of constants give only, the trivial solution of the
' given system T herefore we must seek non — zero values of ¢ : and cz which satzsﬁ/ (7) and (8) From the
: theory of linear equations; this system has non-zero solutions only zf the determznant of the coeﬁ" cients o

-is zero.

T hefefore, from equations ( 7) and (8), we must have

e” e
L Lo WO O '
- which givese—"-e - =0,

on QLT 20
ore- =¢ ore” =1, .
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or 20m =10,

oro.={.

Therefore, the solution (6) is non —trivial if a=0, which is a contradiction-because 0. # 0.
Thus, for the case when \ < 0, there are no non —trivial solutions of the given problem.

Case ITl : When > 0

3.3.1

Let A=0, a#0, ‘
I o dy _

en eauatzon (1) gives ?+a y=0.
The auxiliary equation is m* + o = 0, which gives m = % ic.
Therefore, the general solution is of the form y=e cos a.x + ¢, sin 0 x. (9
Applying the condztzons/(Z) to the solution (9).
On applyzngy(O) 0, we get c, cos0+c,sin0= 0
and hencec, = 0. o
On applyzngy () =0, we get c,COS 0T +C,Sin AT = 0 E ..(10)
But ¢, = 0, equation (10) reduces to ¢, sinam =0, . (11)
which gives either c,= 0 or sinan = 0. |
But ifc, = 0, then solution (9) reduces to unwanted trivial solutzon
Thus, we must set.sin .1 = 0, _ ...l12)
Jfor obtaining non trivial solutzons

Now, sin ot = ngvesom—nn ne Z [asociO]

" which giveso,=nnel

Therefore, solution (9) takes the form y= cz sin nx. As ¢, is arbitrary, therefore

"y =c, sinnx, where n € Z and 7» o = n’; which are the required non —trivial solutions of the glven

problem __

Characteristic Values (or Eigen Values) and Characteristic Functions (or Eigen Functions)
Gonsider the Sturm-Liouville problem-consisting of the second order homogenous linear differential
d

o tion % Lo =0, = . '
. _equa zondx{p(x)dx} q(x)+/1r(x)]y. O’, | (1) |

and the supplementary condztzons

e, } o

IY(b)+ Bzy (b)—‘

- where 4 ) 4, B, and B; are real constants such thatA and A, are not both zero and B, and B, are not

N both zero. Then the values-of the parameter ©in equatzon (1) for which there exist non-trivial solutions

o the problem are called the characteristic values or ezgen values of the problem.

functzons of the problem

The correspondmg rion ~ trivial solutzons themselves are called the characterzstzc functzons or elgen
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' Example 3. Eigen value forB VP X'(x)+AX(x)=0; x(0)=0 X(m)+X '(JZ) =0 satisfy _
(4 A+tandz=0 (B) JA+tandz=0
(¢ JA+tan/Az=0 D) A+tan/Ar=0

Solution :
Case (i) When h =0
X"(x)=0=>X(x)=Ax+B
X(0)=0=B=0
X(x)=A .
X(7m)+X'(m)=0 . .
S AT+ A=0=> A(1+1)=0 = A=0 (Trivial solution)

" Case (i) When ) >0, let .= (L # 0)
X(x) = Acosu.x+Bszn},Lx Acos\/'x + B sin \/'x
X(0)=0 =4=0 _
(x)—Bucospx“Bﬁcos\/zx
Xm+ X(m)=0 :Bsznﬁn+3ﬁcosﬁn 0 = B [tan \/Zn+ \/—] 0,BF0
= \/— +tan\/— A7 =0, Non—trivial solution.

Example 4. Find the characteristic values and the corresponding characteristic functions of the. Sturm —

Liouville problem.

2 ' -
d y+/1y 0, S ' (1)
with y(0) - y (0)_= 0, _ , : . (2
) -y =0. » - (3

Solution For finding characteristic values and characteristic functions we consza’er separately the three
~ cases, namely?\ 0, A<0and\>0.

2

Casel: When?&=0-'

| "'For the. case when e 0, the diﬁerential equation (1 ) rea’uces to dxy =0. - _ () - |
" The generalsolution ofequation 4)is y(x) = cxte, (5

" Now, relation (5) gives y'(x) = c, - : _ e
 Wenow apply the conditions (2) and (3) to the solution (5). - B oL
 On applying (2) i.e. y(0) -y (0) 0, we'getc,~c, =0, or ¢, =c, -

| Therefore, (5) gives y(x) = cx+e, ' S

' <10> .'
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On applying (4) ie. y(T) -y'(n) = 0, we get c,n + c, ¢, = 0,

orc,=0 [asmF (]

Butc, =c, thereforé c,=c, = 0.

Thus, the solution (5) becomes y(x) = 0, for all values of x. Therefore, for the case when the parameter
A = 0,'we get only the trivial solution of the given problem.

Case 1L When A <0
Let A =-0’, 0 # 0.

2 ' : :
Then equation (1) gives Zx_g’_a_zy =0. ' - (7)

The Auxiliary equation ism’ - of = 0, which gives m = o, -.
" Notes on Sturm — Liouville Boundary Value Problem

L All the Eigen Values of SLP are real.
2. Eigen Values of SLP are countable
3. Ezgen functions correspondzng fo d ﬁ"erent ezgen values, are LI

4 _ If I f(x) g(x) 0 over (a, b) then f(x) and g(x) are orthogonal

3. .. Every second order ODE can be written in S L form

6. In each SLP, ‘there is. a one — parameter famtly of characteristic functlons correspondtng to each
" characteristic value and two characteristic functzons corresponding to same characteristic value are
merely non — zero constant multiple of each other i.e. The SLP cannot have two L.I eigen functzon
corresponding to the same ezgen values.

VAR __E.ach_ characteristt'c. functzon 0, corresponding.to the characteristic value \ (n =1, 2, 3,...) has exactly
(n— -1) zeroes in (a, b)-. : '

o 8 " In SLP, each eigen functzon can be made real value by multzplyzng it by an approprzate non —zero
' ' constant ' ' ' ' e ' o '
9 The characterzstzc functton correspondzng to the dzﬂerent characterzstzc values of a SLP are

- __orthogonal on the given znterval
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. w,,ere f IR —) IR isa Llpschltz conttnuous functlon Then- |
: (A) ' f (x) 0 tf and only tf xe {0 1} (B) yi zs bounded

UGC NET DEC-2014)

SIR UGC NET JUNE-2013)
éigen functions constitute an

| (A)

orthogonal set o '_

The eigemvalies of the BVP the _corresponding eigen._functions

(GATE-2016)

'o}nzeras“(‘)'l‘unon*"""'" i _-_"(C_ R:‘UGCNETJUNE—Z016) %

Jmmmmu S
. (D) for a countable number of 7» 5

§3.'3‘. GREEN’SFUNCTION R | S
Consider a linear homogeneous dszerentzal equatzon of ordern L(y) =0 ()

n. Lo gn-lo

whereLzsadzjferentlaloperator L= - P (x) d +P(x) d L +P (x) - B (2) .

where the functzons P (x) P, (x) - P (x) are contznuous on [a b] P (X) * 0 on [a b] and the boundary '
condmons are

s
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V,.(y) = aky(a)+ a’y' @) +..+al "y (@) + By(b)+ By l(b)+ Y N Al ()
=0; (k=1,2,...,n) : ..03)
where the linear forms V...,V iny(a),y (@), .., y(" Y(a)y®)y ®).. V*Pw) are linearly 1ndependent
If the homogeneous boundary value problem given by equation (1) to (3) has only the trivial
solution y(x)=0 then the green’s function G(x,t) constructed for any point a<t<b for BVP equations (1 )
to (3) which has the following four properties:
(a) In each of the intervals [a,t) and [t,b] the function G(x, ) conszdered asa functzon of X is non-trivial
solution of equation (1) i.e., L{G]=0.
- (b) G(x,t) is. continuous in X for fixed t and has continuous derivative with respectzve-to X upto order (n-2)
_ inclusive for a<x<b. '
(©)  (n-1)th derivative of G(x,1) with respect to x=t has the dzscontznuzty of fixed kznd and the jump being

equal to -1/Py(1) i.e. aLIG(x,t) 9" G( | = -1
. ) axn—l o a n-1 - O(t)
)

'(d). .G(x,t) satisfies boundary conditions i.e., V(G)=0; (k=1,2, )

Result: If the boundary value problem given by (1) to (3) has only the trival solutzon yx)=0 then the 0perator
'L has a unique green’s functzon G(x,t) '

Self Adjoint Equatzon If the coeffi czents ay(x).a,(x),a,(x) in the differential equatzon

ay%) Y +a,(x)y +a,(x)y =0 are continuous on a < x<b and ay(x)#0 on a < x< b .Then the
above differential equatlon can be transformed into the equivalent self adjoint equation -

a.(:)

[r(x)y] +P(x)y 0 where r(x)— e a0t };( ) =
. - a (x)

r(x)

Note: -
" (1) ayx) has a continuous second order derivative
- (2) a,(x) has continuous first order derivative
(3) a, (x) is continuous for all x € [a,b]

. Result: T) he,necessary..and sufficient condition that the above equation.is self adjoint is a'o (X)Zal(x) on ..
x€la,b] .and in . this case, the differential = equation may be written in the form

[a,@yT+a,09y=0 | |
eg Conszder the equatzon x Y +3x y +y= 0 Here' a0 (x) X’ sa (x) 3x
=d,()=a(x) ' L

~ here, 'the required self adjoint equation is [a, (x)"y"], +a (x),y =0. :>'(x3'y')"+ y=0

: Result Jf the boundary value problem is self adjoznt then green s functzon is symmetrzc I e, G(x t) G(t x). T} he .

converse is also true
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Example 1. Find the green’s function of the boundary value problem y” = 0;y(0) = y(I) =0

- Solution: Given boundary value problem is y* =0 - | (D)

The general solution of (1) is y(x) =Ax+B : 2
Given conditions are y(0)=0=y(l) S B
y(0)=0 =>B= 0

y(l) 0:>Al 0 =A=0" _
= (2) yields only the trivial solutton for the gzven boundary value problem

: +a,;0< x <t
- Hence, the green s ﬁtnctzon exists and is gzven by G(x,t)= ax+a,0<x -(3)
: bx+b,;t<x<l -
Now the proposed green s functzon must satisfy the followzng propetrties :
@ G(x{t) is confinuous at x=t ie,at+ a2=b ,t_+b2 or (b ra 1)t+(b2-a)=0 4 /

®) ' The derivative of Ghas a dzscontznuzty of magnztude ~1/F, (t) at the pozntx 1, where .
: Pyx)= coefficient of highest order derzvatzve in (1) which is 1 '

(5). A5

= b —a, =-1 - | ()

So (4) = -t +(b, —a)-O :>b -a,=t. ...(6)
(c) G(x,t) must satzsﬁ) the boundary condztzonsze G0.9)=0 = a, =0 ...(7) g
and G(1,1)=0 = bl+b, =0 S — .

Put the value of a, in (6); 'we get b,=t o : (9

Now (8) = bl+t=0 = b = _& (10)
(5) = b, =-14+q, | , - _ _
;>al=53f+1 =a = [’[’j — - b

Sabstituting-the above values--in-(3); the required green’s function of the givep boundary value pfoblem-

o [l—ijx O<x<t
' zsgzvenby G(xt)— Ly

. —l‘+t ot <xsl

_ '50—o;osx<t N | S B
= G(x, )= -t' S -, is required Green’s ﬁtnc_tio'nf'gatig‘ying diﬁ‘erential equatign and

: boundaijzco'ndi;iOns."' o _ o '_ (12)

>
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Example 2. Construct Green’s function for the BVP u” - u = Q;u(0) = u(1) = 0

Solution: Given equationis u'—u=0
=D -Du=
=>m’~1=0 = u= acoshx+bsinhx, where a and b are constants - -(2)
' Given boundary conditions are u(0)=0=u(1)
u(0)=0 = 0=acosh0 =>a =0 |
u(l) =0=>bsinh1=0 =>b=0(- sinhl F0)

= (2) yield only the trivial solution for the given boundary value problem
Hence, the green’s function exists and is given by

G( )= a coshx+azsmhx O0<x<t
x, : -

b, coshx+b sinhx; t<x<1 : ..(3)
Now, the proposed green’s function must satisfy the followzng properties: -

(a) . G(x.1) is continuous atx tie., a, coshtta,sinh= b,cosht+b2sznhtﬂ'
=>(b;—-a )cosht+(b -a )smht—()

: 7 (4
)] The derivative of G has a discontinuity of magnitude -1/P (1)

[ao] [ao] -1
= — - -
ox =t dx x=t"" 1)0 (t)

= [b;sinht+b, cosh ¢]—[a, cosh+a, sinh ] = —1

= (b —ay)sinh 1+ (b, ~a,)cosh 1= -1 | o L0)
-Solve (4) and (5) we get b - = cosh ¢ ' ' 0 L(6)
cosh 2t : _ -
Now (4) :
cosh ¢ -sinh ¢ _ sinh ¢ -
= (b, —a)cosht——— =0 = b —a = S
> (b _ @) cosh 2t v cosh 2¢- - I 7

_ (c) G(x t) must satzsf_'y the boundary condztzons ie, G(O =0 =a = O

_ (D)

= b = sinh ¢ and G(1,)=0  =b, coshl+ b, sinhi=0
- “cosh 2r o E .
'—b cosh1 ., _ —sinht coshl’ oo
. ‘:'.7_ :>b = (8
" coshs _ —sinht coshl. - coshs _ —sinhfcoshl+ cosht sinhl-
(@:%—b 4 COShE + S
© cosh2: -sinhlcosh2t cosh2t ~ sinhlcosh2s
smh(l—t) - o ' S

a, =——"—
2 sinhl cosh2s

' ' smh(l t) smhx
-_Substztutzng the above value in (3 ) we get & Coshx +a; Slnhx =—

(9.

| - sinhl cosh2t.
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sinh fcosh x _ sinh# coshl sinhx

and b, cosh x + b, éinh x=

cosh 2¢ cosh?¢ sinhl
smht[coshx sinhl - coshlsmh x] _sinht sinh(l - x)
- cosh2rsinhl . - cosh2¢+sinhl
| sm-hx sinh(1 —¢) 0<x<t
, sinh1 cosh 2¢ :
hence, G(x,t)=  Isrequired Green’s function

| sinh sinh(1-x)

- - <x<l1
. sinh1 _cosh2t

Exercise 1. Find the green’s function for the boundaty value problem ?ix—z + 1y =0;y(0) = y1)=0

K4

" Exercise 2. Find green’s function for the differential equation y”+ y' = 0; y(0)=y(1); y'(0) = y'(1)

PRACTIC’E',SET_—JV o

L T he Gr een sfunctzon G(x,f), 0<x,é<lof the boundary value problem Y+ ,1y 0, y(()) 0= y(l) is
o - - (CSIR UGC NET JUNE-2011) _

'.(A) symmetric- znxand & . owe . -
o '(B) contznuous atx=§¢
HC) ey 4‘)} 3608

.‘51(1 x ) fz(x t)—.—z—x (1 t )

(B) f,(x 0 —2}—t<1 3 )fz(x t)—T—x (1 t) P

'”.(C) fl(x t)—.--——x (1 t )fz(x t)=—%t(l x )

: 1
_(D) fl(x. t)—if—z——x a .t );fz(x,t)-jgt (1 x )

S
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(0)' y(l) Ozsgtvenbyy(x) jG(x 5)f (§)d§ where (CSIR UGCNETDEC-2012) _.
7"5:7"(A) 6 @ {"(5 basé (B) 66, §) K- st
| | 'f(x‘l)”f L ' §(x 1),x>§_
T 66 &) x(f"l)’“f D6y = ]fsmx@ Dash
| e T Sls?é‘(xﬂ?ie_?. :

. 4 | Consider the boundary value problem (BVP) 0 =— f u(O) u (1) 0 0,, [0 1] where u = % and

; 'u".= d_ Assume f(x) isa real-valued contmuous functzon ot [ 0 l Then, whzch of the followmg ls/are
B dx? _ . :

correct? S v (CSIR UGC NETJUNE-2013) -
/. The Green sfunctlon G(x; 5) (x, f)e [0, l]x[O 1] for the above BVP is
: for O<x< . o
6 )= ¢
5 for 5 <x<1

- 'csm UGCNETDEC—2013):5---=--

(B) is’ dzscontznuous atx 1/2
(D) does not have. the leﬁ dertvatzve at i= 1/2
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KEY POINTS

L has atleast one solutzon in the znterval |x x0| <h, where h= mzn (a b/m) and |f{(x)| < m over the region;_;

- glvenR

_ > - T he functzon f is. sazd to satzsﬁ) a szschztz condztton (wzth respect to y) in D zf El a posztzve constant k such :
S ".»'Ethat [f(x y,) =flx, y) |< k [y, ¥l D is domazn of f The constant ki is called the szschztz constant. ’

If the boundary value second order di ﬁ"erentzal equatzon of the form I [ p(x)—= }+[q(x) + /lr( x)] y_ =0,
| Wwhere p(x) q(x) and r (x) are real functzons p(x) has ¢ a contmuous derivative on a S <x<b,. p(x)>0 and o

r(x) >0 for all values of X, k is a parameter zndependent of x with-two supplementary homogenous :

When zn.boundary value problems we get only trzvzal solutlon we f na’ Green s functzon to get no_ "',; jvial
solutzons : L T
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SOLVED QUESTIONS FROM PREVIOUS PAPERS

L
Example 1. Solve %xy_ = y2withy(0) =0

dy _

N]-—-

Solution: The given differential equation’is 2

.dy

:>W=

= Integrating T=x+c D hy=xtc = y:-‘lI(x+c_)2 asy(0) =0=y =ix2
1 2 . . ’ ' 7
] =(x=D" x21 e g . :
Moreover, y=34" - , is.also solution of differential equation

0  otherwise
1. |
. . — — >
In general, y =< 4 (x=c) . *=C
0 , otherwise

herice, this differential _eguation has infinitely many solutions

| y)
Example 2. Find eigen values and ezgen ﬁznctzons of 2% (t)] +[ jy (t) 0, Y=y (eZ”) 0

. _ . _ . .
Solution: The given differential equatzon is [ty ] +( Jy ®=0

= ty"(t) + ty.'(t) +hy =0

AEis (D' + 1D + )y =0 where D =‘% B ()
It can be reducible'toa homogenous equatzon wzth constant coeﬁ" ciensputt =¢ = 1D =6,
t’D*=0(0-1) S
Equatzon (z) reduces o (0- I) O+ ?\. o~

'-'_Here ztarzses3cases- K C - S

Casel, k=0

.From(zz) '=0 :>y Az+B:>y AlogZ+Basy(I) 0andy(e2’F) 0
y(t)=—:>A 0:>y(t) Bstarbztrary

T akzngB 1 (say) _
() = 1is eigen function corrésponding to eigen value A= 0 .

>
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Case I Let A = -|°, where p # 0

=0 =y =>6=Ip

Thesolutzonzsy Aé" + Be** :>y(t) Aut}LI+B(u)tp"1

Y'(1).=Ap-Bu=0

V(@) =Ap S Buez"‘”*”—o =A4-B=0 asuiOana’Aem Be™ =9
On solvmggzvesA B=0 :

.= y(1) =.0, which is trivial solutzon Hence it is not an ezgen functzon

CaseIII Let A =\, where u¢ 0 =6 =4’ :> 6= +zp.
The solution isy = A cospiz + Bsinpz

y' = A cos (logt) + Bsinp (logt )
y'(e) =—[’utA]sm (u log t)+ ZE s (uloge)

szeny(l) 0:>y(1) 0+Bp. 0=Bu= 0
As, P 0 :>B 0

y(Ee) =0 |
_Zﬂ sin (4 27)=0=> Mp =nT, n=1,2,3, ..

(n = 0 is not considered as it done in Case )
(s S - |
= y(t).:Acos'[—z_ logtj with /1=,Uz =Z
So, the rth.tiréd eigen ﬁ-mctibns y(t) _with the cdﬁesponding eigenvalues .?».n are
' 2

y;l ) écds(g logi}n' =1,23..,4 =% and y(t) = I, with r=0

-Example 3. For initial value problem g}i =y? +cos?x, y(0)=0 ﬁhd the interval of éxisience of its solution

given thatR={(x,y):0$x$a,|ylS'b,a>§,b>0} -~ (CSIRUGCNETJUNE 2015) -

Solutzon Letf(x y) = y +cosx Co
[f(x IE +cos xl <|y| + lcosxl <b2+1

‘ =12y l2b = K

= f(x y) satzsf jes szschztz condztzon

- |
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b
I7zey(x) exzstsfor 0<x<h mm[a o 1] (i)

b .o 1-b?

1 8Oy

put g'(b) =0 gives b =t |

g'®)<0forb=1 -1

=> b =1, both are points of maxima. -
-1

D=— -N=—
&) 5 81 >

Let g(b) =5

.is-
12

—‘—>h=% [from ()]~

Maximum value of ; zb

. . o ' 1
So, solution exists in largest interval 0 < x < 2

Example 4. Derive the transcendental equation for determmmg A for BVP
Y +A2y=0; y(0)=0

y) =y

Solution:

CaseIl: fN>0 : :
y Acos7\x+Bszn)\.x As, Y (0) 02A =0 = y Bsmkx:> y —Bkcoskx
y =y @@
= Bsind= B?_xcqsk :>B(siﬁ7t-?»c'osk}=
For non —trivial solution, B # 0 :
= sinA-hcosh =0 -

| Casej];[fl}v':”o' . ATT

| Y =0y =4x+B

. y (Q).'—'O:>B—0}_-_f-_

y W=y
= 4=4 -

. Y (x)=dx -'is the eigen function Corfesponding to eigen value ). = 0 .

N Example 5 Let P be a polynomzal of degree N wzth N >2 Then the . zmtzal value problem'_ B 3
u (t) = P(u(t)) u(()) =1, has alwayS S ._(CSIR. U.GCNETJUNE‘ZOII) o

(A) A unzque solutlon inR

G
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(B) N number of distinct solutions in R _
(C) No solution in any interval containing 0 for some P.
(D) A unique solution in an interval containing 0

Solution : (4) Given u'(t) = P(u(t), u(0) = 1
" Consider P(x) =x’ , o _
L d') =d() = ‘ji_” SN d_‘z‘ = 4y » Integrate on both sides
1 u .

—1—t+C

u

Also u(O) =] >C=-1
-1 1
—-t—1:>u——

u _ 1- p

which does not exist at t = 1 but exist in an interval not containing 0.
. Option ‘D’ is true.

72

Example 6. Let;—} —q(0)y=0, 0<x<o0, y(0)=1, ?—(O) =1, where q(x) is a positive monotonically increasing
. x .ol .

continuous function. Then . (CSIR UGC NET DEC-2011)
(A)y(x)_—>ooa§ X —> oo : . (B)gxy——woas'x—)oo
(©) y(x) hias ﬁnitely mahy zeros i'n 10,) (D) y(_x) has inﬁhitely m&ny zeros in [0, ) .

Solutzon (A,B C) Let q(x) 1 ( q(x) is monotomcally zncreasmg and continuous ﬁmctzon)
Then the  given equation becames

d’ ay .
_ ( —1)y=0

—t

= y=cie' ot = y';-z-é-ie"—c.ié----
As . y(O)—l-_->1—cl+c2
- .-’__Also —(0) c1 \_-=1
BT Z>Y(x)—e
= y(x)—)ooasx—>°° and —Z—i——)ooasx—)w

- Also, V(%) has ﬁnitely.'MGny. zeroes in [0;%0)

’fﬁ e R e it
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' ks d )
Example 7. The solution to the initial value problem d_y +2— dy +5y=3¢" sint, y(0)=0 and @ 0)=3, is
A dr | dt
o (GATE-2014)
(4) y(ty=e¢'(sin ¢ +sin 21) - (B) y(t)=e(sint +7sin 2¢)
(C) y(t)=3e" sin ¢ - (D) y(t) =3¢ sin.t

Py dv :
Solution: (B) —2y + 211% +5y =3¢ sint, where y(0) = o,_dl 0)=3
Auxtlzary equatzon of(D +2D +5) y=3¢"sin tis(m’ +2m+5)=0 =>m=-I t2i

Dy = (C,c0s2t+C sm2t)

e s1nt—3e" : 1 sin ¢

D2+2D+5 (D D*+2(D- 1)+5

Particular integral is 3=

sint = 3‘e"- sint=e " sint

=3¢
D' +4 “1+4

D? :
‘—‘>y—e ‘(C, cos2t+Csm2t)+e szntgzveny(O) 0‘—‘>C—0
Therefore,y =¢" C,sin 2t + " sin t o
Given y'(0) =3=>(,= 1= yt) =€ (sin 2t + sin ¢

<>
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ASSIGNMENT - 3.1

NOTE: CHOOSE THE BEST OPTION

1. The differential equation % = ,' Nl yl, for 0<y<I0 and y(0)=0
(A) has unique solution : (B) has no solution

(C) has two independent solutions _ (D) has infinite solutions

2. For the Sturm — Lzouvzlle problem (1+x2 )y +2_xy + ﬂx y=0 with y (1) 0 and y ‘10) = 0 the ezgen
* values, A satisfy .
4 A20 (B A<0 ' (C) A #0 (D) A <0

3. ForIVP y’=_2)l’2, y(O)=0 which one is correct in a neighbourhood of 0?

(A) 1t has unique solution ~ (B) It-has no solution
.(C) Solution exists but not uniquely . . - = (D) None of the above

4. The ordinary differential equation x%— y = 2x* with initial conditions y(0)=0, has
(4) no solution | _ (B) a unique solution - :
(C) two distinct solutions _ (D) an infinite number of solutzons

5. The znztzal value problem x%-— ¥, y(O) 0,x290 has

: '(A) no solutzon S (B) a unzque solutzon
(C) exactly two solutions ' S (D) uncountably many solutions

6. The solutlon of 9y _ y%, y(0) =1 exists for all
(4) xe ( ) - (B) xe [O,a] where a>1 (C)x € (-00,00) (D) x € [1,a] where a>1

7 _For the Imtzal value problem (l VP) Y =f(x, y) wzth y(0) 0 which of the following statements is true7
- (4) f(x V)= satisfies Lipschitz’ s condition and so LV.P has unzque solutzon .
' (B)- f.3) =y does not satzsﬁ) Lipschitz’s condztzon and so LV.P. has no solutzon -
B ©) fx, y) Wl satzsf es szsclutz ’s.condition and’so LV.P. has umque solutton _
5 (D) S, y) = |y| does not satzsﬁz szschz_tz s condition still-1V.P. has unique solution.

"_,f;'(A)x 2nn 1,23 L (BA=2mn=0123 ..
".(C)K 4, n—123 , | D) =4n"n=0,1,2,3, ...

<
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9. Ify(x) is the solution of the differential equation :—i = 2(1 +y) [y satisfying y(0) = 0; y(W2) = I, then

the largest interval (to the right of origin) on which the solution exists is
(4) [0, 3n/4) B)[0,m) (C) [0, 2m) (D) [0, 2/3)

NOTE: MORE THAN ONE OPTION MAY BE CORRECT

10. For the initial value problem (I VP) = f (x, y) with y(0)=0, which of the followzng is/are true?

_ (A) If f(x,y) satisfies Lipschitz’s condztzon then IVP has unique solutzon

(B) IVP may not be unique althiough f{x,y) is continuous

(C) IVP does not satisfy szschitz s condition still IVP has unique solution

(D) IVP does not satisfy Lipschitz’s condtion and so IVP has no solution

- .. / - .

1L In a Sturm-Liouville Problem, [r(x)y'l +[g(x)+ Ap(x)ly = 0; ay(a) + ﬁy'(a) =0 and

w(b)+ &y’ (b) =0, which of the followings is/are true for xela,b]?
- (4) r'(x) is continuous and p(x) > 0’

(B) Atleast two from a, B,y,0 mustbe nonzero .

(C) Atleast one from a, B is non zero and atleast one from ¥,0 _is non zero

| (D) I p(x)y, (0, (x)dx= 0, where y,,,(x) and y,,(x) are two eigen functzons

12, Wh‘lc'h of the followings is/are true about Sturm-Liouville Problem- (SLP)?
(4) All-eigen values of SLP are real and non negative.
: .(B) Eigen functions carresponding to dyj’erent eigen values are orthogonal wzth respect to weight functzon.
(C) SLP has always an eigen function. .
(D) For each ezgen values of a SLP there exists only one lznearly zna’ependent eigen functton

13. Given, continuous functlon f(x y) = y “on rectangle Ix <L, y I< 1, which of the followzng are true?
(4) This functzon satisfies Llpschztz condition on a rectangle : '
(B) This function does not satzsfj/ Lipschitz condition on a rectangle _
© (af

. constant for yo—O

< constant for y= 0 '

N _(D) 'af

14. szen the initial value problem —__y2 y(l)——L then

- (4) there exzst atleast one solutzon R
" (B). there does not exist any. solutzon
(C) the. znztzal value problem has no unzque solutzon o

.(D) the glven problem possesses a unzque solutzon when I x— 1|<%_

'_ <17§ .




‘ DIFFERENTIAL EQUATIONS CHAPTER-S |

ASSIGNMENT - 3.2

NOTE: CHOOSE THE BEST OPTION

L IfSis either a recta_ngle-lx—xo <a,l y—)lo I<b(a,b>0) or strip |x4x0 |<a |y|<°°(a>0) and if f is

real valued continuous function defined on § and —— exist and also,

<k (x y)eSfor a
dy

ayf(x V).

 positive constant k, then -
" (A) fsatisfies Lipschitz condition on S with Lipschitz constant k.
(B) f does not satisfy Lipschitz condition on S wzth Lipschitz constant k.
(C) both (a) and (b) are true. -
. (D) none of the above.

2. T he largest value of ¢ such-that there exists a function h(x) for -c <x <c that is solution of% =1+y’
with h(0)=0, is given by .
4) = B) — ‘ C) = D) T
[ZX RS ©% ) T

3. Ina sufficiently small neighbourhood around x = 2 the differential equation v % y(2) =4 has -
dx x

(A) no solution - (B) a unique solution
(C) exactly two solutions - . _ - (D) infinitely many solutions

" 4. The Sturm - Liouville problem  y" + Noy'= 0, y'(0) = 0, y'(T) = 0 has its eigenvectors given by’
_(A)y=s5in [n+%}x . . (B) y = sin nx _

(C)y =cos [n +%]x _ : o (D) y =cos nx,; wheren=20, 1, 2, ...

5. The e_igenvalues of the Sturm Liouville system y" + Ay = 0, 0Sx <7, y(0) = 0, y'(n) = 0 are
2 ' | (2n-1) (2n-1)? n’n?
Mﬂ%u o (w—L——- ©F et

(D)

6. :_'Let n be a non negatlve mteger The ezgenvalues of the Sturm-Llouvzlle problem +)»y—' 0, wzth

'_'_boundaty conditlons_ y(0) = y(2m), a; (0) = &— (27'5), are . L
wn"~'- '@ff>‘ (©Om '-}'mmz

7. “For the Strum Liouville problems (1 +x )y" + ny + Ay =0 wzth y’(] ) 0 and y’(]O) =0, the ezgen-

- values A, satzsfv - ' e : e :

AL s e e e Vemes Sl B L L

ity 8
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WA20" B)L<0 (©)L#0 - @AL0

8. Consider the following statement for IVP %xy_ =x’+y,y(0)=1,D: |x| < l,ly - 1| <1
i. * It has a solution which exists for all X
i T.hé local interval for which the Solution exists uniquely is | )4 S-;-

ii. It has no solution in the interval H <3 then select the correct code
(A4) only (ii) is true ' S (B) (ii) and (iii) are true
(C) (i) and (iz)_ are true - (D) all are true

- 9. The Lipschitz constant of f(x,y) =xXe™ inD:0<x <p | <00, (0> 0)

(4) 2p3 y B)2p* - (C)max {2p 2p ¥ (D) none of these
10. The dyferentzal equation y' = U= ), y(0) =1 has
T X .- .
(A) no solutzon : ’ o (B) unique solution
(C) infinitely many solutzons _ " (D) two solutions

NOTE: MORE THAN ONE OPTIONMAYBE CORRECT

11 For Sturm-Lzouvzlle Problem y +/1y () and y(O) () y(#), 0sxsx.

(4) the eigen values of the problem are- /l, n n= 1,2,..
(B) the eigen values of the problem are /1 =nn=12,.

- (C) the eigen functions are y(x) =sin nx,n=12,.

- (D) the eigen functzons are y(x) = cos nx, n= —1'—2,...

12, Zx_y =1+ % y(0) =0 in the domain R = {(_g_c,y) ; |-x| <35, |yl < 3} the.equation has - -
(A) no solution _ R " (B) unigue solution for |x|<0.3
- (C)-infinite number-of solutions - . " (D) nothing about solution can be concluded
13, Which of the followmg satzsjjz szschztz condztzon? ' |

@ fen =4+ onD <], |xl<1 B, x)—tcosx+xsmtonD |t|<1 |x|<°°"-
e '.*(C)Both (A) and(B) R (D)Nezther(A)nor(B) |

14, thch of the followmg s an ezgen value of dszerentzal equatzonx y l»(xy y) =0, y(]) =(),
vy o=07 S g
o _(A)_nrp,ne.N _(3)1,._ o ; (c;)o- _ . (D)2

s>
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CHAPTER - 4

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS AND

PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

411

4.1.2

- 4.1.3.

)

)

PARTIAL DIFFERENTIAL EQUATION

If a dependent variable is a function of two or more zndependent variables, then an equation involving

partial differential coefficients is called a partial differential equation. The order of a partial

differential equation is the same.as that of the highest order differential coefficient in it.
dz 0z

Ifz = f(x, y), where x-and y are independent variables, then the partial differential coefficients EEEw

are denoted-by p and g respectively. ]
Fonnation Of Partial Differential Equations
The partial differential equations can be formed either by elimination of arbitrary constants from a

rel_ation between x, y, z or by the elimination of arbitrary functions of these variables.

Solutions Of Partial Differential Equatwns

The solutton fxy.z,a,b) = 0 of a first order partial differential equation, which contains two arbitrary ~

‘constants is called a complete solution or complete integral.
If in this solution, we put b=¢(a) and find the envelope of the family of surfaces f(x,y,z.a,0(a)) =0, we -
get a solution involving an arbitrary function §. This is called the general solution or general .
mtegral A solution obtained from the complete.integral by giving particular values to the arbztrary-
' constant is called a parttcular solutton or particular integral. :

Types Of Parttal thferentml Equattons

Lmear PD E. : A first order D. d e is sazd to be a linear equatzon tf itis ltnear in p q and z, ie, f itis

 of the form P(syp + 0(<)g = R(:3) 2+ S(59).

eg yp- xq xyz+x

Semi- linear P.D. E:4 Sirst order p.d.e. is said to be a semi-linear equation if it is lznear in p ana’ q

. and-the coefficients of p and q are the functions of x and y only, ie., itisof the form o
- Ployp + Oey)q = R(x, ,Z)

-'egep —yxg =xZ.
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(iii)  Quasi linear P.D.E. : A fi rst order p.d.e. is said to be a quasi linear equation if it is linear in p and g,
ie,ifitis of the form P(x,y,z)p + O(xy,2)q = R(x, , 2).
eg (' +)p-pg=2x+y’.

(ivy  Non-linear P.D.E. : Partzal differential equations of the form f(x,y,z,p,q) = 0 which do not come under
: the above three types are said to be non ~ linear equations.
egpg=:z does not belong to any of the first three types So, it is a non — linear first order p. d e.

Note: We observed that by eliminating arbitrary functions we alwa'ys produce' quasi- linear partial
differential equations, only. However, we get both quasi-linear as well as-non linear partial differential
equattons when we eliminate arbitrary constants.” " -

4.1.4. Classification of integrals

Let us consider afrst order p. de f(x, zp,q) =0 _ o ...(I). '
| Essentially a solution of (1) in a region D C R is given by zasa contznuously dszerentzable function of

xandy and (xy) € D : : .
Sfurther if one computes pandq Srom it and substitutes them into (1 ) then the equation reduces to an
identity in x and y. There are different types of solutions (integral surfaces) for the first order p.d.e. (1).

Note: A solution z = z(x,y) can be interpreted asa surface of the partial differential equation.

(a) Complete integral : A two — parameter famtly of solutions z(x,y,a,b), . ()
is called a ‘complete integral’ of (1) if in the regton conszdered the rank of the matrix

F F, F _
5 s two.
Fb Fxb Fyb

(b) . General integral : In (2), if we take b = ¢ (a), we get a one parameter family of solutions of (1) which. _
is a sub-family of the two parameter famzly (2) asz = Fx,y.a, #(@). ..(3)
‘The envelope of (3) if it exists, is obtained by eltmznattng abetween (3) and F +F, ¢ (a)=0 . (4)
In fact, if it can be solv_ed fora, then a =a(xy).
- Substituting value of a in (3), we obtain an integral surface as Z=F {x,y,a(x: y)' glacy)l} - (5
~If the function’ ¢ which defines this sib- famzly is arbztrary, then such a solutzon is called-a general
- zntegral (general solution of (1)). When a partzcular functton @.is used, we obtazn a parttcular solutzon_ '
of the P de. Dzﬁerent choices of ¢ may gtve dzjferent parttcular solutions of the p d e. .

Note: A general integral hence znvolve an arbztrary functton and the followzng lemma shows thatit is zndeed o
" a solutzon of the gtven p-d. e : '

414, (l) Lemma. Letz = F(x,y,a) be a one parameter famzly of soluttons of (1 ) Then the envelope of this
.~ one-parameter famzly, ifit exzsts is a solution of (1) : : e

S
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Proof: Note that the envelope is obtained by eliminating a between z = F(x,y,a), _..(6)
* and F (xy,a) =0 (7

Hence, the envelope will be given by z = G, y) = F[x,y,a(x,y)], where a (x, y) is obtained from (7) by
solving for a in terms of x and y; _
The envelope will satisfy the p.d.e. (1) for,G = F_ + Faa)r =F,and G,=F, + Fa, =F, Since F,= 0,
Thus the envelope will have the same partial derivatives as those of a member of the family. The partial

 differential equation at every point being only a relation to be satisf ed between these derivatives, the -

. envelope satisfies the p.d.e.(1).

(c) Singular integral : In addition to be ‘general integral’, we can sometimies obtain yet-another solution
by finding the envelope of the two parameter family (2). This is obtained by eliminating a and b from
the equations Z=F(x, y, a, b); F, =0, F,=0, ‘ . (8.
And is called the singular integral of (1). '

4.14. (ii) Lemma. The singular integral is also a solution of the partial differential équation.. -
Proof: Let 7 =F(x, ¥,a,b) be a complete integral.

We will show that the envelope of this two parameter family, if it exists, is also d solutzon
Note that the envelope is obtained by eliminating a and b between

Z=F(xyab) _ ..(9)
F (xy,ab)=0 ' .(10)
F,(xyab) =0 (1)

_ 'Hence the envelope will be given by Z = G(x,y) = F(x,y,a(x.y), b(x,y))
where a(x,y) and b(x,y) are obtained from (10) and (11) by solving for a and b in terms of x and ».
T T he envelope will satzsﬁz the given partial di ﬁ‘erentzal equatzons For,
Sp G =F+Fa+Fp =F.
- G,= R+Fa+Fb =F,
1 .sznceF 0,F,=0. : .
That is, the envelope will have the same partial derivatives as a member of the Jamily. This envelope if
it exists, is also a-solution. .
The szngular integral can, however, be found by p.d.e. itself wzthout knowing any complete Integral

414, (iii) L'emma The singular solution-is obtained by eliminating p and q from the equations
L fey 2P0 =0 e SR
fuymmq)O f‘f_ E - 1)
f(xy,z,pq) 0 : el e .

Proof Since z = F(x,y,a,b) is a complete integral of (1), the equation AR o
fx, y, F(xy,ab), F(xyab), F(xyab)=0 . - ' «(13)
which holds identically for all a and b can be diﬁ‘erentzated with respect o a and b and hence leads to

f,F, +pr +quya—0
fF+fF +fq

U@
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On the singular integral, F, = 0 and F, = 0. Therefore, the equations in (I 4) simplify to

f,Fa+f,F,=0
prxb+quyb =O
On this surface, F F,,

-F,F.%2 0 (sznceF =0, F,=0) and hence f,=0, f =0. Otherwise the matrix.

F, F, F,
F, F, F, :
wzll not have rank two contradzcttng the fact that z—F (x,y,a,b) is a complete integral. Hence the lemma. =~

(/] Special integral : Usually (but not always), the three classes (a), (b) and (c) given above include all the ‘
integrals of the first order p.d.e ...(1). However, there are some solutions of certain first order partial
differential equations which do not fall under any of the three classes (a), (b) or (c). Such solutzons are

 called ‘Special Integrals :

_ B | )
Example 1. F(x + y, x- Jz)=0 is the general integral of the equation p-q=2 Nz . Butz =0also satisfies this
equation and it cannot be obtained from the general integral. It is a special integral of the equatzon A

: complete zntegral of thep.d.e. is \/— (ax + y) +
(a-1
Example 2. Consider F (x, v.2.0,9)=z-px—qy-p' —q’ =0 ..(15)
The two parameter family of planes z =F(x, y,a b) = ax+by+d’ b, -.(16)
is a complete zntegral of ( 15), sznce the matrix [x t2a 1 0} , is of rank two and these planes satisfy
- y+2b 0 1 .

thepde: (15).

" Let us now takeb = \/(1=a®) . Thenz=F(xy,a, N a*) ) =sax+yJ(1-a?) y+i, -
T2 |
o Ji-a%)
On eliminating a, we get (z - | Y =6+ _
- This is a particular solution of the given p.d.e.

Ifwe take b =a, then z—ax+ay+2a2 3—F =0 —xty= -4a.
a [

On elzmznatzng a, the envelope is 8z = - (x + y)

This is another partzcular solution of the givenpd.e..

- Now from equation (16), the condztzons F = 0 and F = 0 become F =X + 2a = 0 (1 7)

h F =y+.2b =0, respectzvely T e (18)
On elzmznatzng a and b between equatzons (1 6) ( 1 7) and (1 8) we obtatn the szngular zntegral as

: whzch isa paraboloid ofrevolution. ' I A

' No.te: Using Lemma, the singular zntegral can also be obtazned dzrectly by elzmlnatzng P and q between ( 15)

'andF—-x 2p—0 - - : S 77(20)
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§ 4.2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

4.2.1 Lagrange 's Linear Equation
The partial differential equation of the form Pp+ Qq = R, where P, Q and R are functions of x, y, z is
the standard form of a linear partial differential equatzon of the first order and is called Lagrange’s
LGear Equation. Worlang Procedure to solve Pp + Qg =

(z) _ - - Form the Auxiliary equatzons (::( = %51 = ?RZ

(ii) Find two zndependent solutions of the aulezary equatlons Let u=c, and v = c, be two solutions of these
equations.

(iii) - Thenflu, v) = 0o0ru = fv) is the solution of the given equation.

4.2.2. Integral surfaces passing through a given curve: In the last section, we obtained general integral Pp . -
+'Qq = R. We shall now present method of using such a general solution for gettzng in the integral -
surface which passes through a given curve.

Method : Let Pp+Qq= - - D)
be the given equatzon let its auxiliary equation gives the followzng two independent solutions.

Vu(x »z)=c, and v(x, y,2)= c, (2] _.
Suppose we wish to obtain the integral surface whzch passes through the curve whose equation in_
parametric form is given byx x(t),y =y(t) and z =z() SR -(3)

A differential equation involving first order partlal derivatives p and q only is called a parttal
differential equation of the first order. :

If p and q both occur in the first degree only and are not multzplzed together then it is called a lznear '

partial dzﬁ'erentzal equation of the first order.

" where tis a parameter. Then (2) may be expressed as u[x(t),y(t) zM)]=c,,

0=, )
We eliminate single parameteér t from the equatzon of (4) and get a relation involving ¢ ;and c,. Finally,
we replace c, and c, with the help of (2) and obtain the required integral surface.

Example 1. Find the integral surface of the linear partial differential equation.

(y +z)p y(x + z)q (x -y )z which contains the strazght lzne x+y*0 z=1

Solution: Given x(y +z)p y(x +z)q (x -y ) ' (1)

Lagrange 'S awalzary equatzons of ( 1) are

- ' -0
xly +zl —ylx +zi ; S e o
'7 ‘Solving, weget xyz—cl,x +y 2z c2 o Lo L3

) nyz+x +y 22+2 0

Taking (t) as.parameter, the given equatzon of the strazght llne x + y =0,z =1 can be put tn-'.'-"-.. =

parametrchormx =t y—-t z=] . _ . ..7(4) _
Using (3), (4) may be re-written as —t* = cl,2t 2 =c, These glves T -
Aa)-2mey o 266y 42=0. PR
Putting valuesof ¢, and c, from (3) in (5) the requzred mtegral Su;face is
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4.2.3. Surfaces orthogonal to a given system of surfaces

Let f(x,y,2)=C - (D)
represents a system of surfaces, where C is parameter. Suppose we wish to obtain a system of surfaces
which cut each of (1) at right angles Then the direction ratios of the normal at the point x ¥ 2z
to (1) which passes through that point are oF F o '
. ax dy 9z
Let the surface 7 = ¢( y) S (2
. cuts each surface of (1) at right angles. Then the normal at (x, y, z) to (2) has direction ratios. 55,55,
| , _ - ) x dy
-lie. p, g, -1. Since normals at (x, y, z) to (1) and (2) are at right angles, we have '
f o =0or p f"'qaf o L0
ax dy 0dz 9x 'dy 9z ' '

- which is of the form Pp + Qq = R.
' Conversely, we can easily verify that any solution of (3 ) is orthogonal to every surface of (1 )

Example 2. Find the surface whzch intersects the surfaces of the system z(x +y) =c(3z+1) orthogonally and -
which: passes through the circle x*+y* =1,z=1 '

Z(x+y) _

o 3z+1 .

fooy 2 =26 o | | | o ()

3z+1 -
Jof oz o _ 2 éfi:(x+y) 13z+1)-23 _ x+y
Tedxt 3z+1°9y 374170z - - T (3z+1)  (Bz+1)

 Solution: The given system of surfaces is given by flx, y, z) =

The required orthogon_al surfaces is solution'of af +q-= o . _9f

| _ oy %

4 z, X+y e | .
.. Pt = 3z+1)p+2z3z+1)g=x+ 2
o 3z+1p.._ 3g+1_q .(3Z+1)2_.0r Z( z )P ‘Z(__.Z"' )q ‘x .y . ) |

dy dz .

L‘agrange s auxiliary equations for (2) are

2(3z +1) (3z+1) x+y "_'(3)

taking the f rst two fractions of (3) ‘we get dx -dy=0 :
Integrating both sides we getx=y=C, o ' o (d)
. Choosing x, y, -z (3z+1) as multlpllers, each fractlon of (3)
- xa’x+ ya’y z(3z + l)dz B
L _ 0 -
"--:>xdx+ydy—3zdz zdz | _ o
 Integrating, (1/2) x* + (112)y* 3(z /3) (12 L, D P+Y -2 -G, ()
- Hence, any surface which is orthogonal to (1) has equation of t the form :
4y =22 S = g(x-y), bezng an arbztrary Sfunction. :

_In order. fo. get the requzrea’ sutface passzng through the circle x* + y —1 Z =1 we_must choose

o ¢(x y)='—2 thus the requtred parttcular sutface is x° +y 22 —Z =-2
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§ 4.3. NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER
These equations will contain p and q with powers higher than unity and the products of p and q. A
solution of such an equation containing as many arbitrary constants as there are independent variables,
is called the complete integral. A partzcular integral is obtazned by giving particular values to the
constants. :

(a) Equations of the type that mvolves P and q only :

: These equations are of the form f{p,q)=0 ().

- Evidently z=ax+by+ c, where a and b are connected by the relation f{a, b) = 0, is a solution of the given

equation. Differentiating z = ax + by +¢, w.rtxandy partially, we get p = g_)z( =qand

dz _, | -

. e

- substituting these in equatzons {1 ) we get, f(a b) = 0. From the relation fl(a, b) = 0 we can find b in

terms of a, say, -F(a) and then puttzng this value of b, the complete solution is g1ven by
—ax+yF(a) +C - :

1=

Example 1. Solve ¢=3p> D )
Solution: The equation is of the form f(p,q)=0. '

.. The complete integral is given by z=ax + by + ¢, where b=3d" (By substltutlng in equatzon ()
. The complete zntegral isz=ax +3d’y +c

(b) - Equations of the type z=px+qy +f{p, q)
This type of equation may be. considered analogous to Clairant’s form y= px + flp), where p = dy/dx in
ordinary differential equatzons
The complete integral is z = ax + by + f(a b) obtazned by puttingp = a and q bin the given equatzon

(¢)  Partial differential eqna_tzo_ns not contatmngx and y
These equations will be of the form fz, p, q) = 0. .
" Putu=x+cy, where cisan arbztrary constant and assume that z is a function of u 2= F(x + cy) =

az 9z Ju  dz J
Fy). Thenp==-=<=. 5 = EG" { X 1]
dy oudy  du ay : o

_ The given eanation then becOmes, f [z .—q—z—_,c d—Z =0
'whzch is an ordmary di ﬁ‘erentzal equatzon of the f rst order

- Ruleto solve the pamal dtfferentzal equatlon of the ype f(z, P q) 0.

Assume u =x+cy; replace P and q by g— and ¢ g_z respectzvely in the gzven equatzon and then Solve the_ .
u u - N '

resultzng ordznary dlﬂerentzal equatzon _

)
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Example 2. Find the complete integral of 16 p 2 +9¢% 2 +4(z* -1) =0
Solution: Given equation is of the form f(p,q,2)=0
Let u=x + cy, c being an arbitrary constant. (1)
Now, replacing p and q by dz/du and c(dz/du) respectively in the given equatzon, we have

162 (dz/ du)® +9c 2> (dz/ du)® +4(z* —1)=Oor (16 +9c?)z? {gz_J =4(1-z?%)

d_z_. 2(1_22)”2..'
du  z(16 +9cH)"?
(1/2)x(16+9c W= dz=  du

12
12 (1 Z )

or

:Integratmg, ~(16+9¢?) =u+b= x+cy+b y (1))

or (16+9c )(1 = 2(x+cy +b) zs the complete integral, a, b being arbztrary constants

(@) Equatzon of the type f,(x, p) = f,(3, @) _
' In this type of equation z is absent and the terms contamzng p and x can be separated from those
containing q and y. :
Putfi(x. p) =£,0» 9) = ¢ (say). |
Then solving for p and g, wegetp =F I(x) and g =F(y).
9z

Since dz = g—dx+ a—dy pdx+qdy

y dz = (x)dx + Fz(y)dy or lntegratmgz = IF1 (x) dx + .[FZ (y) dy + c,

‘which is the complete mtegral contaznzng two constants ¢ and ¢ "

o § 44. COMPATIBLE SYSTEMS OF FIRST ORDER EQUATIONS
- Two first orjder partial differential equations are said to be compatible, if they have a common solution.

- The ¢compatibility condition for two partial differential equations f(x,y,z,p,q)=0 " ...(l) and

g 0 of.8), 9f.8) df.8), of.8) :
gxy,zpg)=0 ..(2) s =

Lo 6w T oen e )

E_x_a_mgle I Sh_ow tt_zat' par_t_ial dzjferentzal eqyatio_ns _p2+_q2=1 a_nd (p2+q2)xépz are compatible

Solutmn Let f=p’ +q -1= 0 g—p x+qx-pz=0 -

9(f,8) _ 2
- ‘ =—2 +.
G, 1?) p +q ._Z+_2px _.p(p q) R
| -'a(_'f--','g')= 0. B S e ALy &) [0 29|,
. d(zp)- Cak2px a(y q) 0- 2
CAfe) ‘ qu S |
- Uzg) p 24 ‘.p_q -

o/, g)"'pa(f,g)+8(f,g)+qa(f,g):
O(x,p) dzp) 9y,q) g

B

- Accordmg to compatzbzlzty condztzon,
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- =2p* -2pq® +2p* +2pq* =0
0=0, hence PDEs arecompatible

§ 4.5. CAUCHY’S PROBLEM FOR LINEAR PDE
- OR
INTEGRAL SURFACE PASSING THROUGH A GIVEN CURVE: We obtazned general integral of
Pp+Qq R. We shall now present two methods of using such a general solution for getting the
integral surJ’aee which passes through a given curve. :

4.5.1. MethodI Let Pp+Qq o : S T (1)
- ‘be the given equation. Let its auxiliary equatzons give the followzng two independent solutions
ux,y,2)=c, and v(x,y,7) =¢,. : (2) '

Suppose we wish to obtain the integral surface which passes through the curve whose equation in L

parametric form is given by x=x(1),y = y(t), z=z(t), 0
" where t is a parameter. Then (2) may be expressed as . -

ulx(@), Y0, 2(O]=¢, and Vx(2), y(),2(D]=c,. ' " (%)

We eltmznate single parameter -t from the equation of (4) and get a relatzon involving ¢, and c,
anally, we replace ¢, and cz with help of (2) and obtam the required integral surface.

Example 1. Find the integral surface of the linear partzal dzﬁ"erentzal equation
x(y? +2)p— y(x +2)g = (x -y )z whzch contains the strazght line x + y= 0 z= I

Solution: Given x(y'z'+z)p—y(x_2 +-z)q=_(x-2.—.y2)z. - e cafl)
) Lagrange"s auxiliary equations _of (Dare & __ & . d 2
- x(y*+2) o)+ & ~yz . :
Solving (2) we get xyz=c, and X +y*-2z=c, .0)
taking t as parameter, the given equation of the str;azght line x+y=0, z= -] can be put in parameter _
Jormx=t ,y=-1t,6z=1. : : : o .4
Using (4), (3) may be re-written as —t* = o) and 21* -2= C,. o -;..(5) '
 Eliminating t from the equations of (5), we have® 2(~c)=2=c, or 2¢,+¢, +2=0 '_ .6

. Puttmg values of c,and ¢, from (3 ) in ( 6) the requzred zntegral surface is 2xy2§+x2 +y —22+2 0.

' Example2 Find the equatzon of the lntegral suiﬁzce of the dzﬁ”erentzal equatzon

2y(z 3) p+(2x z)q y(2x 3) whzch passes. through the czrcle 2=0, x° +y? —2x

- Solution: Given equatzon is. 2y(z 3)p+(2x z)q y(2x 3) L : (1) .
szenczrclezsx +y° —2xz 0 T (2
o dy dy o de |
Lagrange saulezary equatzons for (1) are - 4 z (3

- 29(z=-3)- -2 -z y(Zx 3)
Takmg the f rst and thzrd fractzons of (3) (2x— 3)dx 2(z 3)dz=0.
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4.5.2.

Integrating, x* —3x—7"+6z= cl', ¢, being an arbitrary constant.
Choosing 1/2, y,-1 as multipliers, each fraction of (3)
. (1/2)dx + ydy - dz (1/2)dx+ydy dz
y(z=3)+ y(2x -y(2x - 3) ' 0
hence, (M )dxtydy-dz=0 = dx+2ydy-2dz=0,

Integrating, x+ yi-2z= C,,C, being an arbitrary constant.

k)

Now, the parametric equations of given circle (2) are x = f y=2t-)" z=0.
Substituting these values in (4) and (5), we have t* =3t=c, and 3t- t*=c,.

Eliminating t from the above equations (7), we have ¢, +c, =0

(4

(5)
..(6)
A7)
-(8)

Substztutmg the values of c, c, from (4) and (5) in (&), the requzred integral surface is

Xt -y =z +2x+4z=0.

Method II: Let Pp+Qq R. . (1)
be the given. equation. Let its Lagrange s aulezary equations give the following two independent -
zntegrals u(x,y,2)=c, and v(x,y,2)=c,. (2

Suppose we wish to obtazn the integral surface passmg through the curve which is determined by the

followmg two equatzons P(x,y,2)=0 and w(x,y, 2)=0

we eliminate x,,z from four equations of (2) and (3) and obtain a relation between c, and c, anally
replace ¢, by u(x, y, z) and c, by v(x, y,2) in that relation and obtain the required integral surface.

h Example 3. Find the integral surface of the.partial differential equatz'on

- y)p+(y x=2)q =2 through the circle 7= =1 x* +y =1.

: Solutton - Given (x=y)p+(y —x— 9=z

'- _Integratzng 10g(2y-—c1) 210gz logczor (2y cl)/z =6 or

Lagrange’s auxi_liary equations for (1) are dx = dy = iz_
- ' | Xy y-x-z oz
dx +dy+ d.
: Choosmg] 1, 1 as multzplzers each fractzon on(2) = (—Oy—z)
dx+dy+dz 0 | |

- zntegratmg, x+ y +Z=c

taking'thé laSt-two fraétioﬁs of (2) and using (3),’ we- get Yy _d,

: y- (cl—y) z

Qy-x—y-2)/7" =c, or-  [from 3)]
O-x-9l'=c.

Thegwencurvezsz 1 and. x* +y -—1

_Puttzngz =1 in (3) and (4), we get x ty= c, -1 andy x=c,+]

. But 2x%+y?) =(x+y)? +(y-x)7

. Using (3) and (6),(7) becomes

()
.?.(2) '

(3)

2y 2z

2'y. - )

z.

(@)
(9
(6
()

5
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2=(c, -1 +(c, +)? orcX+c2 =2c,+2¢c, =0 (8
Putting the values of ¢, and c, from(3) and (4) in (8), required integral surface is
(x+y+2)’+(y-x-2) 2" - 2x+y+2)+2(y-x-2)/z* =0

Zx+y+2) +(y-x-2)° —224(x+y+z)+2zz(y—x—z)=0

Example 4. Let u(x,y) be the solution of Cauchy s pfoblem xu, +u, =1
u(x,0)= 210gx,x >1 then u(e, 1) ?

(@)-1 ®) 0 @1 de

~ Solution: g':x_=dy_ du . o -
x 1 1

logx =y + logc,

v, =xe’ =c o y

Also, y—u:e2

v, =y—u¥c2

v, =0(v))

y—u=p(xe”)

use u(x,0)=2log x
0-2logx=¢(x) =>—-2logx= ¢(x)
Solution is y—u=-2 log(xe )
Putx = e, y=I o _
 1-u(e]) = 2loglee™) = u(e) =1~2log(l) = u(e,l) =1 = option (c) is correct

§ 4.6. CHARPIT'S METHOD =~ o .
+ .. This method is used for finding the compleie integral of a non-linear paitial differential equation.
Consider the equatzon f(x vzpq =0 : o : (i)
 Sincez depends onx and ¥, we have dz = —g—dx + %’Z—dy pdx + qdy N (11,

_If we can find another relatzon znvolvzng X, y,z,- D, q such as o(x, y,_ zpq) =0

- then we can solve equations (i) and (iii)-for p and q and substztute in equatzon (u) This will gzve the 7
~ . solution provzded (ii) is zntegrable ) : :

B O is determzned by dlﬁ"erentzatzng equatzon (z) and equatzon (m) wrt X and y- and solvzng we get-' :

”mmwﬂit;m M[afﬂw[aw B AL
. lox " Taz)aop oy az 3q P 13q) % pjox . aq dy.
o aYae -, (afYae . o ar afae [Q : ]@ AL
o_r_[ ap]ax [ aq]ay ( p.ap qaq]az ‘ax+paz dp ay qaz oq
' " This is Lagrange s linear equation with X, ¥, z'p,qas lndependent variables and 4) as the dependent |
L vanable Its solutzon wzll depend on the solution of the subszdzary equatzons :
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dc _ dy dz _ dp ___ dq : _
F o _ F_ o F. F F. . | ' 1
“g T3 —75—45 gx—‘FPgZ— $+45Z* : _
An.integral of these equations involving p or q or both, can be taken as the requzred relation (m) which
along with (i) will give the values of p and q to make (ii) mtegrable

Example 1. Finda complete integral of px + qy = pq : |
Solution: Here given equationis f(x,y,z,p,q)= px+qy - pq= 0 _ _ ()

Charpit’s auxiliary equations are

| dp _ dg _ dz A &
{oF 10x)+ plor 13z) (af/ayi.+giaf/azi - p(of 19p)- g(af/aq) —f Idp - df 13q
or_ ¥ __H . & @ _ dq -(2) |

(=9 ~0-p) -px-9-q-p) p+p0 g+q0

-Taking the last two fractions of (2), (1/p) dp = (1/g) dq_

Integrating, log p=log q+log a or p=aq _ | -(3)
- Substituting this value of p in (1), we have agx + qy - a!_q2 =0 . '
oraq—ax+y, asq #0 ' : : ' (4

. From (3)and (4), q = (ax+ y)/a andp =ax +y
Puttzng these values of p and q in dz = pdx+ qdy, we get dz = (ax + y)dx + [(ax + y /a]a’y
adz'= (ax+ y)(adx + dy)or adz = (ax + y)d(ax + y)= udu, whereu=ax +y
Integrating, az= (1/2)u* +b=(1/2)ax+ y)’ +b,
which is a complete zntegral a and b being arbitrary constants.

46.1.  Standard forms of Charpit’s Method

Type 1: Equations containing p,q in this case, diffefehtial equation is given by f(p,q)=0 - 2(1)
' _ _ , . 3
Here f,=0,f,=0, f, =0 AE. is given by by & — = dp dq '
. o : fo fo P, +(1f —(Pf+f) —qf,+f))

~ which reduce to & b d B dq:}dp 0:>p ¢,
> fo fo pf,*+ef, 0 0
Putting this value of p in (1), we.get.f (c,.q) = 0 which gives q = 0 (c,)
. Now, equation dz = pdx +qdy gives = c,dx + Q (c)dy- .
- On integrating both sides, we getz = ¢, x + Q(c,)y +cz -
" which'is the solutzon of dszerentzal equatzon AR

' Example 2 Find the Complete mtegral of D +q = n _ , ‘ '
“ Solution: fo.9) =p'+qn*=0" - C o (1)

Aulelzary equations are: o o o

E fil’_ dz .. dp dq :dx_-gz_.__dz__z':@_:@:dp:()‘

f, g, Hrd, ~Ghf) (qu+.f,__)_ 2p X 2p +24 0 0
On mtegratmg, weget p=a. : : S T e (2)
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 Using (2 in(l), weget d+q*=n*=>q*=n’-a* = g=+n*-a’
. The equation pdx+ qdy =dz reduces to adx++n* —a* dy  dz

= dz=adx+n*~a® dy

Integrating both sides, we get z = ax+ {\/nz -a® ) y+C |
which is the required solution of the given differential equation.

Type IL Equations Involving p, qandz
In this case, differential equations are of the form f ( p.q,2)=0 (D)

. Here f,=0and f,=0
Charpzt s Auxilliary equations are

d_x dy__d . dp  _ dg -
f, T f, o, tdf, —(f.Af) —(f,+ )
dx__dy_ 'dz  _ dp _ dg ' : )
A A A A A -2

Takzng last two fractzons of (2) gtves dp g(i '

On mtegratzng, we get log. p =log g +log a

= P_ a ' . ..(3)
q
Using (2) in (1), we can obtain p, q in terms of z and then using equation, pdx +qdy=dz -

We get the requzred solutzon of the given equatzon :

Example 3 Fi md the complete Integral of pq=p+ q _
. Solution: Here f(p, g,z ) wg-p—-q¢ .- _ _ (D)
AE is —2- dx dy dz_ = dp = dgq

& _dy & - __dp _ dq

= = = . _ =
@=L pt=1. pez-p+pg-q =(p.pq) —(q.pq)

4 | p _ de
o, B A b 4
@m)qpq.—pq.—m-,p q. - o
On zntegratzng we get logp logq+loga = p aq S (2
g+l C

-Uszng(2) (I)becomes zaq —aq -q = O = aqz -a- 1 O:.:>q——
az

S |
np=S :

Z . .
SR 1+1 a+l '
- Equation p dx+ qdy dz reduces to. —a’x+—dy dz .
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' +1 '
= (a+1)dx +(a—a—de =z dx

. N 2 ’
On integrating, we get (4 +1)x + (“ +1] y = _22_+ C,
2 .

Type I1I. Separable Equations

A partial differential equation is said to be separable if it can be written in the form f (x, p) = g(y, q)
Auxillary equation becomes : : : '

& _dy_ & dp dg, _ dx_dp _dx__f,

f,, s o+, -(P0+f) —-(q0+f) - f, [ a f,
whzch may be solved to give solution of p in terms of X, we use this solution to get values of p and qin

terms of x and 'y and then using equation : pdx +q dy dz , we get the required solution of the given
equation. R '

Example 4. Find the complete zntegral of D y(1+x ) qx 2

1+x q
Solutton Given equatzon can be written as p* ;
x*
1 ' '
:3p"’£1+'—2—J=g which is the form f(, ) ( )
x y
Auxilliary equation is éz_d_y-zL = dp = dq L _ .
A A A Y A P I S ) SR
 :>_—%= djf = .dp..z = fx
EGE)
C\x X
dp__ _ p __dx dp | ( ]
:}2[,-2_~ 2_p(1+x2)' p +x_2' p x{1+xi J- '[x 1+x
x® x’

On integrating, we get 10g p=logx- é—log (1+x%) +loge

2

x . .
2Jj—log c?

- =2logp _=210gx—log(1'+_x2-)+210g'é = log p’= Iog'(l

e i [ A e
* = log p*=log| D E—— = p=—=
S gp .g 1+x* ) - P 1+xt p-.'_\/1+'x2
2,2 o,
= (1) becomes - (1+x ) gx® =q=c’y
1+x

Equatzon pdx+ qdy dz ‘reduces to

dx+cydy dz -
\/1+x -
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2 2.2
On integrating, we get %C(I—H{ )[ +02y =z+c,:>z+cl=c(1+x2)”2+c Yy

2 .

Type-1V: Clairaut equation:
‘A first order partial differential equatzon is said to be of Clairaut form if it can be written in the form
z=px+qy+fipn.g) E - (1)
LetF(x, y,2,p,q) = px+qy+ f(p.q)~z2 ’

Sy i R dp dg & ke &y
<. Charpit I ¢ _
arplt ;auxt lary equation are _a_li'+ aF 8F+ a_F BF aF_ aF aF
_ & Y& d % P %y ¥ aq

or®_dq_ _ dr - dx _ dy

0 0 -px—qy=-pldf/dp)-q{dr /3g) —x—(af/ap) ~y—(0f /9q)
then, first and second fractions
—_—>dp=0 anddp=0.;>p=a.andq=b_ .
Substituting these valu,és in (1), the complete integral is z = ax + by + f{a, b)

Example 5. Solve z = pxtqy+pg
Solution: Since, the given p.d.e. is z=px+qy+pg, which is the in Clairaut’s form. -
The complete integral is z = ax+ by + ab (1)

Smgular integral: Differentiating (1) partially w.r.t a and b.,0=x+b and 0—y+a ..'.(2)
- Eliminating a and b between (1) and (2), wé get 7 =—ky - xy+ Xy i.e. z = - xy, which is the required
smgular solution, which satzsf les the gtven equatzon '

General integral: Take b = ¢(a), where ¢ denotes an 'arbitrary Junction. Then (1) becomes .
z=ax+@la)y + apla) ' o ' o (3)
Differentiating (3) partially w.r.t. a we have 0 = x + ¢'(a)y + ¢(a)+ a¢'(a) (4.
 the.general integral is obtained by eliminating a between (3) and (4). '

: .Exam-ple 6. Find singular solution of .z = px+qy—2(pq)

* Solution: The complete: mtegml isz= ax+by 24/(ab) _ (D)
- For Smgular Integral Differentiating (1) parttally w.r.ta and b we have .
- 2(ab) o We) o Co o o

AndO - J__a ey (a) S ' ) ) (3) -

- Eliminating a,b'the singular soh_ttton is xy=1

| .Example 7. and compieteﬂnd smgular mtegrals of sz px quy + pq 0
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Solution: Here given equation is f(x,y,z, p,q) =2x7— px* —2qxy+ pq =0, (D)

Charpit’s auxiliary equations are
dp - dg dz _dx _ dy
ad of 0 of 0 of o 9@
ox ~dz dy "oz dp " dq ap aq
dp _dg__dx dy &
2:-2qy 0 x'-q 2m-p pxi+2x99-2pq
The second fractzon gives dq=0 so that q—a
Putting g=a in (1), we get p = 2x(z-ay)/(x’-a)
Putting values ofp and q.in dz = p dx+q dy, we get

dz—ady.  2xdx
Z_JC(f—‘W)dx+ady o2 y'-——__ —.
x‘~a z-ay x'-a

, by (1)

or

dz =

Integrating, logz—ay)=log(x* —a)+logh or z—ay= b(x* —-a) orz= ay+b(x* —a). ..(2)
which is the complete integral, a and b being arbitrary constants. ' | :
Differentiating (2) partzally with respect to a-and b, we get 0=y-b and O—x -a ()
Solving (3) for a and b, a—x and b=y (4
Substituting the values of a and b given by (4) in'(2), . ' '

we get z=x’y, which is the required singular integral.

"-";‘(B) a famlly of strazght lmes as characterzstzcs
: iot ':hzch vamshes at. (2 )

“(CSIR UGC NETJUNE-2011) . -
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: ,."'::;""(A)z ax+qy smaq
.T(C)z-—a.x by+smab

ity f(x)+g(y) o
C@Quey=foey) P

§ 47

()

"'ﬁD

HOMOGENEOQUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

. n n

An equation of the form 9’z +k 07z —— t.. ¥k, oz =F(x, y) e (i)
ox" ax“ ady "oy"

in which k;’s are constam:s is called a homogeneous linear partzal differential equatzon of the nth order
with constant coeﬁ‘iczents It is called ‘homogeneous because all terms contain derivatives of the same
order. This can be written as, ¢ (D, D )z = F(x, y) Its solution conszsts of two parts

- the COmplementaiy Function (C.F,) which is the complete solution of the eqﬁatioh oD, D)z =0. It must

contain n arbitrary functions where n is the order of the differential equation.

the Particular Integral (P.I) which is a particular solution (free from arbitrary constants) of

_ ¢(D,_D9_z- = F(x, y). The complete solution of above differential equation is z = C.F. + P.I

Rules to write Complementaty Fi unctton

%2 3%z, ¥z

- Conszdertheequatzona tky— +k, — =0 -~ - . : ) )

axoy . . ° 9y

whzchmsymbolchormzs(D +kDD'+k,D’2)Z 0 - ) o (”)

- Form the (A.E.) m’ thkym + k, =0, by puttiﬁg D =m and D’ = I in (ii). Solve the (A.E.) and find its roots.

7

the roots-of A.E. are different say m, and m,, then z=¢ (rmx)+0,(y+myx) is the C.F. )
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(b) the roots of the A.E. are equal each equal to say, m thenz = ¢, (y + mx) + x¢, (v + mpx) is the C.F. In
' general ifthe A.E has r roots equal, then z = §,(y+mx) +x0,(y+mx) +... + X ¢, (v +mx) %

' Example] Solve (D4 2D3D +2DD" - D'4) =0

Solution: The au.lezary equatzon of the given equation is m* -2m® + 2m 1=0
or (m+1) (m-1)’= 0o thatm = -1,1,1,1.
" Herice, the general solution of the given equation is

2=4(y—x)+ (Y + x)+ x¢,(y+ x) +x°¢,(y + x) where @, $,, 0, and ¢, are arbitrary functions.
Rules To Obtain Particular Integral
()  whenF(oy)=e~""

; 1 mepy_ 1 '.ax.'+by |
PlL=——"=——¢ ~ (ie utD aandD' b) provided Q(a,b) % 0.
007" wam© P nd D' =b) provided §(a.t)

IfO(ab)= 0, we have the case of failure, in that case

:PI =, -%e thy ory. al¢ ‘”‘”’y '
oD oD
(i) When Fo y)=sin (a-x +by)

(ie. putD’=d’, DD'= - _ab, D'2 —_b), provzded q> (-a’ —ab, b)) #0.

| If ([)(—-a ~ab, -b)) =0, then it is d ¢ase of. fazlure ‘and we can repeat the process of ¢ ).
A szmzlar rule holds when F| (x,y) —cos(ax+by)

Example 2. Solve (D —.3DD +2D )z =cos(x-_|-2y) _ . - _ _ ‘

Solution: Its auxiliary equdtioﬁ is given by m* =3m+2=0
~ItsCFisy=¢,(y+x)+¢,(y+2x) |
Pl=—71— L - - cos(x+2y ) = L os(x+2y). =

. (D°=3DD " +2D") . R : —1 3(-—2) 2(—4) T

]

R | -1
R ———~cos x+2 == C08 +2
. —1+6—8 (. y) 3 (fc y)l:
 {wD*=-a’,DD’ =—ab, D'2- -b*} - _
. . :>so[ut10n is Z:¢1' -y+.x)+¢2 y+2x)~%cos(x+2y)
- (iii) . When F(x, = x”y, where p,qare pos;tzve mtegers

_-PI—"(D—D.‘)XP [¢(D D)f xpy
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Ifp <q, expand [§ (D, DI i powers of =

Ifq < p expand [¢ (D, D)J”’ irzpowers of%

Also, we have %F(x,y) = IHx,y)dx and —[1)—|F(x, y)= .[F(x,y)'dy .'
: yconstant xconstant

Example 3. Solve (D* )% Yz=xy’

Solution: Its auxiliary equation zsm -1= 0 ‘

sdts CFis ¢ (y+x)+¢,(y+ o)+ 45 (y+@ ’x), 0., 0,. 9, bezng arbltrary functzons where @and &
are complex cube roots of unity. -

1 1 : 1 . p3Y"
Now, P.I=———x3 i P ——_ VLS I P 3,3
(DS_D'-S) y DS[I_(D’3/D3)] y 'D3 D3 ) _x y
’3 - . .
=§[1+%+...]x3y3

;1[33 6x] 1{x3y3+6x % ]
D’ D’ p*l- 4x5%6

= (1/120)x%y® +(1/10080 )x.

Hence, the required general solution is z=C.F+P.]

_=>z—¢,(y+x)+¢z(y+avc)+¢3(y+w x) +(1/120)x6y3+(1/10080)x . e e

() If fix, ) = e’”‘"_bf Vix, y), w_here Vix, y) is a function of x and y.
PL= gy 1y
| WD) ~ 9D+a D4b)
(v A short method when fix, y) is a function of ax + by,
' We may appb) a shorter method to find the particular integral.

_ Workmg rule. To get the partlcular integral of an equation F(D, D ) z ¢(wt + by) where F(D, DQ-iS a
homogeneous function of D, D' of degree n. .

Put ax + by = ¢, then integrate o), n tzmes wzth respect fot. Put a for D and b for D'in F (D D ) we get

- Fla, b) Thus P L= F(—;a X nth zntegral of ¥(t ) 1) with respect tot, where t=ax+ by

n cdse rof ftiilur—e
n

o(ax +by§'= X — ¢(ax +by)
- - nb _

(bD-aD')’

Example4 Solve (D*-2D* D DD'2+2D'3)z et

Solutton Its aulezary equation is, m’ - 2m —m+ 2 0

m(m 2) (m -2) = 0

N
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M =)(m-2)=0 = m=1-12
CFis g(y+2x)+(y+x)+ ¢ (y—x)

J= . : ]- ex+y -= 1 ex-l'-y = 1 1 ex+y
(D’ -2D°D' ~DD’* +2U3) ~ (D=D\D*-DD'-2D%) D-D'1-1-2
-1 1 ~1x . —x .. :
=— e’ (Put x+y=v) =— —**? =L
2 pp ¢ Pty ) 210 T 2°¢

Hence, solution is z = ¢1(y +2x)+6, (y +x)+ 4,(y - x) —%e"*’

vi) | When F(x, y) = Any function
' Then P.I =

1
¢(D, D)

: Resolve into partzal fractzons

1
: (D, D') _
: Considerzng o@D, D ) as a function of D alone

PlL= F(xy) [ F(x,c-mx)dx .

where cis to be replaced by y+mx after integration. -

§ 4.8. NON-HOMOGENEOQUS LINEAR PDE _
A lineqr PPE which is not homogeneous i.e., all the dertvatzves are not of the same order, is called a
non-homogenous linear partial differential equation. : '
FD, D)z = fix, y), where F(D, D) is non-homogeneous inD and D’ o
F(D; D) is not always resolvable into linear factors as in homogeneous lznear equatzons Therefore we - .
classify linear differential operators F(D, D'} into two following lypes
-+ (i) F(D, D) cannot be resolved into linear Sfactors for example I’ - -D

(i) - F(D, D!) can be expressed as product of linear factors of the form (OLD+BD '+Y) where «, B and Y
are constants ' :

 Method of finding C.F. of non-homogen_eous liner PDEs
Consider F(D,D") =ft,y) ° |
When F(D, D ) cannot be factorized into linear factors o
In such cases, we apply-trial method, T : ' o
S Consider the equation (D~ D’ )z— R _' i)
- Leta trial solution Of(l) bez—Ae o N ' (zz) -
- where, A, h-and k are constants. e T R
 from (zz) Dz —.g— —-hAe’“*-“"y and D" —g . ~sz ety -
Y : e
puttzng these in (z) we gét (h k)Ae'“”‘y. =Qor,h=% S «. (1)
T Puttzng the value of hin (n) a solutlon (whzch4salso o F ) of (l) isz= Ae" L ()
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Since all values of k satisfy the given equation (i), a more general solution (which is also C.F) is taken as

z=), Ae¥ W : : (V)

where A and k are arbttrary constants.

Example 1. Solve (2D* ~ 3D* D +D'2)z 0
: Solutton The given equation can be wrttten as (2D -D') (D -D')z= (1)
Consider (2D - D')z = : ' (?)

Letz = A" bea trtal solution of (1). Ti hen we haveD z = Ahz Y and D z = Ake™®.
Putttng these values in (2), we getA(Zh k)e'Lt b=, so_that 2K--k=0 or k=2h’

'Hence the most general solution of () isz= ZAe’“f’_”ﬁ’ o < A

~ Next, consider (D' -D)z=0 : : (4)
Let z A'e"”’" be a trial solution of (1). Then, we have D'z= A'h?e"™+% and D7 = A'k'e™
putting these values in (4), we get A(H -k )™ =050 that h" - kK =0 or W=k

* Hence, the most general solutzon of 3) is z=. Z A'e" ...(5)_

From 3) and (5) the most general solution of (1) is z Ae'“m' Yo Z Al
A A h B kK bezng arbztrary constants.

0%z %z  ,

Example 2. Solve ——t5=nz
p A ay2 -z L
Solution: The given equatzon can be written as (D + D —n)z=0 )

Let a trial solution of (1) be =A™ P Q)
- Diz=Ae™ and D'*=AR &Y - B
- Hence, (1) gzvesA(h +k -n) bty =g . A _ '
or W+k=n’ B - LB
" Taking A as parameter, we see. that (2) is satzsf ed if h = ncosa and k= nsznd putttng these values in
(2), the required general solution is 7 = Z Agrixesatysing.

where A and a being arbitrary constants.

.- - CaseIl. When F(D,D') can be expressed as product of linear factors:

- Let (D + D' + Y be a linear factor of F(D D ) To f nd C F correspondzng to this ﬁzctor we conszder _ ,'
*' . the most simple non-homogeneous equatzon ' -

: (0LD+BD’+'y)z—00r0Lp+Bq=‘~'Yz S ¢/ R
' whzchzsofLagrangesform : o T _
'_'"dx dy dz ) o o
o ,B_ —;z _
* Fromi first and second ratios of (zz)
ady-Bdx=0 - _ _ :
"V Integrating; Gy — Bn=C S BT S (i)

§41> j
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Again from first and third ratios of (ii), we getg -7 dx
z a

Integrating, log z = %x + logC |

1, 9 e 89 o '

2=C,e% z=e° §(C),z=2* f(ay-Bx) £ from (i)}

Thus the part of C.F. corresponding to linear factor ' - _
OLD+BD'+'ste'Y”a<|)((xy Bx) o . _ e (V)
where § is an arbitrary function.

Similarly it can be shown that if F(D, D') has non-repeated linear factors of the type.

F(D; D) = (D +BD'+1v) (azD+BzD ) - (Ot.,D+B.rD +y)

'Yl 'sz 'Yn
then C.F. of equation F(D, D)z =F(x, y) e"‘1 <|>,(a1y B,x)+e°‘2 6, (oy - Bzx) +.+ e <|>(a,y-
Bx) o /

Also, correspondmg to a repeated ﬁzctor _
 (aD+BD"y', the part of CFis e [¢1(arﬁx)+x¢z(arBX)+ R 0y~ b

Remark:

1L Correspondmg to each non repeated factor (D — mD' —v) the part of CF.is eY ¢01 + mx)

2. If the factor (D ~mD'~") repeats k times then the part of C.F. corresponding to it is

P[0, (-+mx)+x (y+mx) +.. + x" "o+ mxj]
‘Y

3 . If a factor (BD’ +2y) occurs only once then C E corresponding to it is e B’ dBx). In case’ BD’+yrepeats
' —'Y1 '

'ktzmes thepart of CF.is e'3 [¢,(Bx)+x¢2([3x) +.. 2 1<|>k(Bx)]

Method of f ndmg P of. non-homogeneous linear partial di ﬁ?zrentzal equation : Fi (D D )z = fix, y)
f59) o |

..
( D)
Case L When F(x,y) = """ and F(a, b) #0

’ I_ 1 eax+by 1 ax + by

"-'__'F(DD‘) _. F(a,b)

_'1Example3 Solve (D2 D'2+D D)z—ez"*”

| _Solutton The gzven equation can be re-wrztten as: (D DYD+ D + 1) z=e"

CF = ¢1 y + x)+e ¢2 (y X), where ¢, q)zbemg arbztrary functzons

- : R 1 -1 |
AndP]lS . e2x+3y e2x+3y e2x+3y )

(D D)(D+D +1) (2 3)(2+3+1) 6
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" Hence, the required general solution is z=C.F.+P.L i.e, z = (y + x) + € @,(y — x) —~&**>

Case II. When e, y) = sin (ax+by) [or cos(ax+by) ]
- 1 1
_ F(D,D') F(D?,DD', D? D,DY)
which can be evaluated further.

P.I. =

sin (ax + by) = sin (ax + by)

Example 4. Solve (D-D’-1)(D—D’-2)z'=sin(2x+3y) _
Solution:: Here CF=¢"¢,(y +x)+ e2’¢2 (y +x), where @, ¢, being arbitrary functions and

I=——— ! ——sin(2x+3y)
(D-D'-1(D-D'-2) |
. 1. : in(2x+3y) ' ;
= . : ——sin(2x . ,
"~ D*-2DD+D"”-3D+3D"+2 . ¢ |
=TT A -.1 2 . ; sin(2x+'3y)-
-2 +2x(2-x3)—3 -3D+3D"+2
.
———sm 2x+3y) = sin(2x+3
~3D+3D"+1 ( y) —3D2+3DD D n(x y)
1 1
=D sin(2x+3y) = in(2x+3y):
' —3x(—2) 3x(2x3)+D ( ) —6Sm( *+3y)

e

1

=D<D+_§> i

=(D? +6D)— 1 % sm(3x+2y)

= —(1/ 40)x [D2 sin(2x+3 y) +6D sm(2x +3y)]
=—(1/40)X[-4sin(2x + 3y)+12cos(2x +3 _y)] '

" Hence, solution is z=e"¢(y+x)+ e_z"¢2 (y+ x)+(1/10) [sin(2x+3y)~3cos(2x+3y)] -

i

Case IIL. When ffs, y) ="', m "ar'_,zd}; being positive integers, P.I. = X"y = [F[D, D) "

T RoD)
.ji.ExampleS Solve r—s +2q z _ y o
' _ Solutzon (azzlax ) (azzlaxay)+ 2(az/8y) z2=x y o
Sznce (Dz DD’+2D’—1) cannot be resolved znto lznear factors zn D and D’ henCe C F. of ) zs'_':
obtazned by conszdermg the equatzon (D DD'+2D'—1)Z 0 N o .'f'.(2) |

Letatrzalsolutzonof(Z) be 7=Ae™v o LB

@
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D*z=AKe"™™, DD —.Ahkemky D'z = Ake™™ then (2) gives
A(h2 hk+2k—1)e"™® =0 or h* —hk+2k—1=0s0 that k= (1-h>)/(2~h) (4

from (3), CF.= Y pe™> where A,hk are arbztrary constants and h and k are related by (4) now,

PI=- 1 2yt = 1 2y
D*-DD +2D’ -1 1~ (D-Z—DD’+2D’)

=—{1-(D*-D D’+2D)]"x*y>
=~[1+(D* - D_D +2D)+(D_2 DD’ +2D') +{D*+ D'2-D)}* +..]x*y?
=—[1+ (D" - DD’+2D’)+(D2D’2+4D2D’ 4DD™ +.)+3D*D*(2- D)2+...]x2y2
—[1+(D2 DD’ +2D)+(D D’ +4D*D’ 4DD’2+12D2D’2+ Jxty
=— —2y* +4xy—4x’y-8x* —16x—16y-52
W Hence, the required general so_(utzo_n isz=CF.+P.1
z=ZAe'“*k’ .=)c2y2'—_2y2 +4xy'—4x2y -—8x2'—16x—16y—52.

CaselV. When f(x y) =™ where Vis a ﬁmctlon of xandy, then

(Veax+by ) — 2 1

N — thlch can be evaluated further
F( D). F(D+a,D'+b)

Pl=

Example 6. Solve (D —3D'-2)* 7= 2e2"-tan(y+3x)

. Solution: Hence, CF e”‘[qzﬁl (y+3x)+ x¢,(y + 3x)]

‘—1——2 ‘+°’tan(y+3x) =2¢"0 ! - 5
(D 3D 2) _ {(D+2)—3(D +0)-2}

qnd ’ tan( y +3x)

= 2x ______1___ 2x
2e 7 tan(y + 3x) 2e

¥ tan +3x‘
- 3D3 % 2'tan(y+3x) (y+3x)

2 2x

z.= e [4,(y+3x) +.x¢2(y+3_x)]+ x‘e tan(y+ 3x)

+b
e

.R_e:mark. If f_(x, = e’”’- *y fznd F (a, b) =0 then we have P.I1=

- FD,D')

B A A N whzch can be evaluatea’ further
' FD+aD+) -
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“tors, then take

ar ﬁzét-orf of FD,
(Xy ;"‘Bx) where §) is an

~.SOL VED QUESTIONS FROM PREVIOUS PAPERS |

L. The zntegral surface of the partzal dzﬁ‘erentzal equation xg—+ y%‘— =0 satisfying the condition

y

ully)=y, isgivenby (GATE-2005)
(A)_u(x,y):l _ - (B) u(x,,y):—y
©Quwy)=— @ ulxy)=y+a-l

- Solution: The given differential equation is xp'+ yq = 0 and u(l, y) =y
inoptionD),p=1andq=1
Xp) tyq=x+y#0
Option (D) is not correct .
L -y - 1 -
- in option: C’ el g o e
)% ()p(2—_x)2q2x- |
Wy, Y _mt2y-n L0
. -9 @-n) A
: Optzon (C) is not correct- - -

xp+ }’Q"‘

ino tton B u(x )——:> = L, g=——
- mopton ) sy £+ ”, Gr? T
'xp+yq O S R
:>—2xy e 2y —2xy+2xy+2y 20
(x4 G+ - (x+D?

Option:(B) is also incorrect. .




' xp+yq—7+—=
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in option (4), u(x,y)=—X:> p=—5 and q=
X X :

- )’ Y _o
x
Clearly, it satisfies the pde

=> Option (4) is correct.

The complete zntegral of the partzal dzﬁ’erentzal equatzon xpq + yp q + (p +q) -z p g =0 isnot

_ (GATE—1997)

. (4) ax + by + (ab” +ba)- _ (B) ax—by + (ab”-ba?) -

(Q)-ax+by+(ba’-ab?) (D) ax+by-a (b’ +ba”)

Solution: ThegzvenPDEzsqu +ypq + (@’ +q) p'q = 0:>z—xp+yq+pq +qp

The general solution by Clairaut’s form is z = ax + by + ab” + ba”  ...(1)

replace b by —b S

z=ax—by +ab’ - ba’ : : Q)

replaceaby-a ' '

z=-ax+by—ab’ +ba’ . - - L0)

3
- Solution: The given equation can be re-written as (D*-D*+D+3D' -2)z=¢"" ~x2y.

By (1),(2) and (3)

~ Option (4), (B) and (C) are corﬁp_lete integrals

Clearly option (D) is not of above forms
So, answer is option (D).

Solve (0%2/x%)—(0°2/9y*)+(32/ %) + 302/ y) ~ 22 =€ — 'y

Or{(_D“‘D’)(D+D,)+2(D+D')'_.(D__D’+2)}Z=ex—y __xzy
or((D+D)D-D'+2)}-(D-D'+Qz=e""~x"y

Cor(D-D'+2)(D+ D" -Dz=e" —x’y

.. CF=e"¢ (y+x)+e & (y—x), ¢1,¢2 bezng arbitrary functions

P.I corresponding to € 1 oY

T D=0 0D D

L -y
ST
| ] o
' (D D+2)(D+D' I)( xy) 2{1+

—e*™ and P.1. corresponding to (—x? y)

DD

} {1 (D+D)}"1(x Y.

M

2 2 2

_i(, D_D'_ D’ DD DD |
G y)

1{1—1) D (D"D'.] —(D"D') l+-....}x{1+(D'-|-_'l_)')'+(D+D')2+(D+D')34;...}(xéy) |

P e T et
2l 2 2 4 2 %

-(1/2)[1+(1/2)D+(3/2)D+(3/4)D2 Jrr(?»/2)DD'+(21/8)D D+ ](x y)

 <_@ |
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= U2y +xy+ (312)x% +(3/2)y +3x+21/4]
Hence, the required general solution is [z=C.F.+P.L] ie. z=€ ¢ (y+x)+e g (y~x)
+(1/ 8™ + (1 2)x y + (1 2)xy + (3] 4)x> + (31 4)y + (31 2)x+(21/8)

4. The partial differential equation .of the family of surfaces z = (x +y) + 4 (xy), is (GATE-1998)

(A)xp-yq=0 B wp-yg=x-y  (Qxptyg=x+ty D)xp+tyq=0
Solutwn The given solution isz=x+ y+AQxy)
Let A(xy) = xy. :

- Then, the solution isz=x+y + xy
p=1+yandgq=1+x _
Inoption (4), xp—yg =x+xy—-y—-xp =x-yp#0 .
=> option (A) is incorrect '

In option (C), xp + yg =x +y
x(1+y)+y(d+x)=xty
xtxytytxyExty

=> Option (C) is incorrect.

In option (D), xp + yq

x(I+y) +y(l+x)#0
= options (4), (C) and (D) are incorrect

= option (B) is correct answer.

, - -~ du ou ‘ S
5. The general solution of PDE 5% + é_u_ =u passing through the curve,x =t, y =2t u=11is
(A) ex+2y . . (B) er-y (C) e x+y (D) ey-Zx
Tricks Put value of x and y in given optzon then either option (B) is correct or option- (D) But option -
(D) do not satisfy given p.d.e:

. thzo_n (B) is correct.

Solutton E iiX:ﬂ
1 u .
a'.x dy=0 =x-y= c1 =V,
dx _du |
- :>x+logcz—logu :>x—log =e =L e =C, =V,
¢(v) :>ue —¢(x y) '_ L o e ' ' o :;_':'(1') o

usmg initial condition, i.e., x=t, u=1I, y=2t, we have
o Me” -'—¢(t 2t):>e = ¢(— t) :>¢(t) ¢ =px)=e”
) =ue ; ef‘" ':>u e’
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ASSIGNMENT 4.1

NOTE: CHOOSE THE BEST OPTfON

1. The complete solution -of z=px+qy+p’ +qis o
Az=ax+by+d +¥ (B)z=ax+ by
(Cz=d3+7+b ‘ D)z=a’+b/+1

2. The relationz = (x + a) (y + b) represent the partial diﬁ"e‘fential equation
@e=o Bz=pg
Cz=p-q ) : (D) none .ofth'es_e

dz ,  dz . - '
3. Solution of a—z +4z= —ai, given z(x,0)=4¢™ is
‘ot o .

. X
(A) _Z=4e3x+t ) ) : ’ (B) Z_3e4x+x
(C) Z =e—3x+t . . . (D) 7= 4e—3x+r -
. 04z a4z _
4 The general solution of the gzven partial differential equation 7 3 — =0is
y
AfG+) Ly -2 T+ )+ - By +0) T fh-%)
(C)f,(y +ix) + f,(y—ix) o R (D) nane ofthes_e Cme
| . %7 3% 9%, .
8. The ge_neral solution of the partial differential equatzon 22—+ 55—+ 2—~ =0, is
- . X2 oy gy
(4)z =02y ~») L ®r=vo-w
(C)Z—¢(2y X)“Wy 2x} (D)Z‘d)(y X)+\Wy+X)
3 3 3 '
6. 9z 492 1492 —(pasithe general solutzon
: ax ax%y  oxdy® o
Az=00) + /0 +2%) +,v-2%) (B)Z—¢O')+2f1(y+ZX) L
{C)z=¢() +f,(y + Zx) + xfz(y + 2x) - (D) none ofthese o '
ey o’z az o
7. The general solutzon of ——5— +4——= sin (4x + y) zs
: axay oy
(A)z=_§xC_OS(_4X+y) S o (B)Z f,(y+x)+fz(y+4x) N |
_(C)Z"'___f(y+x)—%xcos(4x_,_‘y)- ‘ - .(D)Z_._.f‘l(y_}x) +jfz(),+4x)f§xcos(éllx_.+')'/) e

)




8.
-9
10.

7

12.
13.

14.:

@) =gt aWre a2 L T B) =gbh)ial)ie e~z

16.
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2 2 2
The solution of the equation a—+2 o7z +8 +2[aZ aZ]+z—0 :

ax?  oxody gy? ox  dy
(A)z=2e"f,(y +x) (B)z=’e—xf1(y—x)+J_ce_xf2(y—'x) :
©z=fi(y—x) +xf,(y—x) (D) none of these
The solution of 2D +D"-1)(D+2D-2)z=0 is
Wz ="Q-2)+e"G(2x-y) = Bz=Q@x-2)+P(2x-y)

() z=e"0 (2x-y) +e™0 (x- 2y (D) none of these

The solution of (D3 -4D*D' +4DDf 2}z:O, is
(4) 2= (x)}+ 4y +2x)+4(y+24)
(C) z=(x)+(y+2x)+ 2 (y+2x).

(B) 2=@(y)+a(y+2x)+4(y+21)
(D) z=@(y)+(y+2x)+x(y+2x)

The solution of (D’D’-4D*D' %4 4DD)e =0, is .
(4) z=4,(x)+ 4,(5)+ (v + 22)+ x,(y - 22)

(B) z=@(y)+,(x)+8(y+2x)+x6,(y+2x)

(@ z=4,(x)+0,(y)+0,(y~2x)+ x4, (y-2x)
D) z= ¢1( )+¢2(x)+¢3(Y'_2x)+x¢4(y+2x)

The general integral of yzp + zxq = xy, is

Afxryytzy=0 . - . (B) fix"+y'x"+2)=0

) fix’ —y_z, X-2)=0 (D) none of these

: 2 2 .
The relation 2z = X + %2— represents the partial differential equation

a’

@z=p+q Bz=p-q  ©@x=wiy D)2z=why
The parttal differential equation formed by eliminating arbztrary functtons from the equatzon
z f(x ¥), is

(4)xp +yq =0 (B)xq+yp=0 (C);=p (D);=q

Solﬁﬁon 'bf DD'(D . _-2D'.—3)z = 0 , lS

(C) z= ¢1( )+¢2( ).+e'3‘¢3(y+2x)" S (D) None of these. o

| Thesolutzonof( ] [g;]ziis_ | D
- @z="fx-y) - Bz=&"fy)

(Qz=ef) o Dz=dfaty)
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17. The general integral of yizp+xizg=xy’, is

@ ol - y*, x*-2°)=0 @ lr-ye-2)=0

© ¢l -y, ¥ -22)=0 @y, ©-2)=0
18. The general integral of Xzp+ yzq=2xy, is ' _
A ¢[—;,xz-y2] _ (B) ¢[ X2~ 2 J '

(C) ¢[£, xy—zz] ' : : . (D) none of these.
19. The particular inieg_ral of r=2s+t =sih(2x¥3y), is .

(4) 2003(2x+3y) - ' B) sin(2x+3y)

(C) =sin{2x+3y) S D) —5(2x+3y)

=20. The j)articular integral of (D* -D*+D - D')z = o2 , IS

1 5 1 s 1 a3y | P
) = e+ B) ——> C) —=e™ D) — ¥
W e B3 @ oy

21. The comﬁle_te_]nz_fegral of r+2s+t+2p+2q+2=0,is
@z=[ly-D+a-x)] =0 B z=e[py-x)+p(y-x)
(C) z= e [¢,(y - x)+ x@, (y‘—' x)] ' S (D) none of these.

.22 The solution of (D-2D’ —1) (D 2D"*. —1 )z 0 is,

. (4) z=e*¢(y-2x +2Ae2" U (B) Z_e¢l(y+2x)+ZAe(2k2+l)x+k}’

(C) z=e ¢1(y+2x +ZAe 2k2l+l)x+_ky . (D) none ofthe_se. :

23 The solution of [ng [S}Z}] —x+y lS ' | o
(A)z——[(x+a)3’2+(y @b -(B)z——-m+a)+(y a)]+b
(C)z——[(x+a) +(y a)]+b ._."'::(D)Z——[(x+a) +(y a)-]--'_l'b_.-'-_ |

24, ‘Théc_omplete.integralofk(]‘+jz)p=_y(1_4—x)q,_fs'__- e C .
(Az=afllogxy+x+y+b - (B)z=aflogxy +x)+b L |
©z=a(l+x)+(1+y. o D)z=artbyta+tb)y :
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25. The complete intégral of X’ p'+ y‘j g -4=0,is

(A)z=alogx + \/4—a2-‘logy+b ' | B)Z=ax’+ J4-a> Yy’ + b
(C)z=ax2j-by2+c _ (D)z=alog.x‘2+\/_4—az2 logy’ +b

26. The complete-integral of x(¥* +2)p— y(x* +2)g=z(* =), is
A)fE+y'-22,x2) =0 S B)f G +y'+ 22, xp2) =0
©FE-y'-22,xy2) =0 , D) fi’ -y + 22, xy2) = 0

.27 The complete integral 'of r+(a+b)s+abt—xy is .
) z=fily+ax)+ fo(y - bx)+ —x° "y ——(a+b)x
1
(B) z= f(y- ax)+f2(y+bx)+6x3y ———-(a+b)x
1
- (©) Z=fl(y—ax)+'f2fy—bX)+gx3y'—54-(a+b)x
(D) z:fl(y+ax)+f2(y+bx)+-;—x3y+ Elz(a-l¥b)x4 '

28. The.complete integral of q = px + p*,is .. S o o=t
. 2 . ’ . . . . 2.
“4) 7= a(x_ey)-l-_%e_.”_&b LB z= a(xey)+f’2—e.2*_+b.
_ 2 ' ’ '
© 7 =a(xey)_—32~e2_y +b L .(D) _none of these
2 2 :
. af— 92 +%=1hastheso_lution . _
dx* dxdy ox : B
Az=f0)+ef,p+x)tx ' B)z=fy) te L. tx)

Cz=x _ (D) none of these

. 30. The general in.tegfal‘ofprﬁ“"3q " '5z+taﬁ()) 3x)
(C) ¢[y 3x, 5x—log{5z+tan(y 3x)}] 0 D) gly-3x5x- log{Sz—tan(y 3xl=0"

31. The characterzstzc curve of 2yu + (2x+ ¥ )u = 0 passzng through (0, 0) is '

(4 ¥ =2e* +x- ) _' o By =2e —'x+1) _
SOy RACx=D e @)Y =S xAD

(4) #[y+3x,5x ~log {57+ tan(y +3x)}]= 0 ﬂ3)¢[y+3x 5x—1og{5z—tan(y+3x)}]= o

N
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32. Consider 4xyz = pq+2px"y +2qxy’ _
(i) It can be reduced to Clairaut form by some suitable transformation
(ii) z=ax +by +a-b is complete integral |
(iii) z=-x yz is singular solution
Choose correct code '

(4) only I'and I are correct . - . (B) only II and III are correct
- (C) I and Il are correct : (D) all-are correct

33. Let it(x,y) be the sol_utz’on to the Cauchy problem xu, +u, =1,u(x,0)= 21ﬁ(x),x >1. Thenu (e, 1) =
@)1 (B) 0 @1 De

34. The characteristic curve for the equdtion Xz,-yz,=zis
(4) straight line passing through origin . (B) circle with centre at origin.
- (C) parabola with vertex at origin (D) rectangular hyperbola

NOTE: MORE THAN ONE OPTION MAY BE CORRECT

35, General solution of §_u + 8_u = 0 is not of the form
' oax? oy’ _
(4) u= flx+iy)+gla-iy) B u=flx-ip)+gls-iy)
(©Qu =f(vr+iy)—g(x—_iy) - @ u=fle-i)-gle-d)
36, L2492 - ]2(x +y) has the solution”
ox? ay - _ - _
A z=fy + i) =), L Bz=fy i)t fy-ix)+ 26 + 6y
C)z=(x+ y) o (D) none of these
. . T . . . 32 2 "
37. The general solution of the given partial differential equation g : az-g—z- = 0 cannot be
"'(A) r=fta)tfy—a) '_(B) z=2f,(y+ ax) 7
@z=hored i) o @fire
- 5 a'4-. 34 aZ "_842'—;"-- o
-38. T he solutzon of the gzven partza[ dzﬁ”erentzal equatlon —=_2- 542 ~' === 0is not

. oox* ax3ay ' ,axay oyt
(4) z ﬁO’—x)+ﬁO’+x)+xf30’+x)+xf4(y+x) ) o
(B)z=2fy-x)+2f,(y +x) . _
O L9 ey
- D)z=fiy-) T H TRt xf;0t0)

>
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822 az aZ aZ

39 —5—— = 0 has not the general solution—
2 T _ | :
A z=fy-x) +efy-% B) z=fi(y +x) +fy %)
© z=fy-3) n D) 2=ffy +9) € fify =)

40. The partial differential equation formed by 'éliminatin’g arbitrary functions ﬁom the r_elation :
z=flx+at) +g(x—at) isnot

witazoo | T gz =0
' 2 e 52 2
_(C)a%f—j'-%(é% R | (D__)gt—f—_g;zi:o
41. Elimination of a function ffrom z=f (y /x) céoes not give a partial differential équation )
W+ %—0' S (B)&+5;-—0
© x+y—0 ' | . D)x-y=0

42. Elimination of a and b from z = ae” sin bx does not give the partial differential equation

a2 . . . B .az _
()_+?“0 . (B)-&-‘*' 0
(C)—+z=0 o (D)x+y0

* ow

_ 43.. General solution of PDE(y+z)p+ (z+x) q Xty zs/are

(A)¢[<x ») (x+y+z)( yﬂ=o‘ "
: . y—z2 _

-(B)——f[(x y) (x+y+z)]
y—-z

(OG- y+2)= F_[ y]

y—2z o
(D)w{(y 2) <x+y+z>[ ZH=0
o Z—X T

4. szen z= a(x+ y) +b(x y) + abt + ¢, then '.

_'V(A) %—a+b |
0z
B) —=a-b
3B 5y "
0z
C) —=ab
()at
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2
(D) elimination of arbitrary constant gives Jz J aZ aZ
. ox ay at

45. szen ¥ f(x at) + F (x + at), then

(A) f (x- at)+F(x+at)

(B) D = af x—at)+ aF'(x +at)
a2 1-9%y

© 57_ 2 2

(D) elimination of arbztrary Jfunctions gives partial di ﬁ‘erentzal equation of second order.

 <1.5€> - - J |

I RN v
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ASSIGNMENT - 4.2

- NOTE: CHOOSE THE BEST OPTION

L. The general integral of the paftiaZ differential equation p,+p,=1+p, is

(A) flx; Yz, x,+x) =0 (B)f(xI +x, %, x) =0
Cfc,tzx,+x,x,tx) =0 (D) none of these
2. x% + yg—; + z % = xyz gzves the general solution

. | m)/(g,%_,xyz—3u]=0 (B)/(xyz—3u,% =O (C)/{xyz—3u,§] =0 (D) flxyz—3u) =0

‘3. The-general zntegral of 923 [gz] is.
. X

(A) z=ax+3ay+c (B) z=ax+3ay+c (C)z =‘ax2-ﬂ- 3dy + ¢ (D) none of these

4. The dzﬂerentzal equatzon Q— e _a_z e" gives the general solutzon—

ay .
(A)z—ae +be (B) z=é+¢  (©z= a(e +ey) +b (D) none ofthese
5. The general solution of the diffexential equatzon ply-2)+(&x- y_)q =z-x, is given by
(A) f(x +2yz, x+y+z) 0 - (B) f(y 2 xty+z)=0
(© fle? +2xzx+y+2)=0 . . . (D) none.of the these . - .

_ 6. .The generalj’solutign of px+qy =3z, is gil.zen_ by . o
@ f['—i, 1]=0 W2 O —"% o % )0
. A x 3 5 ‘x3 X . . y i - y x3

7. “Complete solution of p® —q* =1 is given by S

@ z=axtl®+l)yrCc . Br=ae”

- (C’) Z=-ax—('a2"—1)my'+'c . . ':._"(D) ﬂqn_e_of_these o .

'&"_’IC'ompleteIntegralofz(p +q) =x +y o : CoIT : -__ o
(A) z —'x w/a +x% +4a? log. lx+«/x +a +y\[y l a’ IOg{y+,”y -a i}+b
, (B) Z]/Z_(x +a)3/2 +( +b)3/2+ b o

; (C)z =X ‘\l_ a-x —a log[x+w/x .+a —-yJ(y ~a’ )] a log {y+1}i }+b

' (D) noné of these -

T
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9. The general solution of the partial differential equation (D’ D"~ 2D - 2Dl) z =0, where D = éiand

D’'= i is _
dy _ : ' _
4) fiy +) + e"g(y-x) - BEfe) tg (%)
© e fly +x}+g(y—9_6) : , (D)f(y+X) te gly-x)
. ' ozY oz ) _(9)| 9z (o2 az 0z 8z :
10. The complete integral of the p.d.e. [_] ZLz= [_Z] < [ ] e , IS
' . - ax )\ oy ox ay P ox ay Yo * dy
3 3. ’ ' 4 .
(A)z=ax+by+a tb ' (B)z—ax+by+a b
_ a+b ' | a+b
4 . ’ 4
) (C)z—-ax by + 2 LA o (D)z=-ax-by-L "+b
’ ab . - _ ‘ ab
+ 11. Integral surface of xXp+ y q= 2 whzch passes through hyperbolaxy =x+y,z=1, is gzven by
(A) xy + 2yz +xz=3xyz ST (B) yz + 2xy-+ xz = 3xyz
(C) xy +2zx +xz=3xyz (D) none of these

12. Solution of partzal differential equationr + s - 2t = (2x+y)l/2 1
" (4) ¢1(x—)’) + q)z (2x-p) + %6(_2"'*')’)3/2 - (B) ¢1(x ty) + (1)2(y-2x) + 1 (2X+)’)3/2

(© -q)l(-_x +)’). -+'¢Z(Y-2x) + i(236‘*')’)5-/2 - . (D) none of these

13, The complete zntegral of @+q)(z—xp yq) = Lis

(A)z*ax+by+a+b Co ' (B)z—-ax+by+ —%
: +
(C)z—a.x—by+L' | _ (D)z-ax+by+L
ca+b o - a+b
14. The complete mtegral of z= pq, is
(A)Z\/;=x\[—+z\[—+\f— . (B)2\/—z— x\/—+y\/—+«/—
(C)2\/E x\[—+[\/_]y+b o . (D)noneofthese -

- 15. .-The cotnplete integral of the p. de. p’x’ + ¢y =7 is

(A)Z= xi;b_sa'. Sin-a-.k.'- ..(-B)_Z____xcosa ;'sin,B-'k - (C)Z—“—- xcos_a - sina (D) none ofthese )

- ) 1 6. The partzal differential equatzon of the famzly of surface z = (x + y) + A(x y) is

Wrp-yg=0 (B)xp yamEmy @Qxpt+yg=x+y [D)xp+tyg=0

X
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17. The complete integral of (p’z+q°)=4,is
() (z+a’)"? =y+ax+c - (B) (z+a’)*=x+ay+c
©) (z-a*)*=y+ax+c (D) none of these

18. The complete integral of q =2yp°, is _
(4) z=Ay+A*y*+c  B) z=Ax+ Ay’ +c - (C) z—ﬂx+/1 ’x>+¢ (D) z=Ax+Ay+c

19. The complete integral of q = xyp>, is , . S
(4) Q2= &y ~2c) =164 . (B) 2z~ Ay=2c)* =161
(€ Qz-Ay* -20)=164x | (D) 22— Ay* -2¢)* =164x".

20 The complete zntegral of yp =2xy+logq, is .
(2x+/l) B | (2x+4)

. . , b
() 2 ,/1 _+b (B)z | y ,+/1

. ) 2 .
(C) (_2.x;:l : /1 —<b _ _ -. . (D)Z = _(QZA__}.elY +b

© 21. The complete integral of 2z+p’ +qy+2y" =0, is

W=l o@-xr-y . B u=Low-xr-y
Ty oy
S S T N R
€ 2z=——-(a-x)-y (D) 22—;—(0*30-—)’
| y | _
22. The complete integral of p(1.+ qé) =q(z~a) is |
4) 4k(Z—a)_=(x+ky+b)+4 o (B) 4k(z -a) = (y+kx+b) +4 _

(C) 4k(z-a) = (x +ky +b)’ +4 S (D) none ofthese

23 The complete integrdl of p (qy + z)

o (A)yz ay+2m+c . (B) z:ax+2'\_/@'+c.
. ...(C)-_yzfax+—2@.+cf o y=a2f@)te
24 The complete zntegral of (p +q ) y qz is )
(A) Z=ay —(ax+b) o (B) ZF=a’y’ =(ax+b)
(O ZdF =y S “@rﬁ%WM'
. 25 Thecomplete mtegral of z(p q) xX= -, is o ' -
(A) Z3/2 _(x+a)1/2 +(y+a)”2'* ‘ | : (B) 712 —(x+a)1/2:.+().l+a)1)2 +b '
© 7 —(x+a)3’2+(y+a)3’2+b - D) noneofthese : L
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26. The complete integral of x*y’p’q =12,
(4) logz=\/alog-xr— 12'+b ' (B)logz=x/alogx—'.—1—+b
2ay 2ay
' 1
@ log z = (D) logz=«/alogy——_+b
2ax

" 27. The complete integral of r—s—2%=Q2x*+xy-y ?)sinxy—cosxy, is
(4) z=f,(y+x)+ f,(y+x)+sinxy (B) z=fi(y+2x)+ f,(y - x) + sin %y
©) z= [y +2x0)+ f,(y+x) +cosxy (D) none of these

NOTE: MORE THAN ONE OPTION MAY BE CORRECT

28. Solution of the equation ptanx+qtany=tanz is not

(A) [smx sin y} 0 - (B) @lsin x —sin y, sin y—sinz]=0
siny sinz o
(©) o[smx Smy} , : (D) ¢[sin x,sin y]=0
siny sinx - . _
29. The particular Integral of the equation (D> +3DD’+2D"* )z = x + y cannot be
1, 4 1 , % , X 1, X
A) z2=—yx" —x B) z=—yx"+— 0 z=yx"——— D) z=—yx" ——
) P (B) 2y 3 (2 Y. 3 (D) 5 3
2 2 -
30. The partzcular[ntegral of ?-}-W = COSMX.COSny is not
(4) COS MX.COS 1 - (B) cos mx.sin n
S mPen? _ Y : (m? + n?) _ 'y.
-1
0 - —— . : D sin mx . si :
© - e sy ) yia e
31. For PDE (p*+q")y=qz _
" (A) no singular solution exist (B)z = x'y is the szngular solution

(C) z= 0 is the szngular solutzon : (D)z = (ax + b) ta y is the complete solution

32 =The surface passmg through the parabola u = 0 y = 4ax and u.= I y ~'-4ax and satlsﬁ/lng the

: % ou
e uatzon — t2 ==
7 xax ax 0
A) u=-——+— S - (B) no such surface exist
Bax 2 : e
(0 u’=--y2+ cosx (D) u=y sinx

| B - >
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2

o : 0
%833~ The surface satisfying 3

= ox’ y containing two lines y = 0 = u and y=I=u is

A u=xy +yl-x>) - . (B) no such,surfa.ce exist
_'(C)u;—-gj;n - @ u=sinxeosy

34, CF. OfthePDE (5D -aD’ - ¢) (bD ~aD’~¢)z = 0 is not
(#)z= e [§, by +av)+ 9, <by+ax)]sz¢o (B)z= 5 [¢,<by+ax>+x¢2<by+ax>] ifo#0

(C)z= e” [yll(by+ax)+xy/2(by+ax)] if a%0 (D) none of these.

82 az . ) o
a - _68_2_x2_sin(x+y) cannot be
xdy _

2
35. T he complete,mtegral of a
W .z.=ﬁ(y'.-lr2x)+f2(y—33c)-—z (xz_%’j sin(xty)

(B)z=ﬁ(y+2x'.)+fz_(y—3x)+% (xz 13 sin(x+)

—
D,

(© 3= AO=29+ £,0 -3+ (7 s+

_'4_>

. =f1(y— 2x) + fz(y+ 35)—— {xz 183] sin(x+ y)

te integfal of (X’ + yz)(p2 +4¢°) =1 cannot be

"alog\/(x +}’ )+\/(1 —a )taﬂ1y+b (B) 7= alog\/(x +y )+\/(I —a )tan -i—b
‘ Yy

Q9 z"alog\/(x -y )+\/(1 a )tan —+b (D) 7= alogJ(x ~y )+\/(1 ~a®) tan™ Z+b
y

Ihe complete integral of(p+q)(px+qy) 1=0,is :
A)Jz(1+a) 2J(ax+y)+b - )z\/1+a 2Jax+y b |
C)'Z\/(l+a) = 2\/(ay+x) +b R (D) none ofthese . '

s
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DIFFERENTLAL EQUATIONS

CHAPTER - 5 | |
PARTIAL DIFFERENTIAL EQUATIONS OF SECOND
ORDER AND SOME BOUNDARY VALUE PROBLEMS

§5.1. . CLASSIFICAT. ION OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF SECOND
ORDER IN TWO INDEPENDEN T VARIABLES
Let us consider the equation of 2" order in two independent variables x and .

. Rr+Ss +_Tt+f(x,y, z,p,q) =0 ' (1)
a2 2 2 )
where r=a—f, §= oz t—ié
ox oxdy . dy

and R,S, T are functions of x and y then Equatzon (1)is
Hyperbolic if S’ —4RT> 0

Parabolic if S’ — 4RT = 0

Elliptic szZ —4RT<0

Note: (1) When equatzon (1) is hyperbolzc then the characterzsttc equatzon of (1) is
RK2+S)»+T 0 (2
Here roots are real and dzstznct [ SZ 4RT >-0] say A, and A, are roots of (2)

dy " dy
Now, the characterzstzc curves are gzven by ?d; + 11 Oand d_ + /12 0
x .
_Nate: ) When eaaatian .(1)' is elliptic then roots are _comple'x.' |
. Here_characteristic_ curves cannot be calcutated. '
Note' 3) When equatzon (1) is parabolzc then the characterzstzc equation of (1) is R AV +S 7» + T 0

Here the roots are real and equalz e k k l (say)

d
So the characterzstzc curve is g1ven by Ey + /1 0

" “Note: (4) T he nimber of real characteristic curves
In hyperbolic = 2
In parabolic =1

- In elliptic = 0(No real charaeteristic -curve). '

>
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Example 1. Consider the PDE x U toyu,tyu,+xu +yu =0, then {
(4) elliptic in the regionx <0,y < 0, xy > 1 :
" (B) elliptic in the region x>0, y>0xy>1
+ (C) parabolic in the regionx < 0, y > 0, xy> 1
(D) hyperbolic in the region x < 0, y<0, xy> 1
Solution: HereR =x, S=2xy, T=y .
- Now, §-4RT=(2) -4xy=4x"y 4%y .
Ix<0y<0xy>1, thenSz—4RT=4J_cy(xy~—1)> 0
= S-4RT>0 L
=" The given P D.E. is hyperbolzc in the region x < 0 y <0xy>1.

.". Option (D) is correct.

Example 2. The 2" order PDE
(x=y)°
4

u, +(x—y)sin (xz.i+ yu,, +cos’(x* +y?)
u, +(x—y)u, +sin?(x* + ) + 4y +4=01s

(A)elliptic in the region {(x,y) : x#y, X + y* < % 3

v -

(B) hyperbolic in the region {(x, y) : x ¢y % <xX+y'< %[ }
(C) both true |
(D) none of the above.

2
Solution: Here R = (x , )

-, S=(x~y) ;z’n\(xz +y2) T %-cosz (xz +y2) :
Thus, 8 ~ 4RT = (x—y)’ si’ (¢ +y")—(x - ) cos’ (X" +5)

= (x~y)’ {sin’ (" +y) - cos’ (* +y)} > 0 '

in the region in option (B). '

Example 3. Classify the operators _ ‘
- ] a2u a2 . a2 ‘ aéu aZu 2 k aZu . 4 -aZu
() —5+= PR ()—~—' (ll) 7 +4-
| Solutzon

at2+ax8t ES M- axz_--, _._t- 881‘ T
(i) HereA~—IB 1 C= Iana’soB 4AC ] - 4——3<0
. Therefore, the given operator is elliptic. _
[/ HereA—I B=-4,C=1landso B’ -44AC =16- 4“12>0
' - Therefore, the given operator is hyperbolic.. . ' ' :
(i) Here A= 1 B=4, C 4 and soB 44C =16~ 16 =(). Therefore the gtven operator zs parabolzc' '

=<
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Example 4. Classify the following equations:

a2u du 32

(z) + ay = ( (Laplace equation)

3 82u %u . % _ 1 .

) —+t— t+ — = ave equation
_() a2 a? C? a? (Wave eq 4
Lo 9% % 1 au -
(iii ? ? + 523 = 63 E (Heat equation)

Solution:

(i) Here the operator

0=87+8+8%a,=a,=c

az=1,a,;=

ay

¢ is +ve for all real values of 8, 3,, 8; and it reduces to zero only when 5 8 6

- hence, the given Laplace’s equation is ellzpttc

(ii)  Herethe operator 0=8,+3,/+8, - 82
L _ This can be both posztzve or negatzve Hence, the equation is hyperbohc 7
(iii) Here_a“ ap=ag=1a,=0anda,=a;=a,~a),= ay=a,,=ay =ay, Ty =a,=0,=0,;=0.
a1 3z A ayl 1o 0 0 ' |
©, [@21 822 Q23 Qx| = 0 100 =0.
Qa1 83z QAgz Ay 0 010
41 8 A3 Ay 0 0 0 0
hence, the equation is parabolic.
: Example 5. Classify the equatidn ,
SN oz z
1 1-¥) 22 —2np —-—+1 -—+x~—+3x — -2z=0.
N B y)y - yay
Solution: Consider the operator (1)=A8 e+ BS 8, +C8}, where o ,E—;—,SZEB%.
. . . O

HereA =1 ~x B —~2xy,'C =] y and so,
B -44C= 4xy —4(1-X)(1-y) =4 (-1 +5+)).
Since 4, B, Care functzons of x and y, the given differential equatzon is hyperbolic in the region where
B - 4AC >0ie, x H> 1, parabohc in the region where B’ — 4AC 0 i.e., at points on the czrcle
- A=, andelhptzc in the regzon whereB 4AC< 0 ie, ¥ +y <1

'Example 6: Find the regzons where the followmg operator.is hyperbohc parabohc and elhptzc - .
% % 9% 2 82u %, 2 %, % du
: 7kt +u- ' t—— 2—— -
(). 8t2 ¥ axat”axz (i) x u (zn) " + VT
_ Solution:

G HereA ]B—tC =x.

. B - 4AC = ¢ — 4x. Thus, the operator is hyperbolzc zf £ gx> 0 ie., zf £> 4x parabohc zf' |
£ = 4x and elllptzc zft <4x.

A

G
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(i)  HereA=x'B=0,C=-I. ;

B —4AC =44, -

T hus, the operator is hyperbolic if K >0ie, zf x’ > 0 i.e., if x>0 or x<0 parabolic if 4x’ = 0 '
ie,ifx=20.

Since 4x’ cannot be negative so the operator cannot be elllptzc -
(iii) HereA=tB=2C=ux : :
o B 44C = 4 — 4tx. Thus the operator is hyperbolzc if4- 4t > 0 ie., zf tx <1, parabolzc if
tx=1and ellzptzc iftx> 1.

§5.2 CANONICAL FORMS (METHOD OF TRANSFORMATION) ,
' Now, we shall consider the equation of the type Rr + Ss + Tt +'F(x, y, z, p, q) = 0, (1)
where R, S, T are continuous functions of x-and y possessing continuous partial derivatives of as high
an order as necessary. We shall show that any equation of the type (1) can be reduced to one of the
three canonical forms by a suitable change of the independent variables. Suppose we change the
independent variables ffom x,y tou,v were u =u(x, y), v=vx, ). - . (2)
Then, we have p _a_zzéz_' ou 192 il ,q= 92_9z @+ 9z v
0X du oX v x’ -9y dudy v ay_—
d _9u d  ovd 9 _du d ava

"X ox au TR dy oy " ay E

ow, =222 () (B2, 00 (e vig
T 9x? ox (ox OXxou oxov) Loxdu oxav
a2 [au] ' 3%z du v, 3% [av]2+ 3z 3%, 3z 3%

__+ = —
ox UV I ax av ox U ax2  ov 9x2’

e s (x =[an é!_a_] (2au, 2 v
™y o ay 3Xou Ox ov) \oudy ov oy |
Pz wdu, 9%z (udv du ), 9 Ovav, oz % 3z 2%
u? 3 dy oudv loxay S

32 ox 9y  au ayax o wyox

. _822;3 0z dud wadl auaz avaz)
M [ay] (ayafayav _[WW*WWJ :

_ % [i)u] 4 ,0% v &[av]z 9z %, az O

w2 3y du v @5 w2 oy u ay aV ay ;

Substztutzng these values of D qr sandtzn (1 ), zt takes the form ' _ _ 1
. 3U auav. o av a a E - ) |
h A—R ——+T o ' '

where [axj Saxay._[ ] R SR ____.   _(4):_- .

R 1 (aud uav)duw

B R—‘— S T — C : .05 '_
o ax ox 2 [ax ay+ay ax] ay ay L S e '_()

-.C R S———+T ‘ B (6

— -
B e e
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and the function F is the transformed form of the function f.

Now, the problem is to determine u and v so that the equation (3) takes the simplest possible form. The
procedure is simple when the discriminant § — 4RT of the quadratic equation. _

RN +SA+T=0 L e (7)

is everywhere either positive, negative or zero, and we shall discuss these three cases separately.

Case I S~ 4RT > 0. If this condition is satisfied then the roots 7\,,-, 7\,2 of the'equatiori (7) are real and diotinct.
2 2 . ; _
The coefficient of g—: and g—: in the equation (3) will vanish if we choose u and v such that —gg =7\,,

U i ’ ) . _ o X

au' o
(8 and Z =\
The di jferentzal equatzons (8) and (9) will determine the form of u and v as functzons of x and y. For
this, from (8), Lagrange’s auxiliary equations are Ef = d—{ =3 The last member gives du' = 0 i.e., u . |
, "y _ : _
= constant. The first two members gzves a—- + 7\, =0 _ . _ . (10)
Let fi(x. y) = constant be the solutzon of the equatzon (10).
Then the solutzon of the equation (8) can be taken as u = f,(x, y). (1 1)
~ Similarly, zf fy(x, y) = constant is a solution of y + 7\, = (0, then the solution of the equatzon (9) can
be taken as v = f,(x, y) _ - (12)
Alsa, it can be easily seen that in general, ' _' _ o . -
duaov duadv
AC-B =(4RT-§) | =& _Z %
_ .( e ). [ax_-ay ay axJ
So that when 4 and C are zero . _
ooy [ wa Ly
{ D ox dy dy ox . - (1)

It follows that B> > 0 since S 4RT>0 and hence we can divide both szdes of the equatzon by it.
Thus making the substitutions defined by the equations (11) and ( 12) the equation (1) transforms to the

Sform. _ | .
auav.‘q)[“’v’z’a ’av] L o s (14).: :

© which'is the canomcal form in thzs case.

Case II Sz 4RT = 0. In thzs case, the roots of the equatzon ( 7) are equal We def ne the functzon uasin Case I i - - |

and take v to be any function of x and y, which is independent of u. Ihen we have, as before 4= 0.

Since §° — 4RT = 0, hence from (13) B = 0 ze ‘B = 0 On the other hand in thzs case, C # 0
otherwise v would be a function of u.-
PuttmgA 0,B=0 and dividing by C; we see that in this case the canomcal form of the equatzon (1 )__ -




' DIFFERENTIAL EQUATIONS " CHAPTER -

Case IIL. §° — 4RT < 0. Formally, it is the same as Case I except that now the roots of the equation ( 7) are

complex.

Proceeding as in Case I, we find that the equdtion (1) reduces to the form (14) but that the variables u,
‘v are not real but are in fact complex con]ugates To find a real canonical form let
u=a+ipv=a-ip

So that o. = —(u+v),B= 1i(v—u).

0z 0z oo 0z BB 0z .0z
Now 22 2o
MY aa ou ¥ B u - { J

. 0z 0z .0z
larly —=— —
.Shmz arly ™ [aa aB]"

.ﬁ=i(ﬂj=,l 3 9z 02\ 1 822+82
Coudv ul\v) 4 (5g 38/ e 9B 432 " 3p2

“Thus, transforming the independent variables u, v to O, [B the deszred_ canonical form is
0’z 9% _ 3% az] |

2 opE W(“ﬂ’ “3a’ 3B

2{do op

(16)

Second order partial differential equations of the type (1) are classifi ed by thezr canomcal forms; we

* say that an equation of this type is:
(i) Hyperbolic if S~ 4RT>0 (u) Parabolic szz— 4RT=0. ~ (iii) Elliptic sz2—4RT<0.

Example 1. Reduce the equatzon (1) r— "~1)s ty (y—I )t +pq =2y (1-y) oo (1)

- ta.8anonical form and hence solve it.

Solution: Comparing the equatzon (1) with Rr+ Ss+Tt+ f(x Yz D, q) 0, we have

R=(p-1,S=-0'-1),T=yp-D. =
The quadratic equation RA’ + SA +T'= 0 therefore becomes

O-DA (y—I)?L+y(y )= Oorlz—-(y+1)7h+y Oor (k=1)(h-y) =0
= 7L 1 y (real and dtstznct roots)

dy
h t + ] = +
T e equa ions o 0ana’ dx y= 0

These on integration give x + y = constant and ye = constant S0 that to change the tndependent o

variables from x, y to u, v, we takeu = x. +yand v=ye..
_ 0z _0z du ou az ov _0z .0z _ 0z _0OZ

—_— = — = =4V
P T W e VN TR Vi
9z Az au az ov az 0z S

ay ou - ay av oy au TN oV R ST
a(m) (8., 0) (). o, o2 0w
- . = — T4 vz +2 22,9
MY [ax] [au”av] (au”avJ 2 T e
e ,E--':- 2 (32, 02) _ 9 _a_z+éx;i'(§£]+exiz_”_ :
ox {9y Jax ou _av .,_ax_-a.u Cox \dv) v

[au -av]_[ ] e{ Y }[av.] ¢ T (e v)_auav lve av2 e —

i e e i e et e i e ot + e e < ey o e S N L
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=i[8ij+exi(ii_]_ 9 (2 B, a(az]auex i[éz_)a_ui[ai]@_
dy\du dy \av Ju au dviadu/ady Loulav)dy aviev)ay

3 x 82 2x
=2 1 —
3030 y e (1-y)°

Substztutmg these values in (1), zt reduces to ( 1~

.azz N L o | :
2 -8 =2, : e (2
duov ve-or dudv K - . : ' : @

* which is the canonical form of the-equation (1).

or

Integratmg (2) w.r.t. v, we get g—— Vit e, (), " : _ w(3)

where ¢ (W is an arbztrary Sunction of u. Agam mtegratmg (3) w.r.t. u, we get
z=u + vy ,(u) + \pz(v) where \, is an integral of 9, and v, isan arbztrary function.

or z=(x+y)y'e Hy,x+y) +y, (ye)

: 2 N .
Example 2. Reduce the equation g—: =x g—: to canonical form.

' x= oy _
Solution: The given equation can be written as r —x't = 0. ' ()

Comparing the equatzon (1) with Rr + Ss +Tt+f(xy 2z pg =0 wehaveR=1 8= 0 T =

The quadratic equation R\ + S)» +T= 0 therefore becomes \' —x’ = 0_ o '
= A =x, —x (real and dzstmct roots). _' o -
Theequatzons%—+?» —Oa d :y +k = 0 become %){-+x 0 and —i~x' 0.

. On integrating, we gety + % x* = constant and ¥y —%x = constant, so that to change the independent

variables from x, y tou, v, wetakeu =y +_1/2x andv =y-1/2 ;c .
L TN S S e az]
X Juox ov ax . au _ov _ \au av)

_ 9% _z u, 9z d_daz, 9z _822- G (azj i{[az azj}

—=—. =t = ===t —, rs—F=3— X|.
dy du dy ov dy du Iv ' . 9x? ax dx | 9dx du. v

L N3 AP A B KT AT G555 L
'ax au . ov au ov '_ au du dvjox avidu ov,)ox | 'ag _'.ay__'.

2 2. ' ol
a__28-2+ az_iz_ andt=a_z='- d (az) |
au auav av2 ou ov . ay2 ‘- ay dy

=‘—a—+"—a-; E+§E.--=_az'_z+.za 82
\du  av, ou ov) au? auav av2 o

- >
- Substltutmg these values in (1), it reduces to aa azv _ 4)1( [% —5‘/—} -

{ .. ._ ' <159>
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Cig: -1 9z 92} which is the required canotzical form of the given equation
auv  4u-v)lau ov) 1 giver equanon.

or

Example 3. Classify the type of following p.d.e’s
(@ u,+2yu +xu,—u +u=0
. (b) 2xyuxy'+xuy-ijyux'_=0 :
Solution: T _
(@) HereR =1, S=yandT=x .. 5 4RT“4(yz-x)
. The equatzon is hyperbolic in the region y > x, parabolzc on the curve y' = =X and elliptic
in the region y* < x. . '
(b) HereR=0,S=2xyandT=0 ..S-4RT= xy’ .
(c)  which is positive except on the coordmate axis. The equatton is hyperbolic for all x, y except x =

"~ Qor -y=0. Along the coordinate axes the equatton degenerates to first — order and the second-
- order categories do not apply. . :

Example 4. Use the trqnsformation {,’ = o(x,y),n =y (x,y) to express all the x-and y-derivatives in
| Uy +2bu +du +eu +fu=g intermsof & and 1 : '

Solution: By the chain rule Qti =— ou af au 87] =u ), +u

dx d¢ ox 81} ax
By theproductrule U = Ugy, +(u5) @, +uy. ( )l,'//x 7

‘which, after using the chain rule to find (ué) and ( ) yields
u¢¢ + (g, +u§,,y/x)¢ +uﬂl/fn+(u,]¢¢ +uﬂﬂyrx)y/x
—u§§¢ +2u5,,¢¢// +u,m¢//x +u§¢ +u _
" Similarly, U, =UP, + (ug) 9, +u,1gpyy +'(u ) v,
uy, = U (g, +u§qu )8, +u,ly/w+(u,,¢¢ +“sz W,
~u¢¢¢ +2u., 9V, +u,my/y+u¢¢ u Yoy '
Fmallyu —u¢¢ +(u5)¢x+uw ( )Wx
u¢¢ +(u¢5¢ gy, ¢ +urlwxy+(un§¢ +“ﬂﬂ¥, )Wx '
u§§¢¢ +u;,,(¢§// +¢ Wx)+u1]1]¥,x‘”y+uf¢ +u

~‘ Example s Classzﬁ accordmg to type and determme the characterzstzcs of

(a) 2u —-4u 6u +u =0 o) 4u +12u +9u -2u +u= O
(© e =Xy, =0.6> 0 (D) P42V veVu, =0

Solutzon

. .<7(> | : - -. ‘ .
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(a) a=2b=-2c¢ = -6 . b ~ac=16 and the equation is hyperbolic. The characteristics are

dy b b -
dx a : _ . ,
Thus, the lines x—y = constant and 3x+ y = constant are the characteristics of the equation.

determined by =—142
() In this case a = 4 b 6,c=9 b*—ac=0 and the equation is parabolic
- If follows that there isa smgle Jamily of characteristics glven by Z _b_ %
’ a

o or 2y-3x= constant
(c)' _In the region 'y >0, b —ac=x" yls posztzve 50 that the equatlon is hyperbolic type The

characterzstlcs are determmed by Y 4 \/"‘ or Y + xde =0
dx
y

F rom whlch it follows that the characteristics are x* + 4\/— = constant

(d  b*-ac= (e“y ) —e¥ e =0 and the equatzon is parabolzc T he characteristics are given by
. dy _ e’ or e *dx—edy=0 |
—_ = — e *dx—e = . _ . _ -
dx e _ ¢ ' o .

—X

e *—e™ =constant.

Example 6. Ti fansform the hyperbolice(juations.

(@  2u,_- 4u,, —6u, =0
() —x yu, =0.(v > Q) toa canonzcal form with prznczpal part Ugpy.
Solutton. _ :
{(a) The characterzstzcs of- the glven equatzon are x—y = constant and 3x +y = constant .

- . Wetake £=g(x,y)=s5-yandp=y(xy)=3x+y
Transformzng, we get 2u,, —4u —6u +u, =16uy, +u; +3u,

., the requzredcanonlcalform is y, _,_liuf +T36—u -0
(b)) The characteristics are x* + 4\/; = constant.' ‘
o Wetake £ = §(x,y)= x* +4y 1= (x.y)= =° “4\/—
Wegetu, ~x'yu, =16x" ug,,+(2+x2y'”2)u5+(2 xty ”2)

'.‘.-8(f+77)u¢,, [ f+2n] (25+67]J

¢~ ¢-1 e
~where the last equalzty follows from x (5 + 77) / 2 and 2 - (.f 7 )/8
" the deslred canonzcalform is -+-' 3¢+ ¢ + 3 o (§>17)

4ler- ﬂ)f 4(4‘ 77)”-
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X( __AV ‘ 'a’vV are open sets in R

' : In the regzon x> () y > 0 the partzal dzﬂ"erentzal equatzon

)

2 a U '
y —_— 0 is not
| )_changes type ' .l(B).,ﬂs?llwtzc,'- e (C)pamb'é'lic

| T he second order PDE u'. - —yu +JC3 u=
(A) ellzptzc for all x E R y e [R T
(O eliptc forall x € R, y < 0.

rpartial differen




DIFFERENTIAL EQUATIONS , CHAPTER - §

'§5.3. BOUNDARY VALUE PROBLEM

. . 2
1.~ Heat Equation: a_u = 1 [a_u]

ox* ot
. \ _
In two dzmenszonal a—zi +a— il [a_u)
-~ ooxt oy’ ot
2 2
2. Wave Equatzon a_u i a—b:
ax?  ¢? ot

3 LaplaceEquatzon Vu=0

-5.3.1. | Solution of one dimensional w:zve equation with initial value préblem
| Let problem beu, —c*u, =0, —0 < x<o0,t 20 ()
 InitialConditionsu(x,0)=7 (x),4, (x,0)= W(x) . L)
Let characteristic lines be £ = x—ct,f) = x+ct ' '
wehave u, =8 +un, =pHp,
U, = feG, +u —C(.” /‘.f) _

K d '
% _g(u,.)=.$_( §+“n) =Heg +2“§n.+_'u,rm 3 o (3)
| Szmzlarly 2—'—c (;1@f Zuf” +;1W) ' S ..(4)

_Substztutmg (3) and (4) in equatzon (] ), we get 44”&1 = O

Integrating, p(&,n)=9¢(£)+ 1), where ¢ and W-are. arbztrary functzons
. the g_enerql solution is given by

/z(x,t)_.=-¢(x_—-ct)+gu(x+ct)_ o ' . (3)
Substituting znztzal conditions in (3), we get _ | . | | _
J+pD=H) o (6
| p@-y@l=ve -
3 _":‘77_..'Integratmg ¢(x) y/(x)_—_'l‘v(f)dﬁ o o (7) |
-'-7'-":—' From equatzon (6) and(7) ¢( ) ﬂ(x) 21 I.v(é-‘)dé’ and lp( x)= ———I (f)dé’ .
o - 2c 2

0
T oxtct

equatzon (5) gzves u(x t)— [ﬂ(x+ct)+':7(x ct)]+—21— I v(f)df
¢ x—ct

whzch is known as D Alembert 5 solunon of one dzmenszonal wave equatzon
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Ifv=0then u(x,9)= %[ﬂ(x +ct)-n(x—ct)]

5.3.2. Solution of wave equation with initial and boundary conditions.
- Consider one dimensional wave equation - E
u,=c’u,, 0Sx<Lit>0 . (1)
Boundary Conditions :4(0,t)=0=(L,t),t >0 '
Tnitial Conditions:u(x,0)= f(x),u, (x,0) = g(x)
Let u(x,t) be solution of (1)-
ux t)=Xx) I(t) and substztutzng into equation (1) we obtazn

2
Xd T c2Td X
dt o dx? _
. 2 2 2 . . oo
X c’T
o - , -
Case- I When'k>0, we have k= A*. Then d ‘f -1 d4 z—czﬂszo
Their solution can be put in the form
X=ce®+ce™
T=ce™+ce™® o _
TherefOre u(x, t)—(cle;‘r -l-'cze"“.)(c3e“‘ +c4e"°“) _ '_ -(3)
Now, use the BCs: _ S . :
u(O )= 0= (c, +c2)(c3e tee ) ) ' (4
~ which imply that ¢, +c,=0. Also, u(L,y)= 0gzves ce +C2 =0 . (5)
equations (4) and (3) possess a non trivial solution iff ' _ '
L f'l' =M oM —0or 1-e** =0 implying e =1 or AL=0
oL o6 - oy o

. This implies that A =0, since L cannot be zero, which is against the assumption
hence, this sclutio_n is not acceptable.

2
CaseII Letk 0. Then wehaved__X_O d_T_O
‘ dx* dr* .

. T hezr solutzons are found t0 be X=Ax + B, T = Ct + D _ ' ' .
therefore, the required solution of the PDE is u(x, t) = (Ax + B)(Ct + D) uszng the boundary
. conditions, we have | - . S _
‘u(0,1) = 0=B(Ct +D), lmplyzngB 0
u(L, 1) = 0=AL (Ct + D), implyingA =0 : : :
hence, only a trivial solution is posszble Since we are lookzng for a .non trzvzal solutzon consider the
. followzng case. : - o
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Case III: When k<0, say k = ~A?, the differential equations are-

d? X dT 2 /12 T=0

T dt?
Tbeirf general solutions give _
u(x,t) = (c,cosAx +c¢, sindx)(c,coscAt +¢,sincA) | ..(6)

using the boundary conditions C : u (0, t) = 0 we obtain c, =0.
Also, using the Boundary Conditions: u(L, 1) = 0, we get sin AL =0 implying that
A=nm!/Ln=12,.., which are the eigenvalues. Hence the possible solution is

. un(x,t)=sin@[Acosn—m+Bn sinﬂq— ,n=12.. ' ' (7)
| L\ L |
Using the superposition principle we have . . _
. nmct ' ' '
u(x,t sin > 0s—+B sin—— _ _ «(8)
ulxn)= Z L [A,, i3 3 ] : _

n=1

The initial condztzons gives -

u(x 0) f(x) ZA smmz

X

which is a half range Fourier sine series, where A, —J f(x)sin de 9
Als'o,u,(x,0)= g(x):ZB sin me[nLﬂ CJ '
- . n=] - B B .

w_hich is also a half range sine series, where
n

- B = 2 Jg(x)sm—dx ._ | _ | ..(10)
N C _ _ . .

| Hence, the requzred physically meaningful solution is obtained from equation (8) where A_and B, are
given by equatlons (9) and (10)..u,(x,t) given by equatzon ( 7) are called normal modes of vzbratzon and

nzc/ L=@,n= 12,... are called normal frequencies.

Workmg Rule: Suppose problem isu, =¢ u o ' L)
Subject to. boundary condition u(0t) =y (L Y =0Vt and znztzal condztzons u(x 0) f(x) (x, 0)=g(x),.
.20<st _ _ . ' S
: ._-"-._'u (x,'t)'= Z[ A:;,'_-co's nw cp+_ B s1 ; nfr ct] sln nn’x wh ere.
: ' L L _
—jf( )Smmdx & B, _——j (x)S‘“"’D‘dx _. | )

o ‘--'(i) and partzcular values of CL, f(x) and g(x) ,
- iy Substz_tute values of L, f{x) and g(x) in (1).and find A_and B,
" (ifi) Put valiies of A, and B, in u(x) i.e., solution of problem.
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Case-I: Iff{x) = 0, then
u(x,t)= ZB sin

nzTct , NTX
sin dx

where B .

nwTx
_[g(x)sm i

nﬂ'C

dx

. . .
Case-LI: I g(5)=0, then u(x,r)= 3. 4, sin "2+ cos "2, = % [ £Cosin 4”’2 a
n=t ) 0

Example 1. Let u(x,1) be solution of initial boundary value problem -
’u du

F=8—2’0<x<w’t>0
t° . oOx .

z)(x,O) = cOs [ﬂTx] 0< x < o
él—(x,0)=0,05x<oo
ot _

a—u(O,z‘)z(r), t=0
Solution: u  =u,,
ZTx
u(x, 0) nx)= COST

u, (x,0)=0=v(¢)
J.ByD’ Alembert principle solution is given by

u(x,)= L [n(x+ct) ~fx=ct)]

Axte)  ax-en

. ;x| Tt -
= —sin —sin—
2 ] 2.2

| T
u(x,t) =—| cos
(x,1) 2[_

Exdmple 2 u, =c2u.n,OSIxSl,t20. subject to'ﬁ(O,t)=0,u(l,t)=0 Vit

Solutwn By D’ Alembert prznczple solutzon is

x+ct

1 xtct Sln ”é
u(x t)——[7](x+ct) 7](x ct)]+2— jv(.f)df u(x z)_z ~

T xmet o X%?t--_ he

é .

C T xsa
_b (3 smizf 1 sm37r§ df
2 7, 4 4
_ 3b_l {c(')sﬂ(x+ct) B
8 o
3%l . mx . x bl . 3gxsindwer bl | sinzx siniz . 37x sih37r'ct]

=——sin—sin—ct - sin———— 9 —— "2 = ci—sin——
der 11 12em 1 1zc7z[ T

cos 37:

3z
cos —(x +ct).=—
[ l( ) l

cos—(x—ct)]—%c” (x ct)]
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Uniqueness Theorem. The solution to the wave equation u, = czun,O <x<Lt>0
satisfying the initial conditions
u(x0)= f)O<x<L
u,(x0)=g(0),0<x<L
and boundary conditions u(0, t) = u(L, t) = 0 where u(, 1) is twice di ﬂerentzable functzon w.r.t to x and
t. is always unique

5.3.3. Solution of Heat Equation

Let theproblem be c[a u ) u ' (D)
ox? dat ' o :
' subject to boundary conditions u(0,t)=0 and u(a,t)=0 V't.and : .:(2)
initial condition is u(x,0)=f{x), 0<x<a. ' (3 )
- Suppose that solution is of the form u(x,)=Xx)T() {4
- where X and T are respectively the functions of x and t alone Using the values of ) in (1), we get -
X T :
~ "o _'.u (say) o _ ...(52 _
where [l is a separation constant.
From equation (5), we can deduce that X /IX 0 8 o ..(6)
and T =uCT ' - (7)
using (2) and (4), we get X(0) = 0 and X(a) 0 ..(8)

Now, we want to solve (6) subject to the boundary condition. Hence, we have the following cases:

Case I: Let ,u =(). Then solution of (6) is gzven by X(x) Ax + B

Using (8) wegetA=B=0=X(x)=0 = u=0, whichdoes not satzsfy (3)

'_ Case IT: Let U= A, A #0.In this case, solution of (6) is given by X (x) = Ae™ + Be™

Uszng(8) weget A¥B=0and 0= Ae*+De™ = A=B=0 =X=0 =u=0
Thus, we reject this case also.

| Case III Let f1= =—A2, A#0.In this case, solution of (6) is given by X(x)=Acos Ax+Bsin /bc

Using (8), we get
- A=0and Acosﬂa+Bs1nﬂa 0
Let B #0, then smﬂa 0

=Aa= nﬂ'n 12,.

. ::>/’t——— n= 12 _

- a

N Therefore non zero sol_u_tzon of (6) is gzven

be (x) .n(nn' xJ |

e ) |

, .puttzng, ﬂ,:_. in (7) we get £ dT f”_zgdt:ﬂ:_cédt -

T a® T S

. whos'e sol_utzon is givenby T (t)=D, o Cr
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Thus, we have y_(x,1)= X, (x)T,(t)=E, sin[mje"c"z' | -(9)
: ‘ a
.. The more general solution of (1) is given by

u(x,1) = i u, (x,0) =i E, sin[”” "Je‘_c-f' I (10)

Puttzngt— 0 in (10) and using (3) wegetf(x) = Z E, sin (n?t x]
a

n=1

which is d  fourier sine series, thus the constants E_ are given by

I f(x) sm(

]dx n—123

Example 3. Solve the equation in regton 0<x<7,t20, Subject to conditions
(1) - Tremains finite as t — oo
(2) T=0ifx=0and 7 forallt.

. X 0'_<_.'xS£
(3 Atr=0T={ -2
' r-x L<x<n
2

—an’t

Solution: The solution of equation is T (x,t) = Z E , Sin nxe

n=1

T(x0)=Y E, sinnx. where - - =
. n=| ’ ) .

n ) 7r/2 .
E, =£IT'('x,0)sinﬁxd_x = 3|:.[ xsin nxdx + I(ﬂ ~ X)sin nxde B
7[0 2 0 . xl2

4sin(nm /2) ..
niz

2| (~xcosnx -sinnx)" : cosnx sinnx} | _.
==||———3 (“(75 x) R =
4 n s R

2

L 2
".T‘(X,t):iszsinnx .
) b/ Sy n ’ o




Lyt
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KEY POINTS

F yperbolzc if SZ 4RT > 0
Porabolzc zf SZ 4RT 0

- - .The number of real charactenstzc curves zn second order p. d e,

| Hyperbolzc = ' '

- Parabolzc = 1 : _
Ellzptzc = 0 (No real charactenstzc curve)

s from x:y 10 u, v wher
get roots of thzs equatzon Sa

_ _u. f,(x J’)andv-fz(x,y) th

_ For the canonzcal tran#ormatzons we change th
' u= u(x y) v = v(x ). To determzne u and v, sol :

K andl thensolve d—y + k =0.. (1) and—
solutzon of ( 1 ) and (2) respectzvely

> __.j.'fﬁe_nfeanonicalfom'.' (1) For hyperlx

A (3) For ellzptzc 2—+ :
aoc

R Laplace Equation: V'u=0"

> The solutzon of one dzmenszonal 'wave:' equatzon;
" Sy —cu "O--—oo<x<oot>0 'u(xO)— ' (%)

u(x t) —_ : [n(x+ Ct)+77(x:-'.a"l':ﬂ;'
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SOLVED QUESTIONS FROM PREVIOUS PAPERS

1 The partial differential equation y31)u —(x2 +])uyy =0, isnot - (GAT. E-1 998)
- (A) parabolic in {(x, y)_: x< O} (B) hyperbolié in {(x,'y) y> O}
(C) elliptic in R’. : ' (D) parabolic in {(x,_y)': x> 0}

Solution:- The given PDE is y U, — A+ 1) u, =0
HereS=0,R=}y’, T—-(x +1)
S—4RT=0+4" '+ 1) =4 ’+1)
wheny > 0=> 8 ~4RT> 0
= hyperbolic in {(x, y) : y > 0}
Option (B) is clearly true -~
In option (4),
parabolzc in{(x,y); x <0}
Ifx<0,8~4RT> 0my>0ana’SZ 4RT<0my<0

= not true :

In Option (C), it is clearly not true

Option (D} is similarly with option (4) not true.
Ans. is (4), (C) and (D). :

2. Transform the parabolic equations .
. (a) du, +12u,+%u , ~2u +u=0 '_ S C e -
®  eTu,+2eu, +eu, =0 |

to a canonical form with principal part U :
Solution:. o
@ n=ylxy)=3x-2y |
Any ¢( C, y) satz'sfj/ing ¢x;1/y —-¢y';Vx %0 Can be chosen as _thé 'second variable

. Choose §=¢(x,y)=.y
Au, +H12u, +9u, ~2u +u'=9u§§—3u +u

hence the canomcal form is . é_ 0.+ _I_u =0

-(b) the characterzstzcs is . ~e”’ = constant -
= W(x..y)_—-e___;".—,e_. L
_ 'Choose the other new variable as- S
C ey ' ¥y L2y
£= ¢(xy) et 2e M u, et
25

=e’ _u55.+__2u,, =e Uy +2u,.

“hence tﬁe ._c'_anonica.l‘ form_is. U + 26—2'51{?7. = 0

3 . Transform the elliptic gqugtions_ .

(@ uy + 2uy 1T, =0
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®) Fug+y'u,=0(x>0,y>0)
to canonical form with principal part g, -i-'u,l,l

Solution: '

(@a=1Lb=1c=17
dy. b+l |b2—ac|_

& a

Gives Zx—y'; 14 i4 which has the solutionz = (x—y) + idx = constant =

Thus setting E=@x,y)=x—y, n=y(x,y)=4x

We have u_ +2u"¥ +17u,, =16u, +16u,,

hence the canonical form u ety = 0 (Laplace 's equation)
() dy i2 wzth solution 7 10gx+1log y- constant

Gettmg £= ¢( )=log x andn =y (y)= logy : _
We have, x’u,_ +y *u o = u‘f‘f Uy, —Ug ~u'ﬂ = 0 as the required canonical form.

2 -

. ou _ L : o :
4. The diffusion equation — BL: 2 =u(x,t),u(0,t) =u(z,t) =0, u(x,0) =cosxsindx admits the

ox* _
solution . ‘ | : (GATE-2012)
—361 ) ’
(A) [sm 6x+e™ sin 4x] ‘ sin 6x]
. —201 : =361
. (C) [sm 3x +eb sm Sx] - (D) [sm 5x+ e sin. x]

Solutton (A) By puttmg the condztzons in the optzons gzven (A) is the only option that satzsf es. Therefore
. ~361 -

u(x,t) = [sin 6x + e " sin 4x]

3
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ASSIGNMENT - 5.1

NOTE: CHOOSE THE BEST OPTION

1. PDE of second order in canonical form is Rr+Ss+Tt+ f(x,y,z, p,g)=0, then S* ~4RT>0 represent

(4) hyperbolic . ' " (B) parabolic
(C) elliptic _ (D) straight line .
2. PDE, p=2% =% then
ook ay - . ' ,
3z ¥z . Pz %
A) r=—>-,5s =+ ) - (B r=—r-,8§=
' %z 9%z 0%z 2’z . y
Or=—-,s=—+ D) r= == .
© dy?’ ox? K ' (-) _ axa ox’
' o . 32u | 0%u
3. Classify the equation —— = ¢* ——
y the equation =27 = ¢* 3 |
(4) hyperbolic - (B) parabolic (0 elliplic (D) none of these
0%z 32
4. Classify the equation — +— =0 _
_ 2 o axr oyt i . .
(4) hyperbolic ~ (B) par_abolzc ' - (C) elliptic . (D) none of these
Fu_, du du
5. Classify the equation ————4 +4— : . .
B 1 o  oxdr oxt - .
(A) elliptic (B) hyperbolzc o (C) parabolic (D) none of thes.e :
6. Let ufx, t) be the solution ofu =y 0<x<1 t> 0 u(x 0) x(] x), ufx, 0) = 0 Then u(% -;-J is
w— @— o @— ,.._@— -

16

RN The solutzon of the Cauchy s problem u, (x Y=, (x y) 0 u(x 0) 0 u, (x, 0) xzsu (x y) =
'ﬂw~.e @w S @wwie?:@o

8 T he solutlon of the mztzal value problem u = 4u t> 0 ~60 < x <o, Satlsﬁ/mg the cona’ztzons u(x 0)—x c
t

{ _ '. '_ _ -<8'3> S | j
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auau - 2 ou

9. Letubea solutlon of the initial value problem?—é— = 0; u(x, 0) =x, (x 0) = 0. Then u(0 1)
X
equals to .
1
A1 B)-2 : ©2 @) 5

- 10. Letu =\ (x, t) be the solutzon to the initial value problem U, =u_for—o0 <x<oo t>0with
u(x, 0) =sin (x), u(x, 0) = cos (x) then the value of (T2, TU/6) is '
) V372 (B)1/2. @2 (D) 1

11. The variables f and 1 which reduce the dzﬁerentzal equatzon %;ﬁ_ Pos Ea;” =( to the canonical form are -

' 1
(4) 5 y t x77 y —%x (B _f=-)’+5x2,77='y—5x2
(©) f—y+)_c,_77—y—x o D) =y +x,n=y"~x
12. 4 3—25— 4 Ez—z + 2— = 16 log(x + 2y) has the solution |
. 'a)(z . axay ay )
(4) z f1(2y +x) +xf2(2y +x)+ ¢ log(x +2y)
(B) z = 2" log (x + 2y)
(C)z=2f,(2y +x) + 2 log (x + 2)
(D) none of these
. 2 2 - 2 .
.13 Classz]fy the equatzon 8__4 ou : B_u_ o
. “ot* axat ok T S
(4) ellzptzc- : (B) hyperbolzc _ - (C)parabolic . (D) none of these

4. Let u(x t) be the solution of the znztzal value problem ?3 '2‘ _g_'z‘ =0 u(x 0)=sin x; a_"(x 0)=1
o' ox _ T P '

Then u(ﬁ’ 7/ 2) equals - 7 :
wzi2 @) o1 1+xl2

15. Consider the wave ecjuatibn

o | |
‘ 4 2,0<x<7[t>0 Wlth u(Ot)—u(?t t)—O u(xO)—smxand %T—Oat t'=0 .

Then ( ]

@z (B)l B 1 N R
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NOTE: MORE THAN ONE OPTION MAY BE CORRECT

16.

18.

19.

20

- -21-_._

Which of the following represent hyperbolic?
9%z _dz o d’z_ 4,92
4 a3y ) . (B)-a_xz‘_‘c_ %
9%z 9%z o Y v R
©n 3 S DR
| o’z o9’z 9z _
For the PDE P 28)“_9})+ay2 =0

_ (A) general solution is Z—(Z}(y—x)+x@(y—x)
. (B) general solution is- Z2=(x+y)d(x— y)+¢2_(x—y)

(C) characteristic curves are orthogonal
12

(D) canonical form is a—f =0.
_ v

Conszder PDE ?- =c? 8_5 (c >0) such that u(x 0)=f{x) and u, (x, 0) g(x) then
1t

(4) -if g(x) = 0, then u(x:t)‘—‘-[f(x-ct)+f (x+ct)]

(B) if flx)=sinx, g(x)=0, then u(x t)—smxcos(ct)
(C) ifg(x)=1, then u(x,)=f(x, Y+t :
0%z

dudv

(D) canonical form of. PDE is =0

_'Conszder a general PDE of second order of the form Rr+Ss+Tt+ f= 0, where RS,T are continuous

. ﬁmctzons of x and y, then PDE at a point (x,y) is
(4) parabolic, if - 4RT=0 - . (B) hyperbolic, ifS-4RT<0 - . _
(C) elliptic, if 8- 4RT > 0 _ (D) hyperbolzc or elhptzc when Sz 4RT # 0
Conszder PDE —=x 5—2— then select the correct optzon/s S
: x.' y, ‘ R
'(A) PDE is ellzptzc for xX# 0 (B) PDE is parabolzc forx =0-

(C) characterzstzc equatzons are dy+x2dx 0 (D) characterzstzc eurves are y=ct 52_

.‘ Conszder the PDE f r=y ’t+ px—qy f select the correct optzons -
(4) PDE is hyperbolic for x #0 & y#* 0 :

<185> — - 1
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X
B) xy=C, and ;= » are the characteristic curves.

, x
(C) x*y=C, and — = C, are the characteristic curves -

N2

(D) canomcal form ofPDE is 4—% =1 where, u=xy, v=x/y

- dudv

22, Which of the followings is/are true?
(A) two dimensional Laplace’s equation is ellzpttc
(B) one dimensional wave equation is hyperbolic
(C) one dimensional heat equation is parabolic
3%z

uov

=0

(D) canonical form of one-dimensional wdve-équatz'ort is of the form

' 23. Which of the following is/are true?

o <o 2
(A) .canonical form of hyperbolic PDE is of the form 88 L - (D(u,'v 2,2,,2,)

uov

2
‘ (B) canonical form of parabolzc PDE is of the form -g—- =0u,v,2,2,,2,) -
v

(C) canonical form of elliptic PDE does not exist .

2 2
(D). canomcal form of ellzptzc PDE is aa Z gﬂ =9(@, 3,7, 24, 25)

24. Given, the equation u, + —u, = Lzu" where N and a are constant, then
: S x a ' '

(4)- the given partial differential equation is hyperbolic

(B) the given partial differential equation is parabolic

- N
(©) the canomcal Jorm is ,Ug,, (uf +u,)= 0

£+

B (D) ,UE”:-O is the-can-omcal form :

.25, G_iyen_,_ the equation (sin X, +(sin2x)u,, +(cos? Xu,, = x, then
~ <(4) -the equationis-parabolic - - * '
(B) the equatzon is hyperbolzc '
 (C) the canonical equatton is. (cos x)u +u¢
o ' sin ™' (e 5)) Ug

_ 1_22(7] 9

(D) 'thé canonical 'équ'ation is Li,m

16>
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w26, Given, y u, —2xyu, +Xxu, = . u, + ; u,, then

(4) the canonical equation is 4x* yzu,,,, =0

"(B) the canonical equation is u,, =0

(C) the solution is u=y* f(x* +y )+g(x +y 2)
(D) no solution exist '

27. Gi\?en. the equation (1 + xz)u' + (1'+'y2)1) +xu, +yu, = 0, then

(4) the discriminant of the glven partial differential equation is B> ~4AC= —-4(1+x )1+y*)<0
(B) the given partial differential equation is elliptic .

(©) th characteristi at'on are dy + 1+y
e characteristic equati ——=_1’
' 1 - dx 1+x

(D) canomcal equatzon for the gzven partial di ﬁ"erentzal equatzon is U +uﬁﬂ “0

28. Particular solution of differential equation r +s- 6t =y cos x cannot be
(4) y sinx + cos x . . (B)sinx +ycosx
(C) y sin x — cos x. (D)sinx—ycosx

29. Gi 3y _ 23
~29. Given, the wave equatzon gy =c P 2 .. then -
" (4) the general solution of the wave equatzon zs y(x,t) ¢(x + ct) + y/(x ct)
- (B)no general solution exist :
', (C)the D’Alembert’s solution of the given equatzon is y(x, t) f (x+ ct) + f (x— ct)
(D) no D’Alembert’s solution exist :

O




| DIFFERENTIAL EQUATIONS CHAPTER -5 |

G




DIFFERENTIAL EQUATIONS

A EVEIODG oo 63
Abel's Formula ................................................ 58 Equatlons Solvable for Precesenreineneienesnenessenes 12
Auxiliary Equation.........cc.c.eun. cereesnnsessransssenss 30 Equatlons Solvable FOF Xevvsernreeriasseeeessessenees 12
| | Equations Solvable fory...............ceevvveeevnne 12
-B _ o Exact Differential Equation.........cccccvvvvriene .42
Basic La_ws (of Differential Operators)............ 36. Existence and Uniqueness Theorem.............. 34
Boundary Value Problem............. ereereeneanens 173 Exponential Shift.............c....eevevmireeeoenessennnn. 36
C _ F. _
Canonical FOMMS .......c.cceerriiimemmnenresernsnnnnnn. 166 Formation of Partial Differential- Equations... 121
Cauchy’s Problem for Linear PDE................ 129" : Furrdamental Existence Theorem.................. .93
Cauchy’s Homogeneous Linear Equation...... 40 ' '
Characteristic Functions and | G
Characteristic VaIues """"" s o 101 -General Integral............ et e 122
Charpit's MEtOd ...svvessvvsnrsnscsns v 131 General Solutlon03
Clairaut's Equatron R 13 Green's FUNCtion .......cccccevvcceiiivnniicnennne 104
Clairaut's Equatlon (0] =) PRSP 135
Classrfrcatron of Integrals .......................... 122 H
g?c;r;?aé'g&:t?gﬁtseﬁ'i °f f"St .......................... 128 Heat Equation......... e 173 |
¢ omplementary Function (ODE) .................... 37 Homogeneous Eqiation.............ccccccoeeuenrneane. 04
Complementary Functu on (PDE)................'.... 1;37 - Hemogeneous Function .........icvereeneniinneens 04
C o mplete e P 122 Homogeneous Linear_Differential Equation.... 34 |
. Complete PHMILIVE .......c....turmusrssssssecrsnce 63 - ‘Hyperbolic System..........cevcevec. arnersesnneaes 163
'Cusp Locus...._ ........................... 63 |
. : - | -
D _- _-Imtral Value Problem ......... SRRSO < I
B R —— o ‘C'_;I‘jg:a('fr‘\’gf?f’.f’_fﬁf‘_’jﬁj‘_‘.’f’_‘_‘_{{'_‘j_____' ________ 29
;.-'thferentlal Equat|on.......................................—.0_1_'- N ‘Integratrng Factors ..... ...... 1, 9
" Differential Operators ------------------------------------- 35 Inverse Operator........... eeeeeeeseenn '.. ............... 37
_ Drscnmrnant..j...._.:;._.,.,_._;gi-,...._.....:-',...'-_---‘-a_-'-_-_-_----?_-_---- & T _lr_regular: Singular Pornts .......... 65
) eA.t‘..........;‘r._ ........................................................ 65 _ Lagrange’-s linear Equation.._.._.;..." ..... - L 25 .
e 163 Legendre’s Linear Equ.ati_on.._..,...._ ......... e 41

<&




‘ DIFFERENTLAL EQUATIONS " INDEX l

Linear P.D.E. of first Order ...........o.... 125 Q
Linear Combination .........cccecevevennrvivernrnnnnes 33 Quasi'Linear P.D.E.couen... erteetenee st rraeaanes 122
Linear Differential Equation ........ cereenneneaenas 02
‘Linear ODE of second Order with S R
Variable.Coeffioients ...... e ............ 48 Regular Singular POINS o 65
(I_:lgre]:tralr)];ﬁgcr)eerf}tglelr::tqsuatlons(ODE)wnth _________ 36 ~ Reduction to Normal Form 54
Linear Differential Equations(ODE) with
Variable Coefficients...........cocovvrnmrecevcencnnunee. 40 S _
Linearly Dependent .........c..couuvevceeversersreneen 33 ' SemiLinear P.DEE............. it 121
Linearly Inde_pe"ndent' -------------------------------------- 33 Singular Integral..........co...... ..... 123
Lipschitz Condition. ... T - Singular SOIUtiONS........c.... S~ -
. SOIULION. ceecve e sere e rieerecneee s e nsenees ...03
M ~ Solution of Heat Equation..,..... ...................... A77
.Method of Undetermined Coeffioients -------- .51 - Special lntegral.................- .......... ettt | 124 .
| ' Simultaneous Differential Equations............. 43
N o
NOdal LOCUS...c..eeeieeverrerceieeceerenee e renie e 63
Non Homogeneous Linear
Differential Equation ..........c..ceoceeriinrcenrennnae 35
Non Homogeneous Lmear P.D. E ................ 140
Non Linear P.D.E. ...oeeeversrveeersee 1227
* Non Linear P.D.E of first Order....-........_ ......... 127
-0
Order of Differential Equation..........o.............. 01
Ordinary Differential Equation ........................ 01
Orthogonal Trajectory.......... RSO 1 B
"~ Parabolic SYSIEM.....ooveveseenerereeieesssssnnnneinnenns 163 |
Partial leferentla| Equatlon ..... 121
' .Partlcular Integral ......... e 37
- Particular Solution ettt 03

Sturm-Liouville Boundary Value Problems....99

T

TAC LOCUS errvmreeeieeneee e eevessssnsneesnseannsns 63

Vv .

Variable Seperable Method.............. ereeennines 04
Variation of Parameters............occoeeeuesennn 48

w.

Wave Equation................. ereereereeseeeseinnnenen 173
LTI RO - B

RN




