
Explorations in Artif icial
Intell igence and Machine

Learning

A CRC Press FreeBook

https://www.crcpress.com/?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

Introduction (Prof. Roberto V. Zicari)

1 - Introduction to Machine Learning

2 - The Bayesian Approach to Machine
Learning

3 - A Revealing Introduction to Hidden
Markov Models

4 - Introduction to Reinforcement
Learning

5 - Deep Learning for Feature
Representation

6 - Neural Networks and Deep Learning

7 - AI-Completeness: The Problem
Domain of Super-intell igent Machines

READ THE LATEST ON
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

WITH THESE KEY TITLES

VISIT
WWW.CRCPRESS.COM/COMPUTER-SCIENCE-ENGINEERING

TO BROWSE OUR FULL RANGE OF TITLES

SAVE 20% AND GET FREE SHIPPING WITH DISCOUNT CODE ODB18

https://www.crcpress.com/Artificial-Intelligence-With-an-Introduction-to-Machine-Learning-Second/Neapolitan-Jiang/p/book/9781138502383?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Statistical-Reinforcement-Learning-Modern-Machine-Learning-Approaches/Sugiyama/p/book/9781439856895utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Feature-Engineering-for-Machine-Learning-and-Data-Analytics/Dong-Liu/p/book/9781138744387?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/A-First-Course-in-Machine-Learning-Second-Edition/Rogers-Girolami/p/book/9781498738484?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Machine-Learning-An-Algorithmic-Perspective-Second-Edition/Marsland/p/book/9781466583283?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Artificial-Superintelligence-A-Futuristic-Approach/Yampolskiy/p/book/9781482234435?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/computer-science-engineering?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

Introduction by Prof. Roberto V. Zicari
Frankfurt Big Data Lab, Goethe University Frankfurt

Editor of ODBMS.org

Artificial Intelligence (AI) seems the defining technology of our time.

Google has just re-branded its Google Research division to Google AI as the
company pursues developments in the field of artificial intelligence.

John McCarthy defines AI, back in 1956 like this: "AI involves machines that can
perform tasks that are characteristic of human intelligence".

This Free Book gives you a brief introduction to Artificial Intelligence, Machine
Learning, and Deep Learning.

But, what are the main differences between Artificial Intelligence, Machine
Learning, and Deep Learning?

To put it simply, Machine Learning is a way of achieving AI.

Arthur Samuel's definition of Machine Learning (ML) is from 1959: "Machine
Learning: Field of study that gives computers the ability to learn without being
explicitly programmed".

Typical problems solved by Machine Learning are:

- Regression.

- Classification.

- Segmentation.

- Network analysis.

What has changed dramatically since those pioneering days is the rise of Big
Data and of computing power, making it possible to analyze massive amounts
of data at scale!

AI needs Big Data and Machine Learning to scale.

Machine learning is a way of ?training? an algorithm so that it can learn.

Huge amounts of data are used to train algorithms and allowing algorithms to
"learn" and improve.

Deep Learning is a subset of Machine Learning and was inspired by the
structure and function of the brain.

http://www.odbms.org/

As an example, Artificial Neural Networks (ANNs), are algorithms that resemble
the biological structure of the brain, namely the interconnecting of many
neurons.

This Free Book gives a gentle introduction to Machine Learning, lists various ML
approaches such as decision tree learning, Hidden Markov Models,
reinforcement learning, Bayesian networks, as well as covering some aspects of
Deep Learning and how this relates to AI.

It should help you achieve an understanding of some of the advances in the
field of AI and Machine Learning while giving you an idea of the specific skills
you'll need to get started if you wish to work as a Machine Learning Engineer.

About the Editor:

Prof. Dott-Ing. Roberto V. Zicari is Full Professor of Database and Information
Systems at Frankfurt University. He was for more than 15 years a representative
of the OMG in Europe. Previously, Zicari served as associate professor at
Politecnico di Milano, Italy; Visiting scientist at IBM Almaden Research Center,
USA, and the University of California at Berkeley, USA; Visiting professor at EPFL
in Lausanne, Switzerland, at the National University of Mexico City, Mexico and
at the Copenhagen Business School.

About the ODBMS.org Portal:

Launched in 2005, ODBMS.ORG was created to serve faculty and students at
educational and research institutions as well as software developers in the
open source community or at commercial companies.

It is designed to meet the fast-growing need for resources focusing on Big Data,
Analytical data platforms, Cloud platforms, Graphs Databases, In-Memory
Databases, NewSQL Databases, NoSQL databases, Object databases,
Object-relational bindings, RDF Stores, Service platforms, and new approaches
to concurrency control

http://www.odbms.org/
http://www.odbms.org/

INTRODUCTION TO
MACHINE LEARNING

#

This chapter is excerpted from

Machine Learning: An Algorithmic Perspective, 2nd Ed.

by Stephen Marsland.

© 2018 Taylor & Francis Group. All rights reserved.

1

Learn more

https://www.crcpress.com/Machine-Learning-An-Algorithmic-Perspective-Second-Edition/Marsland/p/book/9781466583283?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Machine-Learning-An-Algorithmic-Perspective-Second-Edition/Marsland/p/book/9781466583283?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Machine-Learning-An-Algorithmic-Perspective-Second-Edition/Marsland/p/book/9781466583283?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

Suppose that you have a website selling software that you’ve written. You want to make the
website more personalised to the user, so you start to collect data about visitors, such as
their computer type/operating system, web browser, the country that they live in, and the
time of day they visited the website. You can get this data for any visitor, and for people
who actually buy something, you know what they bought, and how they paid for it (say
PayPal or a credit card). So, for each person who buys something from your website, you
have a list of data that looks like (computer type, web browser, country, time, software bought,
how paid). For instance, the first three pieces of data you collect could be:

• Macintosh OS X, Safari, UK, morning, SuperGame1, credit card

• Windows XP, Internet Explorer, USA, afternoon, SuperGame1, PayPal

• Windows Vista, Firefox, NZ, evening, SuperGame2, PayPal

Based on this data, you would like to be able to populate a ‘Things You Might Be Inter-
ested In’ box within the webpage, so that it shows software that might be relevant to each
visitor, based on the data that you can access while the webpage loads, i.e., computer and
OS, country, and the time of day. Your hope is that as more people visit your website and
you store more data, you will be able to identify trends, such as that Macintosh users from
New Zealand (NZ) love your first game, while Firefox users, who are often more knowledge-
able about computers, want your automatic download application and virus/internet worm
detector, etc.

Once you have collected a large set of such data, you start to examine it and work out
what you can do with it. The problem you have is one of prediction: given the data you
have, predict what the next person will buy, and the reason that you think that it might
work is that people who seem to be similar often act similarly. So how can you actually go
about solving the problem? This is one of the fundamental problems that this book tries
to solve. It is an example of what is called supervised learning, because we know what the
right answers are for some examples (the software that was actually bought) so we can give
the learner some examples where we know the right answer. We will talk about supervised
learning more in Section 1.3.

1.1 IF DATA HAD MASS, THE EARTH WOULD BE A BLACK HOLE
Around the world, computers capture and store terabytes of data every day. Even leaving
aside your collection of MP3s and holiday photographs, there are computers belonging
to shops, banks, hospitals, scientific laboratories, and many more that are storing data
incessantly. For example, banks are building up pictures of how people spend their money,

hospitals are recording what treatments patients are on for which ailments (and how they
respond to them), and engine monitoring systems in cars are recording information about
the engine in order to detect when it might fail. The challenge is to do something useful with
this data: if the bank’s computers can learn about spending patterns, can they detect credit
card fraud quickly? If hospitals share data, then can treatments that don’t work as well as
expected be identified quickly? Can an intelligent car give you early warning of problems so
that you don’t end up stranded in the worst part of town? These are some of the questions
that machine learning methods can be used to answer.

Science has also taken advantage of the ability of computers to store massive amounts of
data. Biology has led the way, with the ability to measure gene expression in DNA microar-
rays producing immense datasets, along with protein transcription data and phylogenetic
trees relating species to each other. However, other sciences have not been slow to follow.
Astronomy now uses digital telescopes, so that each night the world’s observatories are stor-
ing incredibly high-resolution images of the night sky; around a terabyte per night. Equally,
medical science stores the outcomes of medical tests from measurements as diverse as mag-
netic resonance imaging (MRI) scans and simple blood tests. The explosion in stored data
is well known; the challenge is to do something useful with that data. The Large Hadron
Collider at CERN apparently produces about 25 petabytes of data per year.

The size and complexity of these datasets mean that humans are unable to extract
useful information from them. Even the way that the data is stored works against us. Given
a file full of numbers, our minds generally turn away from looking at them for long. Take
some of the same data and plot it in a graph and we can do something. Compare the
table and graph shown in Figure 1.1: the graph is rather easier to look at and deal with.
Unfortunately, our three-dimensional world doesn’t let us do much with data in higher
dimensions, and even the simple webpage data that we collected above has four different
features, so if we plotted it with one dimension for each feature we’d need four dimensions!
There are two things that we can do with this: reduce the number of dimensions (until
our simple brains can deal with the problem) or use computers, which don’t know that
high-dimensional problems are difficult, and don’t get bored with looking at massive data
files of numbers. The two pictures in Figure 1.2 demonstrate one problem with reducing the
number of dimensions (more technically, projecting it into fewer dimensions), which is that
it can hide useful information and make things look rather strange. This is one reason why
machine learning is becoming so popular — the problems of our human limitations go away
if we can make computers do the dirty work for us. There is one other thing that can help
if the number of dimensions is not too much larger than three, which is to use glyphs that
use other representations, such as size or colour of the datapoints to represent information
about some other dimension, but this does not help if the dataset has 100 dimensions in it.

In fact, you have probably interacted with machine learning algorithms at some time.
They are used in many of the software programs that we use, such as Microsoft’s infamous
paperclip in Office (maybe not the most positive example), spam filters, voice recognition
software, and lots of computer games. They are also part of automatic number-plate recog-
nition systems for petrol station security cameras and toll roads, are used in some anti-skid
braking and vehicle stability systems, and they are even part of the set of algorithms that
decide whether a bank will give you a loan.

The attention-grabbing title to this section would only be true if data was very heavy.
It is very hard to work out how much data there actually is in all of the world’s computers,
but it was estimated in 2012 that was about 2.8 zettabytes (2.8×1021 bytes), up from about
160 exabytes (160× 1018 bytes) of data that were created and stored in 2006, and projected
to reach 40 zettabytes by 2020. However, to make a black hole the size of the earth would

x1 x2 Class
0.1 1 1
0.15 0.2 2
0.48 0.6 3
0.1 0.6 1
0.2 0.15 2
0.5 0.55 3
0.2 1 1
0.3 0.25 2
0.52 0.6 3
0.3 0.6 1
0.4 0.2 2
0.52 0.5 3

FIGURE 1.1 A set of datapoints as numerical values and as points plotted on a graph. It
is easier for us to visualise data than to see it in a table, but if the data has more than
three dimensions, we can’t view it all at once.

FIGURE 1.2 Two views of the same two wind turbines (Te Apiti wind farm, Ashhurst, New
Zealand) taken at an angle of about 30◦ to each other. The two-dimensional projections
of three-dimensional objects hides information.

take a mass of about 40× 1035 grams. So data would have to be so heavy that you couldn’t
possibly lift a data pen, let alone a computer before the section title were true! However,
and more interestingly for machine learning, the same report that estimated the figure of
2.8 zettabytes (‘Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East’
by John Gantz and David Reinsel and sponsored by EMC Corporation) also reported that
while a quarter of this data could produce useful information, only around 3% of it was
tagged, and less that 0.5% of it was actually used for analysis!

1.2 LEARNING
Before we delve too much further into the topic, let’s step back and think about what
learning actually is. The key concept that we will need to think about for our machines is
learning from data, since data is what we have; terabytes of it, in some cases. However, it
isn’t too large a step to put that into human behavioural terms, and talk about learning from
experience. Hopefully, we all agree that humans and other animals can display behaviours
that we label as intelligent by learning from experience. Learning is what gives us flexibility
in our life; the fact that we can adjust and adapt to new circumstances, and learn new
tricks, no matter how old a dog we are! The important parts of animal learning for this
book are remembering, adapting, and generalising: recognising that last time we were in
this situation (saw this data) we tried out some particular action (gave this output) and it
worked (was correct), so we’ll try it again, or it didn’t work, so we’ll try something different.
The last word, generalising, is about recognising similarity between different situations, so
that things that applied in one place can be used in another. This is what makes learning
useful, because we can use our knowledge in lots of different places.

Of course, there are plenty of other bits to intelligence, such as reasoning, and logical
deduction, but we won’t worry too much about those. We are interested in the most fun-
damental parts of intelligence—learning and adapting—and how we can model them in a
computer. There has also been a lot of interest in making computers reason and deduce
facts. This was the basis of most early Artificial Intelligence, and is sometimes known as sym-
bolic processing because the computer manipulates symbols that reflect the environment. In
contrast, machine learning methods are sometimes called subsymbolic because no symbols
or symbolic manipulation are involved.

1.2.1 Machine Learning
Machine learning, then, is about making computers modify or adapt their actions (whether
these actions are making predictions, or controlling a robot) so that these actions get more
accurate, where accuracy is measured by how well the chosen actions reflect the correct
ones. Imagine that you are playing Scrabble (or some other game) against a computer. You
might beat it every time in the beginning, but after lots of games it starts beating you, until
finally you never win. Either you are getting worse, or the computer is learning how to win
at Scrabble. Having learnt to beat you, it can go on and use the same strategies against
other players, so that it doesn’t start from scratch with each new player; this is a form of
generalisation.

It is only over the past decade or so that the inherent multi-disciplinarity of machine
learning has been recognised. It merges ideas from neuroscience and biology, statistics,
mathematics, and physics, to make computers learn. There is a fantastic existence proof
that learning is possible, which is the bag of water and electricity (together with a few trace
chemicals) sitting between your ears. In Section 3.1 we will have a brief peek inside and see

if there is anything we can borrow/steal in order to make machine learning algorithms. It
turns out that there is, and neural networks have grown from exactly this, although even
their own father wouldn’t recognise them now, after the developments that have seen them
reinterpreted as statistical learners. Another thing that has driven the change in direction of
machine learning research is data mining, which looks at the extraction of useful information
from massive datasets (by men with computers and pocket protectors rather than pickaxes
and hard hats), and which requires efficient algorithms, putting more of the emphasis back
onto computer science.

The computational complexity of the machine learning methods will also be of interest to
us since what we are producing is algorithms. It is particularly important because we might
want to use some of the methods on very large datasets, so algorithms that have high-
degree polynomial complexity in the size of the dataset (or worse) will be a problem. The
complexity is often broken into two parts: the complexity of training, and the complexity
of applying the trained algorithm. Training does not happen very often, and is not usually
time critical, so it can take longer. However, we often want a decision about a test point
quickly, and there are potentially lots of test points when an algorithm is in use, so this
needs to have low computational cost.

1.3 TYPES OF MACHINE LEARNING
In the example that started the chapter, your webpage, the aim was to predict what software
a visitor to the website might buy based on information that you can collect. There are a
couple of interesting things in there. The first is the data. It might be useful to know what
software visitors have bought before, and how old they are. However, it is not possible to
get that information from their web browser (even cookies can’t tell you how old somebody
is), so you can’t use that information. Picking the variables that you want to use (which are
called features in the jargon) is a very important part of finding good solutions to problems,
and something that we will talk about in several places in the book. Equally, choosing how
to process the data can be important. This can be seen in the example in the time of access.
Your computer can store this down to the nearest millisecond, but that isn’t very useful,
since you would like to spot similar patterns between users. For this reason, in the example
above I chose to quantise it down to one of the set morning, afternoon, evening, night;
obviously I need to ensure that these times are correct for their time zones, too.

We are going to loosely define learning as meaning getting better at some task through
practice. This leads to a couple of vital questions: how does the computer know whether it
is getting better or not, and how does it know how to improve? There are several different
possible answers to these questions, and they produce different types of machine learning.
For now we will consider the question of knowing whether or not the machine is learning.
We can tell the algorithm the correct answer for a problem so that it gets it right next time
(which is what would happen in the webpage example, since we know what software the
person bought). We hope that we only have to tell it a few right answers and then it can
‘work out’ how to get the correct answers for other problems (generalise). Alternatively, we
can tell it whether or not the answer was correct, but not how to find the correct answer,
so that it has to search for the right answer. A variant of this is that we give a score for the
answer, according to how correct it is, rather than just a ‘right or wrong’ response. Finally,
we might not have any correct answers; we just want the algorithm to find inputs that have
something in common.

These different answers to the question provide a useful way to classify the different
algorithms that we will be talking about:

Supervised learning A training set of examples with the correct responses (targets) is
provided and, based on this training set, the algorithm generalises to respond correctly
to all possible inputs. This is also called learning from exemplars.

Unsupervised learning Correct responses are not provided, but instead the algorithm
tries to identify similarities between the inputs so that inputs that have something in
common are categorised together. The statistical approach to unsupervised learning is
known as density estimation.

Reinforcement learning This is somewhere between supervised and unsupervised learn-
ing. The algorithm gets told when the answer is wrong, but does not get told how to
correct it. It has to explore and try out different possibilities until it works out how to
get the answer right. Reinforcement learning is sometime called learning with a critic
because of this monitor that scores the answer, but does not suggest improvements.

Evolutionary learning Biological evolution can be seen as a learning process: biological
organisms adapt to improve their survival rates and chance of having offspring in their
environment. We’ll look at how we can model this in a computer, using an idea of
fitness, which corresponds to a score for how good the current solution is.

The most common type of learning is supervised learning, and it is going to be the focus
of the next few chapters. So, before we get started, we’ll have a look at what it is, and the
kinds of problems that can be solved using it.

1.4 SUPERVISED LEARNING
As has already been suggested, the webpage example is a typical problem for supervised
learning. There is a set of data (the training data) that consists of a set of input data that
has target data, which is the answer that the algorithm should produce, attached. This is
usually written as a set of data (xi, ti), where the inputs are xi, the targets are ti, and
the i index suggests that we have lots of pieces of data, indexed by i running from 1 to
some upper limit N . Note that the inputs and targets are written in boldface font to signify
vectors, since each piece of data has values for several different features; the notation used
in the book is described in more detail in Section 2.1. If we had examples of every possible
piece of input data, then we could put them together into a big look-up table, and there
would be no need for machine learning at all. The thing that makes machine learning better
than that is generalisation: the algorithm should produce sensible outputs for inputs that
weren’t encountered during learning. This also has the result that the algorithm can deal
with noise, which is small inaccuracies in the data that are inherent in measuring any real
world process. It is hard to specify rigorously what generalisation means, but let’s see if an
example helps.

1.4.1 Regression
Suppose that I gave you the following datapoints and asked you to tell me the value of the
output (which we will call y since it is not a target datapoint) when x = 0.44 (here, x, t,
and y are not written in boldface font since they are scalars, as opposed to vectors).

FIGURE 1.3 Top left: A few datapoints from a sample problem. Bottom left: Two possible
ways to predict the values between the known datapoints: connecting the points with
straight lines, or using a cubic approximation (which in this case misses all of the points).
Top and bottom right: Two more complex approximators (see the text for details) that
pass through the points, although the lower one is rather better than the top.

x t
0 0

0.5236 1.5
1.0472 -2.5981
1.5708 3.0
2.0944 -2.5981
2.6180 1.5
3.1416 0

Since the value x = 0.44 isn’t in the examples given, you need to find some way to predict
what value it has. You assume that the values come from some sort of function, and try to
find out what the function is. Then you’ll be able to give the output value y for any given
value of x. This is known as a regression problem in statistics: fit a mathematical function
describing a curve, so that the curve passes as close as possible to all of the datapoints.
It is generally a problem of function approximation or interpolation, working out the value
between values that we know.

The problem is how to work out what function to choose. Have a look at Figure 1.3.
The top-left plot shows a plot of the 7 values of x and y in the table, while the other
plots show different attempts to fit a curve through the datapoints. The bottom-left plot
shows two possible answers found by using straight lines to connect up the points, and
also what happens if we try to use a cubic function (something that can be written as
ax3 + bx2 + cx+ d = 0). The top-right plot shows what happens when we try to match the
function using a different polynomial, this time of the form ax10 + bx9 + . . .+ jx+ k = 0,

and finally the bottom-right plot shows the function y = 3 sin(5x). Which of these functions
would you choose?

The straight-line approximation probably isn’t what we want, since it doesn’t tell us
much about the data. However, the cubic plot on the same set of axes is terrible: it doesn’t
get anywhere near the datapoints. What about the plot on the top-right? It looks like it
goes through all of the datapoints exactly, but it is very wiggly (look at the value on the
y-axis, which goes up to 100 instead of around three, as in the other figures). In fact, the
data were made with the sine function plotted on the bottom-right, so that is the correct
answer in this case, but the algorithm doesn’t know that, and to it the two solutions on the
right both look equally good. The only way we can tell which solution is better is to test
how well they generalise. We pick a value that is between our datapoints, use our curves
to predict its value, and see which is better. This will tell us that the bottom-right curve is
better in the example.

So one thing that our machine learning algorithms can do is interpolate between dat-
apoints. This might not seem to be intelligent behaviour, or even very difficult in two
dimensions, but it is rather harder in higher dimensional spaces. The same thing is true
of the other thing that our algorithms will do, which is classification—grouping examples
into different classes—which is discussed next. However, the algorithms are learning by our
definition if they adapt so that their performance improves, and it is surprising how often
real problems that we want to solve can be reduced to classification or regression problems.

1.4.2 Classification
The classification problem consists of taking input vectors and deciding which of N classes
they belong to, based on training from exemplars of each class. The most important point
about the classification problem is that it is discrete — each example belongs to precisely one
class, and the set of classes covers the whole possible output space. These two constraints
are not necessarily realistic; sometimes examples might belong partially to two different
classes. There are fuzzy classifiers that try to solve this problem, but we won’t be talking
about them in this book. In addition, there are many places where we might not be able
to categorise every possible input. For example, consider a vending machine, where we use
a neural network to learn to recognise all the different coins. We train the classifier to
recognise all New Zealand coins, but what if a British coin is put into the machine? In that
case, the classifier will identify it as the New Zealand coin that is closest to it in appearance,
but this is not really what is wanted: rather, the classifier should identify that it is not one
of the coins it was trained on. This is called novelty detection. For now we’ll assume that we
will not receive inputs that we cannot classify accurately.

Let’s consider how to set up a coin classifier. When the coin is pushed into the slot,
the machine takes a few measurements of it. These could include the diameter, the weight,
and possibly the shape, and are the features that will generate our input vector. In this
case, our input vector will have three elements, each of which will be a number showing
the measurement of that feature (choosing a number to represent the shape would involve
an encoding, for example that 1=circle, 2=hexagon, etc.). Of course, there are many other
features that we could measure. If our vending machine included an atomic absorption
spectroscope, then we could estimate the density of the material and its composition, or
if it had a camera, we could take a photograph of the coin and feed that image into the
classifier. The question of which features to choose is not always an easy one. We don’t want
to use too many inputs, because that will make the training of the classifier take longer (and
also, as the number of input dimensions grows, the number of datapoints required increases

FIGURE 1.4 The New Zealand coins.

FIGURE 1.5 Left: A set of straight line decision boundaries for a classification problem.
Right: An alternative set of decision boundaries that separate the plusses from the light-
ening strikes better, but requires a line that isn’t straight.

faster; this is known as the curse of dimensionality and will be discussed in Section 2.1.2), but
we need to make sure that we can reliably separate the classes based on those features. For
example, if we tried to separate coins based only on colour, we wouldn’t get very far, because
the 20 ¢ and 50 ¢ coins are both silver and the $1 and $2 coins both bronze. However, if
we use colour and diameter, we can do a pretty good job of the coin classification problem
for NZ coins. There are some features that are entirely useless. For example, knowing that
the coin is circular doesn’t tell us anything about NZ coins, which are all circular (see
Figure 1.4). In other countries, though, it could be very useful.

The methods of performing classification that we will see during this book are very
different in the ways that they learn about the solution; in essence they aim to do the same
thing: find decision boundaries that can be used to separate out the different classes. Given
the features that are used as inputs to the classifier, we need to identify some values of those
features that will enable us to decide which class the current input is in. Figure 1.5 shows a
set of 2D inputs with three different classes shown, and two different decision boundaries;
on the left they are straight lines, and are therefore simple, but don’t categorise as well as
the non-linear curve on the right.

Now that we have seen these two types of problem, let’s take a look at the whole process
of machine learning from the practitioner’s viewpoint.

1.5 THE MACHINE LEARNING PROCESS
This section assumes that you have some problem that you are interested in using machine
learning on, such as the coin classification that was described previously. It briefly examines
the process by which machine learning algorithms can be selected, applied, and evaluated
for the problem.

Data Collection and Preparation Throughout this book we will be in the fortunate
position of having datasets readily available for downloading and using to test the
algorithms. This is, of course, less commonly the case when the desire is to learn
about some new problem, when either the data has to be collected from scratch, or
at the very least, assembled and prepared. In fact, if the problem is completely new,
so that appropriate data can be chosen, then this process should be merged with the
next step of feature selection, so that only the required data is collected. This can
typically be done by assembling a reasonably small dataset with all of the features
that you believe might be useful, and experimenting with it before choosing the best
features and collecting and analysing the full dataset.
Often the difficulty is that there is a large amount of data that might be relevant,
but it is hard to collect, either because it requires many measurements to be taken,
or because they are in a variety of places and formats, and merging it appropriately
is difficult, as is ensuring that it is clean; that is, it does not have significant errors,
missing data, etc.
For supervised learning, target data is also needed, which can require the involvement
of experts in the relevant field and significant investments of time.
Finally, the quantity of data needs to be considered. Machine learning algorithms need
significant amounts of data, preferably without too much noise, but with increased
dataset size comes increased computational costs, and the sweet spot at which there
is enough data without excessive computational overhead is generally impossible to
predict.

Feature Selection An example of this part of the process was given in Section 1.4.2 when
we looked at possible features that might be useful for coin recognition. It consists of
identifying the features that are most useful for the problem under examination. This
invariably requires prior knowledge of the problem and the data; our common sense
was used in the coins example above to identify some potentially useful features and
to exclude others.
As well as the identification of features that are useful for the learner, it is also
necessary that the features can be collected without significant expense or time, and
that they are robust to noise and other corruption of the data that may arise in the
collection process.

Algorithm Choice Given the dataset, the choice of an appropriate algorithm (or algo-
rithms) is what this book should be able to prepare you for, in that the knowledge
of the underlying principles of each algorithm and examples of their use is precisely
what is required for this.

Parameter and Model Selection For many of the algorithms there are parameters that
have to be set manually, or that require experimentation to identify appropriate values.
These requirements are discussed at the appropriate points of the book.

Training Given the dataset, algorithm, and parameters, training should be simply the use
of computational resources in order to build a model of the data in order to predict
the outputs on new data.

Evaluation Before a system can be deployed it needs to be tested and evaluated for ac-
curacy on data that it was not trained on. This can often include a comparison with
human experts in the field, and the selection of appropriate metrics for this compari-
son.

1.6 A NOTE ON PROGRAMMING
This book is aimed at helping you understand and use machine learning algorithms, and that
means writing computer programs. The book contains algorithms in both pseudocode, and
as fragments of Python programs based on NumPy (Appendix A provides an introduction
to both Python and NumPy for the beginner), and the website provides complete working
code for all of the algorithms.

Understanding how to use machine learning algorithms is fine in theory, but without
testing the programs on data, and seeing what the parameters do, you won’t get the complete
picture. In general, writing the code for yourself is always the best way to check that you
understand what the algorithm is doing, and finding the unexpected details.

Unfortunately, debugging machine learning code is even harder than general debugging –
it is quite easy to make a program that compiles and runs, but just doesn’t seem to actually
learn. In that case, you need to start testing the program carefully. However, you can quickly
get frustrated with the fact that, because so many of the algorithms are stochastic, the results
are not repeatable anyway. This can be temporarily avoided by setting the random number
seed, which has the effect of making the random number generator follow the same pattern
each time, as can be seen in the following example of running code at the Python command
line (marked as >>>), where the 10 numbers that appear after the seed is set are the same
in both cases, and would carry on the same forever (there is more about the pseudo-random
numbers that computers generate in Section 15.1.1):

>>> import numpy as np
>>> np.random.seed(4)
>>> np.random.rand(10)
array([0.96702984, 0.54723225, 0.97268436, 0.71481599, 0.69772882,

0.2160895 , 0.97627445, 0.00623026, 0.25298236, 0.43479153])
>>> np.random.rand(10)
array([0.77938292, 0.19768507, 0.86299324, 0.98340068, 0.16384224,

0.59733394, 0.0089861 , 0.38657128, 0.04416006, 0.95665297])
>>> np.random.seed(4)
>>> np.random.rand(10)
array([0.96702984, 0.54723225, 0.97268436, 0.71481599, 0.69772882,

0.2160895 , 0.97627445, 0.00623026, 0.25298236, 0.43479153])

This way, on each run the randomness will be avoided, and the parameters will all be
the same.

Another thing that is useful is the use of 2D toy datasets, where you can plot things,
since you can see whether or not something unexpected is going on. In addition, these

datasets can be made very simple, such as separable by a straight line (we’ll see more of
this in Chapter 3) so that you can see whether it deals with simple cases, at least.

Another way to ‘cheat’ temporarily is to include the target as one of the inputs, so that
the algorithm really has no excuse for getting the wrong answer.

Finally, having a reference program that works and that you can compare is also useful,
and I hope that the code on the book website will help people get out of unexpected traps
and strange errors.

1.7 A ROADMAP TO THE BOOK
As far as possible, this book works from general to specific and simple to complex, while
keeping related concepts in nearby chapters. Given the focus on algorithms and encouraging
the use of experimentation rather than starting from the underlying statistical concepts,
the book starts with some older, and reasonably simple algorithms, which are examples of
supervised learning.

Chapter 2 follows up many of the concepts in this introductory chapter in order to
highlight some of the overarching ideas of machine learning and thus the data requirements
of it, as well as providing some material on basic probability and statistics that will not be
required by all readers, but is included for completeness.

Chapters 3, 4, and 5 follow the main historical sweep of supervised learning using neural
networks, as well as introducing concepts such as interpolation. They are followed by chap-
ters on dimensionality reduction (Chapter 6) and the use of probabilistic methods like the
EM algorithm and nearest neighbour methods (Chapter 7). The idea of optimal decision
boundaries and kernel methods are introduced in Chapter 8, which focuses on the Support
Vector Machine and related algorithms.

One of the underlying methods for many of the preceding algorithms, optimisation, is
surveyed briefly in Chapter 9, which then returns to some of the material in Chapter 4 to
consider the Multi-layer Perceptron purely from the point of view of optimisation. The chap-
ter then continues by considering search as the discrete analogue of optimisation. This leads
naturally into evolutionary learning including genetic algorithms (Chapter 10), reinforce-
ment learning (Chapter 11), and tree-based learners (Chapter 12) which are search-based
methods. Methods to combine the predictions of many learners, which are often trees, are
described in Chapter 13.

The important topic of unsupervised learning is considered in Chapter 14, which fo-
cuses on the Self-Organising Feature Map; many unsupervised learning algorithms are also
presented in Chapter 6.

The remaining four chapters primarily describe more modern, and statistically based,
approaches to machine learning, although not all of the algorithms are completely new:
following an introduction to Markov Chain Monte Carlo techniques in Chapter 15 the area
of Graphical Models is surveyed, with comparatively old algorithms such as the Hidden
Markov Model and Kalman Filter being included along with particle filters and Bayesian
networks. The ideas behind Deep Belief Networks are given in Chapter 17, starting from
the historical idea of symmetric networks with the Hopfield network. An introduction to
Gaussian Processes is given in Chapter 18.

Finally, an introduction to Python and NumPy is given in Appendix A, which should be
sufficient to enable readers to follow the code descriptions provided in the book and use the
code supplied on the book website, assuming that they have some programming experience
in any programming language.

I would suggest that Chapters 2 to 4 contain enough introductory material to be essential

for anybody looking for an introduction to machine learning ideas. For an introductory one
semester course I would follow them with Chapters 6 to 8, and then use the second half of
Chapter 9 to introduce Chapters 10 and 11, and then Chapter 14.

A more advanced course would certainly take in Chapters 13 and 15 to 18 along with
the optimisation material in Chapter 9.

I have attempted to make the material reasonably self-contained, with the relevant
mathematical ideas either included in the text at the appropriate point, or with a reference
to where that material is covered. This means that the reader with some prior knowledge
will certainly find some parts can be safely ignored or skimmed without loss.

FURTHER READING
For a different (more statistical and example-based) take on machine learning, look at:

• Chapter 1 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning, 2nd edition, Springer, Berlin, Germany, 2008.

Other texts that provide alternative views of similar material include:

• Chapter 1 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, 2nd
edition, Wiley-Interscience, New York, USA, 2001.

• Chapter 1 of S. Haykin. Neural Networks: A Comprehensive Foundation, 2nd edition,
Prentice-Hall, New Jersey, USA, 1999.

THE BAYESIAN APPROACH
TO MACHINE LEARNING

#

This chapter is excerpted from

A First Course in Machine Learning, Second Edition

by Simon Rogers and Mark Girolami

© 2018 Taylor & Francis Group. All rights reserved.

2

Learn more

https://www.crcpress.com/A-First-Course-in-Machine-Learning-Second-Edition/Rogers-Girolami/p/book/9781498738484?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/A-First-Course-in-Machine-Learning-Second-Edition/Rogers-Girolami/p/book/9781498738484?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/A-First-Course-in-Machine-Learning-Second-Edition/Rogers-Girolami/p/book/9781498738484?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

In the previous chapter, we saw how explicitly adding
noise to our model allowed us to obtain more than just
point predictions. In particular, we were able to
quantify the uncertainty present in our parameter
estimates and our subsequent predictions. Once
content with the idea that there will be uncertainty in
our parameter estimates, it is a small step towards
considering our parameters themselves as random
variables. Bayesian methods are becoming increasingly
important within Machine Learning and we will devote
the next two chapters to providing an introduction to
an area that many people find challenging. In this
chapter, we will cover some of the fundamental ideas of
Bayesian statistics through two examples.
Unfortunately, the calculations required to perform
Bayesian inference are often not analytically tractable.
In Chapter 4 we will introduce three approximation
methods that are popular in the Machine Learning
community.

3.1 A COIN GAME

Imagine you are walking around a fairground and come across a stall where cus-
tomers are taking part in a coin tossing game. The stall owner tosses a coin ten times
for each customer. If the coin lands heads on six or fewer occasions, the customer
wins back their £1 stake plus an additional £1. Seven or more and the stall owner
keeps their money. The binomial distribution (described in Section 2.3.2) describes
the probability of a certain number of successes (heads) in N binary events. The
probability of y heads from N tosses where each toss lands heads with probability
r is given by

P (Y = y) =

(
N
y

)
ry(1− r)N−y. (3.1)

You assume that the coin is fair and therefore set r = 0.5. For N = 10 tosses,
the probability distribution function can be seen in Figure 3.1, where the bars corre-
sponding to y ≤ 6 have been shaded. Using Equation 3.1, it is possible to calculate
the probability of winning the game, i.e. the probability that Y is less than or equal

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

y

p
(y

)

FIGURE 3.1 The binomial density function (Equation 3.1) when N = 10

and r = 0.5.

to 6, P (Y ≤ 6):

P (Y ≤ 6) = 1− P (Y > 6) = 1− [P (Y = 7) + P (Y = 8)

+P (Y = 9) + P (Y = 10)]

= 1− [0.1172 + 0.0439 + 0.0098 + 0.0010]

= 0.8281.

This seems like a pretty good game – you’ll double your money with probability
0.8281. It is also possible to compute the expected return from playing the game.
The expected value of a function f(X) of a random variable X is computed as
(introduced in Section 2.2.8)

EP (x) {f(X)} =
∑
x

f(x)P (x),

where the summation is over all possible values that the random variable can take.
Let X be the random variable that takes a value of 1 if we win and a value of 0 if
we lose: P (X = 1) = P (Y ≤ 6). If we win, (X = 1), we get a return of £2 (our
original stake plus an extra £1) so f(1) = 2. If we lose, we get a return of nothing
so f(0) = 0. Hence our expected return is

f(1)P (X = 1) + f(0)P (X = 0) = 2× P (Y ≤ 6) + 0× P (Y > 6) = 1.6562.

Given that it costs £1 to play, you win, on average, 1.6562−1 or approximately 66p
per game. If you played 100 times, you’d expect to walk away with a profit of £65.62.

Given these odds of success, it seems sensible to play. However, whilst waiting you
notice that the stall owner looks reasonably wealthy and very few customers seem to

be winning. Perhaps the assumptions underlying the calculations are wrong. These
assumptions are

1. The number of heads can be modelled as a random variable with a binomial
distribution, and the probability of a head on any particular toss is r.

2. The coin is fair – the probability of heads is the same as the probability of
tails, r = 0.5.

It seems hard to reject the binomial distribution – events are taking place with only
two possible outcomes and the tosses do seem to be independent. This leaves r, the
probability that the coin lands heads. Our assumption was that the coin was fair
– the probability of heads was equal to the probability of tails. Maybe this is not
the case? To investigate this, we can treat r as a parameter (like w and σ2 in the
previous chapter) and fit it to some data.

3.1.1 Counting heads

There are three people in the queue to play. The first one plays and gets the following
sequence of heads and tails:

H,T,H,H,H,H,H,H,H,H,

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y

p
(y

)

FIGURE 3.2 The binomial density function (Equation 3.1) when N = 10

and r = 0.9.

nine heads and one tail. It is possible to compute the maximum likelihood value of
r as follows. The likelihood is given by the binomial distribution:

P (Y = y|r,N) =

(
N
9

)
ry(1− r)N−y. (3.2)

Taking the natural logarithm gives

L = logP (Y = y|r,N) = log

(
N
9

)
+ y log r + (N − y) log(1− r).

As in Chapter 2, we can differentiate this expression, equate to zero and solve for
the maximum likelihood estimate of the parameter:

∂L

∂r
=

y

r
− N − y

1− r = 0

y(1− r) = r(N − y)

y = rN

r =
y

N
.

Substituting y = 9 and N = 10 gives r = 0.9. The corresponding distribution
function is shown in Figure 3.2 and the recalculated probability of winning is P (Y ≤
6) = 0.0128. This is much lower than that for r = 0.5. The expected return is now

2× P (Y ≤ 6) + 0× P (Y > 6) = 0.0256.

Given that it costs £1 to play, we expect to make 0.0256− 1 = −0.9744 per game –
a loss of approximately 97p. P (Y ≤ 6) = 0.0128 suggests that only about 1 person
in every 100 should win, but this does not seem to be reflected in the number of
people who are winning. Although the evidence from this run of coin tosses suggests
r = 0.9, it seems too biased given that several people have won.

3.1.2 The Bayesian way

The value of r computed in the previous section was based on just ten tosses. Given
the random nature of the coin toss, if we observed several sequences of tosses it is
likely that we would get a different r each time. Thought about this way, r feels a
bit like a random variable, R. Maybe we can learn something about the distribution
of R rather than try and find a particular value. We saw in the previous section
that obtaining an exact value by counting is heavily influenced by the particular
tosses in the short sequence. No matter how many such sequences we observe there
will always be some uncertainty in r – considering it as a random variable with an
associated distribution will help us measure and understand this uncertainty.

In particular, defining the random variable YN to be the number of heads ob-
tained in N tosses, we would like the distribution of r conditioned on the value of
YN :

p(r|yN).

Given this distribution, it would be possible to compute the expected probability of
winning by taking the expectation of P (Ynew ≤ 6|r) with respect to p(r|yN):

P (Ynew ≤ 6|yN) =

∫
P (Ynew ≤ 6|r)p(r|yN)dr,

where Ynew is a random variable describing the number of heads in a future set of
ten tosses.

In Section 2.2.7 we gave a brief introduction to Bayes’ rule. Bayes’ rule allows us
to reverse the conditioning of two (or more) random variables, e.g. compute p(a|b)
from p(b|a). Here we’re interested in p(r|yN), which, if we reverse the conditioning,
is p(yN |r) – the probability distribution function over the number of heads in N

independent tosses where the probability of a head in a single toss is r. This is the
binomial distribution function that we can easily compute for any yN and r. In our
context, Bayes’ rule is (see also Equation 2.11)

p(r|yN) =
P (yN |r)p(r)
P (yN)

. (3.3)

This equation is going to be very important for us in the following chapters so it is
worth spending some time looking at each term in detail.

The likelihood, P (yN |r) We came across likelihood in Chapter 2. Here it has
exactly the same meaning: how likely is it that we would observe our data (in this
case, the data is yN) for a particular value of r (our model)? For our example, this is
the binomial distribution. This value will be high if r could have feasibly produced
the result yN and low if the result is very unlikely. For example, Figure 3.3 shows
the likelihood P (yN |r) as a function of r for two different scenarios. In the first, the
data consists of ten tosses (N = 10) of which six were heads. In the second, there
were N = 100 tosses, of which 70 were heads.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

r

P
(y

N
|r

)

yN = 6, N = 10

yN = 70, N = 100

FIGURE 3.3 Examples of the likelihood p(yN |r) as a function of r for

two scenarios.

This plot reveals two important properties of the likelihood. Firstly, it is not a
probability density. If it were, the area under both curves would have to equal 1.
We can see that this is not the case without working out the area because the two
areas are completely different. Secondly, the two examples differ in how much they
appear to tell us about r. In the first example, the likelihood has a non-zero value
for a large range of possible r values (approximately 0.2 ≤ r ≤ 0.9). In the second,
this range is greatly reduced (approximately 0.6 ≤ r ≤ 0.8). This is very intuitive:
in the second example, we have much more data (the results of 100 tosses rather
than 10) and so we should know more about r.

The prior distribution, p(r) The prior distribution allows us to express any
belief we have in the value of r before we see any data. To illustrate this, we shall
consider the following three examples:

1. We do not know anything about tossing coins or the stall owner.

2. We think the coin (and hence the stall owner) is fair.

3. We think the coin (and hence the stall owner) is biased to give more heads
than tails.

We can encode each of these beliefs as different prior distributions. r can take any
value between 0 and 1 and therefore it must be modelled as a continuous random
variable. Figure 3.4 shows three density functions that might be used to encode our
three different prior beliefs.

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

7

8

r

p
(r

)

1

2
3

FIGURE 3.4 Examples of prior densities, p(r), for r for three different

scenarios.

Belief number 1 is represented as a uniform density between 0 and 1 and as such
shows no preference for any particular r value. Number 2 is given a density function
that is concentrated around r = 0.5, the value we would expect for a fair coin. The
density suggests that we do not expect much variance in r: it’s almost certainly
going to lie between 0.4 and 0.6. Most coins that any of us have tossed agree with
this. Finally, number 3 encapsulates our belief that the coin (and therefore the stall
owner) is biased. This density suggests that r > 0.5 and that there is a high level
of variance. This is fine because our belief is just that the coin is biased: we don’t
really have any idea how biased at this stage.

We will not choose between our three scenarios at this stage, as it is interesting
to see the effect these different beliefs will have on p(r|yN).

The three functions shown in Figure 3.4 have not been plucked from thin air.
They are all examples of beta probability density functions (see Section 2.5.2). The
beta density function is used for continuous random variables constrained to lie
between 0 and 1 – perfect for our example. For a random variable R with parameters
α and β, it is defined as

p(r) =
Γ(α+ β)

Γ(α)Γ(β)
rα−1(1− r)β−1. (3.4)

Γ(a) is known as the gamma function (see Section 2.5.2). In Equation 3.4 the gamma
functions ensure that the density is normalised (that is, it integrates to 1 and is
therefore a probability density function). In particular

Γ(α)Γ(β)

Γ(α+ β)
=

∫ r=1

r=0

rα−1(1− r)β−1 dr,

ensuring that ∫ r=1

r=0

Γ(α+ β)

Γ(α)Γ(β)
rα−1(1− r)β−1 dr = 1.

The two parameters α and β control the shape of the resulting density function
and must both be positive. Our three beliefs as plotted in Figure 3.4 correspond to
the following pairs of parameter values:

1. Know nothing: α = 1, β = 1.

2. Fair coin: α = 50, β = 50.

3. Biased: α = 5, β = 1.

The problem of choosing these values is a big one. For example, why should we
choose α = 5, β = 1 for a biased coin? There is no easy answer to this. We shall see
later that, for the beta distribution, they can be interpreted as a number of previ-
ous, hypothetical coin tosses. For other distributions no such analogy is possible and
we will also introduce the idea that maybe these too should be treated as random
variables. In the mean time, we will assume that these values are sensible and move
on.

The marginal distribution of yN – P (yN) The third quantity in our equa-
tion, P (yN), acts as a normalising constant to ensure that p(r|yN) is a properly
defined density. It is known as the marginal distribution of yN because it is com-
puted by integrating r out of the joint density p(yN , r):

P (yN) =

∫ r=1

r=0

p(yN , r) dr.

This joint density can be factorised to give

P (yN) =

∫ r=1

r=0

P (yN |r)p(r) dr,

which is the product of the prior and likelihood integrated over the range of values
that r may take.

p(yN) is also known as the marginal likelihood, as it is the likelihood of the
data, yN , averaged over all parameter values. We shall see in Section 3.4.1 that it
can be a useful quantity in model selection, but, unfortunately, in all but a small
minority of cases, it is very difficult to calculate.

The posterior distribution – p(r|yN) This posterior is the distribution in
which we are interested. It is the result of updating our prior belief p(r) in light of
new evidence yN . The shape of the density is interesting – it tells us something about
how much information we have about r after combining what we knew beforehand
(the prior) and what we’ve seen (the likelihood). Three hypothetical examples are
provided in Figure 3.5 (these are purely illustrative and do not correspond to the
particular likelihood and prior examples shown in Figures 3.3 and 3.4). (a) is uniform
– combining the likelihood and the prior together has left all values of r equally likely.
(b) suggests that r is most likely to be low but could be high. This might be the
result of starting with a uniform prior and then observing more tails than heads.
Finally, (c) suggests the coin is biased to land heads more often. As it is a density,
the posterior tells us not just which values are likely but also provides an indication
of the level of uncertainty we still have in r having observed some data.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

r

p
(r

|y
N

)

(a)

(b)
(c)

FIGURE 3.5 Examples of three possible posterior distributions p(r|yN).

As already mentioned, we can use the posterior density to compute expectations.
For example, we could compute

Ep(r|yN) {P (Y10 ≤ 6)} =

∫ r=1

r=0

P (Y10 ≤ 6|r)p(r|yN) dr,

the expected value of the probability that we will win. This takes into account the
data we have observed, our prior beliefs and the uncertainty that remains. It will be
useful in helping to decide whether or not to play the game. We will return to this
later, but first we will look at the kind of posterior densities we obtain in our coin
example.

Comment 3.1 – Conjugate priors: A likelihood-prior pair is said to be
conjugate if they result in a posterior which is of the same form as the prior.
This enables us to compute the
posterior density analytically with-
out having to worry about comput-
ing the denominator in Bayes’ rule,
the marginal likelihood. Some com-
mon conjugate pairs are listed in
the table to the right.

Prior Likelihood

Gaussian Gaussian
Beta Binomial

Gamma Gaussian
Dirichlet Multinomial

3.2 THE EXACT POSTERIOR

The beta distribution is a common choice of prior when the likelihood is a binomial
distribution. This is because we can use some algebra to compute the posterior den-
sity exactly. In fact, the beta distribution is known as the conjugate prior to the
binomial likelihood (see Comment 3.1). If the prior and likelihood are conjugate,
the posterior will be of the same form as the prior. Specifically, p(r|yN) will give a
beta distribution with parameters δ and γ, whose values will be computed from the
prior and yN . The beta and binomial are not the only conjugate pair of distributions
and we will see an example of another conjugate prior and likelihood pair when we
return to the Olympic data later in this chapter.

Using a conjugate prior makes things much easier from a mathematical point of
view. However, as we mentioned in both our discussion on loss functions in Chapter 1
and noise distributions in Chapter 2, it is more important to base our choices on mod-
elling assumptions than mathematical convenience. In the next chapter we will see
some techniques we can use in the common scenario that the pair are non-conjugate.

Returning to our example, we can omit p(yN) from Equation 3.3, leaving

p(r|yN) ∝ P (yN |r)p(r).

Replacing the terms on the right hand side with a binomial and beta distribution
gives

p(r|yN) ∝
[(

N
yN

)
ryN (1− r)N−yN

]
×
[

Γ(α+ β)

Γ(α)Γ(β)
rα−1(1− r)β−1

]
. (3.5)

Because the prior and likelihood are conjugate, we know that p(r|yN) has to be a
beta density. The beta density, with parameters δ and γ, has the following general
form:

p(r) = Krδ−1(1− r)γ−1,

where K is a constant. If we can arrange all of the terms, including r, on the right
hand side of Equation 3.5 into something that looks like rδ−1(1− r)γ−1, we can be
sure that the constant must also be correct (it has to be Γ(δ+γ)/(Γ(δ)Γ(γ)) because
we know that the posterior density is a beta density). In other words, we know what
the normalising constant for a beta density is so we do not need to compute p(yN).

Rearranging Equation 3.5 gives us

p(r|yN) ∝
[(

N
yN

)
Γ(α+ β)

Γ(α)Γ(β)

]
×
[
ryN rα−1(1− r)N−yN (1− r)β−1

]
∝ ryN+α−1(1− r)N−yN+β−1

∝ rδ−1(1− r)γ−1

where δ = yN + α and γ = N − yN + β.

Therefore

p(r|yN) =
Γ(α+ β +N)

Γ(α+ yN)Γ(β +N − yN)
rα+yN−1(1− r)β+N−yN−1 (3.6)

(note that when adding γ and δ, the yN terms cancel). This is the posterior density
of r based on the prior p(r) and the data yN . Notice how the posterior parameters
are computed by adding the number of heads (yn) to the first prior parameter (α)
and the number of tails (N − yN) to the second (β). This allows us to gain some
intuition about the prior parameters α and β – they can be thought of as the number
of heads and tails in α + β previous tosses. For example, consider the second two
scenarios discussed in the previous section. For the fair coin scenario, α = β = 50.
This is equivalent to tossing a coin 100 times and obtaining 50 heads and 50 tails.
For the biased scenario, α = 5, β = 1, corresponding to six tosses and five heads.
Looking at Figure 3.4, this helps us explain the differing levels of variability sug-
gested by the two densities: the fair coin density has much lower variability than
the biased one because it is the result of many more hypothetical tosses. The more
tosses, the more we should know about r.

The analogy is not perfect. For example, α and β don’t have to be integers and
can be less than 1 (0.3 heads doesn’t make much sense). The analogy also breaks
down when α = β = 1. Observing one head and one tail means that values of r = 0
and r = 1 are impossible. However, density 1 in Figure 3.4), suggests that all values
of r are equally likely. Despite these flaws, the analogy will be a useful one to bear
in mind as we progress through our analysis (see Exercises 3.1, 3.2, 3.3 and 3.4)

3.3 THE THREE SCENARIOS

We will now investigate the posterior distribution p(r|yN) for the three different
prior scenarios shown in Figure 3.4 – no prior knowledge, a fair coin and a biased
coin.

3.3.1 No prior knowledge

In this scenario (MATLAB script: coin scenario1.m), we assume that we know
nothing of coin tossing or the stall holder. Our prior parameters are α = 1, β = 1,
shown in Figure 3.6(a).

To compare different scenarios we will use the expected value and variance of r
under the prior. The expected value of a random variable from a beta distribution
with parameters α and β (the density function of which we will henceforth denote

as B(α, β)) is given as (see Exercise 3.5)

p(r) = B(α, β)

Ep(r) {R} =
α

α+ β
.

For scenario 1:

Ep(r) {R} =
α

α+ β
=

1

2
.

The variance of a beta distributed random variable is given by (see Exercise 3.6)

var{R} =
αβ

(α+ β)2(α+ β + 1)
, (3.7)

which for α = β = 1 is

var{R} =
1

12
.

Note that in our formulation of the posterior (Equation 3.6) we are not restricted
to updating our distribution in blocks of ten – we can incorporate the results of any
number of coin tosses. To illustrate the evolution of the posterior, we will look at
how it changes toss by toss.

A new customer hands over £1 and the stall owner starts tossing the coin.
The first toss results in a head. The posterior distribution after one toss is a beta
distribution with parameters δ = α+ yN and γ = β +N − yN :

p(r|yN) = B(δ, γ).

In this scenario, α = β = 1, and as we have had N = 1 tosses and seen yN = 1
heads,

δ = 1 + 1 = 2

γ = 1 + 1− 1 = 1.

This posterior distribution is shown as the solid line in Figure 3.6(b) (the prior is
also shown as a dashed line). This single observation has had quite a large effect –
the posterior is very different from the prior. In the prior, all values of r were equally
likely. This has now changed – higher values are more likely than lower values with
zero density at r = 0. This is consistent with the evidence – observing one head
makes high values of r slightly more likely and low values slightly less likely. The
density is still very broad, as we have observed only one toss. The expected value of
r under the posterior is

Ep(r|yN) {R} =
2

3

and we can see that observing a solitary head has increased the expected value of r
from 1/2 to 2/3. The variance of the posterior is (using Equation 3.7)

var{R} =
1

18

which is lower than the prior variance (1/12). So, the reduction in variance tells
us that we have less uncertainty about the value of r than we did (we have learnt

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

r

p
(r

)

Prior

(a) α = 1, β = 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

r

p
(r

|y
1
)

After toss 1 (H)

(b) δ = 2, γ = 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

r

p
(r

|y
2
)

After toss 2 (T)

(c) δ = 2, γ = 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

r

p
(r

|y
3
)

After toss 3 (H)

(d) δ = 3, γ = 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

r

p
(r

|y
4
)

After toss 4 (H)

(e) δ = 4, γ = 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

r

p
(r

|y
1
0
)

After toss 10 (H)

(f) δ = 7, γ = 5

FIGURE 3.6 Evolution of p(r|yN) as the number of observed coin tosses

increases.

something) and the increase in expected value tells us that what we’ve learnt is that
heads are slightly more likely than tails.

The stall owner tosses the second coin and it lands tails. We have now seen one
head and one tail and so N = 2, yN = 1, resulting in

δ = 1 + 1 = 2

γ = 1 + 2− 1 = 2.

The posterior distribution is shown as the solid dark line in Figure 3.6(c). The
lighter dash-dot line is the posterior we saw after one toss and the dashed line is the
prior. The density has changed again to reflect the new evidence. As we have now
observed a tail, the density at r = 1 should be zero and is (r = 1 would suggest that
the coin always lands heads). The density is now curved rather than straight (as we
have already mentioned, the beta density function is very flexible) and observing a
tail has made lower values more likely. The expected value and variance are now

Ep(r|yN) {R} =
1

2
, var{R} =

1

20
.

The expected value has decreased back to 1/2. Given that the expected value under
the prior was also 1/2, you might conclude that we haven’t learnt anything. However,
the variance has decreased again (from 1/18 to 1/20) so we have less uncertainty in
r and have learnt something. In fact, we’ve learnt that r is closer to 1/2 than we
assumed under the prior.

The third toss results in another head. We now have N = 3 tosses, yN = 2 heads
and N − yN = 1 tail. Our updated posterior parameters are

δ = α+ yN = 1 + 2 = 3

γ = β +N − yN = 1 + 3− 2 = 2.

This posterior is plotted in Figure 3.6(d). Once again, the posterior is the solid dark
line, the previous posterior is the solid light line and the dashed line is the prior.
We notice that the effect of observing this second head is to skew the density to
the right, suggesting that heads are more likely than tails. Again, this is entirely
consistent with the evidence – we have seen more heads than tails. We have only
seen three coins though, so there is still a high level of uncertainty – the density
suggests that r could potentially still be pretty much any value between 0 and 1.
The new expected value and variance are

Ep(r|yN) {R} =
3

5
, var{R} =

1

25
.

The variance has decreased again reflecting the decrease in uncertainty that we
would expect as we see more data.

Toss 4 also comes up heads (yN = 3, N = 4), resulting in δ = 1 + 3 = 4 and
γ = 1 + 4− 3 = 2. Figure 3.6(e) shows the current and previous posteriors and prior
in the now familiar format. The density has once again been skewed to the right –
we’ve now seen three heads and only one tail so it seems likely that r is greater than
1/2. Also notice the difference between the N = 3 posterior and the N = 4 posterior
for very low values of r – the extra head has left us pretty convinced that r is not
0.1 or lower. The expected value and variance are given by

Ep(r|yN) {R} =
2

3
, var{R} =

2

63
= 0.0317,

where the expected value has increased and the variance has once again decreased.
The remaining six tosses are made so that the complete sequence is

H,T,H,H,H,H,T,T,T,H,

a total of six heads and four tails. The posterior distribution after N = 10 tosses
(yN = 6) has parameters δ = 1 + 6 = 7 and γ = 1 + 10− 6 = 5. This (along with the
posterior for N = 9) is shown in Figure 3.6(f). The expected value and variance are

Ep(r|yN) {R} =
7

12
= 0.5833, var{R} = 0.0187. (3.8)

Our ten observations have increased the expected value from 0.5 to 0.5833 and
decreased our variance from 1/12 = 0.0833 to 0.0187. However, this is not the full
story. Examining Figure 3.6(f), we see that we can also be pretty sure that r > 0.2
and r < 0.9. The uncertainty in the value of r is still quite high because we have
only observed ten tosses.

2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

Coin tosses

E
{r

}

(a) Expected value

2 4 6 8 10
0.01

0.02

0.03

0.04

0.05

0.06

Coin tosses

v
ar

{r
}

(b) Variance

FIGURE 3.7 Evolution of expected value (a) and variance (b) of r as

coin toss data is added to the posterior.

Figure 3.7 summarises how the expected value and variance change as the 10
observations are included. The expected value jumps around a bit, whereas the
variance steadily decreases as more information becomes available. At the seventh
toss, the variance increases. The first seven tosses are

H,T,H,H,H,H,T.

The evidence up to and including toss 6 is that heads is much more likely than tails
(5 out of 6). Tails on the seventh toss is therefore slightly unexpected. Figure 3.8
shows the posterior before and after the seventh toss. The arrival of the tail has
forced the density to increase the likelihood of low values of r and, in doing so,
increased the uncertainty.

The posterior density encapsulates all of the information we have about r.
Shortly, we will use this to compute the expected probability of winning the game.
Before we do so, we will revisit the idea of using point estimates by extracting a

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

r

p
(r

|y
7
)

After toss 7 (T)

FIGURE 3.8 The posterior after six (light) and seven (dark) tosses.

single value r̂ of r from this density. We will then be able to compare the expected
probability of winning with the probability of winning computed from a single value
of r. A sensible choice would be to use Ep(r|yN) {R}. With this value, we can com-
pute the probability of winning – P (Ynew ≤ 6|r̂). This quantity could be used to
decide whether or not to play. Note that, to make the distinction between observed
tosses and future tosses, we will use Ynew as a random variable that describes ten
future tosses.

After ten tosses, the posterior density is beta with parameters δ = 7, γ = 5. r̂ is
therefore

r̂ =
δ

δ + γ
=

7

12
.

The probability of winning the game follows as

P (Ynew ≤ 6|r̂) = 1−
10∑

ynew=7

P (Ynew = ynew|r̂)

= 1− 0.3414

= 0.6586,

suggesting that we will win more often than lose.
Using all of the posterior information requires computing

Ep(r|yN) {P (Ynew ≤ 6|r)} .

Rearranging and manipulating the expectation provides us with the following ex-

pression:

Ep(r|yN) {P (Ynew ≤ 6|r)} = Ep(r|yN) {1− P (Ynew ≥ 7|r)} (3.9)

= 1−Ep(r|yN) {P (Ynew ≥ 7|r)}

= 1−Ep(r|yN)

{
ynew=10∑
ynew=7

P (Ynew = ynew|r)

}

= 1−
ynew=10∑
ynew=7

Ep(r|yN) {P (Ynew = ynew|r)} .

To evaluate this, we need to be able to compute Ep(r|yN) {P (Ynew = ynew|r)}. From
the definition of expectations, this is given by

Ep(r|yN) {P (Ynew = ynew|r)} =

∫ r=1

r=0

P (Ynew = ynew|r)p(r|yN) dr

=

∫ r=1

r=0

[(
Nnew

ynew

)
rynew(1− r)Nnew−ynew

] [
Γ(δ + γ)

Γ(δ)Γ(γ)
rδ−1(1− r)γ−1

]
dr

=

(
Nnew

ynew

)
Γ(δ + γ)

Γ(δ)Γ(γ)

∫ r=1

r=0

rynew+δ−1(1− r)Nnew−ynew+γ−1 dr. (3.10)

This integral looks a bit daunting. However, on closer inspection, the argument
inside the integral is an unnormalised beta density with parameters δ + ynew and
γ+Nnew−ynew. In general, for a beta density with parameters α and β, the following
must be true: ∫ r=1

r=0

Γ(α+ β)

Γ(α)Γ(β)
rα−1(1− r)β−1dr = 1,

and therefore ∫ r=1

r=0

rα−1(1− r)β−1dr =
Γ(α)Γ(β)

Γ(α+ β)
.

Our desired expectation becomes

Ep(r|yN) {P (Ynew = ynew|r)} =

(
Nnew

ynew

)
Γ(δ + γ)

Γ(δ)Γ(γ)

Γ(δ + ynew)Γ(γ +Nnew − ynew)

Γ(δ + γ +Nnew)

which we can easily compute for a particular posterior (i.e. values of γ and δ) and
values of Nnew and ynew.

After ten tosses, we have δ = 7, γ = 5. Plugging these values in, we can compute
the expected probability of success:

Ep(r|yN) {P (Ynew ≤ 6|r)} = 1−
ynew=10∑
ynew=7

Ep(r|yN) {P (Ynew = ynew|r)}

= 1− 0.3945

= 0.6055.

Comparing this with the value obtained using the point estimate, we can see that
both predict we will win more often than not. This is in agreement with the evidence
– the one person we have fully observed got six heads and four tails and hence won
£2. The point estimate gives a higher probability – ignoring the posterior uncertainty
makes it more likely that we will win.

Another customer plays the game. The sequence of tosses is

H,H,T,T,H,H,H,H,H,H,

eight heads and two tails – the stall owner has won. Combining all 20 tosses that we
have observed, we have N = 20, yN = 6 + 8 = 14 heads and N − yN = 20− 14 = 6
tails. This gives δ = 15 and γ = 7. The posterior density is shown in Figure 3.9
where the light line shows the posterior we had after ten and the dashed line the
prior. The expected value and variance are

Ep(r|yN) {R} = 0.6818, var{R} = 0.0094.

The expected value has increased and the variance has decreased (c.f. Equation 3.8).
Both behaviours are what we would expect – eight heads and two tails should in-
crease the expected value of r and the increased data should decrease the variance.
We can now recompute Ep(r|yN) {P (Ynew ≤ 6|r)} in light of the new evidence. Plug-

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

r

p
(r

|y
N

)

FIGURE 3.9 Posterior distribution after observing 10 tosses (light curve)

and 20 tosses (dark curve). The dashed line corresponds to the prior

density.

ging in the appropriate values, this is

Ep(r|yN) {P (Ynew ≤ 6|r)} = 0.4045.

The new evidence has pushed the density to the right, made high values of r (and
hence the coin landing heads) more likely and reduced the probability of winning.
For completeness, we can also compute P (Ynew ≤ 6|r̂) = 0.3994.

This corresponds to an expected return of:

2× 0.4045− 1 = −0.1910,

equivalent to a loss of about 20p per go.

In this example we have now touched upon all of the important components
of Bayesian Machine Learning – choosing priors, choosing likelihoods, computing
posteriors and using expectations to make predictions. We will now repeat this
process for the other two prior scenarios.

3.3.2 The fair coin scenario

For the fair coin scenario (MATLAB script: coin scenario2.m), we assumed that
α = β = 50, which is analogous to assuming that we have already witnessed 100
tosses, half of which resulted in heads. The first thing to notice here is that 100
tosses corresponds to much more data than we are going to observe here (20 tosses).
Should we expect our data to have the same effect as it did in the previous scenario?

Figure 3.10(a) shows the prior density and Figures 3.10(b), 3.10(c), 3.10(d), 3.10(e)
and 3.10(f) show the posterior after 1, 5, 10, 15 and 20 tosses, respectively. For this
scenario, we have not shown the previous posterior at each stage – it is too close to
the current one. However, in most cases, the change in posterior is so small that the
lines almost lie right on top of one another. In fact, it is only after about ten tosses
that the posterior has moved significantly from the prior. Recalling our analogy for
the beta prior, this prior includes the evidential equivalent of 100 tosses and so it is
not surprising that adding another ten makes much difference.

The evolution of Ep(r|yN) {R} and var{R} as the 20 tosses are observed can be
seen in Figure 3.11. We see very little change in either as the data appear compared
to the changes we observed in Figure 3.6. Such small changes are indicative of a
very strong prior density. The prior will dominate over the data until we’ve observed
many more tosses – i.e., p(r) dominates p(yN |r) in Equation 3.3. We have created
a model that is stuck in its ways and will require a lot of persuasion to believe
otherwise.

Just as in the previous section, we can work out Ep(r|yN) {P (Ynew ≤ 6|r)}. After
all 20 tosses have been observed, we have δ = α + yN = 50 + 14 = 64 and γ =
β +N − yN = 50 + 20− 14 = 56. The expectation works out as

Ep(r|yN) {P (Ynew ≤ 6|r)} = 0.7579. (3.11)

As before, we can also see how much difference there is between this value and
the value obtained using the point estimate r̂, P (Ynew ≤ 6|r̂) (in this case, r̂ =
64/(64 + 56) = 0.5333):

P (Ynew ≤ 6|r̂) = 0.7680.

Both quantities predict that we will win more often than not. In light of what we’ve
seen about the posterior, this should come as no surprise. The data has done little
to overcome the prior assumption that the coin is fair, and we already know that, if
the coin is fair, we will tend to win (a fair coin will result in us winning, on average,
66p per game – see the start of Section 3.1).

As an aside, consider how accurate our approximation P (Ynew ≤ 6|r̂) is to the
proper expectation in this scenario and the previous one. In the previous one, the
difference between the two values was

|Ep(r|yN) {P (Ynew ≤ 6|r)} − P (Ynew ≤ 6|r̂)| = 0.0531.

In this example, the values are closer:

|Ep(r|yN) {P (Ynew ≤ 6|r)} − P (Ynew ≤ 6|r̂)| = 0.0101.

There is a good reason why this is the case – as the variance in the posterior decreases
(the variance in scenario 2 is much lower than in scenario 1), the probability density
becomes more and more condensed around one particular point. Imagine the variance

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

r

p
(r

)

Prior

(a) α = 50, β = 50

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

r

p
(r

|y
1
)

After toss 1 (H)

(b) δ = 51, γ = 50

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

r

p
(r

|y
5
)

After toss 5 (H)

(c) δ = 54, γ = 51

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

r

p
(r

|y
1
0
)

After toss 10 (H)

(d) δ = 56, γ = 54

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

r

p
(r

|y
1
5
)

After toss 15 (H)

(e) δ = 59, γ = 56

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

r

p
(r

|y
2
0
)

After toss 20 (H)

(f) δ = 64, γ = 56

FIGURE 3.10 Evolution of the posterior p(r|yN) as more coin tosses are

observed for the fair coin scenario. The dashed line shows the prior

density.

5 10 15 20
0.5

0.51

0.52

0.53

0.54

0.55

0.56

Coin tosses

E
{R

}

(a) Expected value

5 10 15 20
2

2.1

2.2

2.3

2.4

2.5

2.6
x 10

−3

Coin tosses

v
ar

{R
}

(b) Variance

FIGURE 3.11 Evolution of Ep(r|yN) {R} (a) and var{R} (b) as the 20 coin

tosses are observed for the fair coin scenario.

decreasing to such an extent that there was a single value of r that had probability
1 of occurring with p(r|yN) being zero everywhere else. The expectation we are
calculating is

Ep(r|yN) {P (Ynew ≤ 6|r)} =

∫ r=1

r=0

P (Ynew ≤ 6|r)p(r|yN) dr.

If p(r|yN) is zero everywhere except at one specific value (say r̂), this becomes

Ep(r|yN) {P (Ynew ≤ 6|r)} = P (Ynew ≤ 6|r̂).

In other words, as the variance decreases, P (Ynew ≤ 6|r̂) becomes a better and
better approximation to the true expectation. This is not specific to this example –
as the quantity of data increases (and uncertainty about parameters subsequently
decreases), point approximations become more reliable.

3.3.3 A biased coin

In the final scenario we assume that the coin (and therefore the stall owner) is biased
to generate more heads than tails (MATLAB script: coin scenario3.m). This is
encoded through a beta prior with parameters α = 5, β = 1. The expected value is

Ep(r) {r} = 5/6,

five coins out of every six will come up heads. Just as for scenario 2, Figure 3.12(a)
shows the prior density and Figures 3.12(b), 3.12(c), 3.12(d), 3.12(e) and 3.12(f)
show the posterior after 1, 5, 10, 15 and 20 tosses, respectively. Given what we’ve
already seen, there is nothing unusual here. The posterior moves quite rapidly away
from the prior (the prior effectively has only the influence of α+β = 6 data points).
Figure 3.13 shows the evolution of expected value and variance. The variance curve
has several bumps corresponding to tosses resulting in tails. This is because of the
strong prior bias towards a high r value. We don’t expect to see many tails under

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

r

p
(r

)

Prior

(a) α = 5, β = 1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

r

p
(r

|y
1
)

After toss 1 (H)

(b) δ = 6, γ = 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

r

p
(r

|y
5
)

After toss 5 (H)

(c) δ = 9, γ = 2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

r

p
(r

|y
1
0
)

After toss 10 (H)

(d) δ = 11, γ = 5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

r

p
(r

|y
1
5
)

After toss 15 (H)

(e) δ = 14, γ = 7

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

r

p
(r

|y
2
0
)

After toss 20 (H)

(f) δ = 19, γ = 7

FIGURE 3.12 Evolution of the posterior p(r|yN) as more coin tosses are

observed for the biased coin scenario. The dashed line shows the prior

density and in the last four plots, the dash-dot line shows the previous

posterior (i.e. the posterior after 4, 9, 14 and 19 tosses).

5 10 15 20
0.65

0.7

0.75

0.8

0.85

0.9

Coin tosses

E
{R

}

(a) Expected value

5 10 15 20
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Coin tosses

v
ar

{R
}

(b) Variance

FIGURE 3.13 Evolution of Ep(r|yN) {R} (a) and var{R} (b) as the 20 coin

tosses are observed for the biased coin scenario.

this assumption and so when we do, the model becomes less certain. Once again, we
calculate the true quantity of interest, Ep(r|yN) {P (Ynew ≤ 6|r)}. The final posterior
parameter values are δ = α+ yN = 5 + 14 = 19, γ = 1 +N − yN = 1 + 20− 14 = 7.
Plugging these in,

Ep(r|yN) {P (Ynew ≤ 6|r)} = 0.2915.

The approximation, noting that r̂ = 19/(19 + 7) = 0.7308 is

P (Ynew ≤ 6|r̂) = 0.2707.

Both values suggest we will lose money on average.

3.3.4 The three scenarios – a summary

Our three different scenarios have given us different values for the expected proba-
bility of winning:

1. No prior knowledge: Ep(r|yN) {P (Ynew ≤ 6|r)} = 0.4045.

2. Fair coin: Ep(r|yN) {P (Ynew ≤ 6|r)} = 0.7579.

3. Biased coin: Ep(r|yN) {P (Ynew ≤ 6|r)} = 0.2915.

Which one should we choose? We could choose based on which of the prior beliefs
seems most plausible. Given that the stall holder doesn’t look like he is about to
go out of business, scenario 3 might be sensible. We might decide that we really
do not know anything about the stall holder and coin and look to scenario 1. We
might believe that an upstanding stall holder would never stoop to cheating and
go for scenario 2. It is possible to justify any of them. What we have seen is that
the Bayesian technique allows you to combine the data observed (20 coin tosses)
with some prior knowledge (one of the scenarios) in a principled way. The posterior
density explicitly models the uncertainty that remains in r at each stage and can be
used to make predictions (see Exercises 3.7 and 3.8).

0 0.5 1
0

2

4

6

8

10

12

r

p
(r

|y
1
0
0
,α

,β
)

Scenario 1

Scenario 2
Scenario 3

(a) The three posteriors after 100 tosses

0.6 0.65 0.7 0.75 0.8
0

5

10

15

20

25

30

r

p
(r

|y
1
0
0
0
,α

,β
)

Scenario 1

Scenario 2 Scenario 3

(b) The three posteriors after 1000 tosses

FIGURE 3.14 The posterior densities for the three scenarios after 100

coin tosses (left) and 1000 coin tosses (right).

3.3.5 Adding more data

Before we move on, it is worth examining the effect of adding more and more data.
We have seen in each of our scenarios that the addition of more data results in the
posterior diverging from the prior – usually through a decrease in variance. In fact, if
we continue adding more data, we will find that the posteriors for all three scenarios
start to look very similar. In Figure 3.14 we see the posteriors for the three scenarios
after 100 and 1000 tosses. Compared with the posteriors for the three scenarios after
small numbers of tosses have been observed (Figures 3.6(f), 3.10(d) and 3.12(d)), we
notice that the posteriors are becoming more and more similar. This is particularly
noticeable for scenarios 1 and 3 – by 1000 tosses they are indistinguishable. The
difference between these two and the posteriors for scenario 2 is due to the high
strength (low variance) of the prior for scenario 2 – the prior corresponds to a very
strong belief and it will take a lot of contradictory data to remove that influence.

The diminishing effect of the prior as the quantity of data increases is easily
explained if we look at the expression used to compute the posterior. Ignoring the
normalising marginal likelihood term, the posterior is proportional to the likelihood
multiplied by the prior. As we add more data, the prior is unchanged but the like-
lihood becomes a product (if the normal independence assumptions are made) of
individual likelihood for more and more observations. This increase will gradually
swamp the single contribution from the prior. It is also very intuitive – as we ob-
serve more and more data, beliefs we had before seeing any become less and less
important.

3.4 MARGINAL LIKELIHOODS

Fortunately, subjective beliefs are not the only option for determining which of
our three scenarios is best. Earlier in this chapter, when discussing the terms in
Equation 3.3, we showed how the denominator p(yN) could be considered to be

related to r as follows:

p(yN) =

∫ r=1

r=0

p(r, yN) dr

=

∫ r=1

r=0

p(yN |r)p(r) dr. (3.12)

Now when considering different choices of p(r), we need to be more strict about our
conditioning. p(r) should actually be written as p(r|α, β) as the density is condi-
tioned on a particular pair of α and β values. Extending this conditioning through
Equation 3.12 gives

p(yN |α, β) =

∫ r=1

r=0

p(yN |r)p(r|α, β) dr. (3.13)

The marginal likelihood (so called because r has been marginalised), p(yN |α, β), is a
very useful and important quantity. It tells us how likely the data (yN) is given our
choice of prior parameters α and β. The higher p(yN |α, β), the better our evidence
agrees with the prior specification. Hence, for our dataset, we could use p(yN |α, β)
to help choose the best scenario: select the scenario for which p(yN |α, β) is highest.

To compute this quantity, we need to evaluate the following integral:

p(yN |α, β) =

∫ r=1

r=0

p(yN |r)p(r|α, β) dr

=

∫ r=1

r=0

(
N
yN

)
ryN (1− r)N−yN Γ(α+ β)

Γ(α)Γ(β)
rα−1(1− r)β−1 dr

=

(
N
yN

)
Γ(α+ β)

Γ(α)Γ(β)

∫ r=1

r=0

rα+yN−1(1− r)β+N−yN−1 dr.

This is of exactly the same form as Equation 3.10. The argument inside the integral
is an unnormalised beta density and so we know that by integrating it we will get
the inverse of the normal beta normalising constant. Therefore,

p(yN |α, β) =

(
N
yN

)
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ yN)Γ(β +N − yN)

Γ(α+ β +N)
. (3.14)

In our example, N = 20 and yN = 14 (there were a total of 14 heads in the 2 sets of
10 tosses). We have three different possible pairs of α and β values. Plugging these
values into Equation 3.14 gives

1. No prior knowledge, α = β = 1, p(yN |α, β) = 0.0476.

2. Fair coin, α = β = 50, p(yN |α, β) = 0.0441.

3. Biased coin, α = 5, β = 1, p(yN |α, β) = 0.0576.

The prior corresponding to the biased coin has the highest marginal likelihood and
the fair coin prior has the lowest. In the previous section we saw that the probability
of winning under that scenario was Ep(r|yN ,α,β) {P (Ynew ≤ 6|r)} = 0.2915 (note that
we’re now conditioning the posterior on the prior parameters – p(r|yN , α, β)).

A word of caution is required here. Choosing priors in this way is essentially
choosing the prior that best agrees with the data. The prior no longer corresponds

to our beliefs before we observe any data. In some applications this may be unac-
ceptable. What it does give us is a single value that tells us how much the data
backs up the prior beliefs. In the above example, the data suggests that the biased
coin prior is best supported by the evidence.

3.4.1 Model comparison with the marginal likelihood

It is possible to extend the prior comparison in the previous section to using the
marginal likelihood to optimise α and β. Assuming that α and β can take any value
in the ranges

0 ≤ α ≤ 50

0 ≤ β ≤ 30,

we can search for the values of α and β that maximise p(yN |α, β).

α

β

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

FIGURE 3.15 Marginal likelihood contours (as a function of the prior

parameters, α and β) for the coin example. The circle towards the top

right shows the optimum.

Figure 3.15 shows the marginal likelihood as α and β are varied in their respective
ranges. The optimum value is α = 50, β = 22, resulting in a marginal likelihood of
0.1694. Choosing parameters in this way is known as Type II Maximum Likelihood
(to distinguish it from standard (i.e. Type I) Maximum Likelihood, introduced in
Chapter 2).

3.5 HYPERPARAMETERS

The Bayesian analysis presented thus far has all been based on the idea that we can
represent any quantities of interest as random variables (e.g. r, the probability of a
coin landing heads). r is not the only parameter of interest in our example. α and β
are also parameters – could we do the same thing with them? In some cases we can
be directed towards particular values based on our knowledge of the problem (we

might know that the coin is biased). Often we will not know the exact value that
they should take and should therefore treat them as random variables. To do so, we
need to define a prior density over all random variables – p(r, α, β). This factorises
as (see Section 2.2.5)

p(r, α, β) = p(r|α, β)p(α, β).

In addition, it will often be useful to assume that α and β are independent: p(α, β) =
p(α)p(β). The quantity in which we are interested is the posterior over all parameters
in the model:

p(r, α, β|yN).

Applying Bayes’ rule, we have

p(r, α, β|yN) =
p(yN |r, α, β)p(r, α, β)

p(yN)

=
p(yN |r)p(r, α, β)

p(yN)

=
p(yN |r)p(r|α, β)p(α, β)

p(yN)
.

Note that, in the second step, we removed α and β from the likelihood p(yN |r). This
is another example of conditional independence (see Section 2.8.1). The distribution
over yN depends on α and β but only through their influence on r. Conditioned on
a particular value of r, this dependence is broken.

p(α, β) will normally require some additional parameters – i.e. p(α, β|κ) where
κ controls the density in the same way that α and β control the density for r. κ is
known as a hyper-parameter because it is a parameter controlling the prior on
the parameters controlling the prior on r. When computing the marginal likelihood,
we integrate over all random variables and are just left with the data conditioned
on the hyperparameters:

p(yN |κ) =

∫∫∫
p(yN |r)p(r|α, β)p(α, β|κ) dr dα dβ.

Unfortunately, adding this extra complexity to the model often means that com-
putation of the quantities of interest – the posterior p(r, α, β|yN , κ) (and any predic-
tive expectations) and the marginal likelihood p(yN |κ) – is analytically intractable
and requires one of the approximation methods that we will introduce in Chapter 4.

At this point, one could imagine indefinitely adding layers to the model. For
example, κ could be thought of as a random variable that comes from a density
parameterised by other random variables. The number of levels in the hierarchy
(how far we go before we fix one or more parameters) will be dictated by the data
we are trying to model (perhaps we can specify exact values at some level) or how
much computation we can tolerate. In general, the more layers we add the more
complex it will be to compute posteriors and predictions.

3.6 GRAPHICAL MODELS

When adding extra layers to our model (hyperparameters, etc.), they can quickly
become unwieldy. It is popular to describe them graphically. A graphical model is
a network where nodes correspond to random variables and edges to dependencies

Y

X

(a)

Xn

Yn
N

(b)

R

Yn

α β

κ

(c)

FIGURE 3.16 Graphical model examples. Nodes correspond to random

variables, with the shaded nodes corresponding to things that we ob-

serve. Arrows describe the dependencies between variables and the

plates describe multiple instances. For example, in (b), there are N

random variables Yn (n = 1, . . . , N) and each is dependent on a ran-

dom variable Xn. (c) is a graphical representation of the model used in

the coin example with the addition of a prior on α and β parameterised

by κ.

between random variables. For example, in Section 2.2.4 we introduced various prop-
erties of random variables through a model that consisted of two random variables –
one representing the toss of a coin (X) and one representing how I say the coin landed
(Y). The model is defined through the conditional distribution P (Y = y|X = x) and
is represented graphically in Figure 3.16(a). The two nodes are joined by an aarrow
to show that Y is defined as being conditioned on X. Note also that the node for Y is
shaded. This is because, as far as the listener is concerned, this variable is observed.
The listener does not see the coin actually landing and so doesn’t observe X. Imag-
ine that the procedure was repeated N times; we now have 2N random variables,
X1, . . . , XN and Y1, . . . , YN . Drawing all of these would be messy. Instead we can
embed the nodes within a plate. Plates are rectangles that tell us that whatever is
embedded within them is repeated a number of times. The number of times is given
in the bottom right corner, as shown in Figure 3.16(b).

Figure 3.16(c) shows a graphical representation of our coin toss model. It has a
single (observed) random variable that represents the number of heads in N tosses,
yN . This is conditioned on a random variable R, which depends on random variables
α and β. Finally, α and β are dependent on the hyper-parameter κ.

More information on graphical models can be found in the suggested reading at
the end of the chapter.

 3.7 SUMMARY

In the previous sections we have introduced many new concepts. Perhaps the most
important is the idea of treating all quantities of interest as random variables. To
do this we must define a prior distribution over the possible values of these quan-
tities and then use Bayes’ rule (Equation 3.3) to see how the density changes as
we incorporate evidence from observed data. The resulting posterior density can be
examined and used to compute interesting expectations. In addition, we have shown
how the marginal likelihood (the normalisation constant in Bayes’ rule) can be used
to compare different models – for example, choosing the most likely prior in our
coin tossing example – and discussed the possible pitfalls and objections to such
an approach. Finally, we have shown how the Bayesian method can be extended by
treating parameters that define the priors over other parameters as random vari-
ables. Additions to the hierarchy such as this often make analytical computations
intractable and we have to resort to sampling and approximation based techniques,
which are the subject of the next chapter.

3.8 A BAYESIAN TREATMENT OF THE OLYMPIC 100m DATA

We now return to the Olympic 100 m data. In the previous chapters we fitted a linear
(in the parameters) model by minimising the squared loss and then incorporated
an explicit noise model and found optimal parameter values by maximising the
likelihood. In this section, we will give the data a Bayesian treatment with the aim
of making a prediction for the 2012 Olympics in London. This will involve several
steps. Firstly, we will need to define the prior and likelihood (as we did in the coin
example) and use these to compute the posterior density over the parameters of our
model, just as we computed the posterior over r in the coin example. Once we’ve
computed the posterior, we can use it to make predictions for new Olympic years.

3.8.1 The model

We will use the kth order polynomial model that was introduced in Chapter 1 with
the Gaussian noise model introduced in Chapter 2:

tn = w0 + w1xn + w2x
2
n + · · ·+ wKx

K
n + εn,

where εn ∼ N (0, σ2). In vector form, this corresponds to

tn = wTxn + εn

where w = [w0, . . . , wK]T and xn = [1, xn, x
2
n, . . . , x

K
n]T. Stacking all of the responses

into one vector t = [t1, . . . , tN]T and all of the inputs into a single matrix, X =
[x1,x2, . . . ,xN]T (just as in Equation 1.18), we get the following expression for the
whole dataset:

t = Xw + ε,

where ε = [ε1, . . . , εN]T.
In this example, we are going to slightly simplify matters by assuming that we

know the true value of σ2. We could use all of the methods introduced in this chapter
to treat σ2 as a random variable and we could get analytical results for the posterior

N

∆

w σ2

xntn

FIGURE 3.17 Graphical model for the Bayesian model of the Olympic

men’s 100 m data.

distribution but the maths is messier, which could detract from the main message.
Substituting these various symbols into Bayes’ rule gives

p(w|t,X, σ2,∆) =
p(t|w,X, σ2,∆)p(w|∆)

p(t|X, σ2,∆)

=
p(t|w,X, σ2)p(w|∆)

p(t|X, σ2,∆)

where ∆ corresponds to some set of parameters required to define the prior over
w that will be defined more precisely below. The graphical model can be seen in
Figure 3.17. Expanding the marginal likelihood we have

p(w|t,X, σ2,∆) =
p(t|w,X, σ2)p(w|∆)∫
p(t|w,X, σ2)p(w|∆) dw

. (3.15)

We are interested in making predictions which will involve taking an expectation
with respect to this posterior density. In particular, for a set of attributes xnew

corresponding to a new Olympic year, the density over the associated winning time
tnew is given by

p(tnew|xnew,X, t, σ
2,∆) =

∫
p(tnew|xnew,w, σ

2)p(w|t,X, σ2,∆) dw. (3.16)

Notice again the conditioning on the right hand side. The posterior density of w
does not depend on xnew and so it does not appear in the conditioning. Similarly,
when we make predictions, we will not be using ∆ and so it doesn’t appear in
p(tnew|xnew,w, σ

2). Predictions could also take the form of probabilities. For example,
we could compute the probability that the winning time will be under 9.5 seconds:

P (tnew < 9.5|xnew,X, t, σ
2,∆) =

∫
P (tnew < 9.5|xnew,w, σ

2)p(w|t,X, σ2,∆) dw.

(3.17)

3.8.2 The likelihood

The likelihood p(t|w,X, σ2) is exactly the quantity that we maximised in the pre-
vious chapter. Our model tells us that

t = Xw + ε

where ε ∼ N (0, σ2IN). This is a Gaussian random variable (ε) plus a constant. We
showed in Section 2.8 that this is equivalent to the Gaussian random variable with
the constant added to the mean. This gives us our likelihood

p(t|w,X, σ2) = N (Xw, σ2IN),

an N -dimensional Gaussian density with mean Xw and variance σ2IN . The analo-
gous expression in the coin example is the binomial likelihood given in Equation 3.2.

3.8.3 The prior

Because we are interested in being able to produce an exact expression for our
posterior, we need to choose a prior, p(w|∆), that is conjugate to the Gaussian
likelihood. Conveniently, a Gaussian prior is conjugate to a Gaussian likelihood.
Therefore, we will use a Gaussian prior for w. In particular,

p(w|µ0,Σ0) = N (µ0,Σ0),

where we will choose the parameters µ0 and Σ0 later. This is analogous to Equa-
tion 3.4 in the coin example. From now on we will not always explicitly condi-
tion on µ0 and Σ0 in our expressions. For example, for brevity, instead of writing
p(w|t,X, σ2,µ0,Σ0) we will use p(w|t,X, σ2) (see Exercise 3.10).

3.8.4 The posterior

We now turn our attention to computing the posterior. As in the coin example, we
will use the fact that we know that the posterior will be Gaussian. This allows us to
ignore the marginal likelihood in Equation 3.15 and just manipulate the likelihood
and prior until we find something that is proportional to a Gaussian. As a first step,
we can collect the terms in w together and ignore any term that does not include
w:

p(w|t,X, σ2) ∝ p(t|w,X, σ2)p(w|µ0,Σ0)

=
1

(2π)N/2|σ2I|1/2
exp

(
−1

2
(t−Xw)T(σ2I)−1(t−Xw)

)
× 1

(2π)N/2|Σ0|1/2
exp

(
−1

2
(w − µ0)TΣ−1

0 (w − µ0)

)
∝ exp

(
− 1

2σ2
(t−Xw)T(t−Xw)

)
× exp

(
−1

2
(w − µ0)TΣ−1

0 (w − µ0)

)
= exp

{
−1

2

(
1

σ2
(t−Xw)T(t−Xw) + (w − µ0)TΣ−1

0 (w − µ0)

)}
.

Multiplying the terms in the bracket out and once again removing any that don’t
involve w gives

p(w|t,X, σ2) ∝ exp

{
−1

2

(
− 2

σ2
tTXw +

1

σ2
wTXTXw + wTΣ−1

0 w − 2µT
0Σ−1

0 w

)}
.

We know that the posterior will be Gaussian. Therefore we can remove the constants
(i.e. terms not involving w) and rearrange an expression for a multivariate Gaussian
to make it look something like the expression we have above:

p(w|t,X, σ2) = N (µw,Σw)

∝ exp

(
−1

2
(w − µw)TΣ−1

w (w − µw)

)
∝ exp

{
−1

2

(
wTΣ−1

w w − 2µT
wΣ−1

w w
)}

. (3.18)

The terms linear and quadratic in w in Equation 3.8.4 must be equal to those in
Equation 3.18. Taking the quadratic terms, we can solve for Σw:

wTΣ−1
w w =

1

σ2
wTXTXw + wTΣ−1

0 w

= wT

(
1

σ2
XTX + Σ−1

0

)
w

Σw =

(
1

σ2
XTX + Σ−1

0

)−1

.

Similarly, equating the linear terms from Equations 3.8.4 and 3.18 (and using our
new expression for Σw) we can get an expression for µw:

−2µT
wΣ−1

w w = − 2

σ2
tTXw − 2µT

0Σ−1
0 w

µT
wΣ−1

w w =
1

σ2
tTXw + µT

0Σ−1
0 w

µT
wΣ−1

w =
1

σ2
tTX + µT

0Σ−1
0

µT
wΣ−1

w Σw =

(
1

σ2
tTX + µT

0Σ−1
0

)
Σw

µT
w =

(
1

σ2
tTX + µT

0Σ−1
0

)
Σw

µw = Σw

(
1

σ2
XTt + Σ−1

0 µ0

)
, (3.19)

because ΣT
w = Σw due to the fact that it must be symmetric. Therefore,

p(w|t,X, σ2) = N (µw,Σw) (3.20)

where

Σw =

(
1

σ2
XTX + Σ−1

0

)−1

(3.21)

µw = Σw

(
1

σ2
XTt + Σ−1

0 µ0

)
(3.22)

0 5 10 15 20 25 30
9.5

10

10.5

11

11.5

12

x

t

FIGURE 3.18 Olympic data with rescaled x values.

(see Exercise 3.12). These expressions do not look too far away from things we have
seen before. In particular, compare Equation 3.22 with the regularised least squares
solution given in Equation 1.21. In fact, if µ0 = [0, 0, . . . , 0]T, the expressions are
almost identical. Given that the posterior is a Gaussian, the single most likely value
of w is the mean of the posterior, µw. This is known as the maximum a posteriori
(MAP) estimate of w and can also be thought of as the maximum value of the joint
density p(w, t|X, σ2,∆) (the likelihood multiplied by the prior). We have already
seen that the squared loss considered in Chapter 1 is very similar to a Gaussian
likelihood and it follows from this that computing the most likely posterior value
(when the likelihood is Gaussian) is equivalent to using regularised least squares
(see Exercise 3.9). This comparison can often help to provide intuition regarding the
effect of the prior.

3.8.5 A first-order polynomial

We will illustrate the prior and posterior with a first-order polynomial, as it is
possible to visualise densities in the two-dimensional parameter space. The input
vectors also have two elements, xn = [1, xn]T. To aid visualisation, we will rescale
the Olympic year by subtracting the year of the first Olympics (1896) from each
year and then dividing each number by 4. This means that x1 is now 0, x2 is 1, etc.
The data with this new x scaling is plotted in Figure 3.18.

Returning to the fairground, the first step in our analysis is the choice of prior
parameters µ0 and Σ0. For µ0, we will assume that we don’t really know anything
about what the parameters should be and choose µ0 = [0, 0]T. For the covariance,
we will use

Σ0 =

[
100 0
0 5

]
.

The larger value for the variance of w0 is due to the fact that we saw in the maximum
likelihood estimate that the optimal value of w0 was much higher than that for w1.
We have also assumed that the two variables are independent in the prior by setting

w0

w
1

−20 −10 0 10 20
−6

−4

−2

0

2

4

6

(a) Prior density.

0 5 10 15 20 25 30
9

9.5

10

10.5

11

11.5

12

x

t

(b) Functions created from parameters
drawn from prior.

FIGURE 3.19 Gaussian prior used for the Olympic 100 m data (a) and

some functions created with samples drawn from the prior (b).

the off-diagonal elements in the covariance matrix to zero. This does not preclude
them from being dependent in the posterior. The contours of this prior density can
be seen in Figure 3.19(a). It’s hard to visualise what this means in terms of the
model. To help, in Figure 3.19(b) we have shown functions corresponding to several
sets of parameters drawn from this prior. To create these, we sampled w from the
Gaussian defined by µ0 and Σ0 and then substituted these into our linear model –
tn = w0 + w1xn. The examples show that the prior admits the possibility of many
very different models.

Using σ2 = 10 for illustrative purposes (MATLAB script: olympbayes.m), we can
now compute the posterior distribution when we observe one data point. Using the
data point corresponding to the first Olympics, our data is summarised as x = [1, 0]T,
X = [1, 0], t = [12]. Plugging these values along with our prior parameters and
σ2 = 10 into Equations 3.20–3.22, we obtain the posterior distribution shown in
Figure 3.20(a). The posterior now has much more certainty regarding w0 but still
knows very little about w1. This makes sense – we’ve provided a data point at x = 0
so this should be highly informative in determining the intercept but tells us very
little about the gradient (one data point alone could never tell us much about the
gradient). Some functions created with samples from this posterior are shown in
Figure 3.20(b). They look quite different from those from the prior – in particular,
they all pass quite close to our first data point.

Figures 3.20(c), 3.20(d) and 3.20(e) show the evolution of the posterior after
2, 5 and 10 data points, respectively. Just as in the coin example, we notice that
the posterior becomes more condensed (we are becoming more certain about the
value of w). Also, as it evolves, the posterior begins to tilt. This is indicative of a
dependence developing between the two parameters – if we increase the intercept w0,
we must decrease the gradient. Recall that, in the prior, we assumed that the two
parameters were independent (Σ0 only had non-zero values on the diagonal) so this
dependence is coming entirely from the evidence within the data. To help visualise
what the posterior means at this stage, Figure 3.20(f) shows a set of functions made
from parameters drawn from the posterior. When compared with Figure 3.20(b),

128 � A First Course in Machine Learning

w0

w
1

−20 −10 0 10 20
−6

−4

−2

0

2

4

6

(a) Posterior density (dark contours) af-
ter the first data point has been observed.
The lighter contours show the prior den-
sity.

0 5 10 15 20 25 30
9.5

10

10.5

11

11.5

12

12.5

13

x

t

(b) Functions created from parameters
drawn from the posterior after observing
the first data point.

w0

w
1

−20 −10 0 10 20
−6

−4

−2

0

2

4

6

(c) Posterior density (dark contours) af-
ter the first two data points have been
observed.

w0

w
1

−20 −10 0 10 20
−6

−4

−2

0

2

4

6

(d) Posterior density (dark contours) af-
ter the first five data points have been
observed.

w0

w
1

5 10 15 20
−2

−1

0

1

2

(e) Posterior density (dark contours) af-
ter the first ten data points have been ob-
served. (Note that we have zoomed in.)

0 10 20 30
9.5

10

10.5

11

11.5

12

12.5

13

x

t

(f) Functions created from parameters
drawn from the posterior after observing
the first ten (highlighted) data points.

FIGURE 3.20 Evolution of the posterior density and example functions

drawn from the posterior for the Olympic data as observations are

added.

w0

w
1

8 10 12 14
−0.5

0

0.5

(a) Posterior density (dark contours) af-
ter all datapoints have been observed.
The lighter contours show the prior den-
sity. (Note that we have zoomed in.)

0 5 10 15 20 25 30
8

9

10

11

12

13

x

t

(b) Functions created from parameters
drawn from the posterior after observing
all data points.

FIGURE 3.21 Posterior density (a) and sampled functions (b) for the

Olympic data when all 27 data points have been added.

we see that the posterior density is beginning to favour parameters that correspond
to models suited to our data. Finally, in Figure 3.21(a) we see the posterior after
all 27 data points have been included and in Figure 3.21(b) we see functions drawn
from this posterior. The functions are really now beginning to follow the trend in
our data. There is still a lot of variability though. This is due to the relatively
high value of σ2 = 10 that we chose to help visualise the prior and posteriors. For
making predictions, we might want to use a more realistic value. In Figure 3.22(a)
we show the posterior after all data has been observed for σ2 = 0.05 (this is roughly
the maximum likelihood value we obtained in Section 2.8.2). The posterior is now
far more condensed – very little variability remains in w, as can be seen by the
homogeneity of the set of functions drawn in Figure 3.22(b). We will now turn our
attention to making predictions.

3.8.6 Making predictions

Given a new observation xnew, we are interested in the density

p(tnew|xnew,X, t, σ
2).

Notice that this is not conditioned on w – just as in the coin example, we are
going to integrate out w by taking an expectation with respect to the posterior,
p(w|t,X, σ2). In particular, we need to compute

p(tnew|xnew,X, t, σ
2) = Ep(w|t,X,σ2)

{
p(tnew|xnew,w, σ

2)
}

=

∫
p(tnew|xnew,w, σ

2)p(w|t,X, σ2) dw.

This is analogous to Equation 3.9 in the coin example.

w0

w
1

10.5 11 11.5
−0.07

−0.06

−0.05

−0.04

−0.03

(a) Posterior density (dark contours) af-
ter all data points have been observed.
The lighter contours show the prior den-
sity. (Note that we have zoomed in.)

0 5 10 15 20 25 30
9.5

10

10.5

11

11.5

12

x

t

(b) Functions created from parameters
drawn from the posterior after observing
all data points.

FIGURE 3.22 Posterior density (a) and sampled functions (b) for the

Olympic data when all 27 data points have been added with more

realistic noise variance, σ2 = 0.05.

p(tnew|xnew,w, σ
2) is defined by our model as the product of xnew and w with

some additive Gaussian noise:

p(tnew|xnew,w, σ
2) = N (xT

neww, σ2).

Because this expression and the posterior are both Gaussian, the result of the expec-
tation is another Gaussian. In general, if p(w|µ,Σ) = N (µ,Σ), then the expectation
of another Gaussian density (N (xT

neww, σ2)) is given by

p(tnew|xnew,X, t, σ
2) = N (xT

newµw, σ
2 + xT

newΣwxnew).

For the posterior shown in Figure 3.22(a), this is

p(tnew|xnew,X, t, σ
2) = N (9.5951, 0.0572)

and is plotted in Figure 3.23.
This density looks rather like the predictive densities we obtained from the max-

imum likelihood solution in Chapter 2. However, there is one crucial difference. With
the maximum likelihood we chose one particular model: the one corresponding to the
highest likelihood. To generate the density shown in Figure 3.23, we have averaged
over all models that are consistent with our data and prior (we averaged over our
posterior). Hence this density takes into account all uncertainty that remains in w
given a particular prior and the data.

3.9 MARGINAL LIKELIHOOD FOR POLYNOMIAL MODEL OR-
DER SELECTION

In Section 1.5 we used a cross-validation procedure to select the order of polynomial
to be used. The cross-validation procedure correctly identified that the dataset was

8.5 9 9.5 10 10.5
0

0.5

1

1.5

2

tnew

p
(t

n
e
w
|x

n
e
w
,.

..
)

FIGURE 3.23 Predictive distribution for the winning time in the men’s

100 m sprint at the 2012 London Olympics.

generated from a third-order polynomial. In Section 3.4 we saw how the marginal
likelihood could be used to choose prior densities. We will now see that it can also
be used to choose models. In particular, we will use it to determine which order
polynomial function to use for some synthetic data.

The marginal likelihood for our Gaussian model is defined as

p(t|X,µ0,Σ0) =

∫
p(t|X,w, σ2)p(w|µ0,Σ0) dw.

This is analogous to Equation 3.14 in the coin example. It is of the same form as
the predictive density discussed in the previous section and is another Gaussian,

p(t|X,µ0,Σ0) = N (Xµ0, σ
2IN + XΣ0X

T), (3.23)

which we evaluate at t – the responses in the training set. Just as in Section 1.5,
we will generate data from a noisy third-order polynomial and then compute the
marginal likelihood for models from first to seventh-order. For each possible model,
we will use a Gaussian prior on w with zero mean and an identity covariance matrix.
For example, for the first-order model,

µ0 = [0, 0]T, Σ0 =

[
1 0
0 1

]
and for the fourth-order model

µ0 = [0, 0, 0, 0, 0]T, Σ0 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

−5 0 5
−800

−600

−400

−200

0

200

400

600

800

x

t

(a) Noisy data from a third-order poly-
nomial.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−94

Polynomial order

M
a
rg

in
a
l
li
k
e
li
h
o
o
d

(b) Marginal likelihood for models of dif-
ferent order.

FIGURE 3.24 Dataset sampled from the function t = 5x3 − x2 + x (a)

and marginal likelihoods for polynomials of increasing order (b).

The data and true polynomial are shown in Figure 3.24(a) (MATLAB script:
margpoly.m). The true polynomial is t = 5x3 − x2 + x and Gaussian noise has
been added with mean zero and variance 150. The marginal likelihood for models
from first to seventh order is calculated by plugging the relevant prior into Equa-
tion 3.23 and then evaluating this density at t, the observed responses. The values
are shown in Figure 3.24(b). We can see that the marginal likelihood value is very
sharply peaked at the true third-order model. The advantage of this over the cross-
validation method is that, for this model, it is computationally undemanding (we
don’t have to fit several different datasets). We can also use all the data. However, as
we have already mentioned, calculating the marginal likelihood is, in general, very
difficult and we will often find it easier to resort to cross-validation techniques.
The marginal likelihood is conditioned on the prior parameters and so changing

them will have an effect on the marginal likelihood values and possibly the highest
scoring model. To show the effect of this, we can define Σ0 = σ2

0I and vary σ2
0 .

We have already seen the result for σ2
0 = 1. If we decrease σ2

0 , we see higher-order
models performing better. This can be seen in Figure 3.25. Decreasing σ2

0 from 1
to 0.3 results in the seventh-order polynomial becoming the most likely model. By
decreasing σ2

0 , we are saying that the parameters have to take smaller and smaller
values. For a third order polynomial model to fit well, one of the parameters needs
to be 5 (recall that t = 5x3 − x2 + x). As we decrease σ2

0 , this becomes less and
less likely, and higher-order models with lower parameter values become more likely.
This emphasises the importance of understanding what we mean by a model. In this
example, the model consists of the order of polynomial and the prior specification
and we must be careful to choose the prior sensibly (see Exercise 3.11).

1 2 3 4 5 6 7
0

1

2

3

4

5

6
x 10

−97

Polynomial order

M
a
rg

in
a
l
li
k
e
li
h
o
o
d

(a) σ2
0 = 0.7

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9
x 10

−103

Polynomial order

M
a
rg

in
a
l
li
k
e
li
h
o
o
d

(b) σ2
0 = 0.4

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
x 10

−103

Polynomial order

M
a
rg

in
a
l
li
k
e
li
h
o
o
d

(c) σ2
0 = 0.3

FIGURE 3.25 Marginal likelihoods for the third-order polynomial exam-

ple with Σ0 = σ2
0I as σ2

0 is decreased.

3.10 CHAPTER SUMMARY

This chapter has provided an introduction to the Bayesian way of performing Ma-
chine Learning tasks – treating all parameters as random variables. We have per-
formed a Baysesian analysis for a coin tossing model and the linear regression model
introduced in Chapters 1 and 2. In both cases, we defined prior densities over pa-
rameters, defined likelihoods and computed posterior densities. In both examples,
the prior and likelihood were chosen such that the posterior could be computed an-
alytically. In addition, we computed predictions by taking expectations with respect
to the posterior and introduced marginal likelihood as a possible model selection
criterion.

Unfortunately, these expressions are not often analytically tractable and we must
resort to sampling and approximation techniques. These techniques are the founda-
tions of modern Bayesian inference and form an important area of Machine Learning
research and development. The next chapter will describe three popular techniques
– point estimates, Laplace approximations and Markov chain Monte Carlo.

3.11 EXERCISES

3.1 For α, β = 1, the beta distribution becomes uniform between 0 and 1. In
particular, if the probability of a coin landing heads is given by r and a beta
prior is placed over r, with parameters α = 1, β = 1, this prior can be written
as

p(r) = 1 (0 ≤ r ≤ 1).

Using this prior, compute the posterior density for r if y heads are observed
in N tosses (i.e. multiply this prior by the binomial likelihood and manipulate
the result to obtain something that looks like a beta density).

3.2 Repeat the previous exercise for the following prior, also a particular form of
the beta density:

p(r) =

{
2r 0 ≤ r ≤ 1
0 otherwise

What are the values of the prior parameters α and β that result in p(r) = 2r?

3.3 Repeat the previous exercise for the following prior (again, a form of beta
density):

p(r) =

{
3r2 0 ≤ r ≤ 1
0 otherwise.

What are the prior parameters here?

3.4 What are the effective prior sample sizes (α and β) for the previous three
exercises (i.e. how many heads and tails are they equivalent to)?

3.5 If a random variable R has a beta density

p(r) =
Γ(α+ β)

Γ(α)Γ(β)
rα−1(1− r)β−1,

derive an expression for the expected value of r, Ep(r) {r}. You will need the
following identity for the gamma function:

Γ(n+ 1) = nΓ(n).

Hint: Use the fact that∫ r=1

r=0

ra−1(1− r)b−1 dr =
Γ(a)Γ(b)

Γ(a+ b)
.

3.6 Using the setup in the previous exercise, and the identity

var{r} = Ep(r)

{
r2}− (Ep(r) {r}

)2
,

derive an expression for var{r}. You will need the gamma identity given in
the previous exercise.

3.7 At a different stall, you observe 20 tosses of which 9 were heads. Compute the
posteriors for the three scenarios, the probability of winning in each case and
the marginal likelihoods.

3.8 Use MATLAB to generate coin tosses where the probability of heads is 0.7.
Generate 100 tosses and compute the posteriors for the three scenarios, the
probabilities of winning and the marginal likelihoods.

3.9 In Section 3.8.4 we derived an expression for the Gaussian posterior for a
linear model within the context of the Olympic 100 m data. Substituting µ0 =
[0, 0, . . . , 0]T, we saw the similarity between the posterior mean

µw =
1

σ2

(
1

σ2
XTX + Σ−1

0

)−1

XTt

and the regularised least squares solution

ŵ =
(
XTX +NλI

)−1

XTt.

For this particular example, find the prior covariance matrix Σ0 that makes
the two identical. In other words, find Σ0 in terms of λ.

3.10 Redraw the graphical representation of the Olympic 100 m model to reflect
the fact that the prior over w is actually conditioned on µ0 and Σ0.

3.11 In Figure 3.25 we studied the effect of reducing σ2
0 on the marginal likelihood.

Using MATLAB, investigate the effect of increasing σ2
0 .

3.12 When performing a Bayesian analysis on the Olympics data, we assumed that
the prior was known. If a Gaussian prior is placed on w and an inverse gamma
prior on the variance σ2

p(σ2|α, β) =
βα

Γ(α)
(σ2)−α−1 exp

{
− β

σ2

}
,

the posterior will also be the product of a Gaussian and an inverse gamma.
Compute the posterior parameters.

3.12 FURTHER READING

[1] Ben Calderhead and Mark Girolami. Estimating Bayes factors via thermody-
namic integration and population MCMC. Comput. Stat. Data Anal., 53:4028–
4045, October 2009.

An article by the authors describing a novel approach for calculating
the marginal likelihoods (Bayes factors) in models where it is not
analytically tractable.

[2] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Chapman and Hall/CRC, second edition, 2004.

One of the most popular textbooks on Bayesian inference. Provides a
detailed and practical description of Bayesian Inference.

[3] Michael Isard and Andrew Blake. Contour tracking by stochastic propagation
of conditional density. In European Conference on Computer Vision, pages 343–
356, 1996.

An interesting example of the use of Bayesian methods in the field of
human computer interaction. The authors use a sampling technique
to infer posterior probabilities over gestures being performed by users.

[4] Michael Jordan, editor. Learning in Graphical Models. MIT Press, 1999.

An introduction to the field of graphical models and how to use them
for learning tasks.

[5] Christian Robert. The Bayesian Choice: From Decision-Theoretic Foundations
to Computational Implementation. Springer, second edition edition, 2007.

[6] Tian-Rui Xu et al. Inferring signaling pathway topologies from multiple pertur-
bation measurement of specific biochemical species. Science Signalling, 3(113),
2010.

A paper showing how Bayesian model selection via the marginal likeli-
hood can be used to answer interesting scientific questions in the field
of biology. It is also an interesting example of large-scale Bayesian
sampling.

A REVEALING
INTRODUCTION TO HIDDEN
MARKOV MODELS

#

This chapter is excerpted from

Introduction to Machine Learning with Applications in
Information Security

by Mark Stamp.

© 2018 Taylor & Francis Group. All rights reserved.

3

Learn more

https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

The cause is hidden. The effect is visible to all.

— Ovid

Introduction and Background

Not surprisingly, a hidden Markov model (HMM) includes a Markov pro-
cess that is “hidden,” in the sense that we cannot directly observe the state
of the process. But we do have access to a series of observations that are
probabilistically related to the underlying Markov model.

While the formulation of HMMs might initially seem somewhat contrived,
there exist a virtually unlimited number of problems where the technique
can be applied. Best of all, there are efficient algorithms, making HMMs
extremely practical. Another very nice property of an HMM is that structure
within the data can often be deduced from the model itself.

In this chapter, we first consider a simple example to motivate the HMM
formulation. Then we dive into a detailed discussion of the HMM algorithms.
Realistic applications—mostly from the information security domain—can be
found in Chapter 9.

This is one of the most detailed chapters in the book. A reason for going
into so much depth is that once we have a solid understanding of this partic-
ular machine learning technique, we can then compare and contrast it to the
other techniques that we’ll consider. In addition, HMMs are relatively easy
to understand—although the notation can seem intimidating, once you have
the intuition, the process is actually fairly straightforward.1

1To be more accurate, your dictatorial author wants to start with HMMs, and that’s all
that really matters.

The bottom line is that this chapter is the linchpin for much of the remain-
der of the book. Consequently, if you learn the material in this chapter well,
it will pay large dividends in most subsequent chapters. On the other hand,
if you fail to fully grasp the details of HMMs, then much of the remaining
material will almost certainly be more difficult than is necessary.

HMMs are based on discrete probability. In particular, we’ll need some
basic facts about conditional probability, so in the remainder of this section,
we provide a quick overview of this crucial topic.

The notation “|” denotes “given” information, so that � (� |�) is read as
“the probability of �, given �.” For any two events � and �, we have

� (� and �) = � (�)� (� |�). (2.1)

For example, suppose that we draw two cards without replacement from a
standard 52-card deck. Let � = {1st card is ace} and � = {2nd card is ace}.
Then

� (� and �) = � (�)� (� |�) = 4/52 · 3/51 = 1/221.

In this example, � (�) depends on what happens in the first event �, so we
say that � and � are dependent events. On the other hand, suppose we flip
a fair coin twice. Then the probability that the second flip comes up heads
is 1/2, regardless of the outcome of the first coin flip, so these events are
independent. For dependent events, the “given” information is relevant when
determining the sample space. Consequently, in such cases we can view the
information to the right of the “given” sign as defining the space over which
probabilities will be computed.

We can rewrite equation (2.1) as

� (� |�) =
� (� and �)

� (�)
.

This expression can be viewed as the definition of conditional probability.
For an important application of conditional probability, see the discussion of
näıve Bayes in Section 7.8 of Chapter 7.

We’ll often use the shorthand “�,�” for the joint probability which, in
reality is the same as “� and �.” Also, in discrete probability, “� and �” is
equivalent to the intersection of the sets � and � and sometimes we’ll want
to emphasize this set intersection. Consequently, throughout this section

� (� and �) = � (�,�) = � (� ∩�).

Finally, matrix notation is used frequently in this chapter. A review of
matrices and basic linear algebra can be found in Section 4.2.1 of Chapter 4,
although no linear algebra is required in this chapter.

A Simple Example

Suppose we want to determine the average annual temperature at a particular
location on earth over a series of years. To make it more interesting, suppose
the years we are focused on lie in the distant past, before thermometers were
invented. Since we can’t go back in time, we instead look for indirect evidence
of the temperature.

To simplify the problem, we only consider “hot” and “cold” for the av-
erage annual temperature. Suppose that modern evidence indicates that the
probability of a hot year followed by another hot year is 0.7 and the proba-
bility that a cold year is followed by another cold year is 0.6. We’ll assume
that these probabilities also held in the distant past. This information can
be summarized as

� �

�
�

︂
0.7 0.3
0.4 0.6

︂ (2.2)

where � is “hot” and � is “cold.”

Next, suppose that current research indicates a correlation between the
size of tree growth rings and temperature. For simplicity, we only consider
three different tree ring sizes, small, medium, and large, denoted �, � , and �,
respectively. Furthermore, suppose that based on currently available evi-
dence, the probabilistic relationship between annual temperature and tree
ring sizes is given by

� � �

�
�

︂
0.1 0.4 0.5
0.7 0.2 0.1

︂
.

(2.3)

For this system, we’ll say that the state is the average annual tempera-
ture, either � or �. The transition from one state to the next is a Markov

process,2 since the next state depends only on the current state and the fixed
probabilities in (2.2). However, the actual states are “hidden” since we can’t
directly observe the temperature in the past.

Although we can’t observe the state (temperature) in the past, we can
observe the size of tree rings. From (2.3), tree rings provide us with prob-
abilistic information regarding the temperature. Since the underlying states
are hidden, this type of system is known as a hidden Markov model (HMM).
Our goal is to make effective and efficient use of the observable information,
so as to gain insight into various aspects of the Markov process.

2A Markov process where the current state only depends on the previous state is said
to be of order one. In a Markov process of order n, the current state depends on the n
consecutive preceding states. In any case, the “memory” is finite—much like your absent-
minded author’s memory, which seems to become more and more finite all the time. Let’s
see, now where was I?

For this HMM example, the state transition matrix is

� =

︂
0.7 0.3
0.4 0.6

︂
, (2.4)

which comes from (2.2), and the observation matrix is

� =

︂
0.1 0.4 0.5
0.7 0.2 0.1

︂
, (2.5)

which comes from (2.3). For this example, suppose that the initial state
distribution, denoted by �, is

� =
︀
0.6 0.4

︀
, (2.6)

that is, the chance that we start in the � state is 0.6 and the chance that
we start in the � state is 0.4. The matrices �, �, and � are row stochastic,
which is just a fancy way of saying that each row satisfies the requirements
of a discrete probability distribution (i.e., each element is between 0 and 1,
and the elements of each row sum to 1).

Now, suppose that we consider a particular four-year period of interest
from the distant past. For this particular four-year period, we observe the
series of tree ring sizes �,�, �, �. Letting 0 represent �, 1 represent � , and 2
represent �, this observation sequence is denoted as

� =
︀
0, 1, 0, 2

︀
. (2.7)

We might want to determine the most likely state sequence of the Markov
process given the observations (2.7). That is, we might want to know the most
likely average annual temperatures over this four-year period of interest. This
is not quite as clear-cut as it seems, since there are different possible inter-
pretations of “most likely.” On the one hand, we could define “most likely”
as the state sequence with the highest probability from among all possible
state sequences of length four. Dynamic programming (DP) can be used to
efficiently solve this problem. On the other hand, we might reasonably define
“most likely” as the state sequence that maximizes the expected number of
correct states. An HMM can be used to find the most likely hidden state
sequence in this latter sense.

It’s important to realize that the DP and HMM solutions to this problem
are not necessarily the same. For example, the DP solution must, by defini-
tion, include valid state transitions, while this is not the case for the HMM.
And even if all state transitions are valid, the HMM solution can still differ
from the DP solution, as we’ll illustrate in an example below.

Before going into more detail, we need to deal with the most challenging
aspect of HMMs—the notation. Once we have the notation, we’ll discuss the

three fundamental problems that HMMs enable us to solve, and we’ll give
detailed algorithms for the efficient solution of each. We also consider critical
computational issues that must be addressed when writing any HMM com-
puter program. Rabiner [113] is a standard reference for further introductory
information on HMMs.

Notation

The notation used in an HMM is summarized in Table 2.1. Note that the
observations are assumed to come from the set {0, 1, . . . ,� − 1}, which sim-
plifies the notation with no loss of generality. That is, we simply associate
each of the � distinct observations with one of the elements 0, 1, . . . ,� − 1,
so that �� ∈ � = {0, 1, . . . ,� − 1} for � = 0, 1, . . . , � − 1.

Table 2.1: HMM notation

Notation Explanation

� Length of the observation sequence
� Number of states in the model
� Number of observation symbols
� Distinct states of the Markov process, �0, �1, . . . , ��−1

� Possible observations, assumed to be 0, 1, . . . ,� − 1
� State transition probabilities
� Observation probability matrix
� Initial state distribution
� Observation sequence, �0,�1, . . . ,��−1

A generic hidden Markov model is illustrated in Figure 2.1, where the ��

represent the hidden states and all other notation is as in Table 2.1. The
state of the Markov process, which we can view as being hidden behind a
“curtain” (the dashed line in Figure 2.1), is determined by the current state
and the � matrix. We are only able to observe the observations ��, which
are related to the (hidden) states of the Markov process by the matrix �.

For the temperature example in the previous section, the observations
sequence is given in (2.7), and we have � = 4, � = 2, � = 3, � = {�,�},
and � = {0, 1, 2}. Note that we let 0, 1, 2 represent small, medium, and large
tree rings, respectively. For this example, the matrices �, �, and � are given
by (2.4), (2.5), and (2.6), respectively.

In general, the matrix � = {���} is � ×� with

��� = � (state �� at �+ 1 | state �� at �).

�0 �1 �2 · · · ��−1

�0 �1 �2 · · · ��−1
� � � �

� � � �

Figure 2.1: Hidden Markov model

The matrix � is always row stochastic. Also, the probabilities ��� are inde-
pendent of �, so that the � matrix does not change. The matrix � = {��(�)}
is of size � ×� , with

��(�) = � (observation � at � | state �� at �).

As with the � matrix, � is row stochastic, and the probabilities ��(�) are
independent of �. The somewhat unusual notation ��(�) is convenient when
specifying the HMM algorithms.

An HMM is defined by �, �, and � (and, implicitly, by the dimensions �
and �). Thus, we’ll denote an HMM as � = (�,�, �).

Suppose that we are given an observation sequence of length four, which
is denoted as

� =
︀
�0,�1,�2,�3

︀
.

The corresponding (hidden) state sequence is

� =
︀
�0, �1, �2, �3

︀
.

We’ll let ��0
denote the probability of starting in state �0, and ��0

(�0)
denotes the probability of initially observing �0, while ��0,�1

is the proba-
bility of transiting from state �0 to state �1. Continuing, we see that the
probability of a given state sequence � of length four is

� (�,�) = ��0
��0

(�0)��0,�1
��1

(�1)��1,�2
��2

(�2)��2,�3
��3

(�3). (2.8)

Note that in this expression, the �� represent indices in the � and � matrices,
not the names of the corresponding states.3

3Your kindly author regrets this abuse of notation.

Consider again the temperature example in Section 2.2, where the obser-
vation sequence is � = (0, 1, 0, 2). Using (2.8) we can compute, say,

� (����) = 0.6(0.1)(0.7)(0.4)(0.3)(0.7)(0.6)(0.1) = 0.000212.

Similarly, we can directly compute the probability of each possible state se-
quence of length four, for the given observation sequence in (2.7). We have
listed these results in Table 2.2, where the probabilities in the last column
have been normalized so that they sum to 1.

Table 2.2: State sequence probabilities

State Probability
Normalized
probability

���� 0.000412 0.042787
���� 0.000035 0.003635
���� 0.000706 0.073320
���� 0.000212 0.022017
���� 0.000050 0.005193
���� 0.000004 0.000415
���� 0.000302 0.031364
���� 0.000091 0.009451
���� 0.001098 0.114031
���� 0.000094 0.009762
���� 0.001882 0.195451
���� 0.000564 0.058573
���� 0.000470 0.048811
���� 0.000040 0.004154
���� 0.002822 0.293073
���� 0.000847 0.087963

To find the optimal state sequence in the dynamic programming (DP)
sense, we simply choose the sequence with the highest probability, which in
this example is ����. To find the optimal state sequence in the HMM
sense, we choose the most probable symbol at each position. To this end we
sum the probabilities in Table 2.2 that have an � in the first position. Doing
so, we find the (normalized) probability of � in the first position is 0.18817
and the probability of � in the first position is 0.81183. Therefore, the first
element of the optimal sequence (in the HMM sense) is �. Repeating this for
each element of the sequence, we obtain the probabilities in Table 2.3.

From Table 2.3, we find that the optimal sequence—in the HMM sense—
is ����. Note that in this example, the optimal DP sequence differs from
the optimal HMM sequence.

Table 2.3: HMM probabilities

Position in state sequence
0 1 2 3

� (�) 0.188182 0.519576 0.228788 0.804029
� (�) 0.811818 0.480424 0.771212 0.195971

The Three Problems

There are three fundamental problems that we can solve using HMMs. Here,
we briefly describe each of these problems, then in the next section we discuss
efficient algorithms for their solution.

2.4.1 HMM Problem 1

Given the model � = (�,�, �) and a sequence of observations �, deter-
mine � (� |�). That is, we want to compute a score for the observed se-
quence � with respect to the given model �.

2.4.2 HMM Problem 2

Given � = (�,�, �) and an observation sequence �, find an optimal state
sequence for the underlying Markov process. In other words, we want to
uncover the hidden part of the hidden Markov model. This is the problem
that was discussed in some detail above.

2.4.3 HMM Problem 3

Given an observation sequence � and the parameter � , determine a model
of the form � = (�,�, �) that maximizes the probability of �. This can
be viewed as training a model to best fit the observed data. We’ll solve
this problem using a discrete hill climb on the parameter space represented
by �, �, and �. Note that the dimension � is determined from the training
sequence �.

2.4.4 Discussion

Consider, for example, the problem of speech recognition—which happens
to be one of the earliest and best-known applications of HMMs. We can
use the solution to HMM Problem 3 to train an HMM � to, for example,
recognize the spoken word “yes.” Then, given an unknown spoken word,
we can use the solution to HMM Problem 1 to score this word against this

model � and determine the likelihood that the word is “yes.” In this case, we
don’t need to solve HMM Problem 2, but it is possible that such a solution—
which uncovers the hidden states—might provide additional insight into the
underlying speech model.

The Three Solutions

2.5.1 Solution to HMM Problem 1

Let � = (�,�, �) be a given HMM and let � = (�0,�1, . . . ,��−1) be a
series of observations. We want to find � (� |�).

Let � = (�0, �1, . . . , ��−1) be a state sequence. Then by the definition
of � we have

� (� |�,�) = ��0
(�0)��1

(�1) · · · ���−1
(��−1)

and by the definition of � and � it follows that

� (� |�) = ��0
��0,�1

��1,�2
· · · ���−2,��−1

.

Since

� (�, � |�) = � (� ∩� ∩ �)

� (�)

and

� (� |�,�)� (� |�) = � (� ∩� ∩ �)

� (� ∩ �)
· � (� ∩ �)

� (�)
=

� (� ∩� ∩ �)

� (�)

we have

� (�, � |�) = � (� |�,�)� (� |�).

Summing over all possible state sequences yields

� (� |�) =
︁

�

� (�, � |�)

=
︁

�

� (� |�,�)� (� |�) (2.9)

=
︁

�

��0
��0

(�0)��0,�1
��1

(�1) · · · ���−2,��−1
���−1

(��−1).

The direct computation in (2.9) is generally infeasible, since the number
of multiplications is about 2���, where � is typically large and � ≥ 2. One
of the major strengths of HMMs is that there exists an efficient algorithm to
achieve this same result.

To determine � (� |�) in an efficient manner, we can use the following
approach. For � = 0, 1, . . . , � − 1 and � = 0, 1, . . . , � − 1, define

��(�) = � (�0,�1, . . . ,��, �� = �� |�). (2.10)

Then ��(�) is the probability of the partial observation sequence up to time �,
where the underlying Markov process is in state �� at time �.

The crucial insight is that the ��(�) can be computed recursively—and
efficiently. This recursive approach is known as the forward algorithm, or
�-pass, and is given in Algorithm 2.1.

Algorithm 2.1 Forward algorithm

1: Given:

Model � = (�,�, �)
Observations � = (�0,�1, . . . ,��−1)

2: for � = 0, 1, . . . , � − 1 do

3: �0(�) = ����(�0)
4: end for

5: for � = 1, 2, . . . , � − 1 do

6: for � = 0, 1, . . . , � − 1 do

7: ��(�) =

︃
�−1︁

�=0

��−1(�)���

︃
��(��)

8: end for

9: end for

The forward algorithm only requires about �2� multiplications. This
is in stark contrast to the näıve approach, which has a work factor of more
than 2���. Since � is typically large and � is relatively small, the forward
algorithm is highly efficient.

It follows from the definition in (2.10) that

� (� |�) =
�−1︁

�=0

��−1(�).

Hence, the forward algorithm gives us an efficient way to compute a score for
a given sequence �, relative to a given model �.

2.5.2 Solution to HMM Problem 2

Given the model � = (�,�, �) and a sequence of observations �, our goal
here is to find the most likely state sequence. As mentioned above, there are
different possible interpretations of “most likely”—for an HMM, we maximize
the expected number of correct states. In contrast, a dynamic program finds

the highest-scoring overall path. As we have seen, these solutions are not
necessarily the same.

First, we define

��(�) = � (��+1,��+2, . . . ,��−1 |�� = ��, �)

for � = 0, 1, . . . , � − 1, and � = 0, 1, . . . , � − 1. The ��(�) can be computed
recursively (and efficiently) using the backward algorithm, or �-pass, which is
given here in Algorithm 2.2. This is analogous to the �-pass discussed above,
except that we start at the end and work back toward the beginning.

Algorithm 2.2 Backward algorithm

1: Given:

Model � = (�,�, �)
Observations � = (�0,�1, . . . ,��−1)

2: for � = 0, 1, . . . , � − 1 do

3: ��−1(�) = 1
4: end for

5: for � = � − 2, � − 3, . . . , 0 do

6: for � = 0, 1, . . . , � − 1 do

7: ��(�) =
�−1︁

�=0

�����(��+1)��+1(�)

8: end for

9: end for

Now, for � = 0, 1, . . . , � − 1 and � = 0, 1, . . . , � − 1, define

��(�) = � (�� = �� | �, �).

Since ��(�) measures the relevant probability up to time � and ��(�) measures
the relevant probability after time �, we have

��(�) =
��(�)��(�)

� (� |�) .

Recall that the denominator � (� |�) is obtained by summing ��−1(�) over �.
From the definition of ��(�) it follows that the most likely state at time � is
the state �� for which ��(�) is maximum, where the maximum is taken over
the index �. Then the most likely state at time � is given by

�︀� = max
�

��(�).

2.5.3 Solution to HMM Problem 3

Here we want to adjust the model parameters to best fit the given observa-
tions. The sizes of the matrices (� and �) are known, while the elements

of �, �, and � are to be determined, subject to row stochastic conditions.
The fact that we can efficiently re-estimate the model itself is perhaps the
more impressive aspect of HMMs.

For � = 0, 1, . . . , � −2 and �, � ∈ {0, 1, . . . , �−1}, define the “di-gammas”
as

��(�, �) = � (�� = ��, ��+1 = �� | �, �).

Then ��(�, �) is the probability of being in state �� at time � and transiting to
state �� at time � + 1. The di-gammas can be written in terms of �, �, �,
and � as

��(�, �) =
��(�)�����(��+1)��+1(�)

� (� |�) .

For � = 0, 1, . . . , � − 2, we see that ��(�) and ��(�, �) are related by

��(�) =
�−1︁

�=0

��(�, �).

Once the ��(�, �) have been computed, the model � = (�,�, �) is re-estimated
using Algorithm 2.3. The HMM training algorithm is known as Baum-Welch
re-estimation, and is named after Leonard E. Baum and Lloyd R. Welch, who
developed the technique in the late 1960s while working at the Center for
Communications Research (CCR),4 which is part of the Institute for Defense
Analyses (IDA), located in Princeton, New Jersey.

The numerator of the re-estimated ��� in Algorithm 2.3 can be seen to
give the expected number of transitions from state �� to state �� , while the
denominator is the expected number of transitions from �� to any state.5

Hence, the ratio is the probability of transiting from state �� to state �� ,
which is the desired value of ��� .

The numerator of the re-estimated ��(�) in Algorithm 2.3 is the expected
number of times the model is in state �� with observation �, while the denom-
inator is the expected number of times the model is in state �� . Therefore,
the ratio is the probability of observing symbol �, given that the model is in
state �� , and this is the desired value for ��(�).

Re-estimation is an iterative process. First, we initialize � = (�,�, �)
with a reasonable guess, or, if no reasonable guess is available, we choose

4Not to be confused with Creedence Clearwater Revival [153].
5When re-estimating the A matrix, we are dealing with expectations. However, it might

make things clearer to think in terms of frequency counts. For frequency counts, it would be
easy to compute the probability of transitioning from state i to state j. That is, we would
simply count the number of transitions from state i to state j, and divide this count by the
total number of times we could be in state i. This is the intuition behind the re-estimation
formula for the A matrix, and a similar statement holds when re-estimating the B matrix.
In other words, don’t let all of the fancy notation obscure the relatively simple ideas that
are at the core of the re-estimation process.

Algorithm 2.3 Baum-Welch re-estimation

1: Given:

��(�), for � = 0, 1, . . . , � − 1 and � = 0, 1, . . . , � − 1
��(�, �), for � = 0, 1, . . . , � − 2 and �, � ∈ {0, 1, . . . , � − 1}

2: for � = 0, 1, . . . , � − 1 do

3: �� = �0(�)
4: end for

5: for � = 0, 1, . . . , � − 1 do

6: for � = 0, 1, . . . , � − 1 do

7: ��� =
�−2︁

�=0

��(�, �)

︂ �−2︁

�=0

��(�)

8: end for

9: end for

10: for � = 0, 1, . . . , � − 1 do

11: for � = 0, 1, . . . ,� − 1 do

12: ��(�) =
︁

�∈{0,1,...,�−1}
��=�

��(�)

︂ �−1︁

�=0

��(�)

13: end for

14: end for

random values such that �� ≈ 1/� and ��� ≈ 1/� and ��(�) ≈ 1/� . It’s
critical that �, �, and � be randomized, since exactly uniform values will
result in a local maximum from which the model cannot climb. And, as
always, �, � and � must be row stochastic.

The complete solution to HMM Problem 3 can be summarized as follows.

1. Initialize, � = (�,�, �).

2. Compute ��(�), ��(�), ��(�, �) and ��(�).

3. Re-estimate the model � = (�,�, �) using Algorithm 2.3.

4. If � (� |�) increases, goto 2.

In practice, we would want to stop when � (� |�) does not increase by some
predetermined threshold, say, �. We could also (or alternatively) set a max-
imum number of iterations. In any case, it’s important to verify that the
model has converged, which can usually be determined by perusing the �
matrix.6

6While it might seem obvious to stop iterating when the change in P (O |λ) is small,
this requires some care in practice. Typically, the change in P (O |λ) is very small over

Dynamic Programming

Before completing our discussion of the elementary aspects of HMMs, we
make a brief detour to show the close relationship between dynamic pro-
gramming (DP) and HMMs. The executive summary is that a DP can be
viewed as an �-pass where “sum” is replaced by “max.” More precisely, for �,
�, and � as above, the dynamic programming algorithm, which is also known
as the Viterbi algorithm, is given in Algorithm 2.4.

Algorithm 2.4 Dynamic programming

1: Given:

Model � = (�,�, �)
Observations � = (�0,�1, . . . ,��−1)

2: for � = 0, 1, . . . , � − 1 do

3: �0(�) = ����(�0)
4: end for

5: for � = 1, 2, . . . , � − 1 do

6: for � = 0, 1, . . . , � − 1 do

7: ��(�) = max
�∈{0,1,...,�−1}

︀
��−1(�)�����(��)

︀

8: end for

9: end for

At each successive �, a dynamic program determines the probability of
the best path ending at each of the states � = 0, 1, . . . , � − 1. Consequently,
the probability of the best overall path is

max
�∈{0,1,...,�−1}

��−1(�). (2.11)

It is important to realize that (2.11) only gives the optimal probability,
not the corresponding path. By keeping track of each preceding state, the DP
procedure given here can be augmented so that we can recover the optimal
path by tracing back from the highest-scoring final state.

Consider again the example in Section 2.2. The initial probabilities are

� (�) = �0�0(0) = 0.6(0.1) = 0.06 and � (�) = �1�1(0) = 0.4(0.7) = 0.28.

The probabilities of the paths of length two are given by

� (��) = 0.06(0.7)(0.4) = 0.0168

the first several iterations. The model then goes through a period of rapid improvement—
at which point the model has converged—after which the the change in P (O |λ) is again
small. Consequently, if we simply set a threshold, the re-estimation process might stop
immediately, or it might continue indefinitely. Perhaps the optimal approach is to combine
a threshold with a minimum number of iterations—the pseudo-code in Section 2.8 uses this
approach.

� (��) = 0.06(0.3)(0.2) = 0.0036

� (��) = 0.28(0.4)(0.4) = 0.0448

� (��) = 0.28(0.6)(0.2) = 0.0336

and hence the best (most probable) path of length two ending with � is ��
while the best path of length two ending with � is ��. Continuing, we
construct the diagram in Figure 2.2 one level or stage at a time, where each
arrow points to the next element in the optimal path ending at a given state.
Note that at each stage, the dynamic programming algorithm only needs
to maintain the highest-scoring path ending at each state—not a list of all
possible paths. This is the key to the efficiency of the algorithm.

H
.06

C
.28

H
.0448

C
.0336

H
.003136

C
.014112

H
.002822

C
.000847

Figure 2.2: Dynamic programming

In Figure 2.2, the maximum final probability is 0.002822, which occurs
at the final state �. We can use the arrows to trace back from � to find
that the optimal path is ����. Note that this agrees with the brute force
calculation in Table 2.2.

Underflow is a concern with a dynamic programming problem of this
form—since we compute products of probabilities, the result will tend to 0.
Fortunately, underflow is easily avoided by simply taking logarithms. An
underflow-resistant version of DP is given in Algorithm 2.5.

Algorithm 2.5 Dynamic programming without underflow

1: Given:

Model � = (�,�, �)
Observations � = (�0,�1, . . . ,��−1)

2: for � = 0, 1, . . . , � − 1 do

3: �︀0(�) = log
︀
����(�0)

︀

4: end for

5: for � = 1, 2, . . . , � − 1 do

6: for � = 0, 1, . . . , � − 1 do

7: �︀�(�) = max
�∈{0,1,...,�−1}

︁
�︀�−1(�) + log(���) + log

︀
��(��)

︀︁

8: end for

9: end for

Not surprisingly, for the underflow-resistant version in Algorithm 2.5, the
optimal score is given by

max
�∈{0,1,...,�−1}

�︀�−1(�).

Again, additional bookkeeping is required to determine the optimal path.

Scaling

The three HMM solutions in Section 2.5 all require computations involving
products of probabilities. It’s very easy to see, for example, that ��(�) tends
to 0 exponentially as � increases. Therefore, any attempt to implement the
HMM algorithms as given in Section 2.5 will inevitably result in underflow.
The solution to this underflow problem is to scale the numbers. However,
care must be taken to ensure that the algorithms remain valid.

First, consider the computation of ��(�). The basic recurrence is

��(�) =
�−1︁

�=0

��−1(�)�����(��).

It seems sensible to normalize each ��(�) by dividing by

�−1︁

�=0

��(�).

Following this approach, we compute scaling factors �� and the scaled ��(�),
which we denote as �︀�(�), as in Algorithm 2.6.

To verify Algorithm 2.6 we first note that �︀0(�) = �0�0(�). Now suppose
that for some �, we have

�︀�(�) = �0�1 · · · ����(�). (2.12)

Then

�︀�+1(�) = ��+1�︀�+1(�)

= ��+1

�−1︁

�=0

�︀�(�)�����(��+1)

= �0�1 · · · ����+1

�−1︁

�=0

��(�)�����(��+1)

= �0�1 · · · ��+1��+1(�)

and hence (2.12) holds, by induction, for all �.

Algorithm 2.6 Scaling factors

1: Given:

��(�), for � = 0, 1, . . . , � − 1 and � = 0, 1, . . . , � − 1
2: for � = 0, 1, . . . , � − 1 do

3: �︀0(�) = �0(�)
4: end for

5: �0 = 1/
�−1︁

�=0

�︀0(�)

6: for � = 0, 1, . . . , � − 1 do

7: �︀0(�) = �0�︀0(�)
8: end for

9: for � = 1, 2, . . . , � − 1 do

10: for � = 0, 1, . . . , � − 1 do

11: �︀�(�) =
�−1︁

�=0

�︀�−1(�)�����(��)

12: end for

13: �� = 1

︂�−1︁

�=0

�︀�(�)

14: for � = 0, 1, . . . , � − 1 do

15: �︀�(�) = ���︀�(�)
16: end for

17: end for

From (2.12) and the definitions of �︀ and �︀ it follows that

�︀�(�) = ��(�)

︂�−1︁

�=0

��(�). (2.13)

From equation (2.13) we see that for all � and �, the desired scaled value
of ��(�) is indeed given by �︀�(�).

From (2.13) it follows that

�−1︁

�=0

�︀�−1(�) = 1.

Also, from (2.12) we have

�−1︁

�=0

�︀�−1(�) = �0�1 · · · ��−1

�−1︁

�=0

��−1(�)

= �0�1 · · · ��−1� (� |�).

Combining these results gives us

� (� |�) = 1

︂ �−1︁

�=0

�� .

It follows that we can compute the log of � (� |�) directly from the scaling
factors �� as

log
︀
� (� |�)

︀
= −

�−1︁

�=0

log �� . (2.14)

It is fairly easy to show that the same scale factors �� can be used in
the backward algorithm by simply computing �︀�(�) = ����(�). We then deter-
mine ��(�, �) and ��(�) using the same formulae as in Section 2.5, but with �︀�(�)
and �︀�(�) in place of ��(�) and ��(�), respectively. The resulting gammas and
di-gammas are then used to re-estimate �, �, and �.

By writing the original re-estimation formulae (as given in lines 3, 7,
and 12 of Algorithm 2.3) directly in terms of ��(�) and ��(�), it is a straight-
forward exercise to show that the re-estimated � and � and � are exact
when �︀�(�) and �︀�(�) are used in place of ��(�) and ��(�). Furthermore,
� (� |�) isn’t required in the re-estimation formulae, since in each case it
cancels in the numerator and denominator. Therefore, (2.14) determines a
score for the model, which can be used, for example, to decide whether the
model is improving sufficiently to continue to the next iteration of the training
algorithm.

All Together Now

Here, we give complete pseudo-code for solving HMM Problem 3, including
scaling. This pseudo-code also provides virtually everything needed to solve
HMM Problems 1 and 2.

1. Given

Observation sequence � = (�0,�1, . . . ,��−1).

2. Initialize

(a) Select � and determine � from �. Recall that the model is de-
noted � = (�,�, �), where � = {���} is � ×� , � = {��(�)}
is � ×� , and � = {��} is 1×� .

(b) Initialize the three matrices �, �, and �. You can use knowl-
edge of the problem when generating initial values, but if no such

information is available (as is often the case), let �� ≈ 1/� and
let ��� ≈ 1/� and ��(�) ≈ 1/� . Always be sure that your initial
values satisfy the row stochastic conditions (i.e., the elements of
each row sum to 1, and each element is between 0 and 1). Also,
make sure that the elements of each row are not exactly uniform.

(c) Initialize each of the following.

minIters = minimum number of re-estimation iterations
� = threshold representing negligible improvement in model
iters = 0
oldLogProb = −∞

3. Forward algorithm or �-pass

// compute �0(�)
�0 = 0
for � = 0 to � − 1

�0(�) = ����(�0)
�0 = �0 + �0(�)

next �
// scale the �0(�)
�0 = 1/�0
for � = 0 to � − 1

�0(�) = �0�0(�)
next �
// compute ��(�)
for � = 1 to � − 1

�� = 0
for � = 0 to � − 1

��(�) = 0
for � = 0 to � − 1

��(�) = ��(�) + ��−1(�)���
next �
��(�) = ��(�)��(��)
�� = �� + ��(�)

next �
// scale ��(�)
�� = 1/��
for � = 0 to � − 1

��(�) = ����(�)
next �

next �

4. Backward algorithm or �-pass

// Let ��−1(�) = 1 scaled by ��−1

for � = 0 to � − 1
��−1(�) = ��−1

next �
// �-pass
for � = � − 2 to 0 by −1

for � = 0 to � − 1
��(�) = 0
for � = 0 to � − 1

��(�) = ��(�) + �����(��+1)��+1(�)
next �
// scale ��(�) with same scale factor as ��(�)
��(�) = ����(�)

next �
next t

5. Compute the gammas and di-gammas

for � = 0 to � − 2
denom = 0
for � = 0 to � − 1

for � = 0 to � − 1
denom = denom+ ��(�)�����(��+1)��+1(�)

next �
next �
for � = 0 to � − 1

��(�) = 0
for � = 0 to � − 1

��(�, �) =
︀
��(�)�����(��+1)��+1(�)

︀
/denom

��(�) = ��(�) + ��(�, �)
next �

next �
next �
// Special case for ��−1(�)
denom = 0
for � = 0 to � − 1

denom = denom+ ��−1(�)
next �
for � = 0 to � − 1

��−1(�) = ��−1(�)/denom
next �

6. Re-estimate the model � = (�,�, �)

// re-estimate �
for � = 0 to � − 1

�� = �0(�)
next �
// re-estimate �
for � = 0 to � − 1

for � = 0 to � − 1
numer = 0
denom = 0
for � = 0 to � − 2

numer = numer+ ��(�, �)
denom = denom+ ��(�)

next �
��� = numer/denom

next �
next �
// re-estimate �
for � = 0 to � − 1

for � = 0 to � − 1
numer = 0
denom = 0
for � = 0 to � − 1

if(�� == �) then
numer = numer+ ��(�)

end if
denom = denom+ ��(�)

next �
��(�) = numer/denom

next �
next �

7. Compute log
︀
� (� |�)

︀

logProb = 0
for � = 0 to � − 1

logProb = logProb+ log(��)
next �
logProb = −logProb

8. To iterate or not to iterate, that is the question.

iters = iters+ 1
� = |logProb− oldLogProb|
if(iters < minIters or � > �) then

oldLogProb = logProb

goto 3.
else

return � = (�,�, �)
end if

The Bottom Line

Hidden Markov models are powerful, efficient, and extremely useful in prac-
tice. Virtually no assumptions need to be made, yet the HMM process can
extract significant statistical information from data. Thanks to efficient train-
ing and scoring algorithms, HMMs are practical, and they have proven useful
in a wide range of applications. Even in cases where the underlying assump-
tion of a (hidden) Markov process is questionable, HMMs are often applied
with success. In Chapter 9 we consider selected applications of HMMs. Most
of these applications are in the field of information security.

In subsequent chapters, we often compare and contrast other machine
learning techniques to HMMs. Consequently, a clear understanding of the
material in this chapter is crucial before proceeding with the remainder of
the book. The homework problem should help the dedicated reader to clarify
any remaining issues. And the applications in Chapter 9 are highly recom-
mended, with the English text example in Section 9.2 being especially highly
recommended.

Problems

When faced with a problem you do not understand,

do any part of it you do understand, then look at it again.

— Robert Heinlein

1. Suppose that we train an HMM and obtain the model � = (�,�, �)
where

� =

︂
0.7 0.3
0.4 0.6

︂
, � =

︂
0.1 0.4 0.5
0.7 0.2 0.1

︂
, � =

︀
0.0 1.0

︀
.

Furthermore, suppose the hidden states correspond to � and �, re-
spectively, while the observations are �, � , and �, which are mapped
to 0, 1, and 2, respectively. In this problem, we consider the observation
sequence � = (�0,�1,�2) = (�,�,�) = (1, 0, 2).

a) Directly compute � (� |�). That is, compute

� (� |�) =
︁

�

� (�, � |�)

using the probabilities in � = (�,�, �) for each of the following
cases, based on the given observation sequence �.

� (�, � = ���) = · · · · · =

� (�, � = ���) = · · · · · =

� (�, � = ���) = · · · · · =

� (�, � = ���) = · · · · · =

� (�, � = ���) = · · · · · =

� (�, � = ���) = · · · · · =

� (�, � = ���) = 1.0 · 0.2 · 0.6 · 0.7 · 0.4 · 0.5 =

� (�, � = ���) = · · · · · =

The desired probability is the sum of these eight probabilities.

b) Compute � (� |�) using the � pass. That is, compute

�0(0) = · =

�0(1) = 1.0 · 0.2 =

�1(0) = (· + ·) · =

�1(1) = (· + ·) · =

�2(0) = (· + ·) · =

�2(1) = (· + ·) · =

where we initialize

�0(�) = ����(�0), for � = 0, 1, . . . , � − 1

and the recurrence is

��(�) =

︃
�−1︁

�=0

��−1(�)���

︃
��(��)

for � = 1, 2, . . . , �−1 and � = 0, 1, . . . , �−1. The desired probability
is given by

� (� |�) =
�−1︁

�=0

��−1(�).

c) In terms of � and � , and counting only multiplications, what is the
work factor for the method in part a)? What is the work factor for
the method in part b)?

2. For this problem, use the same model � and observation sequence �
given in Problem 1.

a) Determine the best hidden state sequence (�0, �1, �2) in the dy-
namic programming sense.

b) Determine the best hidden state sequence (�0, �1, �2) in the HMM
sense.

3. Summing the numbers in the “probability” column of Table 2.2, we
find � (� |�) = 0.009629 for � = (0, 1, 0, 2).

a) By a similar direct calculation, compute � (� |�) for each observa-
tion sequence of the form � = (�0,�1,�2,�3), where �� ∈ {0, 1, 2}.
Verify that

︀
� (� |�) = 1, where the sum is over the observation

sequences of length four. Note that you will need to use the proba-
bilities for �, �, and � given in equations (2.4), (2.5), and (2.6) in
Section 2.2, respectively.

b) Use the forward algorithm to compute � (� |�) for the same obser-
vation sequences and model as in part a). Verify that you obtain
the same results as in part a).

4. From equation (2.9) and the definition of ��(�) in equation (2.10), it
follows that

��(�)=
︁

�

��0
��0

(�0)��0,�1
��1

(�1) · · · ���−2,��−1
���−1

(��−1)���−1,�
��(��)

where � = (�0, �1, . . . , ��−1). Use this expression for ��(�) to directly
verify the forward algorithm recurrence

��(�) =

︃
�−1︁

�=0

��−1(�)���

︃
��(��).

5. As discussed in this chapter, the forward algorithm is used solve HMM
Problem 1, while the forward algorithm and backward algorithm to-
gether are used to compute the gammas, which are then used to solve
HMM Problem 2.

a) Explain how you can solve HMM Problem 1 using the backward
algorithm instead of the forward algorithm.

b) Using the model � = (�,�, �) and the observation sequence � in
Problem 1, compute � (� |�) using the backward algorithm, and
verify that you obtain the same result as when using the forward
algorithm.

6. This problem deals with the Baum-Welch re-estimation algorithm.

a) Write the re-estimation formulae, as given in lines 3, 7, and 12 of
Algorithm 2.3, directly in terms of the ��(�) and ��(�).

b) Using the re-estimation formulae obtained in part a), substitute the
scaled values �︀�(�) and �︀�(�) for ��(�) and ��(�), respectively, and
show that the resulting re-estimation formulae are exact.

7. Instead of using �� to scale the ��(�), we can scale each ��(�) by

�� = 1

︂�−1︁

�=0

�︀�(�)

where the definition of �︀�(�) is analogous to that of �︀�(�) as given in
Algorithm 2.6.

a) Using the scaling factors �� and �� show that the Baum-Welch re-
estimation formulae in Algorithm 2.3 are exact with �︀ and �︀ in place
of � and �.

b) Write log
︀
� (� |�)

︀
in terms of �� and ��.

8. When training, the elements of � can be initialized to approximately
uniform. That is, we let �� ≈ 1/� and ��� ≈ 1/� and ��(�) ≈ 1/� ,
subject to the row stochastic conditions. In Section 2.5.3, it is stated
that it is a bad idea to initialize the values to exactly uniform, since
the HMM would be stuck at a local maximum and hence it could not
climb to an improved solution. Suppose that �� = 1/� and ��� = 1/�
and ��(�) = 1/� . Verify that the re-estimation process leaves all of
these values unchanged.

9. In this problem, we consider generalizations of the HMM formulation
discussed in this chapter.

a) Consider an HMM where the state transition matrix is time depen-
dent. Then for each �, there is an � ×� row-stochastic �� = {����}
that is used in place of � in the HMM computations. For such an
HMM, provide pseudo-code to solve HMM Problem 1.

b) Consider an HMM of order two, that is, an HMM where the un-
derlying Markov process is of order two. Then the state at time �
depends on the states at time � − 1 and � − 2. For such an HMM,
provide pseudo-code to solve HMM Problem 1.

10. Write an HMM program for the English text problem in Section 9.2 of
Chapter 9. Test your program on each of the following cases.

a) There are � = 2 hidden states. Explain your results.

b) There are � = 3 hidden states. Explain your results.

c) There are � = 4 hidden states. Explain your results.

d) There are � = 26 hidden states. Explain your results.

11. In this problem, you will use an HMM to break a simple substitution
ciphertext message. For each HMM, train using 200 iterations of the
Baum-Welch re-estimation algorithm.

a) Obtain an English plaintext message of 50,000 plaintext characters,
where the characters consist only of lower case a through z (i.e., re-
move all punctuation, special characters, and spaces, and convert all
upper case to lower case). Encrypt this plaintext using a randomly
generated shift of the alphabet. Remember the key.

b) Train an HMM with � = 2 and � = 26 on your ciphetext from
part a). From the final � matrix, determine the ciphertext letters
that correspond to consonants and vowels.

c) Generate a digraph frequency matrix � for English text, where ��� is
the count of the number of times that letter � is followed by letter �.
Here, we assume that a is letter 0, b is letter 1, c is letter 2, and so on.
This matrix must be based on 1,000,000 characters where, as above,
only the 26 letters of the alphabet are used. Next, add five to each
element in your 26× 26 matrix �. Finally, normalize your matrix �
by dividing each element by its row sum. The resulting matrix �
will be row stochastic, and it will not contain any 0 probabilities.

d) Train an HMM with � = � = 26, using the first 1000 characters of
ciphertext you generated in part a), where the � matrix is initialized
with your � matrix from part c). Also, in your HMM, do not re-
estimate �. Use the final � matrix to determine a putative key
and give the fraction of putative key elements that match the actual
key (as a decimal, to four places). For example, if 22 of the 26 key
positions are correct, then your answer would be 22/26 = 0.8462.

12. Write an HMM program to solve the problem discussed in Section 9.2,
replacing English text with the following.

a) French text.

b) Russian text.

c) Chinese text.

13. Perform an HMM analysis similar to that discussed in Section 9.2, re-
placing English with “Hamptonese,” the mysterious writing system de-
veloped by James Hampton. For information on Hamptonese, see

http://www.cs.sjsu.edu/faculty/stamp/Hampton/hampton.html

14. Since HMM training is a hill climb, we are only assured of reaching a
local maximum. And, as with any hill climb, the specific local maximum
that we find will depend on our choice of initial values. Therefore, by
training a hidden Markov model multiple times with different initial
values, we would expect to obtain better results than when training
only once.

In the paper [16], the authors use an expectation maximization (EM)
approach with multiple random restarts as a means of attacking ho-
mophonic substitution ciphers. An analogous HMM-based technique is
analyzed in the report [158], where the effectiveness of multiple ran-
dom restarts on simple substitution cryptanalysis is explored in detail.
Multiple random restarts are especially helpful in the most challenging
cases, that is, when little data (i.e., ciphertext) is available. However,
the tradeoff is that the work factor can be high, since the number of
restarts required may be very large (millions of random restarts are
required in some cases).

a) Obtain an English plaintext message consisting of 1000 plaintext
characters, consisting only of lower case a through z (i.e., remove all
punctuation, special characters, and spaces, and convert all upper
case letters to lower case). Encrypt this plaintext using a randomly
selected shift of the alphabet. Remember the key. Also generate a
digraph frequency matrix �, as discussed in part c) of Problem 11.

b) Train � HMMs, for each of � = 1, � = 10, � = 100, and � = 1000,
following the same process as in Problem 11, part d), but using
the � = 1000 observations generated in part a) of this problem.
For a given � select the best result based on the model scores and
give the fraction of the putative key that is correct, calculated as in
Problem 11, part d).

c) Repeat part b), but only use the first � = 400 observations.

d) Repeat part c), but only use the first � = 300 observations.

15. The Zodiac Killer murdered at least five people in the San Francisco Bay
Area in the late 1960s and early 1970s. Although police had a prime
suspect, no arrest was ever made and the murders remain officially
unsolved. The killer sent several messages to the police and to local
newspapers, taunting police for their failure to catch him. One of these

http://www.cs.sjsu.edu/faculty/stamp/Hampton/hampton.html

messages contained a homophonic substitution consisting of 408 strange
symbols.7 Not surprisingly, this cipher is known as the Zodiac 408.
Within days of its release, the Zodiac 408 was broken by Donald and
Bettye Harden, who were schoolteachers from Salinas, California. The
Zodiac 408 ciphertext is given below on the left, while the corresponding
plaintext appears on the right.

I L I K E K I L L I N G P E O P L

E B E C A U S E I T I S S O M U C

H F U N I T I S M O R E F U N T H

A N K I L L I N G W I L D G A M E

I N T H E F O R R E S T B E C A U

S E M A N I S T H E M O S T D A N

G E R O U E A N A M A L O F A L L

T O K I L L S O M E T H I N G G I

V E S M E T H E M O S T T H R I L

L I N G E X P E R E N C E I T I S

E V E N B E T T E R T H A N G E T

T I N G Y O U R R O C K S O F F W

I T H A G I R L T H E B E S T P A

R T O F I T I S T H A E W H E N I

D I E I W I L L B E R E B O R N I

N P A R A D I C E A N D A L L T H

E I H A V E K I L L E D W I L L B

E C O M E M Y S L A V E S I W I L

L N O T G I V E Y O U M Y N A M E

B E C A U S E Y O U W I L L T R Y

T O S L O I D O W N O R A T O P M

Y C O L L E C T I O G O F S L A V

E S F O R M Y A F T E R L I F E E

B E O R I E T E M E T H H P I T I

Note the (apparently intentional) misspellings in the plaintext, includ-
ing “FORREST”, “ANAMAL”, and so on. Also, the final 18 characters
(underlined in the plaintext above) appear to be random filler.

a) Solve the Zodiac 408 cipher using the HMM approach discussed in
Section 9.4. Initialize the � matrix as in part c) of Problem 11,
and do not re-estimate �. Use 1000 random restarts of the HMM,
and 200 iterations of Baum-Welch re-estimation in each case. Give
your answer as the percentage of characters of the actual plaintext
that are recovered correctly.

b) Repeat part a), but use 10,000 random restarts.

c) Repeat part b), but use 100,000 random restarts.

d) Repeat part c), but use 1,000,000 random restarts.

7The Zodiac 408 ciphertext was actually sent in three parts to local newspapers. Here,
we give the complete message, where the three parts have been combined into one. Also,
a homophonic substitution is like a simple substitution, except that the mapping is many-
to-one, that is, multiple ciphertext symbols can map to one plaintext symbol.

e) Repeat part a), except also re-estimate the � matrix.

f) Repeat part b), except also re-estimate the � matrix.

g) Repeat part c), except also re-estimate the � matrix.

h) Repeat part d), except also re-estimate the � matrix.

16. In addition to the Zodiac 408 cipher, the Zodiac Killer (see Problem 15)
released a similar-looking cipher with 340 symbols. This cipher is known
as the Zodiac 340 and remains unsolved to this day.8 The ciphertext is
given below.

a) Repeat Problem 15, parts a) through d), using the Zodiac 340 in
place of the Zodiac 408. Since the plaintext is unknown, in each
case, simply print the decryption obtained from your highest scoring
model.

b) Repeat part a) of this problem, except use parts e) through h) of
Problem 15.

8It is possible that the Zodiac 340 is not a cipher at all, but instead just a random
collection of symbols designed to frustrate would-be cryptanalysts. If that’s the case, your
easily frustrated author can confirm that the “cipher” has been wildly successful.

INTRODUCTION TO
REINFORCEMENT LEARNING

#

This chapter is excerpted from

Statistical Reinforcement Learning

by Masashi Sugiyama.

© 2018 Taylor & Francis Group. All rights reserved.

4

Learn more

https://www.crcpress.com/Statistical-Reinforcement-Learning-Modern-Machine-Learning-Approaches/Sugiyama/p/book/9781439856895utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Statistical-Reinforcement-Learning-Modern-Machine-Learning-Approaches/Sugiyama/p/book/9781439856895utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Statistical-Reinforcement-Learning-Modern-Machine-Learning-Approaches/Sugiyama/p/book/9781439856895utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

Introduction to Reinforcement

Learning

Reinforcement learning is aimed at controlling a computer agent so that a
target task is achieved in an unknown environment.

In this chapter, we first give an informal overview of reinforcement learning
in Section 1.1. Then we provide a more formal formulation of reinforcement
learning in Section 1.2. Finally, the book is summarized in Section 1.3.

1.1 Reinforcement Learning

A schematic of reinforcement learning is given in Figure 1.1. In an unknown
environment (e.g., in a maze), a computer agent (e.g., a robot) takes an action
(e.g., to walk) based on its own control policy. Then its state is updated (e.g.,
by moving forward) and evaluation of that action is given as a “reward” (e.g.,
praise, neutral, or scolding). Through such interaction with the environment,
the agent is trained to achieve a certain task (e.g., getting out of the maze)
without explicit guidance. A crucial advantage of reinforcement learning is its
non-greedy nature. That is, the agent is trained not to improve performance in
a short term (e.g., greedily approaching an exit of the maze), but to optimize
the long-term achievement (e.g., successfully getting out of the maze).

A reinforcement learning problem contains various technical components
such as states, actions, transitions, rewards, policies, and values. Before go-
ing into mathematical details (which will be provided in Section 1.2), we
intuitively explain these concepts through illustrative reinforcement learning
problems here.

Let us consider a maze problem (Figure 1.2), where a robot agent is located
in a maze and we want to guide him to the goal without explicit supervision
about which direction to go. States are positions in the maze which the robot
agent can visit. In the example illustrated in Figure 1.3, there are 21 states
in the maze. Actions are possible directions along which the robot agent can
move. In the example illustrated in Figure 1.4, there are 4 actions which corre-
spond to movement toward the north, south, east, and west directions. States

Statistical Reinforcement Learning

Agent
State

Action

Reward

Environment

FIGURE 1.1: Reinforcement learning.

and actions are fundamental elements that define a reinforcement learning
problem.

Transitions specify how states are connected to each other through actions
(Figure 1.5). Thus, knowing the transitions intuitively means knowing the map
of the maze. Rewards specify the incomes/costs that the robot agent receives
when making a transition from one state to another by a certain action. In the
case of the maze example, the robot agent receives a positive reward when it
reaches the goal. More specifically, a positive reward is provided when making
a transition from state 12 to state 17 by action “east” or from state 18 to
state 17 by action “north” (Figure 1.6). Thus, knowing the rewards intuitively
means knowing the location of the goal state. To emphasize the fact that a
reward is given to the robot agent right after taking an action and making a
transition to the next state, it is also referred to as an immediate reward.

Under the above setup, the goal of reinforcement learning to find the policy
for controlling the robot agent that allows it to receive the maximum amount
of rewards in the long run. Here, a policy specifies an action the robot agent
takes at each state (Figure 1.7). Through a policy, a series of states and ac-
tions that the robot agent takes from a start state to an end state is specified.
Such a series is called a trajectory (see Figure 1.7 again). The sum of im-
mediate rewards along a trajectory is called the return. In practice, rewards
that can be obtained in the distant future are often discounted because re-
ceiving rewards earlier is regarded as more preferable. In the maze task, such
a discounting strategy urges the robot agent to reach the goal as quickly as
possible.

To find the optimal policy efficiently, it is useful to view the return as a
function of the initial state. This is called the (state-)value. The values can
be efficiently obtained via dynamic programming, which is a general method
for solving a complex optimization problem by breaking it down into simpler
subproblems recursively. With the hope that many subproblems are actually
the same, dynamic programming solves such overlapped subproblems only
once and reuses the solutions to reduce the computation costs.

In the maze problem, the value of a state can be computed from the values
of neighboring states. For example, let us compute the value of state 7 (see

Introduction to Reinforcement Learning

FIGURE 1.2: A maze problem. We want to guide the robot agent to the
goal.

1

3

5

2

4

6

10

7

9

12

16

13

15

17

21

18

20

14 198

11

FIGURE 1.3: States are visitable positions in the maze.

North

South

West East

FIGURE 1.4: Actions are possible movements of the robot agent.

Statistical Reinforcement Learning

1

3

5

2

4

6

10

7

9

12

16

13

15

17

21

18

20

14 198

11

FIGURE 1.5: Transitions specify connections between states via actions.
Thus, knowing the transitions means knowing the map of the maze.

1

3

5

2

4

6

10

7

9

12

16

13

15

17

21

18

20

14 198

11

FIGURE 1.6: A positive reward is given when the robot agent reaches the
goal. Thus, the reward specifies the goal location.

FIGURE 1.7: A policy specifies an action the robot agent takes at each
state. Thus, a policy also specifies a trajectory, which is a series of states and
actions that the robot agent takes from a start state to an end state.

Introduction to Reinforcement Learning

.35

.43

.39

.48

.39

.48

.43

.53

.9

.59

.81

.66

1

.66

.9

.73

.73 .81

.59

.48.43

FIGURE 1.8: Values of each state when reward +1 is given at the goal state
and the reward is discounted at the rate of 0.9 according to the number of
steps.

Figure 1.5 again). From state 7, the robot agent can reach state 2, state 6,
and state 8 by a single step. If the robot agent knows the values of these
neighboring states, the best action the robot agent should take is to visit the
neighboring state with the largest value, because this allows the robot agent
to earn the largest amount of rewards in the long run. However, the values
of neighboring states are unknown in practice and thus they should also be
computed.

Now, we need to solve 3 subproblems of computing the values of state 2,
state 6, and state 8. Then, in the same way, these subproblems are further
decomposed as follows:

• The problem of computing the value of state 2 is decomposed into 3
subproblems of computing the values of state 1, state 3, and state 7.

• The problem of computing the value of state 6 is decomposed into 2
subproblems of computing the values of state 1 and state 7.

• The problem of computing the value of state 8 is decomposed into 3
subproblems of computing the values of state 3, state 7, and state 9.

Thus, by removing overlaps, the original problem of computing the value of
state 7 has been decomposed into 6 unique subproblems: computing the values
of state 1, state 2, state 3, state 6, state 8, and state 9.

If we further continue this problem decomposition, we encounter the prob-
lem of computing the values of state 17, where the robot agent can receive
reward +1. Then the values of state 12 and state 18 can be explicitly com-
puted. Indeed, if a discounting factor (a multiplicative penalty for delayed
rewards) is 0.9, the values of state 12 and state 18 are (0.9)1 = 0.9. Then we
can further know that the values of state 13 and state 19 are (0.9)2 = 0.81.
By repeating this procedure, we can compute the values of all states (as illus-
trated in Figure 1.8). Based on these values, we can know the optimal action

Statistical Reinforcement Learning

the robot agent should take, i.e., an action that leads the robot agent to the
neighboring state with the largest value.

Note that, in real-world reinforcement learning tasks, transitions are often
not deterministic but stochastic, because of some external disturbance; in the
case of the above maze example, the floor may be slippery and thus the robot
agent cannot move as perfectly as it desires. Also, stochastic policies in which
mapping from a state to an action is not deterministic are often employed
in many reinforcement learning formulations. In these cases, the formulation
becomes slightly more complicated, but essentially the same idea can still be
used for solving the problem.

To further highlight the notable advantage of reinforcement learning that
not the immediate rewards but the long-term accumulation of rewards is max-
imized, let us consider a mountain-car problem (Figure 1.9). There are two
mountains and a car is located in a valley between the mountains. The goal is
to guide the car to the top of the right-hand hill. However, the engine of the
car is not powerful enough to directly run up the right-hand hill and reach
the goal. The optimal policy in this problem is to first climb the left-hand hill
and then go down the slope to the right with full acceleration to get to the
goal (Figure 1.10).

Suppose we define the immediate reward such that moving the car to the
right gives a positive reward +1 and moving the car to the left gives a nega-
tive reward −1. Then, a greedy solution that maximizes the immediate reward
moves the car to the right, which does not allow the car to get to the goal
due to lack of engine power. On the other hand, reinforcement learning seeks
a solution that maximizes the return, i.e., the discounted sum of immediate
rewards that the agent can collect over the entire trajectory. This means that
the reinforcement learning solution will first move the car to the left even
though negative rewards are given for a while, to receive more positive re-
wards in the future. Thus, the notion of “prior investment” can be naturally
incorporated in the reinforcement learning framework.

1.2 Mathematical Formulation

In this section, the reinforcement learning problem is mathematically for-
mulated as the problem of controlling a computer agent under a Markov de-
cision process.

We consider the problem of controlling a computer agent under a discrete-
time Markov decision process (MDP). That is, at each discrete time-step t,
the agent observes a state st ∈ S, selects an action at ∈ A, makes a transition
st+1 ∈ S, and receives an immediate reward,

rt = r(st, at, st+1) ∈ R.

Introduction to Reinforcement Learning

Goal

Car

FIGURE 1.9: A mountain-car problem. We want to guide the car to the
goal. However, the engine of the car is not powerful enough to directly run up
the right-hand hill.

Goal

FIGURE 1.10: The optimal policy to reach the goal is to first climb the
left-hand hill and then head for the right-hand hill with full acceleration.

S and A are called the state space and the action space, respectively. r(s, a, s′)
is called the immediate reward function.

The initial position of the agent, s1, is drawn from the initial probability
distribution. If the state space S is discrete, the initial probability distribution
is specified by the probability mass function P (s) such that

0 ≤ P (s) ≤ 1, ∀s ∈ S,
∑

s∈S

P (s) = 1.

If the state space S is continuous, the initial probability distribution is speci-
fied by the probability density function p(s) such that

p(s) ≥ 0, ∀s ∈ S,

Statistical Reinforcement Learning

∫

s∈S

p(s)ds = 1.

Because the probability mass function P (s) can be expressed as a probability
density function p(s) by using the Dirac delta function1 δ(s) as

p(s) =
∑

s′∈S

δ(s′ − s)P (s′),

we focus only on the continuous state space below.
The dynamics of the environment, which represent the transition prob-

ability from state s to state s′ when action a is taken, are characterized
by the transition probability distribution with conditional probability density
p(s′|s, a):

p(s′|s, a) ≥ 0, ∀s, s′ ∈ S, ∀a ∈ A,
∫

s′∈S

p(s′|s, a)ds′ = 1, ∀s ∈ S, ∀a ∈ A.

The agent’s decision is determined by a policy π. When we consider a deter-
ministic policy where the action to take at each state is uniquely determined,
we regard the policy as a function of states:

π(s) ∈ A, ∀s ∈ S.

Action a can be either discrete or continuous. On the other hand, when devel-
oping more sophisticated reinforcement learning algorithms, it is often more
convenient to consider a stochastic policy, where an action to take at a state
is probabilistically determined. Mathematically, a stochastic policy is a con-
ditional probability density of taking action a at state s:

π(a|s) ≥ 0, ∀s ∈ S, ∀a ∈ A,
∫

a∈A

π(a|s)da = 1, ∀s ∈ S.

By introducing stochasticity in action selection, we can more actively explore

the entire state space. Note that when action a is discrete, the stochastic policy
is expressed using Dirac’s delta function, as in the case of the state densities.

A sequence of states and actions obtained by the procedure described in
Figure 1.11 is called a trajectory.

1The Dirac delta function δ(·) allows us to obtain the value of a function f at a point τ
via the convolution with f :

∫

∞

−∞

f(s)δ(s − τ)ds = f(τ).

Dirac’s delta function δ(·) can be expressed as the Gaussian density with standard deviation
σ → 0:

δ(a) = lim
σ→0

1
√
2πσ2

exp

(

−
a2

2σ2

)

.

Introduction to Reinforcement Learning

1. The initial state s1 is chosen following the initial probability p(s).

2. For t = 1, . . . , T ,

(a) The action at is chosen following the policy π(at|st).
(b) The next state st+1 is determined according to the transition

probability p(st+1|st, at).

FIGURE 1.11: Generation of a trajectory sample.

When the number of steps, T , is finite or infinite, the situation is called
the finite horizon or infinite horizon, respectively. Below, we focus on the
finite-horizon case because the trajectory length is always finite in practice.
We denote a trajectory by h (which stands for a “history”):

h = [s1, a1, . . . , sT , aT , sT+1].

The discounted sum of immediate rewards along the trajectory h is called
the return:

R(h) =
T∑

t=1

γt−1r(st, at, st+1),

where γ ∈ [0, 1) is called the discount factor for future rewards.
The goal of reinforcement learning is to learn the optimal policy π∗ that

maximizes the expected return:

π∗ = argmax
π

Epπ(h)

[
R(h)

]
,

where Epπ(h) denotes the expectation over trajectory h drawn from pπ(h), and
pπ(h) denotes the probability density of observing trajectory h under policy
π:

pπ(h) = p(s1)

T∏

t=1

p(st+1|st, at)π(at|st).

“argmax” gives the maximizer of a function (Figure 1.12).
For policy learning, various methods have been developed so far. These

methods can be classified into model-based reinforcement learning and model-

free reinforcement learning. The term “model” indicates a model of the tran-
sition probability p(s′|s, a). In the model-based reinforcement learning ap-
proach, the transition probability is learned in advance and the learned tran-
sition model is explicitly used for policy learning. On the other hand, in the
model-free reinforcement learning approach, policies are learned without ex-
plicitly estimating the transition probability. If strong prior knowledge of the

Statistical Reinforcement Learning

argmax

max

FIGURE 1.12: “argmax” gives the maximizer of a function, while “max”
gives the maximum value of a function.

transition model is available, the model-based approach would be more favor-
able. On the other hand, learning the transition model without prior knowl-
edge itself is a hard statistical estimation problem. Thus, if good prior knowl-
edge of the transition model is not available, the model-free approach would
be more promising.

1.3 Structure of the Book

In this section, we explain the structure of this book, which covers major
reinforcement learning approaches.

1.3.1 Model-Free Policy Iteration

Policy iteration is a popular and well-studied approach to reinforcement
learning. The key idea of policy iteration is to determine policies based on the
value function.

Let us first introduce the state-action value function Qπ(s, a) ∈ R for
policy π, which is defined as the expected return the agent will receive when
taking action a at state s and following policy π thereafter:

Qπ(s, a) = Epπ(h)

[
R(h)

∣∣∣s1 = s, a1 = a
]
,

where “|s1 = s, a1 = a” means that the initial state s1 and the first action a1
are fixed at s1 = s and a1 = a, respectively. That is, the right-hand side of
the above equation denotes the conditional expectation of R(h) given s1 = s
and a1 = a.

Let Q∗(s, a) be the optimal state-action value at state s for action a defined
as

Q∗(s, a) = max
π

Qπ(s, a).

Based on the optimal state-action value function, the optimal action the agent
should take at state s is deterministically given as the maximizer of Q∗(s, a)

Introduction to Reinforcement Learning

1. Initialize policy π(a|s).

2. Repeat the following two steps until the policy π(a|s) converges.

(a) Policy evaluation: Compute the state-action value function
Qπ(s, a) for the current policy π(a|s).

(b) Policy improvement: Update the policy as

π(a|s)←− δ
(
a− argmax

a′

Qπ(s, a′)

)
.

FIGURE 1.13: Algorithm of policy iteration.

with respect to a. Thus, the optimal policy π∗(a|s) is given by

π∗(a|s) = δ

(
a− argmax

a′

Q∗(s, a′)

)
,

where δ(·) denotes Dirac’s delta function.
Because the optimal state-action value Q∗ is unknown in practice, the

policy iteration algorithm alternately evaluates the value Qπ for the current
policy π and updates the policy π based on the current value Qπ (Figure 1.13).

The performance of the above policy iteration algorithm depends on the
quality of policy evaluation; i.e., how to learn the state-action value function
from data is the key issue. Value function approximation corresponds to a re-

gression problem in statistics and machine learning. Thus, various statistical
machine learning techniques can be utilized for better value function approx-
imation. Part II of this book addresses this issue, including least-squares es-
timation and model selection (Chapter 2), basis function design (Chapter 3),
efficient sample reuse (Chapter 4), active learning (Chapter 5), and robust
learning (Chapter 6).

1.3.2 Model-Free Policy Search

One of the potential weaknesses of policy iteration is that policies are
learned via value functions. Thus, improving the quality of value function
approximation does not necessarily contribute to improving the quality of
resulting policies. Furthermore, a small change in value functions can cause a
big difference in policies, which is problematic in, e.g., robot control because
such instability can damage the robot’s physical system. Another weakness
of policy iteration is that policy improvement, i.e., finding the maximizer of
Qπ(s, a) with respect to a, is computationally expensive or difficult when the
action space A is continuous.

Statistical Reinforcement Learning

Policy search, which directly learns policy functions without estimating
value functions, can overcome the above limitations. The basic idea of policy
search is to find the policy that maximizes the expected return:

π∗ = argmax
π

Epπ(h)

[
R(h)

]
.

In policy search, how to find a good policy function in a vast function space is
the key issue to be addressed. Part III of this book focuses on policy search and
introduces gradient-based methods and the expectation-maximization method
in Chapter 7 and Chapter 8, respectively. However, a potential weakness of
these direct policy search methods is their instability due to the stochasticity
of policies. To overcome the instability problem, an alternative approach called
policy-prior search, which learns the policy-prior distribution for deterministic
policies, is introduced in Chapter 9. Efficient sample reuse in policy-prior
search is also discussed there.

1.3.3 Model-Based Reinforcement Learning

In the above model-free approaches, policies are learned without explicitly
modeling the unknown environment (i.e., the transition probability of the
agent in the environment, p(s′|s, a)). On the other hand, the model-based
approach explicitly learns the environment in advance and uses the learned
environment model for policy learning.

No additional sampling cost is necessary to generate artificial samples from
the learned environment model. Thus, the model-based approach is particu-
larly useful when data collection is expensive (e.g., robot control). However,
accurately estimating the transition model from a limited amount of trajec-
tory data in multi-dimensional continuous state and action spaces is highly
challenging. Part IV of this book focuses on model-based reinforcement learn-
ing. In Chapter 10, a non-parametric transition model estimator that possesses
the optimal convergence rate with high computational efficiency is introduced.
However, even with the optimal convergence rate, estimating the transition
model in high-dimensional state and action spaces is still challenging. In Chap-
ter 11, a dimensionality reduction method that can be efficiently embedded
into the transition model estimation procedure is introduced and its usefulness
is demonstrated through experiments.

DEEP LEARNING FOR
FEATURE REPRESENTATION

#

This chapter is excerpted from

Feature Engineering for Machine Learning and Data
Analytics

by Guozhu Dong and Huan Liu.

© 2018 Taylor & Francis Group. All rights reserved.

5

Learn more

https://www.crcpress.com/Feature-Engineering-for-Machine-Learning-and-Data-Analytics/Dong-Liu/p/book/9781138744387?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Feature-Engineering-for-Machine-Learning-and-Data-Analytics/Dong-Liu/p/book/9781138744387?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Feature-Engineering-for-Machine-Learning-and-Data-Analytics/Dong-Liu/p/book/9781138744387?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

Deep Learning for Feature
Representation

Suhang Wang

Arizona State University

Huan Liu

Arizona State University

11.1 Introduction . 279
11.2 Restricted Boltzmann Machine . 280

11.2.1 Deep Belief Networks and Deep Boltzmann Machine . . . 281
11.2.2 RBM for Real-Valued Data . 283

11.3 AutoEncoder . 284
11.3.1 Sparse Autoencoder . 286
11.3.2 Denoising Autoencoder . 287
11.3.3 Stacked Autoencoder . 287

11.4 Convolutional Neural Networks . 288
11.4.1 Transfer Feature Learning of CNN . 290

11.5 Word Embedding and Recurrent Neural Networks 291
11.5.1 Word Embedding . 291
11.5.2 Recurrent Neural Networks . 294
11.5.3 Gated Recurrent Unit . 295
11.5.4 Long Short-Term Memory . 296

11.6 Generative Adversarial Networks and Variational Autoencoder 296
11.6.1 Generative Adversarial Networks . 297
11.6.2 Variational Autoencoder . 298

11.7 Discussion and Further Readings . 299
Bibliography . 301

11.1 Introduction
Deep learning methods have become increasingly popular in recent years

because of their tremendous success in image classification [19], speech recog-
nition [20] and natural language processing tasks [60]. In fact, deep learning
methods have regularly won many recent challenges in these domains [19]. The

great success of deep learning mainly comes from specially designed structures
of deep nets, which are able to learn discriminative non-linear features that
can facilitate the task at hand. For example, the specially designed convolu-
tional layers of CNN allow it to extract translation-invariant features from
images while the max pooling layers of CNN help to reduce the parameters to
be learned. In essence, the majority of existing deep learning algorithms can
be used as powerful feature learning/extraction tools, i.e., the latent features
extracted by deep learning algorithms are the new learned representations.
In this chapter, we will review classical and popular deep learning algorithms
and explain how they can be used for feature representation learning. We will
also discuss how they are used for hierarchical and disentangled representation
learning, and how they can be applied to various domains.

11.2 Restricted Boltzmann Machine
A restricted Boltzmann machine (RBM) is an undirected graphical model

that defines a probability distribution over a vector of observed, or visible,
variables v ∈ {0, 1}m and a vector of latent, or hidden, variables h ∈ {0, 1}d,
where m is the dimension of input features and d is the dimension of the
latent features. It is widely used for unsupervised representation learning.
For example, v can be the bag-of-words representation of documents or the
vectorized binary images and h is the learned representation for the input
data. A typical choice is that d < m, i.e., learning compact representation.
Figure 11.1(a) gives a toy example of an RBM. In the figure, each node of
the hidden layer is connected to each node in the visible layer, while there
are no connections between hidden nodes or visible nodes. Figure 11.1(b)
is a simplified representation of RBM, where the connection details between
hidden layers and visible layers are simplified. We will begin by assuming both
v and h as binary vectors, i.e., elements of v and h can only take the value
of 0 or 1. An extension of real-valued input x will be introduced 11.2.2. An
RBM defines a joint probability over v and h as

P (v,h) =
1

Z
exp(−E(v,h)) (11.1)

where Z is the partition function defined as Z =
∑

v

∑
h exp(−E(v,h)), and

E is an energy function given by

E(v,h) = −hTWv − bTh− cTv (11.2)

where W ∈ Rd×m is a matrix of pairwise weights between elements of v and h
(see Figure 11.1(a)), while b ∈ Rd×1 and c ∈ Rm×1 are biases for the hidden
and visible variables, respectively.1

1For simplicity, bias terms are not shown in Figure 11.1.

Since there are no explicit connections between hidden units in an RBM,
given randomly selected training data v, the hidden units are independent
of each other, which gives P (h|v) =

∏d
i=1 P (hi|v), and the binary state, hi,

i = 1, . . . , d, is set to 1 with conditional probability given as,

P (hi = 1|v) = σ
(m∑
j=1

Wijvj + bi
)

(11.3)

where σ(·) is the sigmoid function defined as σ(x) = (1 + exp(−x))−1. Simi-
larly, given h, the visible units are independent of each other. Thus, we have
P (v|h) =

∏m
j=1 P (vj |h), and the binary state, vj , j = 1, . . . ,m, is set to 1

with conditional probability given as

P (vj = 1|h) = σ(
d∑
i=1

Wijhi + vj). (11.4)

With the simple conditional probabilities given by Eq.(11.3) and Eq.(11.4),
sampling from P (h|v) and P (v|h) becomes very efficient. RBMs have gen-
erally been trained using gradient ascent to maximize the log-likelihood l(θ)
for some set of training vectors V ∈ Rm×n, where θ = {W,b, c} is the set of
variables to be optimized. The log-likelihood l(θ) is written as

l(θ) =
1

n
logP (V) =

1

n

n∑
i=1

logP (vi). (11.5)

The derivative of logP (v) w.r.t variable W is given as

∂logP (v)

∂W
=
∑
h

P (h|v)hvT −
∑
ṽ

∑
h

P (ṽ,h)hṽT (11.6)

where ṽ ∈ {0, 1}m is an m-dimensional binary vector. The first term in
Eq.(11.6) can be computed exactly. This term is often referred to as the pos-
itive gradient. It corresponds to the expected gradient of the energy with
respect to P (h|v). The second term in Eq. (11.6) is known as the negative
gradient, which is expectation over the model distribution P (v,h). It is in-
tractable to compute the negative gradients exactly. Thus, we need to approx-
imate the negative gradients by sampling v from P (v|h) and sampling h from
P (h|v) by maintaining a Gibbs chain. For more details, we encourage readers
to refere to Contrastive Divergence [62].

11.2.1 Deep Belief Networks and Deep Boltzmann Machine

RBMs can be stacked and trained in a greedy manner to form so-called
Deep Belief Networks (DBN) [21] . DBNs are graphical models which learn

(a) RBM (b) RBM (c) 3-layer DBN (d) 3-layer DBM

Figure 11.1: An illustration of RBM, DBN and DBM.

to extract a deep hierarchical representation of the training data. They model
the joint distribution between observed vector v and the l hidden layers as:

P (x,h1,h2, . . . ,hl) =

(
l−2∏
k=0

P (hk|hk+1)

)
P (hl−1,hl) (11.7)

where v = h0. P (hk−1|hk) is a conditional distribution for the visible units
conditioned on the hidden units of the RBM at level k, and P (hl−1,hl) is
the visible-hidden joint distribution in the top-level RBM. This is illustrated
in Figure 11.1(c). DBN is able to learn hierarchical representation [33]. The
low-level hidden representation such as h1 captures low-level features while
the high-level hidden representation such as h3 captures more complex high-
level features. Training of DBN is done by greedy layer-wise unsupervised
training [21]. Specifically, we first train the first layer as an RBM with the
raw input v. From the first layer, we obtain the latent representation as the
mean activations P (h1|h0) or samples of P (h1|h0), which will then be used
as input to the second layer to update W2. After all the layers are trained, we
can fine-tune all the parameters of DBN with respect to a proxy for the DBN
log-likelihood, or with respect to a supervised training criterion by adding a
classifier such as the softmax function on top of DBN.

A deep Boltzmann machine (DBM) [51] is another kind of deep generative
model. Figure 11.1(d) gives an illustration of a DBM with 3 hidden layers.
Unlike DBN, it is an entirely undirected model. Unlike RBM, the DBM has
several layers of latent variables (RBMs have just one). Within each layer,
each of the variables are mutually independent, conditioned on the variables
in the neighboring layers. In the case of a deep Boltzmann machine with one
visible layer v, and l hidden layers, h1, h2 and hl, the joint probability is
given by:

P (v,h1,h2, . . . ,hn) =
1

Z
exp(−E(v,h1,h2, . . . ,hn)) (11.8)

where the DBM energy function is defined as

E(v,h1,h2, . . . ,hn) = −(
l−1∑
k=0

hkWkhk+1)−
∑
k

bkhk (11.9)

and v = h0, Wk is the weight matrix to capture the interaction between hk

and hk+1, and bk is the bias.
The conditional distribution over one DBM layer given the neighboring

layers is factorial. In the example of the DBM with two hidden layers, these
distributions are P (v|h1), P (h1|v,h2) and P (h2|h1). The distribution over
all hidden layers generally does not factorize because of interactions between
layers. In the example with two hidden layers, P (h1,h2|v) does not factorize
due to the interaction weights W1 between h1 and h2 which render these
variables mutually dependent. Therefore, sampling from P (h1,h2|v) is diffi-
cult while training of DBM using gradient ascent methods require sampling
from P (h1,h2|v). To solve this problem, we use a mean-field approximation
to approximate P (h1,h2|v). Specifically, we define

Q(h1,h2) =
∏
j

Q(h1
j |v)

∏
k

Q(h2
k|v) (11.10)

The mean field approximation attempts to find a member of this family of
distributions that best fits the true posterior P (h1,h2|v) by minimizing KL-
divergence between Q(h1,h2) and P (h1,h2|v). With the approximation, we
can easily sample h1 and h2 from Q(h1,h2) and then update the parameters
using gradient ascents with these samples [51].

11.2.2 RBM for Real-Valued Data

In many real-world applications such as image and audio modeling, the
input features v are often real-valued data. Thus, it is important to extend
RBM for modeling real-valued inputs. There are many variants of the RBM
which defines the probability over real-valued data such as Gaussian-Bernoulli
RBMs [69], mean and variance RBMs [22] and Spike and Slab RBMs [8].

The Gaussian-Bernoulli RBM (GBM) is the most common way to handle
real-valued data, which has binary hidden units and real-valued visible units.
It assumes the conditional distribution over the visible units being a Gaussian
distribution whose mean is a function of the hidden units. Under this assump-
tion, GRBM defines a joint probability over v and h as in Eq.(11.1) with the
energy function given as

E(v,h) = −hTW(v � β)− bTh− 1

2
v − cT (β � (v − c)) (11.11)

where β ∈ Rm×1 is the precision vector with the i-th element βi being the
precision of vi. � is the Hadamard operation. Then the conditional probability
of P (v|h) and P (h|v) are

P (h|v) =

d∏
i=1

P (hi|v) =

d∏
i=1

σ(bi +

m∑
j=1

Wijviβi) (11.12)

P (v|h) =
m∏
j=1

P (vj |h) =
m∏
j=1

N (vj |bj +
d∑
i=1

Wijhi, β
−1
i) (11.13)

where N (vj |bj +
∑d
i=1Wijhi, β

−1
i) is the Gaussian distribution with mean

bj +
∑d
i=1Wijhi and variance β−1

i .
While the GRBM has been the canonical energy model for real-valued

data, it is not well suited to the statistical variations present in some types of
real-valued data, especially natural images [31]. The problem is that much of
the information content present in natural images is embedded in the covari-
ance between pixels rather than in the raw pixel values. To solve these prob-
lems, alternative models have been proposed that attempt to better account
for the covariance of real-valued data. Mean and Covariance RBM (mcRBM) is
one of the alternatives. The mcRBM uses its hidden units to independently
encode the conditional mean and covariance of all observed units. Specifically,
the hidden layer of mcRBM is divided into two groups of units: binary mean
units h(m) and binary covariance units h(c). The energy function of mcRBM
is defined as the combination of two energy functions:

Emc(v,h
(m),h(c)) = Em(v,h(m)) + Ec(v,h

(c)) (11.14)

where Em(v,h(m)) is the standard Gaussian-Bernoulli energy function defined
in Eq.(11.11), which models the interaction between real-valued v input and
hidden units h(m); and Ec(v,h(c)) models the conditional covariance informa-
tion, which is given as

Ec(v,h
(c)) =

1

2

∑
j

h
(c)
j (vT r(j))2 −

∑
j

b
(c)
j h

(c)
j . (11.15)

The parameter r(j) corresponds to the covariance weight vector associated
with h(c)

j and b(c) is a vector of covariance offsets.

11.3 AutoEncoder
An autoencoder (AE) is a neural network trained to learn latent represen-

tation that is good at reconstructing its input [4]. Generally, an autoencoder
is composed of two parts, i.e., an encoder f(·) and a decoder g(·). An illustra-
tion of autoencoder is shown in Figure 11.2(a). The encoder maps the input
x ∈ Rm to latent representation h ∈ Rd as h = f(x) and f(·) is usually a one-
layer neural network, i.e., f(x) = s(Wx + b), where W ∈ Rd×m and b ∈ Rd
are the weights and bias of the encoder. s(·) is a non-linear function such as
sigmoid and tanh. A decoder maps back the latent representation h into a
reconstruction x̃ ∈ Rm as x̃ = g(h) and g(·) is given as g(h) = s(W

′
h + b′),

where W
′ ∈ Rm×d and b ∈ Rm are the weights and bias of the decoder. Note

that the prime symbol does not indicate matrix transposition. The parameters
of the autoencoder, i.e., θ = {W,b,W′,b′} are optimized to minimize the re-
construction error. Depending on the appropriate distribution assumptions of
the input, the reconstruction error can be measured in many ways. The most
widely used reconstruction error is the squared error L(x, x̃) = ‖x− x̃‖22. Al-
ternatively, if the input is interpreted as either bit vectors or vectors of bit
probabilities, cross-entropy of the reconstruction can be used

LH(x, x̃) = −
d∑
k=1

[xk log x̃k + (1− xk log(1− x̃k))]. (11.16)

By training an autoencoder that is good at reconstructing input data, we
hope that the latent representation h can capture some useful features. The
identity function seems a particularly trivial function to try to learn, when it
doesn’t result in useful features. Therefore, we need to add constraints to the
autoencoder to avoid trivial solution and learn useful features.

The autoencoder can be used to extract useful features by forcing h to have
smaller dimension than x, i.e., d < m. An autoencoder whose latent dimen-
sion is less than the input dimension is called an undercomplete autoencoder.
Learning an undercomplete representation forces the autoencoder to capture
the most salient features of the training data [15]. In other words, the latent
representation h is a distributed representation which captures the coordi-
nates along the main factors of variation in the data [15]. This is similar to
the way that the projection on principal components would capture the main
factors of variation in the data. Indeed, if there is one linear hidden layer, i.e.,
no activation function applied, and the mean squared error criterion is used
to train the network, then the d hidden units learn to project the input in
the span of the first d principal components of the data. If the hidden layer
is non-linear, the autoencoder behaves differently from PCA, with the ability
to capture multi-modal aspects of the input distribution.

Another choice is to constrain h to have a larger dimension than x, i.e., d >
m. An autoencoder whose latent dimension is larger than the input dimension
is called an overcomplete autoencoder. However, due to the large dimension,
the encoder and decoder are given too much capacity. In such cases, even a
linear encoder and linear decoder can learn to copy the input to the output
without learning anything useful about the data distribution. Fortunately, we
can still discover interesting structure, by imposing other constraints on the
network. One of the most widely used constraints is the sparsity constraint
on h. An overcomplete autoencoder with sparsity constraint is called a sparse
autoencoder, which will be discussed next.

(a) Autoencoder (b) Denoising AE

Figure 11.2: An illustration of an autoencoder and a denoising autoencoder.

11.3.1 Sparse Autoencoder

A sparse autoencoder is an overcomplete authoencorder which tries to
learn sparse overcomplete codes that are good at reconstruction [43]. A sparse
overcomplete representation can be viewed as an alternative “compressed”
representation: it has implicit straightforward compressibility due to the large
number of zeros rather than an explicit lower dimensionality. Given the train-
ing data X ∈ Rm×N , the objective function is given as

min
W,b,W′ ,b′

1

N

N∑
i=1

L(xi, x̃i) + αΩ(hi) (11.17)

where N is the number of training instances, xi is the i-th training instance,
and hi and x̃i are the corresponding latent representation and reconstructed
features. Ω(hi) is the sparsity regularizer to make hi sparse and α is a scalar to
control the sparsity. Many sparsity regularizers can be adopted. One popularly
used is the `1-norm, i.e., Ω(hi) = ‖hi‖1 =

∑d
j=1 |hi(j)|. However, the `1-norm

is non-smooth and not appropriate for gradient descent. An alternative is to
use the smooth sparse constraint based on KL-divergence. Let ρj , j = 1, . . . , d
be the average activation of hidden unit j (averaged over the training set) as

ρj =
1

N

N∑
i=1

hi(j). (11.18)

The essential idea is to force ρj to be close to ρ, where ρ is a small value close
to zero (say ρ = 0.05). By forcing ρj be close to ρ, we would like the average
activation of each hidden neuron j to be close to 0.05 (say). This constraint is
satisfied when the hidden unit activations are mostly near 0. To achieve that
ρj is close to ρ, we can use the KL-divergence as

d∑
j=1

KL(ρ||ρj) =
d∑
j=1

ρ log
ρ

ρj
+ (1− ρ) log

1− ρ
1− ρj

. (11.19)

KL(ρ||ρj) is a convex function with its minimum of when ρj = ρ. Thus,
minimizing this penalty term has the effect of causing ρj to be close to ρ,
which achieves the sparse effect.

(a) 1st Autoencoder (b) 2nd Autoencoder (c) Fine-tuning

Figure 11.3: An illustration of 2-layer stacked autoencoder.

11.3.2 Denoising Autoencoder

The aforementioned autoencoders add constraints on latent representa-
tions to learn useful features. Alternatively, denoising the autoencoder uses
the denoising criteria to learn useful features. In order to force the hidden
layer to discover more robust features and prevent it from simply learning
the identity, the denoising autoencoder trains the autoencoder to reconstruct
the input from a corrupted version of it [63]. An illustration of denoising au-
toencoder is shown in Figure 11.2(b). In the figure, the clean data x is first
corrupted as a noisy data x̄ by means of a stochastic mapping qD(x̄|x). The
corrupted data x̄ is then used as input to an autoencoder, which outputs the
reconstructed data x̃. The training objective of a denoising autoencoder is
then to make reconstructed data x̃ close to the clean data x as L(x, x̃).

There are many choices of the stochastic mapping such as (1) additive
isotropic Gaussian noise (GS): x̄|x ∼ N(x, σI); this is a very common noise
model suitable for real-valued inputs. (2) Masking noise (MN): a fraction ν of
the elements of x (chosen at random for each example) is forced to 0. (3) Salt-
and-pepper noise (SP): a fraction ν of the elements of x (chosen at random for
each example) is set to their minimum or maximum possible value (typically
0 or 1) according to a fair coin flip. The masking noise and salt-and-pepper
noise are natural choices for input domains which are interpretable as binary
or near binary such as black-and-white images or the representations produced
at the hidden layer after a sigmoid squashing function [63].

11.3.3 Stacked Autoencoder

Denoising autoencoders can be stacked to form a deep network by feeding
the latent representation of the DAE found on the layer below as input to
the current layer as shown in Figure 11.3, which are generally called stacked
denoising autoencoders (SDAEs). The unsupervised pre-training of such an
architecture is done one layer at a time. Each layer is trained as a DAE by min-
imizing the error in reconstructing its input. For example, in Figure 11.3(a),
we train the first layer autoencoder. Once the first layer is trained, we can train
the 2nd layer with the latent representation of the first autoencoder, i.e., h1,
as input. This is shown in Figure 11.3(b). Once all layers are pre-trained, the
network goes through a second stage of training called fine-tuning, which is
typically to minimize prediction error on a supervised task. For fine-tuning,

we first add a logistic regression layer on top of the network as shown in Fig-
ure 11.3(c) (more precisely on the output code of the output layer). We then
train the entire network as we would train a multilayer perceptron. At this
point, we only consider the encoding parts of each autoencoder. This stage is
supervised, since now we use the target class during training.

11.4 Convolutional Neural Networks
The Convolutional Neural Network (CNN or ConvNet) has achieved great

success in many computer vision tasks such as image classification [32], seg-
mentation [36] and video action recognition [55]. The specially designed archi-
tecture of the CNN is very powerful in extracting visual features from images,
which can be used for various tasks. An example of a simplified CNN is shown
in Figure 11.4. It is comprised of three basic types of layers, which are convolu-
tional layers for extracting translation-invariant features from images, pooling
layers for reducing the parameters and fully connected layers for classification
tasks. CNNs are mainly formed by stacking these layers together. Recently,
dropout layers [56] and residual layers [19] are also introduced to prevent CNN
from overfitting and to ease the training of deep CNNs, respectively. Next, we
will introduce the basic building blocks of CNNs and how CNNs can be used
for feature learning.

Figure 11.4: An illustration of CNN.

The Convolutional Layer: As the name implies, the Conv layer is the
core building block of a CNN. The essential idea of a Conv layer is the ob-
servation that natural images have the property of being “stationary,” which
means that the statistics of one part of the image are the same as any other
part. For example, a dog can appear in any location of an image. This sug-
gests that the dog feature detector that we learn at one part of the image can
also be applied to other parts of the image to detect dogs, and we can use
the same features at all locations. More precisely, having learned features over
small (say 3x3) patches sampled randomly from the larger image, we can then
apply this learned 3x3 feature detector anywhere in the image. Specifically,
we can take the learned 3x3 features and “convolve” them with the larger
image, thus obtaining a different feature activation value at each location in

the image. The feature detector is called a filter or kernel in ConvNet and the
feature obtained is called a feature map. Figure 11.5 gives an example of a
convolution operation with the input as the 5x5 matrix and the kernel as the
3x3 matrix. The 3x3 kernel slides over the 5x5 matrix from left to right and
from the top to down, which generates the feature map shown on the right.
The convolution is done by multiplying the kernel by the sub-patch of the
input feature map and then sum together. For example, the calculation of the
gray sub-patch in the 5x5 matrix with the kernel is given in the figure. There

Figure 11.5: An illustration of convolution operation.

are three parameters in a Conv layer, i.e., the depth, stride and zero-padding.
Depth corresponds to the number of filters we would like to use. A Conv layer
can have many filters, each learning to look for something different in the
input. For example, if the first Conv layer takes as input the raw image, then
different neurons along the depth dimension may activate in the presence of
various oriented edges, or blobs of color. In the simple ConvNet shown in Fig-
ure 11.4, the depth of the first convolution and second convolution layers are 4
and 6, respectively. Stride specifies how many pixels we skip when we slide the
filter over the input feature map. When the stride is 1, we move the filters one
pixel at a time as shown in Figure 11.5. When the stride is 2, the filters jump
2 pixels at a time as we slide them around. This will produce smaller output
volumes spatially. It will be convenient to pad the input volume with zeros
around the border, which is called zero-padding. The size of this zero-padding
is a hyperparameter. The nice feature of zero-padding is that it will allow us
to control the spatial size of the output volumes. Let the input volume be
W × H ×K, where W and H are width and height of the feature map and
K is the number of feature maps. For example, for a color image with RGB
channels, we have K = 3. Let the receptive field size (filter size) of the Conv
Layer be F , number of filters be K̃, the stride with which they are applied be
S, and the amount of zero padding used on the border be P ; then the output
volume after convolution is W̃ × H̃× K̃, where W̃ = (W −F + 2P)/S+ 1 and
H̃ = (H − F + 2P)/S + 1. For example, for a 7× 7× 3 input and a 4× 3× 3
filter with stride 1 and pad 0, we would get a 5× 5× 4 output.

Convolution using filters is a linear operation. After the feature maps are
obtained in a Conv layer, a nonlinear activation function will be applied on
these feature maps to learn non-linear features. Rectified linear unit (ReLU) is
the most widely used activation function for ConvNet, which is demonstrated

Figure 11.6: An illustration of a max pooling operation.

to be effective in alleviating the gradient vanishing problem. A rectifier is
defined as f(x) = max(0, x).

The Pooling Layer: Pooling layers are usually periodically inserted be-
tween successive Conv layers in a CNN. They aim to progressively reduce the
spatial size of the representation, which can help reduce the number of param-
eters and computation in the network, and hence also control overfitting. The
pooling layer operates independently over each activation map in the input,
and scales its dimensionality using the max function. The most common form
is a pooling layer with filters of size 2x2 applied with a stride of 2, which
downsamples every depth slice in the input by 2 along both width and height,
discarding 75% of the activations. Every max operation would, in this case,
be taking a max over 4 numbers and the maximum value of the 4 numbers
will go to the next layer. An example of a max pooling operation is shown in
Figure 11.6. During the forward pass of a pooling layer it is common to keep
track of the index of the max activation (sometimes also called the switches)
so that gradient routing is efficient during backpropagation.

Though max pooling is the most popular pooling layer, a CNN can also
contain general pooling. General pooling layers are comprised of pooling neu-
rons that are able to perform a multitude of common operations including
L1/L2-normalization, and average pooling. An example of max pooling

The Fully Connected Layer: Neurons in a fully connected layer have
full connections to all activations in the previous layer, as shown in Figure 11.4.
The fully connected layers are put at the end of a CNN architecture, i.e., after
several layers of Conv layer and max pooling layers. With the high-level fea-
tures extracted by the previous layers, fully connected layers will then attempt
to produce class scores from the activations, to be used for classification. The
output of the fully connected layer will then be put in a softmax for classifi-
cation. It is also suggested that ReLu may be used as the activation function
in a fully connected layer to improve performance.

11.4.1 Transfer Feature Learning of CNN

In practice, training an entire Convolutional Network from scratch (with
random initialization) is rare as (1) it is very time consuming and requires
many computation resources and (2) it is relatively rare to have a dataset
of sufficient size to train a ConvNet. Therefore, instead, it is common to

pre-train a ConvNet on a very large dataset (e.g., ImageNet, which contains
1.2 million images with 1000 categories), and then use the ConvNet either as
an initialization or a fixed feature extractor for the task of interest [53]. There
are mainly two major Transfer Learning scenarios, which are listed as follows:

• ConvNet as a fixed feature extractor: In this scenario, we take a ConvNet
pretrained on ImageNet, remove the last fully connected layer, then
treat the rest of the ConvNet as a fixed feature extractor for the new
dataset. With the extracted features, we can train a linear classifier such
as Linear SVM or logistic regression for the new dataset. This is usually
used when the new dataset is small and similar to the original dataset.
For such datasets, training or fine-tuning a ConvNet is not practical
as ConvNets are prone to overfitting to small datasets. Since the new
dataset is similar to the original dataset, we can expect higher-level
features in the ConvNet to be relevant to this dataset as well.

• Fine-tuning the ConvNet: The second way is to not only replace and
retrain the classifier on top of the ConvNet on the new dataset, but to
also fine-tune the weights of the pretrained network using backpropa-
gation. The essential idea of fine-tuning is that the earlier features of a
ConvNet contain more generic features (e.g., edge detectors or color blob
detectors) that should be useful in many tasks, but later layers of the
ConvNet become progressively more specific to the details of the classes
contained in the original dataset. If the new dataset is large enough, we
can fine-tune all the layers of the ConvNet. If the new dataset is small
but different from the original dataset, then we can keep some of the
earlier layers fixed (due to overfitting concerns) and only fine-tune some
higher-level portion of the network.

11.5 Word Embedding and Recurrent Neural Networks
Word embedding and recurrent neural networks are the state-of-the-art

deep learning models for natural language processing tasks. Word embedding
learns word representation and recurrent neural networks utilize word embed-
ding for sentence or document feature learning. Next, we introduce the details
of word embedding and recurrent neural networks.

11.5.1 Word Embedding

Word embedding, or distributed representation of words, is to represents
each word as a low-dimensional dense vector such that the vector represen-
tation of words can capture synthetic and semantic meanings of words. The

low-dimensional representation can also alleviate the curse of dimensional-
ity and data sparsity problems suffered by traditional representations such
as bag-of-words and N-gram [66]. The essential idea of word embedding is
the distributional hypothesis that “you shall know a word by the company it
keeps” [13]. This suggests that a word has close relationships with its neigh-
boring words. For example, the phrases win the game and win the lottery
appear very frequently; thus the pair of words win and game and the pair
of words win and lottery could have a very close relationship. When we are
only given the word win, we would highly expect the neighboring words to be
words like game or lottery instead of words as light or air. This suggests that
a good word representation should be useful for predicting its neighboring
words, which is the essential idea of Skip-gram [41]. In other words, the train-
ing objective of the Skip-gram model is to find word representations that are
useful for predicting the surrounding words in a sentence or a document. More
formally, given a sequence of training words w1, w2, . . . , wT , the objective of
the Skip-gram model is to maximize the average log probability

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logP (wt+j |wt) (11.20)

where c is the size of the training context (which can be a function of the
center word wt). Larger c results in more training examples and thus can
lead to higher accuracy, at the expense of training time. The basic Skip-gram
formulation defines P (wt+j |wt) using the softmax function:

P (wO|wI) =
exp(uTwOvwI)∑W
w=1 exp(uwTvwI)

(11.21)

where vw and uw are the “input” and “output” representations of w, and W is
the number of words in the vocabulary. Learning the representation is usually
done by gradient descent. However, Eq.(11.21) is impractical because the cost
of computing ∇ logP (wO|wI) is proportional to W, which is often large. One
way of making the computation more tractable is to replace the softmax in
Eq. (11.21) with a hierarchical softmax. In a hierarchical softmax, the vocab-
ulary is represented as a Huffman binary tree with words as leaves. With the
Huffman tree, the probability of P (wO|wI) is the probability of walking the
path from root node to leaf node wO given the word wI , which is calculated as
decision making in each node along the path with a simple function. Huffman
trees assign short binary codes to frequent words, and this further reduces
the number of output units that need to be evaluated. Another alternative
to make the computation tractable is negative sampling [41]. The essential
idea of negative sampling is that wt should be more similar to its neighboring
words, say wt+j , than randomly sampled words. Thus, the objective func-
tion of negative sampling is to maximize the similarity between wt and wt+j
and minimize the similarity between wt and randomly sampled words. With

 negative sampling, Eq. (11.21) is approximated as

log σ(uTWO
vwI) +

1

K

K∑
i=1

log σ(−uTWi
vwI) (11.22)

where K is the number of negative words sampled for each input word wI .
It is found that skip-gram with negative sampling is equivalent to implicitly
factorizing a word-context matrix, whose cells are the pointwise mutual infor-
mation (PMI) of the respective word and context pairs, shifted by a global
constant [34].

Instead of using the center words to predict the context (surrounding words
in a sentence), Continuous Bag-of-Words Model (CBOW) predicts the current
word based on the context. More precisely, CBOW uses each current word
as an input to a log-linear classifier with a continuous projection layer, and
predicts words within a certain range before and after the current word [39].
The objective function of CBOW is to maximize the following log-likelihood
function

1

T

T∑
t=1

logP (wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c) (11.23)

and P (wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c) is defined as

P (wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c) =
exp(uwt

T ṽt)∑W
w=1 exp(uwT ṽt)

(11.24)

where ṽt is the average representation of the contexts of wt, i.e., ṽt =
1
2c

∑
−c≤j≤c,j 6=0 vt+j .

Methods like skip-gram may do better on the analogy task, but they poorly
utilize the statistics of the corpus since they train on separate local context
windows instead of on global co-occurrence counts. Based on this observation,
GloVe, proposed in [46], uses a specific weighted least squares model that
trains on global word-word co-occurrence counts and thus makes efficient use
of statistics. The objective function of GloVe is given as

min
∑
i,j

f(Xij)(w
T
i w̃j − logXij)

2 (11.25)

where Xij tabulates the number of times word j occurs in the context of word
i. wi ∈ Rd is the word representation of wi and w̃j is a separate context word
vector. f() is the weighting function.

Word embedding can capture syntactic and semantic meanings of words.
For example, it is found that vec(queen) is the closest vector representation to
vec(king) - vec(man) + vec(woman), which implies that word representation
learned by Skip-gram encodes semantic meanings of words. Word embedding
can also be used for document representation by averaging the word vectors of
words appearing in a document as the vector representation of the documents.

Following the distributional representation idea of word embedding, many
network embedding algorithms are proposed. The essential idea of network
embedding is to learn vector representations of network nodes that are good
at predicting the neighboring nodes.

Since word representation learned by word embedding algorithms are low-
dimensional dense vectors that capture semantic meanings, they are widely
used as a preprocessing step in deep learning methods such as recurrent neural
networks and recursive neural networks. Each word will be mapped to a vector
representation before it is used as input to deep learning models.

11.5.2 Recurrent Neural Networks

Figure 11.7: An illustration of an RNN.

Recurrent neural networks (RNN) are powerful concepts that allow the
use of loops within the neural network architecture to model sequential data
such as sentences and videos. Recurrent networks take as input a sequence of
inputs, and produce a sequence of outputs. Thus, such models are particularly
useful for sequence-to-sequence learning.

Figure 11.7 gives an illustration of the RNN architecture. The left part of
the figure shows a folded RNN, which has a self-loop, i.e., the hidden state h
is used to update itself given an input x. To better show how RNN works, we
unfold the RNN as a sequential structure, which is given in the right part of
Figure 11.7. The RNN takes a sequence, x1,x2, . . . ,xt, . . . ,xT as input, where
at each step t, xt is a d-dimensional feature vector. For example, if the input
is a sentence, then each word wi of the sentence is represented as a vector
xi using word embedding methods such as Skip-gram. At each time-step t,
the output of the previous step, ht−1, along with the next word vector in the
document, xt, are used to update the hidden state ht as

ht = σ(Whhht−1 + Whxxt) (11.26)

where Whh ∈ Rd×d and Whx ∈ Rd×d are the weights for inputs ht−1 and
xt, respectively. The hidden states ht is the feature representation of the se-
quence up to time t for the input sequence. The initial states h0 are usually
initialized as all 0. Thus, we can utilize ht to perform various tasks such as
sentence completion and document classification. For example, for a sentence
completion task, we are given the partial sentence, “The weather is. . . ” and

(a) One GRU Cell (b) One LSTM Cell

Figure 11.8: An illustration of GRU and LSTM cells.

we want to predict the next word. We can predict the next word as

yt = softmax(Wht + b), yt = arg max yt (11.27)

where W ∈ RV×d are the weights of the softmax function with V being the
size of the vocabulary and b the bias term. yt is the predicted probability
vector and yt is the predicted label. We can think of an RNN as modeling the
likelihood probability as P (yt|x1, . . . ,xt).

Training of RNNs is usually done using Backpropagation Through Time
(BPTT), which back propagates the error from time t to time 1 [70].

11.5.3 Gated Recurrent Unit

Though in theory, RNN is able to capture long-term dependency, in
practice, the old memory will fade away as the sequence becomes longer. To
make it easier for RNNs to capture long-term dependencies, gated recurrent
units (GRUs) [7] are designed to have more persistent memory. Unlike an
RNN, which uses a simple affine transformation of ht−1 and ht followed by
tanh to update ht, GRU introduces the Reset Gate to determine if it wants
to forget past memory and the Update Gate to control if new inputs are
introduced to ht. The mathematical equations of how this is achieved are
given as follows and an illustration of a GRU cell is shown in Figure 11.8(a):

zt = σ(Wzxxt + Wzhht−1 + bz) (Update gate)
rt = σ(Wrxxt + Wrhht−1 + br) (Reset gate)

h̃t = tanh(rt �Uht−1 + Wxt) (New memory)

ht = (1− zt)� h̃t + zt � ht−1 (Hidden state) (11.28)

From the above equation and Figure 11.8(a), we can treat the GRU as four
fundamental operational stages, i.e., new memory, update gate, reset gate and
hidden state. A new memory h̃t is the consolidation of a new input word xt
with the past hidden state ht−1, which summarizes this new word in light of
the contextual past. The reset signal rt is used to determining how important

ht−1 is to the summarization h̃t. The reset gate has the ability to completely
diminish a past hidden state if it finds that ht−1 is irrelevant to the computa-
tion of the new memory. The update signal zt is responsible for determining
how much of past state ht−1 should be carried forward to the next state. For
instance, if zt ≈ 1, then ht−1 is almost entirely copied out to ht. The hid-
den state ht is finally generated using the past hidden input ht and the new
memory generated h̃t with the control of the update gate.

11.5.4 Long Short-Term Memory

Long Short-Term Memories, LSTMs [23], are another variant of the RNN,
which can also capture long-term dependency. Similar to GRUs, an LSTM
introduces more complex gates to control if it should accept new information
or forget previous memory, i.e., the input gate, forget gate, output gate and
new memory cell. The update rules of LSTMs are given as follows:

it = σ(Wixxt + Wihht−1 + bi) (Input gate)
ft = σ(Wfxxt + Wfhht−1 + bf) (Forget gate)
ot = σ(Woxxt + Wohht−1 + bo) (Output gate)
gt = tanh(Wgxxt + Wghht−1 + bg) (New memory cell)
ct = ft � ct−1 + it � gt (Final memory cell)
ht = ot � tanh(ct) (11.29)

where it is the input gate, ft is the forget gate, ot is the forget fate, ct is the
memory cell state at t and xt is the input features at t. σ(·) means the sigmoid
function and � denotes the Hadamard product. The main idea of the LSTM
model is the memory cell ct, which records the history of the inputs observed
up to t. ct is a summation of (1) the previous memory cell ct−1 modulated
by a sigmoid gate ft, and (2) gt, a function of previous hidden states and the
current input modulated by another sigmoid gate it. The sigmoid gate ft is
to selectively forget its previous memory while it is to selectively accept the
current input. it is the gate controlling the output. The illustration of a cell
of LSTM at the time step t is shown in Figure 11.8(b).

11.6 Generative Adversarial Networks and Variational
Autoencoder

In this section, we introduce two very popular deep generative models
proposed recently, i.e., generative adversarial networks and the variational
autoencoder.

 11.6.1 Generative Adversarial Networks

Figure 11.9: An illustration of the framework of the GAN.

The generative adversarial network (GAN) [16] is one of the most popu-
lar generative deep models. The core of a GAN is to play a min-max game
between a discriminator D and a generator G, i.e., adversarial training. The
discriminator D tries to differentiate if a sample is from the real world or
generated by the generator, while the generator G tries to generate samples
that can fool the discriminator, i.e., make the discriminator believe that the
generated samples are from the real world. Figure 11.9 gives an illustration
of the framework of the GAN. The generator takes a noise z sampled from
a prior distribution pz(z) as input, and maps the noise to the data space as
G(z; θg). Typical choices of the prior p(z) can be a uniform distribution or
Gaussian distribution. We also define a second multilayer perceptron D(x; θd)
that outputs a single scalar. D(x) represents the probability that x came from
the real-world data rather than generated data. D is trained to maximize the
probability of assigning the correct label to both training examples and sam-
ples from G. We simultaneously train G to minimize log(1 − D(G(z))). In
other words, D and G play the following two-player minimax game with value
function V (D,G):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)
[log(1−D(G(z)))].

(11.30)
The training of a GAN can be done using minibatch stochastic gradient de-
scent training by updating the parameters of G and D alternatively. After
the model is trained without supervision, we can treat the discriminator as
a feature extractor : The first few layers of D extract features from x while
the last few layers are to map the features to the probability that x is from
real data. Thus, we can remove the last few layers, then the output of D is
the features extracted. In this sense, we treat GANs as unsupervised feature
learning algorithms, though the main purpose of the GAN is to learn p(x).

The GAN is a general adversarial training framework, which can be used
for various domains by designing a different generator, discriminator and loss
function [6, 65, 74]. For example, InfoGAN [6] learns disentangled representa-

tion by dividing the noise into two parts, i.e., disentangled codes c and incom-
pressible noise z so that the disentangled codes c can control the properties
such as the identity and illumination of the images generated. SeqGAN [74]
models the data generator as a stochastic policy in reinforcement learning and
extends the GAN for text generation.

11.6.2 Variational Autoencoder

Figure 11.10: An illustration of the framework of the VAE.

The variational autoencoder (VAE) [30] is a popular generative model for
unsupervised representation learning. It can be trained purely with gradient-
based methods. Typically, a VAE has a standard autoencoder component
which encodes the input data into a latent code space by minimizing recon-
struction error, and a Bayesian regularization over the latent space, which
forces the posterior of the hidden code vector to match a prior distribution.
Figure 11.10 gives an illustration of a VAE. To generate a sample from the
model, the VAE first draws a sample z from the prior distribution pθ(z). The
sample z is used as input to a differentiable generator network g(z). Finally, x
is sampled from a distribution pθ(x|g(z)) = pθ(x|z). During the training, the
approximate inference network, i.e., encoder network qφ(z|x), is then used to
obtain z and pθ(x|z) is then viewed as a decoder network. The core idea of
variational autoenoder is that they are trained by maximizing the variational
lower bound L(θ, φ; x):

L(θ, φ; x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)] ≤ log pθ(x)
(11.31)

whereDKL(qφ(z|x)||pθ(z)) is the KL divergence which measures the similarity
of two distributions qφ(z|x) and pθ(z). φ and θ are the variational parameters
and generative parameters, respectively. We want to differentiate and optimize
the lower bound w.r.t both the φ and θ. However, directly using a gradient es-
timator for the above objective function will exhibit high variance. Therefore,
VAE adopts the reparametric trick. That is, under certain mild conditions for
a chosen approximate posterior qφ(z|x), the random variable z̃ ∼ qφ(z|x) can
be parameterized as

z̃ = gφ(ε,x) with ε ∼ p(ε) (11.32)

where gφ(ε,x) is a differentiable transformation function of a noise variable ε.
The nonparametric trick is also shown in Figure 11.10. With this technique,
the variational lower bound in Eq.(11.31) can be approximated as

LA(θ, φ; x) =
1

L

L∑
l=1

log pθ(x, z
(l))− log qφ(z(l)|x)

z̃(l) = gφ(ε(l),x) with ε(l) ∼ p(ε).
(11.33)

Then the parameters can be learned via stochastic gradient descent efficiently.
It is easy to see that the encoder is a feature extractor which learns latent
representations for x.

11.7 Discussion and Further Readings
We have introduced representative deep learning models for feature engi-

neering. In this section, we’ll discuss how they can be used for hierarchical
representation learning and disentangled representation, and how they can be
used for popular domains such as text, image and graph.

Table 11.1: Hierarchical and disentangled representation learning
Method Hierarchical Fea. Rep. Disentangled Fea. Rep.

RBM/DBM [59] [48]
DBN [33] N/A

AE/DAE/SDAE [37] [28]
RNN/GRU/LSTM [68,73] [11,54]

CNN [12,14] [25,49]
GAN [47] [6, 38]
VAE [75] [54,72]

Hierarchical Representation Generally, hierarchical representation lets
us learn features of hierarchy and combine top-down and bottom-up process-
ing of an image (or text). For instance, lower layers could support object
detection by spotting low-level features indicative of object parts. Conversely,
information about objects in the higher layers could resolve lower-level am-
biguities in the image or infer the locations of hidden object parts. Features
at different hierarchy levels may be good for different tasks. The high-level
features captures the main objects, resolve ambiguities, and thus are good for
classification, while mid-level features include many details and may be good
for segmentation. Hierarchical feature representation is very common in deep
learning models. We list some representative literature on how the introduced
model can be used for hierarchical feature learning in Table 11.1.

Disentangled Representation Disentangled representation is a popular
way to learn explainable representations. The majority of existing representa-
tion learning frameworks learn representation h ∈ Rd×1, which is difficult to
explain, i.e., the d-latent dimensions are entangled together and we don’t know
the semantic meaning of the d-dimensions. Instead, disentangled representa-
tion learning tries to disentangle the latent factors so we know the semantic
meaning of the latent dimensions. For example, for handwritten digits such as
the MNIST dataset, we may want to disentangle the digit shape from writ-
ing style so that some part of h controls digit shapes while the other part
represents writing style. The disentangled representation not only explains
latent representation but also helps generate controlled realistic images. For
example, by changing the part of codes that controls digit shape, we can gen-
erate new images of target digit shapes using a generator with this new latent
representation. Therefore, disentangled representation learning is attracting
increasing attention. Table 11.1 also lists some representative deep learning
methods for disentangled representation learning. This is still a relatively new
direction that needs further investigation.

Table 11.2: Deep learning methods for different domains
Method Text Image Audio Linked Data)

(Graph)
RBM/DBM [57,58] [57] [9] [67]

DBN [52] [33] [42] N/A
AE/DAE/SDAE [3] [63] [44] [64]

CNN [29] [19,45,71] [1] [10]
Word2Vec [35,41] N/A N/A [61,66]

RNN/GRU/LSTM [27,40,60] [2] [17, 50] N/A
GAN [74] [6, 47] [74] N/A
VAE [5,26] [18,30] [24] N/A

Deep Feature Representation for Various Domains Many deep
learning algorithms were initially developed for specific domains. For exam-
ple, the CNN was initially developed for image processing and Word2Vec was
initially proposed for learning word representation. Due to the great success of
these methods, they were further developed to be applicable to other domains.
For example, in addition to images, the CNN has also been successfully applied
on texts, audio and linked data. Each domain has its own unique property.
For example, text data are inherently sequential and graph data are non-i.i.d.
Thus, directly applying CNN is impractical. New architectures are proposed
to adapt the CNN for these domains. The same holds for the other deep learn-
ing algorithms. Therefore, we summarize the application of the discussed deep
learning models in four domains in Table 11.2. We encourage interested users
to read these papers for further understanding.

Combining Deep Learning Models We have introduced various deep
learning models, which can be applied to different domains. For example,
LSTM is mainly used for dealing with sequential data such as texts while the
CNN is powerful for images. It is very common that we need to work on tasks
which are related to different domains. In such cases, we can combine different
deep learning models to propose a new framework that can be applied for the
task at hand. For example, for an information retrieval task given a text query,
we want to retrieve images that match the query. We will need to use LSTM
or Word2Vec to learn a representation that captures the semantic meanings
of the query. At the same time, we need to use CNN to learn features that
describe the image. We can then train LSTM and CNN so that the similarity
of the representations for the matched query-image pairs are maximized while
the similarity of the representations for the non-matched query-image pairs
are minimized. Another example is video action recognition, where we want
to classify the action of the video. Since the video is composed of frames
and nearby frames have dependency, a video is inherently sequential data
and LSTM is a good fit for modeling such data. However, LSTM is not good
at extracting images. Therefore, we will first need to use CNN to extract
features from each frame of the video, which are then used as input to LSTM
for learning representation of the video [68]. Similarly, for image captioning,
we can use CNN to extract features and use LSTM to generate image captions
based on the image features [71]. We just list a few examples and there are
many other examples. In general, we can treat deep learning algorithms as
feature extracting tools that can extract features from certain domains. We
can then design a loss function on top of these deep learning algorithms for the
problem we want to study. One thing to note is that when we combine different
models together, they are trained end-to-end. In other words, we don’t train
these models separately. Instead, we treat the new model as a unified model.
This usually gives better performance than training each model separately
and then combining them.

Bibliography
[1] Ossama Abdel-Hamid, Abdel-Rahman Mohamed, Hui Jiang, Li Deng,

Gerald Penn, and Dong Yu. Convolutional neural networks for speech
recognition. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 22(10):1533–1545, 2014.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh. VQA: Visual ques-
tion answering. In CVPR, pages 2425–2433, 2015.

[3] Sarath Chandar AP, Stanislas Lauly, Hugo Larochelle, Mitesh Khapra,
Balaraman Ravindran, Vikas C Raykar, and Amrita Saha. An autoen-
coder approach to learning bilingual word representations. In NIPS, pages
1853–1861, 2014.

[4] Yoshua Bengio et al. Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2(1):1–127, 2009.

[5] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal
Jozefowicz, and Samy Bengio. Generating sentences from a continuous
space. CoNLL, 2016.

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and
Pieter Abbeel. Infogan: Interpretable representation learning by informa-
tion maximizing generative adversarial nets. In NIPS, pages 2172–2180,
2016.

[7] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[8] Aaron Courville, James Bergstra, and Yoshua Bengio. A spike and slab
restricted boltzmann machine. In AISTAS, pages 233–241, 2011.

[9] George Dahl, Abdel-Rahman Mohamed, Geoffrey E Hinton, et al. Phone
recognition with the mean-covariance restricted Boltzmann machine. In
NIPS, pages 469–477, 2010.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convo-
lutional neural networks on graphs with fast localized spectral filtering.
In NIPS, pages 3844–3852, 2016.

[11] Emily Denton and Vighnesh Birodkar. Unsupervised learning of disen-
tangled representations from video. pages 4417–4426, NIPS 2017.

[12] Clement Farabet, Camille Couprie, Laurent Najman, and Yann Le-
Cun. Learning hierarchical features for scene labeling. IEEE TPAMI,
35(8):1915–1929, 2013.

[13] John R Firth. A Synopsis of Linguistic Theory, 1930-1955. 1957.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmenta-
tion. In CVPR, pages 580–587, 2014.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In NIPS, pages 2672–2680, 2014.

[17] Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In ICASSP, pages 6645–
6649. IEEE, 2013.

[18] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and
Daan Wierstra. Draw: A recurrent neural network for image generation.
arXiv preprint arXiv:1502.04623, 2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, pages 770–778, 2016.

[20] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-Rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

[21] Geoffrey E Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009.

[22] Geoffrey E Hinton et al. Modeling pixel means and covariances using
factorized third-order Boltzmann machines. In CVPR, pages 2551–2558.
IEEE, 2010.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[24] Wei-Ning Hsu, Yu Zhang, and James R. Glass. Learning latent rep-
resentations for speech generation and transformation. Annual Confer-
ence of the International Speech Communication Association, (INTER-
SPEECH). pages 1273–1277, 2017.

[25] Wei-Ning Hsu, Yu Zhang, and James R. Glass. Unsupervised learning of
disentangled and interpretable representations from sequential data. In
NIPS, 2017.

[26] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and
Eric P Xing. Toward controllable text generation. In ICML, 2017.

[27] Ozan Irsoy and Claire Cardie. Opinion mining with deep recurrent neural
networks. In EMNLP, pages 720–728, 2014.

[28] Michael Janner, Jiajun Wu, Tejas Kulkarn, Ilker Yildirim, and Josh
Tenenbaum. Learning to generalize intrinsic images with a structured
disentangling autoencoder. In NIPS, 2017.

[29] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolu-
tional neural network for modelling sentences. In ACL, 2014.

[30] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes.
arXiv preprint arXiv:1312.6114, 2013.

[31] Alex Krizhevsky, Geoffrey E Hinton, et al. Factored 3-way restricted
Boltzmann machines for modeling natural images. In AISTATS, pages
621–628, 2010.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS, pages 1097–
1105, 2012.

[33] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Unsu-
pervised learning of hierarchical representations with convolutional deep
belief networks. Communications of the ACM, 54(10):95–103, 2011.

[34] Omer Levy and Yoav Goldberg. Neural word embedding as implicit
matrix factorization. In NIPS, pages 2177–2185, 2014.

[35] Yang Li, Quan Pan, Tao Yang, Suhang Wang, Jiliang Tang, and Erik
Cambria. Learning word representations for sentiment analysis. Cognitive
Computation, 2017.

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, pages 3431–3440, 2015.

[37] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber.
Stacked convolutional auto-encoders for hierarchical feature extraction.
Artificial Neural Networks and Machine Learning–ICANN 2011, pages
52–59, 2011.

[38] Michaël Mathieu, Junbo Jake Zhao, Pablo Sprechmann, Aditya Ramesh,
and Yann LeCun. Disentangling factors of variation in deep representa-
tion using adversarial training. In NIPS, pages 5041–5049, 2016.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[40] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and San-
jeev Khudanpur. Recurrent neural network based language model. In
INTERSPEECH, pages 1045–1048, 2010.

[41] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their composition-
ality. In NIPS, pages 3111–3119, 2013.

[42] Abdel-Rahman Mohamed, George Dahl, and Geoffrey Hinton. Deep belief
networks for phone recognition. In NIPS Workshop on Deep Learning for
Speech Recognition and Related Applications, 2009.

[43] Andrew Ng. Sparse autoencoder. CS294A Lecture Notes, 72(2011):1–19,
2011.

[44] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee,
and Andrew Y Ng. Multimodal deep learning. In ICML, pages 689–696,
2011.

[45] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and
transferring mid-level image representations using convolutional neural
networks. In CVPR, pages 1717–1724, 2014.

[46] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In EMNLP, volume 14, pages
1532–1543, 2014.

[47] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434, 2015.

[48] Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning
to disentangle factors of variation with manifold interaction. In ICML,
pages 1431–1439, 2014.

[49] Salah Rifai, Yoshua Bengio, Aaron Courville, Pascal Vincent, and Mehdi
Mirza. Disentangling factors of variation for facial expression recognition.
ECCV, pages 808–822, 2012.

[50] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term
memory recurrent neural network architectures for large scale acoustic
modeling. In Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[51] Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann machines.
In Artificial Intelligence and Statistics, pages 448–455, 2009.

[52] Ruhi Sarikaya, Geoffrey E. Hinton, and Anoop Deoras. Application of
deep belief networks for natural language understanding. IEEE/ACM
Trans. Audio, Speech & Language Processing, 22(4):778–784, 2014.

[53] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan
Carlsson. CNN features off-the-shelf: an astounding baseline for recogni-
tion. In CVPR Workshops, pages 806–813, 2014.

[54] N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmai-
son, Frank Wood, Noah D. Goodman, Pushmeet Kohli, and Philip H. S.
Torr. Learning disentangled representations with semi-supervised deep
generative models. In NIPS, 2017.

[55] Karen Simonyan and Andrew Zisserman. Two-stream convolutional net-
works for action recognition in videos. In NIPS, pages 568–576, 2014.

[56] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[57] Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning with
deep Boltzmann machines. In NIPS, pages 2222–2230, 2012.

[58] Nitish Srivastava, Ruslan R Salakhutdinov, and Geoffrey E Hinton. Mod-
eling documents with deep Boltzmann machines. In UAI, 2013.

[59] Heung-Il Suk, Seong-Whan Lee, Dinggang Shen, Alzheimer’s Dis-
ease Neuroimaging Initiative, et al. Hierarchical feature representation
and multimodal fusion with deep learning for AD/MCI diagnosis. Neu-
roImage, 101:569–582, 2014.

[60] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In NIPS, pages 3104–3112, 2014.

[61] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In WWW, pages
1067–1077, 2015.

[62] Tijmen Tieleman. Training restricted Boltzmann machines using approx-
imations to the likelihood gradient. In ICML, pages 1064–1071. ACM,
2008.

[63] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11(Dec):3371–3408, 2010.

[64] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network em-
bedding. In SIGKDD, pages 1225–1234. ACM, 2016.

[65] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou
Wang, Peng Zhang, and Dell Zhang. Irgan: A minimax game for unifying
generative and discriminative information retrieval models. In SIGIR,
2017.

[66] Suhang Wang, Jiliang Tang, Charu Aggarwal, and Huan Liu. Linked
document embedding for classification. In CIKM, pages 115–124. ACM,
2016.

[67] Suhang Wang, Jiliang Tang, Fred Morstatter, and Huan Liu. Paired
restricted Boltzmann machine for linked data. In CIKM, pages 1753–
1762. ACM, 2016.

[68] Yilin Wang, Suhang Wang, Jiliang Tang, Neil O’Hare, Yi Chang, and
Baoxin Li. Hierarchical attention network for action recognition in videos.
CoRR, abs/1607.06416, 2016.

[69] Max Welling, Michal Rosen-Zvi, and Geoffrey E Hinton. Exponential
family harmoniums with an application to information retrieval. In NIPS,
volume 4, pages 1481–1488, 2004.

[70] Paul J Werbos. Backpropagation through time: What it does and how
to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[71] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and
tell: Neural image caption generation with visual attention. In ICML,
pages 2048–2057, 2015.

[72] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. At-
tribute2image: Conditional image generation from visual attributes. In
ECCV, pages 776–791. Springer, 2016.

[73] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J Smola,
and Eduard H Hovy. Hierarchical attention networks for document clas-
sification. In HLT-NAACL, pages 1480–1489, 2016.

[74] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence
generative adversarial nets with policy gradient. In AAAI, pages 2852–
2858, 2017.

[75] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical
features from deep generative models. In ICML, pages 4091–4099, 2017.

NEURAL NETWORKS AND
DEEP LEARNING

#

This chapter is excerpted from

Artificial Intelligence: With and Introduction to
Machine Learning, Second Edition

by Richard E. Neapolitan and Xia Jiang.

© 2018 Taylor & Francis Group. All rights reserved.

6

Learn more

https://www.crcpress.com/Artificial-Intelligence-With-an-Introduction-to-Machine-Learning-Second/Neapolitan-Jiang/p/book/9781138502383?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Artificial-Intelligence-With-an-Introduction-to-Machine-Learning-Second/Neapolitan-Jiang/p/book/9781138502383?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Artificial-Intelligence-With-an-Introduction-to-Machine-Learning-Second/Neapolitan-Jiang/p/book/9781138502383?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

Neural Networks and Deep
Learning

The previous three parts modeled intelligence at either a human cognitive level or at a
population-based level. The intelligence is removed from the physiological processes involved
in intelligent reasoning. In this part, we model the neuronal processes involved when the
brain is ”intelligently” controlling the thoughts and behavior of a life form. The networks
we construct in this fashion are called artificial neural networks. Neural networks have
been used effectively in applications such as image recognition and speech recognition, which
are hard to model with the structured approach used in rule-based systems and Bayesian
networks. In the case of image recognition, for example, they learn to identify images of
cars by being presented with images that have been labeled ”car” and ”no car”. We start
by modeling a single neuron.

15.1 The Perceptron

Figure 15.1 (a) shows a biological neuron, which has dendrites that transmit signals to a
cell body, a cell body that processes the signal, and an axon that sends signals out to other

Figure 15.1 A neuron is in (a); an artficial neuron is in (b).

neurons. The input signals are accumulated in the cell body of the neuron, and if the accu-
mulated signal exceeds a certain threshold, an output signal is generated which is passed on
by the axon. Figure 15.1 (b) show an artificial neuron that mimics this process. The artificial
neuron takes as input a vector (x1, x2, ..., xk), and then applies weights (w0, w1, w2, ..., wk)
to that input yielding a weighted sum:

w0 +
k∑
i=1

wixi.

Next the neuron applies an activation function f to that sum, and outputs the value y of
f . Note that the inputs xi are square nodes to distinguish them from an artificial neuron,
which is a computational unit.

A neural network consists of one to many artificial neurons, which communicate with
each other. The output of one neuron is the input to another neuron. The simplest neural
network is the perceptron, which consists of a single artificial neuron, as shown in Figure
15.1 (b). The activation function for the perceptron is as follows:

f(z) =

{
1 if z > 0

−1 otherwise

Therefore, the complete expression for the output y of the perceptron is as follows:

y =

{
1 if w0 +

∑k
i=1 wixi > 0

−1 otherwise
(15.1)

The perceptron is a binary classifier. It returns 1 if the activation function exceeds 0;
otherwise it returns -1.

15.1 The Perceptron

Figure 15.2 The line −3− 4x1 + 5x2 = 0 is in (a). This line linearly separates the data in
(b), and approximately linearly separates the data in (c). It does not approximately linearly
separate the data in (d).

Let’s look at the case where the input is a two-dimensional vector (x1, x2). Suppose the
weighted sum in our perceptron is as follows:

w0 + w1x1 + w2x2 = −3− 4x1 + 5x2. (15.2)

Figure 15.2 (a) plots the line −3 − 4x1 + 5x2 = 0. If we color 2-dimensional points gray
or black, the set of gray points is linearly separable from the set of black points if there
exists at least one line in the plane with all the gray points on one side of the line and all
the black points on the other side. This definition extends readily to higher-dimensional
data. The points in Figure 15.2 (b) are linearly separable by the line −3 − 4x1 + 5x2 = 0.
So, the perceptron with the weights in Equality 15.2 maps all the gray points to y = 1,
and all the black points to y = −1. This perceptron is a perfect binary classifier for these
data. If we have the data in Figure 15.2 (c), this perceptron is a pretty good classifier, as
it only misclassifies two cases. It is a very poor classifier for the data in Figure 15.2 (d).
The gray and black points in that figure are not approximately linearly separable; so no
perceptron would be a good classifier for this data. The perceptron is a linear binary
classifier because it uses a linear function to classify an instance.

15.1.1 Learning the Weights for a Perceptron

When learning a perceptron for binary classification, our goal is to determine weights deter-
mining a line that as close as possible linearly separates the two classes. Next we develop a

gradient descent algorithm for learning these weights (See Section 5.3.2 for an introduction
to gradient descent.) If we have a data item (x1, x2, ..., xk, y), our loss function is

Loss(y, ŷ) = (ŷ − y)(w0 +
k∑
i=1

wixi),

where ŷ is the estimate of y using Equation 15.1. The idea behind this loss function is
that if ŷ = y there is no loss. If ŷ = 1 and y = −1, then w0 +

∑k
i=1 wixi > 1, and the

loss is 2
(
w0 +

∑k
i=1 wixi

)
. This loss is a measure of how far off we are from obtaining a

value < 0, which would have given a correct answer. Similarly, if ŷ = −1 and y = 1, then

w0 +
∑k
i=1 wixi < 1, and the loss is again 2

(
w0 +

∑k
i=1 wixi

)
. The cost function follows:

Cost([y1, ŷ1], ..., [yn, ŷn]) =
n∑
j=1

Loss(yj , ŷj) =
n∑
j=1

(
(ŷj − yj)(w0 +

k∑
i=1

wix
j
i)

)
. (15.3)

Note that xji denotes the ith vector element in the jth data item. This is different from
the notation used in Section 5.3. The partial derivatives of the cost function are as follows:

∂
(∑n

j=1(ŷj − yj)(w0 +
∑k
i=1 wix

j
i)
)

∂w0
=

n∑
j=1

(ŷj − yj)

∂
∑n
j=1

(
(ŷj − yj)(w0 +

∑k
i=1 wix

j
i)
)

∂wm
=

n∑
j=1

(ŷj − yj)xjm.

When Rosenblatt [1958] developed the perceptron and the algorithm we are presenting,
he updated based on each item in sequence as in stochastic gradient descent (Section 5.3.4).
We show that version of the algorithm next.

Algorithm 15.1 Gradient Descent Perceptron

Input: Set of real predictor data and binary outcome data: {(x1
1x

1
2, ...x

1
k, y

1),
(x2

1x
2
2, ...x

2
k, y

2)..., (xn1x
n
2 , ...x

n
k , y

n)}.

Output: Weights w0, w1, ..., wk that minimize the cost function in Equality 15.3.

Function Minimizing V alues;
for i = 0 to k

wi = arbitrary value;
endfor
λ = learning rate;
repeat number iterations times

for j = 1 to n

y =
{ 1 if w0+

∑k
i=1 wix

j
i>0

−1 otherwise

w0 = w0 − λ(y − yj);
for m = 1 to k

wm = wm − λ(y − yj)xjm;
endfor

endfor
endrepeat

Example 15.1 Suppose we set λ = 0, 1, and we have the following data:

x1 x2 y
1 2 1
3 4 -1

The algorithm through 2 iterations of the repeat loop follows:

// Initialize weights to arbitrary values.

w0 = 1;w1 = 1, w2 = 1;

// First iteration of repeat loop.

// j = 1 in the for−j loop.

w0 + w1x
1
1 + w2x

1
2 = 1 + 1(1) + 1(2) = 4 > 0;

y = 1;

w0 = w0 − λ(y − y1) = 1− (0.1)(1− 1) = 1;

w1 = w1 − λ(y − y1)x1
1 = 1− (0.1)(1− 1)1 = 1;

w2 = w2 − λ(y − y1)x1
2 = 1− (0.1)(1− 1)2 = 1;

// j = 2 in the for−j loop.

w0 + w1x
2
1 + w2x

2
2 = 1 + 1(3) + 1(4) = 8 > 0;

y = 1;

w0 = w0 − λ(y − y1) = 1− (0.1)(1− (−1)) = 0.8;

w1 = w1 − λ(y − y1)x1
1 = 1− (0.1)(1− (−1))3 = 0.4;

w2 = w2 − λ(y − y1)x1
2 = 1− (0.1)(1− (−1))4 = 0.2;

// Second iteration of repeat loop.

// j = 1 in the for−j loop.

w0 + w1x
1
1 + w2x

1
2 = 0.8 + 0.4(1) + 0.2(2) = 1. 6 > 0;

y = 1;

w0 = w0 − λ(y − y1) = 0.8− (0.1)(1− 1) = 0.8;

w1 = w1 − λ(y − y1)x1
1 = 0.4− (0.1)(1− 1)1 = 0.4;

w2 = w2 − λ(y − y1)x1
2 = 0.2− (0.1)(1− 1)2 = 0.2;

// j = 2 in the for−j loop.

w0 + w1x
2
1 + w2x

2
2 = 0.8 + 0.4(3) + 0.2(4) = 2. 8 > 0;

y = 1;

w0 = w0 − λ(y − y1) = 0.8− (0.1)(1− (−1)) = 0.6;

w1 = w1 − λ(y − y1)x1
1 = 0.4− (0.1)(1− (−1))3 = −0.2;

w2 = w2 − λ(y − y1)x1
2 = 0.2− (0.1)(1− (−1))4 = −0.6;

Table 15.1 SAT Scores, Parental Income, and Graduation Status for 12 Students

SAT (100) Income ($10,000) Graduate
4 18 no
6 7 no
8 4 no
10 6 no
12 2 no
10 10 no
6 6 yes
7 20 yes
8 16 yes
12 16 yes
14 7 yes
16 4 yes

15.1.2 The Perceptron and Logistic Regression

The perceptron is similar to logistic regression (See Section 5.3.3) in that they both map
continuous predictors to a binary outcome. The difference is that the perceptron determin-
istically reports that Y = 1 or Y = −1, while logistic regression reports the probability that
Y = 1. Recall this logistic regression computes this probability as follows:

P (Y = 1|x) =
exp(b0 +

∑k
i=1 bixi)

1 + exp(b0 +
∑k
i=1 bixi)

P (Y = −1|x) =
1

1 + exp(
∑k
i=1 bixi)

.

We can use the logistic regression equation as a binary classifier if we say Y = 1 if and
only if P (Y = 1) > P (Y = −1). The following sequence of steps shows that if we do this,
we have a linear binary classifier.

P (Y = 1|x) = P (Y = −1|x)

exp(b0 +
∑k
i=1 bixi)

1 + exp(b0 +
∑k
i=1 bixi)

=
1

1 + exp(
∑k
i=1 bixi)

exp

(
b0 +

∑k

i=1
bixi

)
= 1

ln

(
exp(b0 +

∑k

i=1
bixi)

)
= 0

b0 +
∑k

i=1
bixi = 0.

So, we set Y = 1 if and only if b0 +
∑k
i=1 bixi > 0.

Example 15.2 Suppose we suspect that SAT scores and parental income have an affect on
whether a student graduates college, and we obtain the data in Table 15.1. These data are
plotted in Figure 15.3 (a). If we learn a logistic regression model from these data (using an
algorithm such as the one outlined in Section 5.3.3), we obtain

P (Graduate = yes|SAT, Income) =
exp(−6.24 + 0.439SAT + 0.222Income)

1 + exp(−6.24 + 0.439SAT + 0.222Income)
,

15.2 Feedforward Neural Networks

Figure 15.3 The plot in (a) shows individuals who graduated college as gray points and
individuals who did not graduate college as black points. The plot in (b) shows the same
individuals and includes the line 6.14 + 0.439SAT + 0.222Income.

and so the line we obtain for a linear classifier is

−6.24 + 0.439SAT + 0.222Income = 0.

That line is plotted with the data in Figure 15.3 (b). Note that the line does not perfectly
linearly separate the data, and two points are misclassified. These data are not linearly
separable.

It is left as an exercise to implement Algorithm 15.1, apply it to the data in Table 15.1,
and compare the results to those obtained with logistic regression.

15.2 Feedforward Neural Networks

If we want to classify the objects in Figure 15.2 (d), we need to go beyond a simple per-
ceptron. Next we introduce more complex networks, which can classify objects that are not
linearly separable. We start with a simple example, the XOR function.

15.2.1 Modeling XOR

The domain of the XOR function is {(0, 0), (0, 1)(1, 0), (1, 1)}. The XOR mapping is then
as follows:

XOR(0, 0) = 0

XOR(0, 1) = 1

XOR(1, 0) = 1

XOR(1, 1) = 0.

Figure 15.4 plots the domain of the XOR function, and shows points mapping to 0 as
black points and points mapping to 1 as gray points. Clearly, the black and gray points
are not linearly separable. So, no perceptron could model the XOR function. However, the
more complex network in Figure 15.5 does model it. That network is a 2-layer neural
network because there are two layers of artificial neurons. The first layer, containing the
nodes h1 and h2, is called a hidden layer because it represents neither input nor output. The
second layer contains the single output node y. The perceptron only has this layer. Note

Figure 15.4 The XOR function. The black points map to 0, and the gray points map to 1.

Figure 15.5 A neural network modeling the XOR function.

Figure 15.6 The original x-space is in (a), and the transformed h-space is in (b).

that the activation function in the hidden node h2 in Figure 15.5 is max(0, z); this function
is called the rectified linear activation function.

Let’s show that the network in Figure 15.5 does indeed model the XOR function:

(x1, x2) = (0, 0)

h1 = 0 + 0 = 0

h2 = max(0,−1 + 0 + 0) = 0

y = 0− 2(0) = 0

(x1, x2) = (0, 1)

h1 = 0 + 1 = 1

h2 = max(0,−1 + 0 + 1) = 0

y = 1− 2(0) = 1

(x1, x2) = (1, 0)

h1 = 1 + 0 = 1

h2 = max(0,−1 + 1 + 0) = 0

y = 1− 2(0) = 1

(x1, x2) = (1, 1)

h1 = 1 + 1 = 2

h2 = max(0,−1 + 1 + 1) = 1

y = 2− 2(1) = 0.

The ”trick” in this network is that h1 and h2 together map (0,0) to (0,0), (0,1) to (1,0),
(1,0) to (1,0) and (1,1) to (2,1). So our black points are now (0,0) and (2,1), while our single
gray point is (1,0). The data is now linearly separable. Figure 15.6 shows the transformation
from the x-space to the h-space.

Figure 15.7 Class C1 consists of the shaded area, and class C2 consists of the white area.
The notation 100, for example, means that the region lies on the plus side of line h11, on
the minus side of line h12, and on the minus side of line h13.

15.2.2 Example with Two Hidden Layers

Suppose we are classifying points in the plane, and all points in the grey area in Figure
15.7 are in class C1, while all points in the white area are in class C2. This is a difficult
classification problem because the regions that comprise class C1 are not even adjacent.
The neural network in Figure 15.8, which has two hidden layers, correctly accomplishes this
classification with appropriate weights and activation functions. Next, we show how this is
done.

The lines h1, h2, and h3 in Figure 15.7 separate the plane into 7 regions. The notation
+/− in Figure 15.7 indicates the region is on the + side of the given line or on the − side.
We assign the region value 1 if it is on the + side of the line and value 0 if it is on the
− side. Region 100 is therefore labeled as such because it is on the + side of line h11, on
the − side of line h12, and on the − side of line h13. The other regions are labeled in a
similar fashion. We can create a hidden node h11 with weights representing line h11. Then
we use an activation function that returns 0 if (x1, x2) is on the − side of line h11 and 1
otherwise. We create hidden nodes h12 and h13 in a similar fashion. Table 15.2 shows the
values output by each of the nodes h11, h12, and h13 when (x1, x2) resides in each of the 7
regions in Figure 15.7 (note that 110 does not determine a region). So, the regions map
to the 7 of the corners of the unit cube in 3-space. The two points that represent class C1

are (0,0,0) and (1,1,1). We can linearly separate point 0,0,0) from the other 6 points with
a plane in 3-space. So we create a hidden node h21 that does this. We use an activation
function that returns 1 for point (0,0,0) and 0 for all other points on the cube. Similarly,
we create a hidden node h22 that outputs 1 for point (1,1,1) and 0 for all other points on
the cube. Table 15.2 shows these values. So, the output of these two hidden nodes is (1,0)

Figure 15.8 A neural network that correctly classifies points in classes C1 and C2 in Figure
15.7.

Table 15.2 Values of the Nodes in the Neural Network in Figure 15.7 for the Input Tuple
Located in Each of the Regions in Figure 15.6

Region Class h11 h12 h13 h21 h22 y
000 C1 0 0 0 1 0 1
001 C2 0 0 1 0 0 0
010 C2 0 1 0 0 0 0
011 C2 0 1 1 0 0 0
100 C2 1 0 0 0 0 0
101 C2 1 0 1 0 0 0
110 − − − − − − −
111 C1 1 1 1 0 1 1

Figure 15.9 The points in region 000 map to (0,1), the points in region 111 map to (1,0),
and all other points map to 0,0).

if (x1, x2) is in region 000 and (0,1) if (x1, x2) is in region 111. It is (0,0) if (x1, x2) is in
any other region. These three points are shown in Figure 15.9. Next, we create weights for
our output node y that yield a line that separates (1,0) and (0,1) from (0,0). Such a line
is shown in Figure 15.9. We then use an activation function that returns 1 if the point lies
above that line and 0 otherwise. In this way, all values of (x1, x2) in class C1 map to 1 and
all values of (x1, x2) in class C2 map to 0.

Example 15.3 Suppose the three lines determining the regions in Figure 15.7 are as follows:

h11 : 2− x1 − x2 = 0

h12 : 0.5− x2 = 0

h13 : x1 − x2 = 0.

These three lines are plotted in Figure 15.10. Given these lines, the activation functions for
hidden nodes h11, h12, and h13 are as follows:

h11 =

{
1 if 2− x1 − x2 > 0

0 otherwise

h12 =

{
1 if 0.5− x2 < 0

0 otherwise

h12 =

{
1 if x1 − x2 < 0

0 otherwise
.

Hidden node h21 must provide a plane that linearly separates (0, 0, 0) from all other points
on the unit cube. The following is one such plane:

h11 + h12 + h13 = 0.5.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

x1

x2

Figure 15.10 The three lines determining the regions in Figure 15.7 for Example 15.3.

So, we can make the activation function for hidden node h21 as follows:

h21 =

{
1 if h11 + h12 + h13 − 0.5 < 0

0 otherwise

Hidden node h22 must provide a plane that linearly separates (1, 1, 1) from all other points
on the unit cube. The following is one such plane:

h11 + h12 + h13 = 2.5.

So, we can make the activation function for hidden node h22 as follows:

h22 =

{
1 if h11 + h12 + h13 − 2.5 > 0

0 otherwise
.

Finally node y must provide a line that linearly separates (0, 1) and (1, 0) from (1, 1). The
following is one such line:

h21 + h22 = 0.5.

So, we can make the activation function for node y as follows:

y =

{
1 if h21 + h22 − 0.5 > 0

0 otherwise
.

15.2.3 Structure of a Feedforward Neural Network

Having shown a neural network with one hidden layer (Figure 15.5) and a neural network
with two hidden layers (Figure 15.8), we now present the general structure of a feedforward
neural network. This structure appears in Figure 15.11. On the far left is the input, which
consists of x1, x2, ..., xk. Next there are 0 or more hidden layers. Then on the far right is the
output layer, which consists of 1 or more nodes y1, y2, ...ym. Each hidden layer can contain
a different number of nodes.

Figure 15.11 The general structure of a feedforward neural network.

In Sections 15.2.1 and 15.2.2 we constructed the neural network, and assigned values to
the weights to achieve our desired results. Typically, we do not do this but rather learn the
weights using a gradient descent algorithm similar to, but more complex than, the Algorithm
15.1 for the perceptron. For example, we could first construct the network in Figure 15.8
and then provide the form of the activation functions for the hidden nodes and the output
node (discussed in the next section). Finally, we provide many data items to the algorithm,
each of which has value (x1, x2, ..., xk, C), where C is the class to which point (x1, x2, ..., xk)
belongs. The algorithm then learns weights such that the resultant network can classify new
points.

A difficulty is that we don’t know which network structure will work for a given problem
beforehand. For example, without a detailed analysis of the problem in Section 15.2.2, we
would not know to assign two hidden layers where the first layer contains 3 nodes, and
the second layer contains 2 nodes. So, in general we experiment with different network
configurations, and using a technique such as cross validation (Section 5.2.3), we find the
configuration that gives the best results. There are various strategies for configuring the
network. One strategy is to make the number of hidden nodes about equal to the number
of input variables, and assign various layer and node per layer configurations. However, this
will probably result in over-fitting if the dataset size is small compared to the input size.
Another strategy is to make the number of hidden nodes no greater than the number of
data items, and again try various layer and node per layer configurations.

In summary, to develop a neural network application we need data on the input vari-
able(s) and output variable(s). We then construct a network with some configuration of
hidden node layers and an output layer. The final step is to specify the activation functions,
which we discuss next. Note that, if implementing the neural network from scratch, we
would also need to program the gradient descent algorithm that finds the optimal values
of the weights. However, henceforth we will assume that we are using a neural network
package which has these algorithms implemented. We will present such packages in the final
section.

15.3 Activation Functions

Next we discuss the activation functions that are ordinarily used in neural

networks.

15.3.1 Output Nodes

We have different activation functions for the output nodes depending on the task. If we
are classifying data into one of two different classes, we need output nodes that represent
binary classification. If we are classifying data in one of three or more possible classes, we
need output nodes that represent multinomial classification. If our output is a continuous
distribution such as the normal distribution, we need nodes that represent properties of that
distribution. We discuss each in turn.

15.3.1.1 Binary Classification

In binary classification we want to classify or predict a variable that has two possible values.
For example, we may want to predict whether a patient’s cancer will metastasize based on
features of the patient’s cancer. In most such cases we do not want the system to simply
say ”yes” or ”no”. Rather we want to know, for example, the probability of the cancer
metastasizing. So rather than using the discrete activation function that was used in the
perceptron, we ordinarily use the sigmoid function, which is also used in logistic regression
(Section 5.3.3). So, assuming the single output node y has the vector of hidden nodes h as
parents, the sigmoid activation function for a binary outcome is

f(h) =
exp(w0 +

∑
wihi)

1 + exp(w0 +
∑
wihi)

, (15.4)

which yields P (Y = 1|h).

Example 15.4 Suppose our output function is the sigmoid function, and

w0 = 2, w1 = −4, w2 = −3, w3 = 5.

Suppose further that for a particular input

h1 = 6, h2 = 7, h3 = 9.

Then

f(h) =
exp(w0 + w1 × h1 + w2 × h2 + w3 × h3)

1 + exp(w0 + w1 × h1 + w2 × h2 + w3 × h3)

=
exp(2− 4× 6− 3× 7 + 5× 9)

1 + exp(2− 4× 6− 3× 7 + 5× 9)

= 0.881.

So,

P (Y = 1|h) = 0.881.

Figure 15.12 The output layer for classifying a variable with m values using the softmax
function.

15.3.1.2 Multinomial Classification

In multinomial classification we want to classify or predict a variable that has m possible
values. An important example, in which neural networks are often applied, is image recog-
nition. For example, we may have a handwritten symbol of one of the digits 0-9, and our
goal is to classify the symbol as the digit intended by the writer. To do multinomial classi-
fication, we use an extension of the sigmoid function called the softmax function. When
using this function, we develop one output node for each of the m possible outcomes, and
we assign the following activation function to the kth output node:

fk(h) =
exp(wk0 +

∑
wkihi)∑m

j=1 exp(wj0 +
∑
wjihi)

.

In this way, the kth output node provides P (Y = k|h). Figure 15.12 shows the output layer
for classifying a variable with m values using the softmax function.

Example 15.5 Suppose our output function is the softmax function, we have 3 outputs,
y1, y2, and y3, and

w10 = 2, w11 = −4, w12 = 3

w20 = 1, w21 = 9, w22 = −3

w30 = 10, w31 = 7, w32 = −4.

Suppose further that for a particular input

h1 = 2, h2 = 4.

Then
w10 + w11h1 + w12h2 = 2− 4× 2 + 3× 4 = 6

w20 + w21h1 + w22h2 = 1 + 9× 2− 3× 4 = 7

w30 + w31h1 + w32h2 = 10 + 7× 2− 4× 4 = 8.

f1(h) =
exp(w10 +

∑
w1ihi)∑3

j=1 exp(wj0 +
∑
wjihi)

=
exp(6)

exp(6) + exp(7) + exp(8)
= 0.090

f2(h) =
exp(w20 +

∑
w2ihi)∑3

j=1 exp(wj0 +
∑
wjihi)

=
exp(7)

exp(6) + exp(7) + exp(8)
= 0.245

f3(h) =
exp(w30 +

∑
w3ihi)∑3

j=1 exp(wj0 +
∑
wjihi)

=
exp(8)

exp(6) + exp(7) + exp(8)
= 0.665.

So,

P (Y = 1|h) = 0.090

P (Y = 2|h) = 0.245

P (Y = 3|h) = 0.665.

15.3.1.3 Normal Output Distributions

Instead of modeling that the output can only have one of m values (discrete), we can assume
it is normally distributed. We have then that

ρ(y|x) = NormalDen(y;µ, σ2),

where x is the input vector. For example, we may want to predict a normal distribution
of systolic blood pressure based on a patient’s features. In this case, we can have a single
output node, where its value is the mean of the normal distribution. So, the activation
function is simply the linear activation function:

µ = f(h) = w0 +
∑

wihi.

Example 15.6 Suppose our output function is the mean of a normal distribution, and

w0 = 2, w1 = −4, w2 = −3, w3 = 5.

Suppose further that for a particular input

h1 = 3, h2 = 7, h3 = 8.

Then the mean of the output normal distribution is as follows:

µ = f(h) = w0 + w1 × h1 + w2 × h2 + w3 × h3

= 2− 4× 3− 3× 7 + 5× 8

= 9.

15.3.2 Hidden Nodes

The most popular activation function for hidden nodes (especially in applications involving
image recognition) is the rectified linear activation function, which we have already
used. That function is as follows:

f(h) = max(0, w0 +
∑

wihi).

Notice that this activation function is similar to the linear activation function just discussed,
except that it returns 0 when the linear combination is negative.

Example 15.7 Suppose our activation function is the rectified linear function, and

w0 = −5, w1 = −4, w2 = −3, w3 = 5.

Suppose further that for a particular input

h1 = 8, h2 = 7, h3 = 9.

Then

f(h) = max(0, w0 + w1 × h1 + w2 × h2 + w3 × h3)

= max(0,−5− 4× 8− 3× 7 + 5× 9)

= max(0,−13)

= 0.

Another activation function used for hidden nodes is the maxout activation func-
tion. For this function, we have r weight vectors, where r is a parameter, and we take the
maximum of the weighted sums. That is, we have

z1 = w10 +
∑

w1ihi

z2 = w20 +
∑

w2ihi

...

zr = wr0 +
∑

wrihi,

and
f(h) = max(z1, z2, ..., zr).

Example 15.8 Suppose our activation function is the maxout function, r = 3, and

w10 = 2, w11 = −4, w12 = 3

w20 = 1, w21 = 9, w22 = −3

w30 = 10, w31 = 7, w32 = −4.

Suppose further that for a particular input

h1 = 2, h2 = 4.

Then
z1 = w10 + w11h1 + w12h2 = 2− 4× 2 + 3× 4 = 6

z2 = w20 + w12h1 + w22h2 = 1 + 9× 2− 3× 4 = 7

z3 = w30 + w31h1 + w32h2 = 10 + 7× 2− 4× 4 = 8.

f(h) = max(z1, z2, z3) = max(6, 7, 8) = 8.

The sigmoid activation function (Equation 15.4) can also be used as the activation func-
tion for hidden notes. A related function, which is also used, is the hyperbolic tangent
activation function, which is as follows:

f(h) = tanh(w0 +
∑

wihi).

Figure 15.13 Examples of the handwritten digits in the MNIST dataset.

15.4 Application to Image Recognition

The MNIST dataset (http://yann.lecun.com/exdb/mnist/) is an academic dataset used to
evaluate the performance of classification algorithms. The dataset consists of 60,000 training
images and 10,000 test images. Each image is one of the digits 0-9, which is handwritten.
It is a standardized 28 by 28 pixel greyscale image. So, there are 784 pixels in all. Figure
15.13 shows examples of the digits in the dataset.

Candel et al. [2015] developed a neural network to solve the problem of classifying
images in the test dataset by learning a system from the training dataset. The network
has 784 inputs (one for each pixel), 10 outputs (one for each digit) and three hidden layers,
with each layer containing 200 hidden nodes. Each hidden node uses the rectified linear
activation function, and the output nodes use the softmax function. Figure 15.14 depicts
the network.

The neural network had a classification error rate of 0.0083, which ties the best error
rate previously achieved by Microsoft.

15.5 Discussion and Further Reading

The title of this chapter is “Neural Networks and Deep Learning.” Yet we never mentioned
”deep learning” in the text. As mentioned in Section 1.1.2, in the 1940s foundational
efforts at AI involved modeling the neurons in the brain, which resulted in the field of
neural networks [Hebb, 1949]. Once the logical approach to AI became dominant in the
1950s, neural networks fell from popularity. However, new algorithms for training neural
networks and dramatically increased computer processing speed resulted in a re-emergence
of the use of neural nets in the field called deep learning [Goodfellow et al., 2016]. Deep
learning neural network architectures differ from older neural networks in that they
often have more hidden layers. Furthermore, deep learning networks can be trained using
both unsupervised and supervised learning. We presented only the supervised learning
approach. Convolutional neural networks are ones whose architectures make the explicit
assumption that the inputs are images, and therefore encode specific properties of images.
Recurrent neural networks are a class of neural nets that feed their state at the previous
time step into the current time step. They are applied, for example, to automatic text
generation (discussed below).

Figure 15.14 The neural network used to classify digits in the MNIST dataset.

This has only been a brief introduction to the basics of neural networks. For a more thor-
ough coverage, including a discussion of the gradient descent algorithms used to learn neural
network parameters, you are referred to [Goodfellow et al., 2016] and [Theodoridis, 2015].
You can download software that implements neural networks. Two such products are H20
(https://www.h2o.ai/) and tenserflow (https://www.tensorflow.org/).

Deep learning has been used to solve a variety of problems, which were difficult with
other approaches. We close by listing some specific applications.

1. Object detection and classification in a photograph [Krizhevsky et al., 2012]. This
problem involves classifying objects in a photograph as one of a set of previously
known objects.

2. Adding color to black and white photographs [Zang et al., 2016]. This problem con-
cerns adding color to black and white photographs.

3. Automatic image caption generation [Karpathy and Fei-Fei, 2015]. This task concerns
generating a caption that describes the contents of an image.

4. Adding sound to silent videos [Owens et al., 2016]. This problem concerns synthesiz-
ing sounds that best match what is happening in a scene in a video.

5. Automatic language translation [Sutskever et al., 2014]. This task involves translat-
ing a word, phrase, or sentence from one language to another language.

6. Automatic handwriting generation [Graves, 2014]. This problem involves generating
new handwriting for a given word or phrase based on a set of handwriting examples.

7. Automatic text generation [Sutskever et al., 2011]. This problem involves using a large
amount of text to learn a model that can generate a new word, phrase, or sentence
based on a partial word or text.

8. Automatic game playing [Mnih et al., 2015]. This problem concerns learning how to
play a computer game based on the pixels on the screen.

When modeling a problem using a neural network, the model is a black box in the sense
that the structure and parameters in the layers do not provide us with a model of reality,
which we can grasp. Bayesian networks, on the other hand, provide a relationship among
variables, which can often be interpreted as causal. Furthermore, Bayesian networks enable
us to model and understand complex human decisions. So, although both architectures
can be used to model many of the same problems, neural networks have more often been
successfully applied to problems that involve human intelligence which cannot be described
at the cognitive level. These problems include computer vision, image processing, and text
analysis. Bayesian networks, on the other hand, have more often been applied successfully
to problems that involve determining the relationships among related random variables, and
exploiting these relationships to do inference and make decisions. A classic example is a
medical decision support system (See Section 7.7).

EXERCISES

Section 15.1

Exercise 15.1 Does the resultant line in Example 15.1 linearly separate the data? If not,
work through more iterations of the repeat loop until it does.

Exercise 15.2 Suppose we set λ = 0, 2, and we have the following data:

x1 x2 y
2 3 -1
4 5 1

Work through iterations of the repeat loop in Algorithm 15.1 until the resultant line linearly
separates the data.

Exercise 15.3 It was left as an exercise to implement Algorithm 15.1, apply it to the data
in Table 15.1, and compare the results to those obtained with logistic regression. Do this.

Section 15.2

Exercise 15.4 Suppose the three lines determining the regions in Figure 15.7 are as follows:

h11 : 4− 2x1 − x2 = 0

h12 : 1− x1 − x2 = 0

h13 : 3 + 2x1 − x2 = 0.

Plot the three lines and show the regions corresponding to classes C1 and C2. Develop
parameters for the neural network in Figure 15.8 such that the network properly classifies
the points in the classes C1 and C2.

Section 15.3
Exercise 15.5 Suppose our output function is the sigmoid function for binary output and

w0 = 1, w1 = −4, w2 = −5, w3 = 4.

Suppose further that for a particular input

h1 = 4, h2 = 5, h3 = 6.

Compute f(h). What is P (Y = 1|h)?

Exercise 15.6 Suppose our output function is the softmax function, and we have 4 outputs,
y1, y2, y3, y4. Suppose further that

w10 = 1, w11 = −3, w12 = 2

w20 = 2, w21 = 7, w22 = −2

w30 = 6, w31 = 5, w32 = −4.

w40 = 5, w41 = −3, w42 = 6.

Suppose further that for a particular input

h1 = 3, h2 = 4, h3 = 5.

Compute f1(h), f2(h), f3(h), f4(h). What is P (Y = i|h) for i = 1, 2, 3, 4?

Exercise 15.7 Suppose our activation function is the rectified linear function, and

w0 = 5, w1 = −4, w2 = 2, w3 = 4, w4 = 8.

Suppose further that for a particular input

h1 = 8, h2 = 7, h3 = 6, h4 = 5.

Compute f(h).

Exercise 15.8 Suppose our activation function is the maxout function, r = 2, and

w10 = 1, w11 = −2, w12 = 6, w13 = 5

w20 = 2, w21 = 8, w22 = −2, w23 = 4.

Suppose further that for a particular input

h1 = 3, h2 = 2, h3 = 5.

Compute f(h).

Section 15.4

Exercise 15.9 The Metabric dataset is introduced in [Curtis, et al. 2012]. It provides data
on breast cancer patient features such as tumor size and outcomes such as death. This
dataset can be obtained at https://www.synapse.org/#!Synapse:syn1688369/wiki/27311.
Gain access to the dataset. Then download one of the neural network packages discussed in
Section 15.5. Divide the dataset into a training dataset containing 2/3 of the data, and a
test dataset containing 1/3 of the data. Apply various parameter settings (e.g., number of
hidden layers and number of hidden nodes per layer) to the training set. For each setting do
a 5-fold cross validation analysis, where the goal is to classify/predict whether the patient
dies. Determine the Area Under an ROC Curve (AUROC) for each of the settings, and
apply the settings with the best AUROC to the test data. Determine the AUROC for the
test data.

A naive Bayesian network is a network in which there is one root, and all other nodes
are children of the root. There are no edges among the children. Naive Bayesian network are
used for discrete classification by making the target the root, and the predictors the children.
XLSTAT includes a naive Bayesian network module. Free naive Bayesian network software
is available at various sites including http://www.kdnuggets.com/software/bayesian.html.
Download a naive Bayesian network software package, and do the same study as outlined
above using this package. Vary whatever parameters are available in the software, and do the
5-fold cross validation analysis for each parameter setting. Compare the AUROCs obtained
by the neural network method and the naive Bayesian network method when applied to the
test data.

Exercise 15.10 As discussed in Section 15.4, the MNIST dataset is an academic dataset
used to evaluate the performance of classification algorithms. The dataset consists of 60,000
training images and 10,000 test images. Each image is one of the digits 0-9, which is
handwritten. It is a standardized 28 by 28 pixel greyscale image. So, there are 784 pixels in
all. Download this dataset. Then download one of the neural network packages discussed in
Section 15.5. Apply various parameter settings (e.g., number of hidden layers and number
of hidden nodes per layer) to the training set. For each setting do a 5-fold cross validation
analysis, where the goal is to classify/predict the correct digit. Determine the Area Under
an ROC Curve (AUROC) for each of the settings, and apply the settings with the best
AUROC to the test data. Determine the AUROC for the test data.

Than apply a naive Bayesian network to the dataset. Again use various parameter
settings and 5-fold cross validation on the training dataset, and apply the best parameter
values to the test dataset. Compare the AUROCs obtained by the neural network method
and the naive Bayesian network method when applied to the test dataset.

AI-COMPLETENESS: THE
PROBLEM DOMAIN OF
SUPERINTELLIGENT
MACHINES#

This chapter is excerpted from

Artificial Superintelligence: A Futuristic Approach

by Roman V. Yampolskiy.

© 2018Taylor & Francis Group. All rights reserved.

7

Learn more

https://www.crcpress.com/Artificial-Superintelligence-A-Futuristic-Approach/Yampolskiy/p/book/9781482234435?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Artificial-Superintelligence-A-Futuristic-Approach/Yampolskiy/p/book/9781482234435?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564
https://www.crcpress.com/Artificial-Superintelligence-A-Futuristic-Approach/Yampolskiy/p/book/9781482234435?utm_source=CRCPress&utm_medium=cms&utm_campaign=180515564

AI-Completeness
The Problem Domain of
Superintelligent Machines*

1.1 INTRODUCTION
Since its inception in the 1950s, the field of artificial intelligence (AI) has
produced some unparalleled accomplishments while failing to formalize
the problem space that concerns it. This chapter addresses this shortcom-
ing by extending previous work (Yampolskiy 2012a) and contributing to the
theory of AI-Completeness, a formalism designed to do for the field of AI
what the notion of NP-Completeness (where NP stands for nondeterminis-
tic polynomial time) did for computer science in general. It is my belief that
such formalization will allow for even faster progress in solving remaining
problems in humankind’s quest to build an intelligent machine.

According to Wikipedia, the term AI-Complete was proposed by
Fanya Montalvo in the 1980s (“AI-Complete” 2011). A somewhat gen-
eral definition of the term included in the 1991 “Jargon File” (Raymond
1991) states:

AI-complete: [MIT, Stanford, by analogy with “NP-complete”]
adj. Used to describe problems or subproblems in AI, to indi-
cate that the solution presupposes a solution to the “strong AI

* Reprinted from Roman V. Yampolskiy, Artificial intelligence, evolutionary computation and
metaheuristics. Studies in Computational Intelligence 427:3–17, 2013, with kind permission of
Springer Science and Business Media. Copyright 2013, Springer Science and Business Media.

problem” (that is, the synthesis of a human-level intelligence). A
problem that is AI-complete is, in other words, just too hard.

As such, the term AI-Complete (or sometimes AI-Hard) has been a part
of the field for many years and has been frequently brought up to express
the difficulty of a specific problem investigated by researchers (see Mueller
1987; Mallery 1988; Gentry, Ramzan, and Stubblebine 2005; Phillips and
Beveridge 2009; Bergmair 2004; Ide and Véronis 1998; Navigli and Velardi
2005; Nejad 2010; Chen et al. 2009; McIntire, Havig, and McIntire 2009;
McIntire, McIntire, and Havig 2009; Mert and Dalkilic 2009; Hendler 2008;
Leahu, Sengers, and Mateas 2008; Yampolskiy 2011). This informal use
further encouraged similar concepts to be developed in other areas of sci-
ence: Biometric-Completeness (Phillips and Beveridge 2009) or Automatic
Speech Recognition (ASR)-Complete (Morgan et al. 2003). Although
recently numerous attempts to formalize what it means to say that a prob-
lem is AI-Complete have been published (Ahn et al. 2003; Shahaf and Amir
2007; Demasi, Szwarcfiter, and Cruz 2010), even before such formalization
attempts, systems that relied on humans to solve problems perceived to be
AI-Complete were utilized:

• AntiCaptcha systems use humans to break the CAPTCHA (Completely
Automated Public Turing Test to Tell Computers and Humans Apart)
security protocol (Ahn et al. 2003; Yampolskiy 2007a, 2007b; Yampolskiy
and Govindaraju 2007) either by directly hiring cheap workers in
developing countries (Bajaj 2010) or by rewarding correctly solved
CAPTCHAs with presentation of pornographic images (Vaas 2007).

• The Chinese room philosophical argument by John Searle shows
that including a human as a part of a computational system may
actually reduce its perceived capabilities, such as understanding and
consciousness (Searle 1980).

• Content development online projects such as encyclopedias
(Wikipedia, Conservapedia); libraries (Project Gutenberg, video col-
lections [YouTube]; and open-source software [SourceForge]) all rely
on contributions from people for content production and quality
assurance.

• Cyphermint, a check-cashing system, relies on human workers
to compare a snapshot of a person trying to perform a financial

transaction to a picture of a person who initially enrolled with the
system. Resulting accuracy outperforms any biometric system and is
almost completely spoof proof (see http://cyphermint.com for more
information).

• Data-tagging systems entice a user into providing metadata for
images, sound, or video files. A popular approach involves develop-
ing an online game that, as a by-product of participation, produces a
large amount of accurately labeled data (Ahn 2006).

• Distributed Proofreaders employs a number of human volun-
teers to eliminate errors in books created by relying on Optical
Character Recognition process (see http://pgdp.net/c/ for more
information).

• Interactive evolutionary computation algorithms use humans in
place of a fitness function to make judgments regarding difficult-
to-formalize concepts such as aesthetic beauty or taste (Takagi 2001).

• Mechanical Turk is an attempt by Amazon.com to create Artificial
AI. Humans are paid varying amounts for solving problems that are
believed to be beyond current abilities of AI programs (see https://
www.mturk.com/mturk/welcome for more information). The gen-
eral idea behind the Turk has broad appeal, and the researchers are
currently attempting to bring it to the masses via the generalized
task markets (GTMs) (Shahaf and Horvitz 2010; Horvitz and Paek
2007; Horvitz 2007; Kapoor et al. 2008).

• Spam prevention is easy to accomplish by having humans vote on
e-mails they receive as spam or not. If a certain threshold is reached,
a particular piece of e-mail could be said with a high degree of accu-
racy to be spam (Dimmock and Maddison 2004).

Recent work has attempted to formalize the intuitive notion of
AI-Completeness. In particular, three such endowers are worth reviewing
next (Yampolskiy 2012a). In 2003, Ahn et al. attempted to formalize the
notion of an AI-Problem and the concept of AI-Hardness in the context of
computer security. An AI-Problem was defined as a triple:

= S D f(, ,) , where S is a set of problem instances, D is a prob-
ability distribution over the problem set S, and f : S → {0; 1}*

answers the instances. Let δ ∈ (0; 1]. We require that for an
α > 0 fraction of the humans H, Prx←D [H(x) = f(x)] > δ. … An AI
problem  is said to be (δ, τ)-solved if there exists a program A,
running in time at most τ on any input from S, such that Prx←D,r
[Ar(x) = f(x)] ≥ δ. (A is said to be a (δ, τ) solution to  .)  is
said to be a (δ, τ)-hard AI problem if no current program is a
(δ, τ) solution to  . (Ahn et al. 2003, 298).

It is interesting to observe that the proposed definition is in terms of dem-
ocratic consensus by the AI community. If researchers say the problem
is hard, it must be so. Also, time to solve the problem is not taken into
account. The definition simply requires that some humans be able to solve
the problem (Ahn et al. 2003).

In 2007, Shahaf and Amir presented their work on the theory of
AI-Completeness. Their work puts forward the concept of the human-
assisted Turing machine and formalizes the notion of different human
oracles (HOs; see the section on HOs for technical details). The main
contribution of the paper comes in the form of a method for classify-
ing problems in terms of human-versus-machine effort required to find a
solution. For some common problems, such as natural language under-
standing (NLU), the work proposes a method of reductions that allow
conversion from NLU to the problem of speech understanding via text-
to-speech software.

In 2010, Demasi et al. (Demasi, Szwarcfiter, and Cruz 2010) presented
their work on problem classification for artificial general intelligence
(AGI). The proposed framework groups the problem space into three
sectors:

• Non-AGI-Bound: problems that are of no interest to AGI researchers

• AGI-Bound: problems that require human-level intelligence to be
solved

• AGI-Hard: problems that are at least as hard as any AGI-Bound
problem.

The work also formalizes the notion of HOs and provides a number of
definitions regarding their properties and valid operations.

1.2 THE THEORY OF AI-COMPLETENESS
From people with mental disabilities to geniuses, human minds are cog-
nitively diverse, and it is well known that different people exhibit different
mental abilities. I define a notion of an HO function capable of comput-
ing any function computable by the union of all human minds. In other
words, any cognitive ability of any human being is repeatable by my HO.
To make my HO easier to understand, I provide Figure 1.1, which illus-
trates the Human function.

Such a function would be easy to integrate with any modern program-
ming language and would require that the input to the function be pro-
vided as a single string of length N, and the function would return a string
of length M. No encoding is specified for the content of strings N or M,
so they could be either binary representations of data or English language
phrases—both are computationally equivalent. As necessary, the Human
function could call regular Turing Machine (TM) functions to help in
processing data. For example, a simple computer program that would dis-
play the input string as a picture to make human comprehension easier
could be executed. Humans could be assumed to be cooperating, perhaps
because of a reward. Alternatively, one can construct a Human function
that instead of the union of all minds computes the average decision of all
human minds on a problem encoded by the input string as the number
of such minds goes to infinity. To avoid any confusion, I propose nam-
ing the first HO HumanBest and the second HO HumanAverage. Problems
in the AI domain tend to have a large degree of ambiguity in terms of
acceptable correct answers. Depending on the problem at hand, the sim-
plistic notion of an average answer could be replaced with an aggregate

String Human (String input) {

return output; }

FIGURE 1.1 Human oracle: HumanBest, a union of minds.

answer as defined in the wisdom-of-crowds approach (Surowiecki 2004).
Both functions could be formalized as human-assisted Turing machines
(Shahaf and Amir 2007).

The human function is an easy-to-understand and -use generalization
of the HO. One can perceive it as a way to connect and exchange informa-
tion with a real human sitting at a computer terminal. Although easy to
intuitively understand, such description is not sufficiently formal. Shahaf
et al. have formalized the notion of HO as an Human-Assisted Turing
Machine (HTM) (Shahaf and Amir 2007). In their model, a human is an
oracle machine that can decide a set of languages Li in constant time: H ⊆
{Li | Li ⊆ ∑*}. If time complexity is taken into account, answering a ques-
tion might take a nonconstant time, H ⊆ {<Li, fi > | Li ⊆ ∑*, fi : ℕ → ℕ}, where
fi is the time-complexity function for language Li, meaning the human
can decide if x ∈ Li in fi (|x|) time. To realistically address capabilities
of individual humans, a probabilistic oracle was also presented that pro-
vided correct answers with probability p: H ⊆ {<Li, pi > | Li ⊆ ∑*, 0 ≤ pi ≤
1}. Finally, the notion of reward is introduced into the model to capture
humans’ improved performance on “paid” tasks: H ⊆ {<Li, ui > | Li ⊆ ∑*, ui
: ℕ → ℕ} where ui is the utility function (Shahaf and Amir 2007).

1.2.1 Definitions

Definition 1: A problem C is AI-Complete if it has two properties:

1. It is in the set of AI problems (HO solvable).
2. Any AI problem can be converted into C by some polynomial time

algorithm.

Definition 2: AI-Hard: A problem H is AI-Hard if and only if there is an
AI-Complete problem C that is polynomial time Turing reducible to H.

Definition 3: AI-Easy: The complexity class AI-Easy is the set of problems
that are solvable in polynomial time by a deterministic Turing machine
with an oracle for some AI problem. In other words, a problem X is
AI-Easy if and only if there exists some AI problem Y such that X is poly-
nomial time Turing reducible to Y. This means that given an oracle for Y,
there exists an algorithm that solves X in polynomial time.

Figure 1.2 illustrates the relationship between different AI complexity
classes. The right side of the figure shows the situation if it is ever proven
that AI problems = AI-Complete problems. The left side shows the converse.

1.2.2 Turing Test as the First AI-Complete Problem

In this section, I show that a Turing test (TT; Turing 1950) problem is
AI-Complete. First, I need to establish that a TT is indeed an AI problem
(HO solvable). This trivially follows from the definition of the test itself.
The test measures if a human-like performance is demonstrated by the test
taker, and HOs are defined to produce human-level performance. While
both human and intelligence test are intuitively understood terms, I have
already shown that HOs could be expressed in strictly formal terms. The
TT itself also could be formalized as an interactive proof (Shieber 2006,
2007; Bradford and Wollowski 1995).

The second requirement for a problem to be proven to be AI-Complete
is that any other AI problem should be convertible into an instance of
the problem under consideration in polynomial time via Turing reduc-
tion. Therefore, I need to show how any problem solvable by the Human
function could be encoded as an instance of a TT. For any HO-solvable
problem h, we have a string input that encodes the problem and a string
output that encodes the solution. By taking the input as a question to be
used in the TT and output as an answer to be expected while administer-
ing a TT, we can see how any HO-solvable problem could be reduced in
polynomial time to an instance of a TT. Clearly, the described process is
in polynomial time, and by similar algorithm, any AI problem could be
reduced to TT. It is even theoretically possible to construct a complete TT
that utilizes all other problems solvable by HO by generating one question
from each such problem.

AI-Hard AI-Hard

AI-Complete

AI-Problems

AI-Complete =
AI-Problems

AI-Problems ≠ AI-Complete AI-Problems = AI-Complete

FIGURE 1.2 Relationship between AI complexity classes.

1.2.3 Reducing Other Problems to a TT

Having shown a first problem (TT) to be AI-Complete, the next step is to
see if any other well-known AI problems are also AI-Complete. This is an
effort similar to the work of Richard Karp, who showed some 21 problems
were NP-Complete in his 1972 work and by doing so started a new field
of computational complexity (Karp 1972). According to the Encyclopedia
of Artificial Intelligence (Shapiro 1992), the following problems are all
believed to be AI-Complete and so will constitute primary targets for our
effort of proving formal AI-Completeness on them (Shapiro 1992, 54–57):

• Natural Language Understanding: “Encyclopedic knowledge is
required to understand natural language. Therefore, a complete
Natural Language system will also be a complete Intelligent system.”

• Problem Solving: “Since any area investigated by AI researchers
may be seen as consisting of problems to be solved, all of AI may be
seen as involving Problem Solving and Search.”

• Knowledge Representation and Reasoning: “The intended use is
to use explicitly stored knowledge to produce additional explicit
knowledge. This is what reasoning is. Together Knowledge represen-
tation and Reasoning can be seen to be both necessary and sufficient
for producing general intelligence—it is another AI-complete area.”

• Vision or Image Understanding: “If we take ‘interpreting’ broadly
enough, it is clear that general intelligence may be needed to do this
interpretation, and that correct interpretation implies general intel-
ligence, so this is another AI-complete area.”

Now that the TT has been proven to be AI-Complete, we have an addi-
tional way of showing other problems to be AI-Complete. We can either
show that a problem is both in the set of AI problems and all other AI
problems can be converted into it by some polynomial time algorithm
or can reduce any instance of TT problem (or any other problem already
proven to be AI-Complete) to an instance of a problem we are trying to
show to be AI-Complete. This second approach seems to be particularly
powerful. The general heuristic of my approach is to see if all information
encoding the question that could be asked during administration of a TT
could be encoded as an instance of a problem in question and likewise if
any potential solution to that problem would constitute an answer to the

relevant TT question. Under this heuristic, it is easy to see that, for exam-
ple, chess is not AI-Complete as only limited information can be encoded
as a starting position on a standard-size chessboard. Not surprisingly,
chess has been one of the greatest successes of AI; currently, chess-playing
programs dominate all human players, including world champions.

Question answering (QA) (Hirschman and Gaizauskas 2001; Salloum
2009) is a subproblem in natural language processing. Answering ques-
tions at a level of a human is something HOs are particularly good at based
on their definition. Consequently, QA is an AI-Problem that is one of the
two requirements for showing it to be AI-Complete. Having access to an
oracle capable of solving QA allows us to solve TT via a simple reduction.
For any statement S presented during administration of TT, transform
said statement into a question for the QA oracle. The answers produced by
the oracle can be used as replies in the TT, allowing the program to pass
the TT. It is important to note that access to the QA oracle is sufficient to
pass the TT only if questions are not restricted to stand-alone queries, but
could contain information from previous questions. Otherwise, the prob-
lem is readily solvable even by today’s machines, such as IBM’s Watson,
which showed a remarkable performance against human Jeopardy cham-
pions (Pepitone 2011).

Speech understanding (SU) (Anusuya and Katti 2009) is another sub-
problem in natural language processing. Understanding speech at a level
of a human is something HOs are particularly good at based on their defi-
nition. Consequently, SU is an AI-Problem that is one of the two require-
ments for showing it to be AI-Complete. Having access to an oracle capable
of solving SU allows us to solve QA via a simple reduction. We can reduce
QA to SU by utilizing any text-to-speech software (Taylor and Black 1999;
Chan 2003), which is both fast and accurate. This reduction effectively
transforms written questions into the spoken ones, making it possible to
solve every instance of QA by referring to the SU oracle.

1.2.4 Other Probably AI-Complete Problems

I hope that my work will challenge the AI community to prove other impor-
tant problems as either belonging or not belonging to that class. Although
the following problems have not been explicitly shown to be AI-Complete,
they are strong candidates for such classification and are problems of great
practical importance, making their classification a worthy endeavor. If a
problem has been explicitly conjectured to be AI-Complete in a published
paper, I include a source of such speculation: dreaming (Salloum 2009);

commonsense planning (Shahaf and Amir 2007); foreign policy (Mallery
1988); problem solving (Shapiro 1992); judging a TT (Shahaf and Amir
2007); commonsense knowledge (Andrich, Novosel, and Hrnkas 2009);
SU (Shahaf and Amir 2007); knowledge representation and reasoning
(Shapiro 1992); word sense disambiguation (Chen et al. 2009; Navigli and
Velardi 2005); Machine Translation (“AI-Complete” 2011); ubiquitous
computing (Leahu, Sengers, and Mateas 2008); change management for
biomedical ontologies (Nejad 2010); NLU (Shapiro 1992); software brittle-
ness (“AI-Complete” 2011); and vision or image understanding (Shapiro
1992).

1.3 FIRST AI-HARD PROBLEM: PROGRAMMING
I define the problem of programming as taking a natural language descrip-
tion of a program and producing a source code, which then is compiled on
some readily available hardware/software to produce a computer program
that satisfies all implicit and explicit requirements provided in the natural
language description of the programming problem assignment. Simple
examples of programming are typical assignments given to students
in computer science classes, for example, “Write a program to play tic-
tac-toe.” Successful students write source code that, if correctly compiled,
allows the grader to engage the computer in an instance of that game.
Many requirements of such an assignment remain implicit, such as that
response time of the computer should be less than a minute. Such implicit
requirements are usually easily inferred by students who have access to
culture-instilled common sense. As of this writing, no program is capable
of solving programming outside strictly restricted domains.

Having access to an oracle capable of solving programming allows us
to solve TT via a simple reduction. For any statement S presented during
TT, transform said statement into a programming assignment of the form:
“Write a program that would respond to S with a statement indistinguish-
able from a statement provided by an average human” (a full transcript
of the TT may also be provided for disambiguation purposes). Applied
to the set of all possible TT statements, this procedure clearly allows us
to pass TT; however, programming itself is not in AI-Problems as there
are many instances of programming that are not solvable by HOs. For
example, “Write a program to pass a Turing test” is not known to be an
AI-Problem under the proposed definition. Consequently, programming
is an AI-Hard problem.

1.4 BEYOND AI-COMPLETENESS
The HO function presented in this chapter assumes that the human
behind it has some assistance from the computer in order to process cer-
tain human unfriendly data formats. For example, a binary string rep-
resenting a video is completely impossible for a human to interpret, but
it could easily be played by a computer program in the intended format,
making it possible for a human to solve a video understanding-related
AI-Complete problem. It is obvious that a human provided with access to
a computer (perhaps with Internet connection) is a more powerful intel-
ligence compared to an unenhanced, in such a way, human. Consequently,
it is important to limit help from a computer to a human worker “inside”
a HO function to assistance in the domain of input/output conversion,
but not beyond, as the resulting function would be both AI-Complete and
“Computer Complete”.

Figure 1.3 utilizes a Venn diagram to illustrate subdivisions of problem
space produced by different types of intelligent computational devices.
Region 1 represents what is known as a Universal Intelligence (Legg and
Hutter 2007) or a Super Intelligence (Legg 2008; Yampolskiy 2011a, 2011b,
2012b)—a computational agent that outperforms all other intelligent

Universal Intelligence

2

Human Inteligence

1

5 6

8

Arti�cial Intelligence

3
7

4

Animal Intelligence

FIGURE 1.3 Venn diagram for four different types of intelligence.

agents over all possible environments. Region 2 is the standard unen-
hanced Human-level intelligence of the type capable of passing a TT, but
at the same time incapable of computation involving large numbers or sig-
nificant amount of memorization. Region 3 is what is currently possible to
accomplish via state-of-the-art AI programs. Finally, Region 4 represents
an abstract view of animal intelligence.

AI intelligence researchers strive to produce Universal Intelligence, and
it is certainly likely to happen, given recent trends in both hardware and
software developments and the theoretical underpinning of the Church/
Turing Thesis (Turing 1936). It is also likely that if we are able to enhance
human minds with additional memory and port those to a higher-speed
hardware we will essentially obtain a Universal Intelligence (Sandberg and
Boström 2008).

While the Universal Intelligence incorporates abilities of all the lower
intelligences, it is interesting to observe that Human, AI and Animal
intelligences have many interesting regions of intersection (Yampolskiy
and Fox 2012). For example, animal minds are as good as human minds
at visual understanding of natural scenes. Regions 5, 6, and 7 illustrate
common problem spaces between two different types of intelligent agents.
Region 8 represents common problem solving abilities of humans, com-
puters and animals. Understanding such regions of commonality may
help us to better separate the involved computational classes, which are
represented by abilities of a specific computational agent minus the com-
monalities with a computational agent with which we are trying to draw
a distinction. For example, CAPTCHA (Ahn et al. 2003) type tests rely on
the inability of computers to perform certain pattern recognition tasks
with the same level of accuracy as humans in order to separate AI agents
from Human agents. Alternatively, a test could be devised to tell humans
not armed with calculators from AIs by looking at the upper level of abil-
ity. Such a test should be easy to defeat once an effort is made to compile
and formalize the limitations and biases of the human mind.

It is also interesting to consider the problem solving abilities of hybrid
agents. I have already noted that a human being equipped with a computer is
a lot more capable compared to an unaided person. Some research in Brain
Computer Interfaces (Vidal 1973) provides a potential path for future devel-
opments in the area. Just as interestingly, combining pattern recognition
abilities of animals with symbol processing abilities of AI could produce a
computational agent with a large domain of human-like abilities (see work on
RoboRats by Talwar et al. (2002) and on monkey controlled robots by Nicolelis

et al. 2000). It is very likely that in the near future different types of intelligent
agents will be combined to even greater extent. While such work is under way,
I believe that it may be useful to introduce some additional terminology into
the field of AI problem classification. For the complete space of problems I pro-
pose that the computational agents which are capable of solving a specific sub-
set of such problems get to represent the set in question. Therefore, I propose
additional terms: “Computer-Complete” and “Animals-Complete” to repre-
sent computational classes solvable by such agents. It is understood that just
as humans differ in their abilities, so do animals and computers. Aggregation
and averaging utilized in my Human function could be similarly applied to
the definition of respective oracles. As research progresses, common names
may be needed for different combinations of regions from Figure 1.3 illustrat-
ing such concepts as Human-AI hybrid or Animal-Robot hybrid.

Certain aspects of human cognition do not map well onto the space of
problems which have seen a lot of success in the AI research field. Internal
states of the human mind, such as consciousness (stream of), self-awareness,
understanding, emotions (love, hate), feelings (pain, pleasure), etc., are not
currently addressable by our methods. Our current state-of-the-art tech-
nologies are not sufficient to unambiguously measure or detect such inter-
nal states, and consequently even their existence is not universally accepted.
Many scientists propose ignoring such internal states or claim they are noth-
ing but a byproduct of flawed self-analysis. Such scientists want us to restrict
science only to measurable behavioral actions; however, since all persons
have access to internal states of at least one thinking machine, interest in
trying to investigate internal states of the human mind is unlikely to vanish.

While I am able to present a formal theory of AI-Completeness based
on the concept of HOs, the theory is not strong enough to address prob-
lems involving internal states of the mind. In fact, one of the fundamental
arguments against our ability to implement understanding in a system
that is based on symbol manipulation, Searle’s Chinese Room thought
experiment, itself relies on a generalized concept of a human as a part of
a computational cycle. It seems that the current Turing/Von Neumann
architecture is incapable of dealing with the set of problems which are
related to internal states of human mind. Perhaps a new type of com-
putational architecture capable of mimicking such internal states will
be developed in the future. It is likely that it will be inspired by a better
understanding of human biology and cognitive science. Research on cre-
ating Artificial Consciousness (AC) is attracting a lot of attention, at least
in terms of number of AC papers published.

As a part of my ongoing effort to classify AI related problems, I propose
a new category specifically devoted to problems of reproducing internal
states of the human mind in artificial ways. I call this group of problems
Consciousness-Complete or C-Complete for short. An oracle capable of
solving C-Complete problems would be fundamentally different from the
Oracle Machines proposed by Turing. C-Oracles would take input in the
same way as their standard counterparts but would not produce any sym-
bolic output. The result of their work would be a novel internal state of
the oracle, which may become accessible to us if the new type of hardware
discussed above is developed.

Just as SAT was shown to be the first NP-Complete problem and TT to be
the first AI-Complete problem, I suspect that Consciousness will be shown
to be the first C-Complete problem, with all other internal-state related
problems being reducible to it. Which of the other internal state problems
are also C-Complete is beyond the scope of this preliminary work. Even with
no consciousness-capable hardware available at the moment of this writing,
the theory of C-Completeness is still a useful tool, as it allows for formal
classification of classical problems in the field of Artificial Intelligence into
two very important categories: potentially solvable (with current technol-
ogy) and unsolvable (with current technology). Since the only information
available about HOs is their output and not internal states, they are funda-
mentally different from C-Oracles, creating two disjoint sets of problems.

The history of AI research is full of unwarranted claims of anticipated
breakthroughs and, conversely, overestimations regarding the difficulty
of some problems. Viewed through the prism of my AI-Complete/C-
Complete theories, the history of AI starts to make sense. Solutions for
problems that I classify as AI-Complete have been subject to continuous
steady improvement, while those falling in the realm of C-Completeness
have effectively seen zero progress (computer pain, Bishop 2009 and
Dennett 1978; artificial consciousness, Searle 1980 and Dreyfus 1972;
etc.). To proceed, science needs to better understand what the difference
between a feeling and a thought is. Feeling pain and knowing about pain
are certainly not the same internal states. I am hopeful that future research
in this area will bring some long-awaited answers.

1.5 CONCLUSIONS
Progress in the field of artificial intelligence requires access to well-defined
problems of measurable complexity. The theory of AI-Completeness aims
to provide a base for such formalization. Showing certain problems to be

AI-Complete/-Hard is useful for developing novel ways of telling comput-
ers from humans. Also, any problem shown to be AI-Complete would be
a great alternative way of testing an artificial intelligent agent to see if it
attained human level intelligence (Shahaf and Amir 2007).

REFERENCES
Ahn, Luis von. June 2006. Games with a purpose. IEEE Computer Magazine

96–98.
Ahn, Luis von, Manuel Blum, Nick Hopper, and John Langford. 2003. CAPTCHA:

Using Hard AI Problems for Security. Paper read at Eurocrypt. Advances in
Cryptology — EUROCRYPT 2003. International Conference on the Theory
and Applications of Cryptographic Techniques, Warsaw, Poland, May 4–8,
2003. Published in Lecture Notes in Computer Science 2656 (2003): 294–311.

AI-Complete. 2011. Accessed January 7.http://en.wikipedia.org/wiki/AI-complete.
Andrich, Christian, Leo Novosel, and Bojan Hrnkas. 2009. Common Sense

Knowledge. Exercise Paper—Information Search and Retrieval. http://
www.iicm.tu-graz.ac.at/cguetl/courses/isr/uearchive/uews2009/Ue06-
CommonSenseKnowledge.pdf

Anusuya, M. A. and S. K. Katti. 2009. Speech recognition by machine: a review.
International Journal of Computer Science and Information Security (IJCSIS)
no. 6(3):181–205.

Bajaj, Vikas. April 25, 2010. Spammers pay others to answer security tests. New
York Times.

Bergmair, Richard. December 2004. Natural Language Steganography and an
‘‘AI-Complete’’ Security Primitive. In 21st Chaos Communication Congress,
Berlin.

Bishop, Mark. 2009. Why computers can’t feel pain. Minds and Machines
19(4):507–516.

Bradford, Philip G. and Michael Wollowski. 1995. A formalization of the Turing
Test. SIGART Bulletin 6(4):3–10.

Chan, Tsz-Yan. 2003. Using a text-to-speech synthesizer to generate a reverse Turing
test. Paper presented at the 15th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’03), Washington, DC, November 3–5.

Chen, Junpeng, Juan Liu, Wei Yu, and Peng Wu. November 30, 2009. Combining
Lexical Stability and Improved Lexical Chain for Unsupervised Word
Sense Disambiguation. Paper presented at the Second International
Symposium on Knowledge Acquisition and Modeling (KAM ’09),
Wuhan, China.

Demasi, Pedro, Jayme L. Szwarcfiter, and Adriano J. O. Cruz. March 5–8,
2010. A Theoretical Framework to Formalize AGI-Hard Problems. Paper
presented at the Third Conference on Artificial General Intelligence,
Lugano, Switzerland.

Dennett, Daniel C. July 1978. Why you can’t make a computer that feels pain.
Synthese 38(3):415–456.

Dimmock, Nathan and Ian Maddison. December 2004. Peer-to-peer collabora-
tive spam detection. Crossroads 11(2): 17–25.

Dreyfus, Hubert L. 1972. What Computers Can’t Do: A Critique of Artificial
Reason: New York: Harper & Row.

Gentry, Craig, Zulfikar Ramzan, and Stuart Stubblebine. June 5–8, 2005.
Secure Distributed Human Computation. Paper presented at the 6th ACM
Conference on Electronic Commerce, Vancouver, BC, Canada.

Hendler, James. September 2008. We’ve come a long way, maybe … . IEEE
Intelligent Systems 23(5):2–3.

Hirschman, L., and R Gaizauskas. 2001. Natural language question answering.
The view from here. Natural Language Engineering 7(4):275–300.

Horvitz, E. 2007. Reflections on challenges and promises of mixed-initiative interac-
tion. AI Magazine—Special Issue on Mixed-Initiative Assistants 28(2): 11–18.

Horvitz, E. and T. Paek. 2007. Complementary computing: policies for transfer-
ring callers from dialog systems to human receptionists. User Modeling and
User Adapted Interaction 17(1):159–182.

Ide, N. and J. Véronis. 1998. Introduction to the special issue on word sense dis-
ambiguation: the state of the art. Computational Linguistics 24(1):1–40.

Kapoor, A., D. Tan, P. Shenoy, and E. Horvitz. September 17–19, 2008.
Complementary Computing for Visual Tasks: Meshing Computer Vision
with Human Visual Processing. Paper presented at the IEEE International
Conference on Automatic Face and Gesture Recognition, Amsterdam.

Karp, Richard M. 1972. Reducibility among combinatorial problems. In
Complexity of Computer Computations, edited by R. E. Miller and J. W.
Thatcher, 85–103. New York: Plenum.

Leahu, Lucian, Phoebe Sengers, and Michael Mateas. September 21–24, 2008.
Interactionist AI and the Promise of ubicomp, or, How to Put Your Box in the
World Without Putting the World in Your Box. Paper presented at the Tenth
International Conference on Ubiquitous Computing. Seoul, South Korea.

Legg, Shane. June 2008. Machine Super Intelligence. PhD thesis, University of
Lugano, Switzerland. http://www.vetta.org/documents/Machine_Super_
Intelligence.pdf

Legg, Shane and Marcus Hutter. December 2007. Universal intelligence: a defini-
tion of machine intelligence. Minds and Machines 17(4):391–444.

Mallery, John C. 1988. Thinking about Foreign Policy: Finding an Appropriate
Role for Artificial Intelligence Computers. Ph.D. dissertation, MIT Political
Science Department, Cambridge, MA.

McIntire, John P., Paul R. Havig, and Lindsey K. McIntire. July 21–23, 2009. Ideas
on Authenticating Humanness in Collaborative Systems Using AI-Hard
Problems in Perception and Cognition. Paper presented at the IEEE
National Aerospace and Electronics Conference (NAECON), Dayton, OH.

McIntire, John P., Lindsey K. McIntire, and Paul R. Havig. May 18–22, 2009. A
Variety of Automated Turing tests for Network Security: Using AI-Hard
Problems in Perception and Cognition to Ensure Secure Collaborations. Paper
presented at the International Symposium on Collaborative Technologies
and Systems (CTS ’09), Baltimore.

Mert, Ezgi, and Cokhan Dalkilic. September 14–16, 2009. Word Sense
Disambiguation for Turkish. Paper presented at the 24th International
Symposium on Computer and Information Sciences (ISCIS 2009),
Guzelyurt, Turkey.

Morgan, Nelson, D. Baron, S. Bhagat, H. Carvey, R. Dhillon, J. Edwards,
D. Gelbart, A. Janin, A. Krupski, B. Peskin, T. Pfau, E. Shriberg, A. Stolcke,
and C. Wooters. April 6–10, 2003. Meetings about Meetings: Research at
ICSI on Speech in Multiparty Conversations. Paper presented at the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’03), Hong Kong.

Mueller, Erik T. March 1987. Daydreaming and Computation. PhD dissertation,
University of California, Los Angeles.

Navigli, Roberto, and Paola Velardi. July 2005. Structural semantic inter-
connections: a knowledge-based approach to word sense disambigua-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence
27(7):1075–1086.

Nejad, Arash Shaban. April 2010. A Framework for Analyzing Changes in Health
Care Lexicons and Nomenclatures. PhD dissertation, Concordia University,
Montreal, QC, Canada.

Nicolelis, Miguel A. L., Johan Wessberg, Christopher R. Stambaugh, Jerald D.
Kralik, Pamela D. Beck, Mark Laubach, John K. Chapin, and Jung Kim.
2000. Real-time prediction of hand trajectory by ensembles of cortical neu-
rons in primates. Nature 408(6810):361.

Pepitone, Julianne. 2011. IBM’s Jeopardy supercomputer beats humans in prac-
tice bout. CNNMoney. http://money.cnn.com/2011/01/13/technology/ibm_
jeopardy_watson. Accessed January 13.

Phillips, P. Jonathon, and J. Ross Beveridge. September 28–30, 2009. An Introduction
to Biometric-Completeness: The Equivalence of Matching and Quality. Paper
presented at the IEEE 3rd International Conference on Biometrics: Theory,
Applications, and Systems (BTAS ’09), Washington, DC.

Raymond, Eric S. March 22, 1991. Jargon File Version 2.8.1. http://catb.org/esr/
jargon/oldversions/jarg282.txt

Salloum, W. November 30, 2009. A Question Answering System Based on
Conceptual Graph Formalism. Paper presented at the 2nd International
Symposium on Knowledge Acquisition and Modeling (KAM 2009),
Wuhan, China.

Sandberg, Anders, and Nick Boström. 2008. Whole Brain Emulation: A Roadmap.
Technical Report 2008-3. Future of Humanity Institute, Oxford University.
http://www.fhi.ox.ac.uk/Reports/2008-3.pdf

Searle, John. 1980. Minds, brains and programs. Behavioral and Brain Sciences
3(3):417–457.

Shahaf, Dafna, and Eyal Amir. March 26–28, 2007. Towards a Theory of AI
Completeness. Paper presented at the 8th International Symposium on
Logical Formalizations of Commonsense Reasoning (Commonsense 2007),
Stanford University, Stanford, CA.

Shahaf, D., and E. Horvitz. July 2010. Generalized Task Markets for Human
and Machine Computation. Paper presented at the Twenty-Fourth AAAI
Conference on Artificial Intelligence, Atlanta, GA.

Shapiro, Stuart C. 1992. Artificial Intelligence. In Encyclopedia of Artificial
Intelligence, edited by Stuart C. Shapiro, 54–57. New York: Wiley.

Shieber, Stuart M. July 16–20, 2006. Does the Turing Test Demonstrate Intelligence
or Not? Paper presented at the Twenty-First National Conference on
Artificial Intelligence (AAAI-06), Boston.

Shieber, Stuart M. December 2007. The Turing test as interactive proof. Nous
41(4):686–713.

Surowiecki, James. 2004. The Wisdom of Crowds: Why the Many Are Smarter
Than the Few and How Collective Wisdom Shapes Business, Economies,
Societies and Nations. New York: Little, Brown.

Takagi, H. 2001. Interactive evolutionary computation: fusion of the capaci-
ties of EC optimization and human evaluation. Proceedings of the IEEE 89
9:1275–1296.

Talwar, Sanjiv K., Shaohua Xu, Emerson S. Hawley, Shennan A. Weiss, Karen A.
Moxon, and John K. Chapin. May 2, 2002. Behavioural neuroscience: rat
navigation guided by remote control. Nature 417:37–38.

Taylor, P., and A. Black. 1999. Speech Synthesis by Phonological Structure
Matching. Paper presented at Eurospeech99, Budapest, Hungary.

Turing, A. 1950. Computing machinery and intelligence. Mind 59(236):433–460.
Turing, Alan M. 1936. On computable numbers, with an application to the

Entscheidungs problem. Proceedings of the London Mathematical Society
42:230–265.

Vaas, Lisa. December 1, 2007. Striptease used to recruit help in cracking sites. PC
Magazine. http://www.pcmag.com/article2/0,2817,2210671,00.asp

Vidal, J. J. 1973. Toward direct brain-computer communication. Annual Review
of Biophysics and Bioengineering 2:157–180.

Yampolskiy, R. V. 2011. AI-Complete CAPTCHAs as zero knowledge proofs
of access to an artificially intelligent system. ISRN Artificial Intelligence
2012:271878.

Yampolskiy, Roman V. April 13, 2007a. Embedded CAPTCHA for Online
Poker. Paper presented at the 20th Annual CSE Graduate Conference
(Grad-Conf2007), Buffalo, NY.

Yampolskiy, Roman V. September 28, 2007b. Graphical CAPTCHA Embedded
in Cards. Paper presented at the Western New York Image Processing
Workshop (WNYIPW)—IEEE Signal Processing Society, Rochester, NY.

Yampolskiy, Roman V. October 3–4, 2011a. Artificial Intelligence Safety Engineering:
Why Machine Ethics Is a Wrong Approach. Paper presented at Philosophy and
Theory of Artificial Intelligence (PT-AI2011), Thessaloniki, Greece.

Yampolskiy, Roman V. October 3–4, 2011b. What to Do with the Singularity
Paradox? Paper presented at Philosophy and Theory of Artificial Intelligence
(PT-AI2011), Thessaloniki, Greece.

Yampolskiy, Roman V. April 21–22, 2012a. AI-Complete, AI-Hard, or
AI-Easy—Classification of Problems in AI. Paper presented at the 23rd
Midwest Artificial Intelligence and Cognitive Science Conference,
Cincinnati, OH.

Yampolskiy, Roman V. 2012b. Leakproofing singularity—artificial intel-
ligence confinement problem. Journal of Consciousness Studies (JCS)
19(1–2):194–214.

Yampolskiy, Roman V., and Joshua Fox. 2012. Artificial general intelligence and
the human mental model. In In the Singularity Hypothesis: A Scientific
and Philosophical Assessment, edited by Amnon Eden, Jim Moor, Johnny
Soraker, and Eric Steinhart, 129–146. New York: Springer.

Yampolskiy, Roman V., and Venu Govindaraju. 2007. Embedded non-interactive
continuous bot detection. ACM Computers in Entertainment 5(4):1–11.

	Introduction
	Chapter 1
	Untitled

