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Tribute

Those who have the privilege of friendship with Jean-Raymond Abrial have
long been aware of the great work in which he has been engaged. It is no less
than a complete understanding of the nature of software engineering, from the
capture and analysis of requirements, the formalization of specifications, the
evolution of designs, the generation of programs and their implementation on
computers. The publication of this book is the culmination of his work, and the
complete fulfilment of our fondest hopes.

There will now be a much wider class of readers, for whom the book will come
as a revelation, their first introduction to the power of its author’s innovative
intellect, their first appreciation of the clarity and masterful simplicity of his
writing, His achievement is to reconcile the concepts of mathematics with the
promptings of intuition, and harness both to solve the problems of modern
programming practice. There is much to enjoy learning from the text, and even
more to be learnt by putting its lessons into practice. Read, learn, enjoy and
prosper!

C.AR. Hoare
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Foreword

This book is much more than a new programming manual. It introduces a
method in which the program design is included in the global process that goes
from understanding the problem to the validation of its solution.

The mathematical basis of the method provides the exactness while the pro-
posed notation eliminates the ambiguities of the vernacular language. At the
same time, the process is simple enough for an industrial use. “Industrial” is in
fact the key word.

The general aim of formal methods is to provide correctness of the problem
specification. Here we can see how the solution can be found, step by step, by a
continuously monitored process. The mathematical verification of each step is so
closely bound to the refinement activity that it is no longer possible to separate
the design choices from the checking process. Imagination is helped by exactness!

But how about the efficiency? Isn’t the design too long? Are the design people
able to do this work? Are the machines powerful enough to implement the
method? The answers are easy to give. Let me tell you.

My company has been involved, since the sixties, in the realisation of train
control systems, which must meet stringent safety requirements. As soon as
we began to use programmed logic (end of the seventies) we had to solve the
problem of software correctness. Together with other methods, we chose to use
the program proving method proposed by C.A.R. Hoare. In 1986, J.-R. Abrial
introduced us to the B method. We decided to learn it and to use it. The tools
did not exist at the time. We contributed to their elaboration by offering a
real-world benchmark with our applications, and proposed some improvements.
Now the tools can be found on the market, and the method can be used with
its full efficiency. What did we learn?

ix
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X Foreword

e First, understanding the principles of the method is quite easy and expertise comes
in less than a year.

¢ Then the method encourages and facilitates re-usability, based on use of a growing
library of already proven abstract machines.

e The time saved during test and validation phases is very important, resulting in a
global economic balance that is quite positive.

e The produced programs are efficient in spite of their structure being organised in
layers of increasing abstraction.

e The tools can be implemented on simple workstations.

The use of the method has been a decisive element by increasing our confidence
when using software for safety related applications. Moreover, the new interna-
tional standards recommend the use of formal methods for the specification and
design of safety-related software.

Thanks to J.-R. Abrial, we now have an industrial method to build correct
programs. We hope that this book will convince the readers to save their money
by using this method.

Pierre Chapront
Technical Director
GEC-ALSTHOM Transport
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Introduction

This book is a very long discourse explaining how, in my opinion, the task
of programming (in the small as well as in the large) can be accomplished by
returning to mathematics.

By this, I first mean that the precise mathematical definition of what a program
does must be present at the origin of its construction. If such a definition is
lacking, or if it is too complicated, we might wonder whether our future pro-
gram will mean anything at all. My belief is that a program, in the absolute,
means absolutely nothing. A program only means something relative to a certain
intention, that must predate it, in one form or another. At this point, I have
no objection with people feeling more comfortable with the word “English”
replacing the word “mathematics”. 1 just wonder whether such people are not
assigning themselves a more difficult task.

I also think that this “return to mathematics” should be present in the very
process of program construction. Here the task is to assign a program to a well-
defined meaning. The idea is to accompany the technical process of program
construction by a similar process of proof construction, which guarantees that
the proposed program agrees with its intended meaning.

Simultaneous concerns about the architecture of a program and that of its proof
are surprisingly efficient. For instance, when the proof is cumbersome, there are
serious chances that the program will be too; and ingredients for structuring
proofs (abstraction, instantiation, decomposition) are very similar to those for
structuring programs. Ideally, the relationship between the construction of a
program and its proof of correctness should be so intimate as to make it impos-
sible to detect which of the two is driving the other. It might then be reasonable
to say that constructing a program is just constructing a proof.

Today, very few programs are specified and constructed in this way. Does this
correlate with the fact that, today, so many programs are fragile?

Jean-Raymond Abrial

xi
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What is B?

B is a method for specifying, designing, and coding software systems.

Coverage

The method essentially deals with the central aspects of the software life cycle,
namely: the technical specification, the design by successive refinement steps, the
layered architecture, and the executable code generation.

Proof

Each of the previous items is envisaged as an activity that involves writing
mathematical proofs in order to justify its results. It is, precisely, the collection
of such proofs that makes one convinced that the software system in question
is indeed correct.

Abstract Machine

The basic mechanism of this approach is that of the abstract machine. This is a
concept that is very close to certain notions well-known in programming, under
the names of modules, classes or abstract data types.

Data and Operations

A software system conceived with that method is composed of several abstract
machines. Each machine contains some data and offers some operations. The
data cannot be reached directly; they are always reached through the operations
of the machine. They are said to be encapsulated in the machine.

Specification of Data

The data of an abstract machine are specified by means of a number of
mathematical concepts such as sets, relations, functions, sequences and trees.
The static laws that the data must follow are defined by means of certain
conditions, called the invariant.

XV
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Specification of Operations

The specification of the operations of an abstract machine is expressed as a
non-executable pseudo-code that does not contain any sequencing or loop. In
this pseudo-code one describes each operation as a pre-condition and an atomic
action. The pre-condition expresses the indispensable condition without which
the operation cannot be invoked. The atomic action is formalized by means
of a generalization of the notion of substitution. Among these generalized
substitutions is the non-deterministic choice that leaves room for some later
decision to be taken in the refinement phase. The formal definition of the
pseudo-code allows one to prove that the invariant of an abstract machine is
always preserved by the operations it offers.

Refinement towards an implementation

The initial model of an abstract machine (its specification) may be refined in an
executable module (its code). This passage from specification to code is carried
out entirely under the control of the method. It is thus necessarily concluded
by some proofs, whose goal is to show that the final code of a machine indeed
satisfies its initial specification.

Using refinement as a technique of specification

Besides the previous (classical) one, there exists another practical use of refine-
ment. It consists in using refinement as a means of including more details of the
problem into the formal development. Thus the formal translation of the initial
problem statement is performed gradually rather than all at once.

Refinement Techniques

Refinement is conducted in three different ways: the removal of the non-
executable elements of the pseudo-code (pre-condition and choice), the introduc-
tion of the classical control structures of programming (sequencing and loop),
and the transformation of the mathematical data structures (sets, relations, func-
tions, sequences and trees) into other structures that might be programmable
(simple variables, arrays, or files).

Refinement Steps

In order to carefully control the previous transformations, the refinement of
an abstract machine is performed in various steps. During each such step, the
initial abstract machine is entirely reconstructed. It keeps, however, the same
operations, as viewed by its users, although the corresponding pseudo-code
is certainly modified. In the intermediate refinement steps, we have a hybrid
construct, which is not a mathematical model any more, but certainly not yet a
programming module.

Layered Architecture

Experience shows that it is preferable to have a small number of refinement
steps. As soon as its level of complexity becomes too high, it is recommended to
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decompose a refinement into smaller pieces. The last refinement of a machine
is thus implemented using the specification of one, or more, abstract machines
that are, themselves, refinable. This is done by means of calls to the operations
offered by the machines in question. As you can see, the “user” of an abstract
machine is, thus, always the ultimate refinement of another abstract machine.
In this way, the layered architecture of our software system (or of its translated
informal specification) is constructed piece by piece.

Library

The machines on which the last refinement of a given machine is implemented
may exist prior to that refinement. in fact, together with the method, a series
of pre-defined abstract machines are proposed, which constitutes a library of
machines, whose purpose is to encapsulate the most classical data structures.

Re-use

For a given project, it is advisable to extend that library so as to organize the
basis on which the future abstract machines of higher level will be implemented.
As you can see, the method allows one to choose either a purely top down
design, or a bottom up one, or, better, a mixed approach integrating the re-use
of specification and that of code.

Code Generation

The ultimate refinement of a machine may be easily translated into one or
several imperative programming languages. By doing so, the method provides a
solution to the problem of porting an application from one language to another.

B User Group

There exists a user group, called the BUG, for discussions and exchange of
information on B. Here is its electronic address: bug.@estasl.inrets.fr.
A mailing list for this book is also available at bbook.Qestasl.inrets. fr.
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What is the B-Book?

The B-Book is the standard reference for the B method and its notations.

It contains the mathematical basis on which the method is founded and the
precise definition of the notations used. It also contains a large number of
examples illustrating how to use the method in practice. The book comprises
four parts and a collection of appendices:

Part | Mathematics

Part Il Abstract Machines
Part lll Programming

Part 1V Refinement

Part 1

Part 1 contains a systematic construction of predicate logic and set theory. It
also contains the definition of various mathematical structures that are needed
to formalize software systems. A special emphasis is put on the notion of proof.
Part I consists of the following chapters:

Xix
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Chapter 1 Mathematical Reasoning
Chapter 2 Set Notation
Chapter 3 Mathematical Objects
Part 11

Part I1 contains a presentation of the Generalized Substitution Language (GSL)
and the Abstract Machine Notation (AMN). These notations are the ones we use
in order to specify software systems. They are presented together with a number
of examples showing how large specifications can be built systematically. A
set-theoretical foundation of GSL and AMN is also presented. Part 11 consists of

the following chapters:

Chapter 4

Introduction to Abstract Machines

Chapter 5

Formal Definition of Abstract Machines

Chapter 6

Theory of Abstract Machines

Chapter 7

Constructing Large Abstract Machines

Chapter 8

Examples of Abstract Machines

Part 111

Part III introduces the two basic programming features, namely sequencing
and loop. After a theoretical presentation, an important chapter is devoted to
the study of the systematic construction of a variety of examples of algorithm
developments. Part 11 consists of the following chapters:

Chapter 9 Sequencing and Loops

Chapter 10 Programming Examples
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Part 1V

XX1

Part IV presents a notion of refinement for both generalized substitutions
and abstract machines. Refinement is given a mathematical foundation within
set theory. The construction of large software systems by means of layered
architectures of modules is also explained. Finally, a number of large examples of
complete development are studied with a special emphasis on the methodological
approach. Part 1V consists of the following chapters:

Chapter 11

Refinement

Chapter 12

Constructing Large Software Systems

Chapter 13

Examples of Refinement

Appendices

A collection of appendices contains a summary of all the logical and math-
ematical definitions. It also contains a summary of all the rules and proof

obligations:

Appendix A Summary of Notations

Appendix B Syntax

Appendix C Definitions

Appendix D Visibility Rules

Appendix E Rules and Axioms

Appendix F Proof Obligations
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How to use this book

This book can be used by people having very different concerns.

For instance, you might intend to learn the method as a formal method practi-
tioner. In this case, you are probably not (although you might be) interested in
the detailed mathematics presented in the book. It is then recommended to read
the book as follows:

Appendix A Summary of Notations

Chapter 2 Set Notation (section 2.7)

Chapter 4 Introduction to Abstract Machines

Chapter 7 Constructing Large Abstract Machines (sections 7.2 and 7.3)
Chapter 8 Examples of Abstract Machines

Chapter 11 Refinement (sections 11.1.1, 11.2.1, 11.2.5, 11.2.7 and 11.2.8)

Chapter 12 Constructing Large Software Systems (sections 12.1 and 12.2)

Chapter 13 Examples of Refinement

At the other extreme of the spectrum, you are a computer scientist and you
are interested in the mathematical foundation of the method. In that case, you
might be reading the book as follows:

xxii
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Appendix A Summary of Notations

Chapter 1 Mathematical Reasoning
Chapter 2 Set Notation

Chapter 3 Mathematical Objects
Chapter 6 Theory of Abstract Machines
Chapter 9 Sequencing and Loops
Chapter 11 Refinement

Appendix C Definitions

Appendix E Rules and Axioms

In between, there might be people interested in looking at how the method can
be used in order to structure large specifications and large designs. The following
reading can then be recommended:

Appendix A Summary of Notations

Chapter 4 Introduction to Abstract Machines
Chapter 6 Theory of Abstract Machines
Chapter 7 Constructing Large Abstract Machines
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XXiv How to use this book

Chapter 11 Refinement

Chapter 12 Constructing Large Software Systems

Chapter 13 Examples of Refinement

People interested in developing small programs in a systematic fashion can read
the book as follows:

Appendix A Summary of Notations
Chapter 4 Introduction to Abstract Machines
Chapter 10 Programming Examples

For people interested in the formal details of the notations, it is recommended to
read the book as follows:

Chapter 5 Formal Definition of Abstract Machines

Chapter 7 Constructing Large Abstract Machines (section 7.4)
Chapter 11 Refinement (section 11.3)

Chapter 12 Constructing Large Software Systems (section 12.6)

Appendix D Visibility Rules

Appendix F Proof Obligations
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