CAMBRIDGE

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

The B-Book

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

The B-Book

Assigning Programs to Meanings

J.-R. Abrial

5 CAMBRIDGE

» UNIVERSITY PRESS

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521496193

© Cambridge University Press 1996

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1996
This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-49619-3 hardback
ISBN-10 0-521-49619-5 hardback

ISBN-13 978-0-521-02175-3 paperback
ISBN-10 0-521-02175-8 paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLS for external or third-party Internet websites referred to

in this publication, and does not guarantee that any content on such websites
is, or will remain, accurate or appropriate.

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

CAMBRIDGE

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

to Helene Villers

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

Tribute

Those who have the privilege of friendship with Jean-Raymond Abrial have
long been aware of the great work in which he has been engaged. It is no less
than a complete understanding of the nature of software engineering, from the
capture and analysis of requirements, the formalization of specifications, the
evolution of designs, the generation of programs and their implementation on
computers. The publication of this book is the culmination of his work, and the
complete fulfilment of our fondest hopes.

There will now be a much wider class of readers, for whom the book will come
as a revelation, their first introduction to the power of its author’s innovative
intellect, their first appreciation of the clarity and masterful simplicity of his
writing, His achievement is to reconcile the concepts of mathematics with the
promptings of intuition, and harness both to solve the problems of modern
programming practice. There is much to enjoy learning from the text, and even
more to be learnt by putting its lessons into practice. Read, learn, enjoy and
prosper!

C.AR. Hoare

vil

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

Foreword

This book is much more than a new programming manual. It introduces a
method in which the program design is included in the global process that goes
from understanding the problem to the validation of its solution.

The mathematical basis of the method provides the exactness while the pro-
posed notation eliminates the ambiguities of the vernacular language. At the
same time, the process is simple enough for an industrial use. “Industrial” is in
fact the key word.

The general aim of formal methods is to provide correctness of the problem
specification. Here we can see how the solution can be found, step by step, by a
continuously monitored process. The mathematical verification of each step is so
closely bound to the refinement activity that it is no longer possible to separate
the design choices from the checking process. Imagination is helped by exactness!

But how about the efficiency? Isn’t the design too long? Are the design people
able to do this work? Are the machines powerful enough to implement the
method? The answers are easy to give. Let me tell you.

My company has been involved, since the sixties, in the realisation of train
control systems, which must meet stringent safety requirements. As soon as
we began to use programmed logic (end of the seventies) we had to solve the
problem of software correctness. Together with other methods, we chose to use
the program proving method proposed by C.A.R. Hoare. In 1986, J.-R. Abrial
introduced us to the B method. We decided to learn it and to use it. The tools
did not exist at the time. We contributed to their elaboration by offering a
real-world benchmark with our applications, and proposed some improvements.
Now the tools can be found on the market, and the method can be used with
its full efficiency. What did we learn?

ix

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

X Foreword

e First, understanding the principles of the method is quite easy and expertise comes
in less than a year.

¢ Then the method encourages and facilitates re-usability, based on use of a growing
library of already proven abstract machines.

e The time saved during test and validation phases is very important, resulting in a
global economic balance that is quite positive.

e The produced programs are efficient in spite of their structure being organised in
layers of increasing abstraction.

e The tools can be implemented on simple workstations.

The use of the method has been a decisive element by increasing our confidence
when using software for safety related applications. Moreover, the new interna-
tional standards recommend the use of formal methods for the specification and
design of safety-related software.

Thanks to J.-R. Abrial, we now have an industrial method to build correct
programs. We hope that this book will convince the readers to save their money
by using this method.

Pierre Chapront
Technical Director
GEC-ALSTHOM Transport

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

Introduction

This book is a very long discourse explaining how, in my opinion, the task
of programming (in the small as well as in the large) can be accomplished by
returning to mathematics.

By this, I first mean that the precise mathematical definition of what a program
does must be present at the origin of its construction. If such a definition is
lacking, or if it is too complicated, we might wonder whether our future pro-
gram will mean anything at all. My belief is that a program, in the absolute,
means absolutely nothing. A program only means something relative to a certain
intention, that must predate it, in one form or another. At this point, I have
no objection with people feeling more comfortable with the word “English”
replacing the word “mathematics”. 1 just wonder whether such people are not
assigning themselves a more difficult task.

I also think that this “return to mathematics” should be present in the very
process of program construction. Here the task is to assign a program to a well-
defined meaning. The idea is to accompany the technical process of program
construction by a similar process of proof construction, which guarantees that
the proposed program agrees with its intended meaning.

Simultaneous concerns about the architecture of a program and that of its proof
are surprisingly efficient. For instance, when the proof is cumbersome, there are
serious chances that the program will be too; and ingredients for structuring
proofs (abstraction, instantiation, decomposition) are very similar to those for
structuring programs. Ideally, the relationship between the construction of a
program and its proof of correctness should be so intimate as to make it impos-
sible to detect which of the two is driving the other. It might then be reasonable
to say that constructing a program is just constructing a proof.

Today, very few programs are specified and constructed in this way. Does this
correlate with the fact that, today, so many programs are fragile?

Jean-Raymond Abrial

xi

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

Acknowledgements

The writing of this book spreads over a period of almost fifteen years. During
that period, I have met many people, among which certain have had a pos-
itive influence on the work presented in this book. I would like to thank them all.

Clearly, the main source of influence, without which this book could not have
been brought into existence, lies in the ideas conveyed by C.A.R. Hoare and
E.W. Dijkstra. The view of a program as a mathematical object, the concepts
of pre- and post-conditions, of non-determinism, of weakest pre-condition, all
these ideas are obviously central to what is presented in this book.

The B method, being a “model oriented” method of software construction, is
thus close to VDM and to Z. Obviously, many ideas of both these methods can
be recognized in B. This is reasonable for Z, since I was one of its originators
before and during my visit at the Programming Research Group in Oxford from
1979 to 1981. This is also reasonable for VDM since | shared an office with
C.B. Jones during that same period. From him, I learned the idea of program
development and the concept of refinement and its practical application, under
the form of proof obligations.

Discussions with C.C. Morgan on specification and refinement have had a sig-
nificant influence on the material of this book. His idea of enlarging the concept
of program to embody that of specification has had a seminal effect on this work.

The collective work done at the Programming Research Group during the eight-
ies on the notion of refinement has been directly borrowed in my presentation
of refinement. To the best of my knowledge, the people concerned were P. Gar-
diner, J. He, C.A.R. Hoare, C.C. Morgan, K.A. Robinson, and JW. Sanders.

During the practical elaboration of the method, certain people have had a signif-
icant influence on this work. Belonging to that category are G. Laffitte, F. Mejia,

xii

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

Acknowledgements Xiii

I. McNeal, P. Behm, J.-M. Meynadier and L. Dufour, whom I thank very warmly.

G. Laffitte influenced this work by his careful reviews, his acccurate criticisms,
and the sometimes very serious rearrangements he proposed for some of the
mathematical developments of this book.

F. Mejia proposed some important improvements in the area of structuring large
software constructions. Together with B. Dehbonei, he developed a complete tool
set for B, now commercialized as Atelier B.

I. McNeal has made various contributions to the early development of the
method. This has had some beneficial influence on the mechanization of proofs.

P. Behm, J.-M. Meynadier and L. Dufour made very interesting suggestions and
constructed a prototype prover whose mechanisms are extremely useful.

The magnificient team of DIGILOG, which is industrializing and commer-
cializing Atelier B, and developing software systems with it, deserves special
congratulations. Their competence, enthusiasm, and kindness make it a real
pleasure to work with them. I would like to thank F. Badeau, F. Bustany, E. Bu-
vat, P. Lartigue, J.-Ph. Pitzalis, C. Roques, D. Sabatier, T. Servat, C. Tognetty,
and C. Zagoury.

A number of other people have been working indirectly on the B project by
reviewing this book, by teaching this work, by applying it, or by promoting
it. 1 would like to thank them all, particularly an anonymous reviewer and
also P. Bieber, P. Chartier, J.-Y. Chauvet, C. Da Silva, T. Denvir, P. Desforges,
R. Docherty, M. Ducassé, M. Elkoursi, Ph. Facon, H. Habrias, N. Lopez,
[. Mackie, L. Mussat, P. Ozello, J.-P. Rubaux, P. Ryan, S. Schuman, M. Simonot,
and H. Waeselynk.

Casual meetings and discussions with B. Meyer and M. Sintzoff have had an
indirect influence on this work. Meeting them is always an intellectual pleasure,
which, to my regret, does not happen often enough.

In the industrial world, a number of institutions have made possible, in one way
or another, the writing of this book. [am particularly indebted to ADI, BP,
DIGILOG/groupe STERIA, DIGITAL, GEC-ALSTHOM Transport, GIXI,
INRETS, INSEE, MATRA Transport, RATP and SNCF. These institutions, at
various stages of the many years of the development of this project, supported
it in various ways. | would like to thank particularly the following persons:
P. Barrier, P. Beaudelaire, J. Betteridge, P. Chapront, A. Gazet, A. Guillon,
C. Hennebert, J.-L.. Lapeyre, J.-C. Rault, and O. Sebilleau.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

Xiv Acknowledgements

The publishing of this book has been a long and sometimes painful process,
especially at the end of it, where a number of unusual difficulties emerged.
Bertrand Meyer, Cliff Jones, and Tony Hoare played a significant contribution

in trying to solve these difficulties. May they be very warmly thanked for their
help.

In conclusion, I would like to give many thanks to David Tranah from Cam-
bridge University Press. | am particularly indebted to him for making possible
the publication of my book while respecting the independence within which this
scientific work has been performed.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

What is B?

B is a method for specifying, designing, and coding software systems.

Coverage

The method essentially deals with the central aspects of the software life cycle,
namely: the technical specification, the design by successive refinement steps, the
layered architecture, and the executable code generation.

Proof

Each of the previous items is envisaged as an activity that involves writing
mathematical proofs in order to justify its results. It is, precisely, the collection
of such proofs that makes one convinced that the software system in question
is indeed correct.

Abstract Machine

The basic mechanism of this approach is that of the abstract machine. This is a
concept that is very close to certain notions well-known in programming, under
the names of modules, classes or abstract data types.

Data and Operations

A software system conceived with that method is composed of several abstract
machines. Each machine contains some data and offers some operations. The
data cannot be reached directly; they are always reached through the operations
of the machine. They are said to be encapsulated in the machine.

Specification of Data

The data of an abstract machine are specified by means of a number of
mathematical concepts such as sets, relations, functions, sequences and trees.
The static laws that the data must follow are defined by means of certain
conditions, called the invariant.

XV

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

Xvi What is B?

Specification of Operations

The specification of the operations of an abstract machine is expressed as a
non-executable pseudo-code that does not contain any sequencing or loop. In
this pseudo-code one describes each operation as a pre-condition and an atomic
action. The pre-condition expresses the indispensable condition without which
the operation cannot be invoked. The atomic action is formalized by means
of a generalization of the notion of substitution. Among these generalized
substitutions is the non-deterministic choice that leaves room for some later
decision to be taken in the refinement phase. The formal definition of the
pseudo-code allows one to prove that the invariant of an abstract machine is
always preserved by the operations it offers.

Refinement towards an implementation

The initial model of an abstract machine (its specification) may be refined in an
executable module (its code). This passage from specification to code is carried
out entirely under the control of the method. It is thus necessarily concluded
by some proofs, whose goal is to show that the final code of a machine indeed
satisfies its initial specification.

Using refinement as a technique of specification

Besides the previous (classical) one, there exists another practical use of refine-
ment. It consists in using refinement as a means of including more details of the
problem into the formal development. Thus the formal translation of the initial
problem statement is performed gradually rather than all at once.

Refinement Techniques

Refinement is conducted in three different ways: the removal of the non-
executable elements of the pseudo-code (pre-condition and choice), the introduc-
tion of the classical control structures of programming (sequencing and loop),
and the transformation of the mathematical data structures (sets, relations, func-
tions, sequences and trees) into other structures that might be programmable
(simple variables, arrays, or files).

Refinement Steps

In order to carefully control the previous transformations, the refinement of
an abstract machine is performed in various steps. During each such step, the
initial abstract machine is entirely reconstructed. It keeps, however, the same
operations, as viewed by its users, although the corresponding pseudo-code
is certainly modified. In the intermediate refinement steps, we have a hybrid
construct, which is not a mathematical model any more, but certainly not yet a
programming module.

Layered Architecture

Experience shows that it is preferable to have a small number of refinement
steps. As soon as its level of complexity becomes too high, it is recommended to

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

What is B? xvil

decompose a refinement into smaller pieces. The last refinement of a machine
is thus implemented using the specification of one, or more, abstract machines
that are, themselves, refinable. This is done by means of calls to the operations
offered by the machines in question. As you can see, the “user” of an abstract
machine is, thus, always the ultimate refinement of another abstract machine.
In this way, the layered architecture of our software system (or of its translated
informal specification) is constructed piece by piece.

Library

The machines on which the last refinement of a given machine is implemented
may exist prior to that refinement. in fact, together with the method, a series
of pre-defined abstract machines are proposed, which constitutes a library of
machines, whose purpose is to encapsulate the most classical data structures.

Re-use

For a given project, it is advisable to extend that library so as to organize the
basis on which the future abstract machines of higher level will be implemented.
As you can see, the method allows one to choose either a purely top down
design, or a bottom up one, or, better, a mixed approach integrating the re-use
of specification and that of code.

Code Generation

The ultimate refinement of a machine may be easily translated into one or
several imperative programming languages. By doing so, the method provides a
solution to the problem of porting an application from one language to another.

B User Group

There exists a user group, called the BUG, for discussions and exchange of
information on B. Here is its electronic address: bug.@estasl.inrets.fr.
A mailing list for this book is also available at bbook.Qestasl.inrets. fr.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information

What is the B-Book?

The B-Book is the standard reference for the B method and its notations.

It contains the mathematical basis on which the method is founded and the
precise definition of the notations used. It also contains a large number of
examples illustrating how to use the method in practice. The book comprises
four parts and a collection of appendices:

Part | Mathematics

Part Il Abstract Machines
Part lll Programming

Part 1V Refinement

Part 1

Part 1 contains a systematic construction of predicate logic and set theory. It
also contains the definition of various mathematical structures that are needed
to formalize software systems. A special emphasis is put on the notion of proof.
Part I consists of the following chapters:

Xix

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information
XX What is the B-Book?
Chapter 1 Mathematical Reasoning
Chapter 2 Set Notation
Chapter 3 Mathematical Objects
Part 11

Part I1 contains a presentation of the Generalized Substitution Language (GSL)
and the Abstract Machine Notation (AMN). These notations are the ones we use
in order to specify software systems. They are presented together with a number
of examples showing how large specifications can be built systematically. A
set-theoretical foundation of GSL and AMN is also presented. Part 11 consists of

the following chapters:

Chapter 4

Introduction to Abstract Machines

Chapter 5

Formal Definition of Abstract Machines

Chapter 6

Theory of Abstract Machines

Chapter 7

Constructing Large Abstract Machines

Chapter 8

Examples of Abstract Machines

Part 111

Part III introduces the two basic programming features, namely sequencing
and loop. After a theoretical presentation, an important chapter is devoted to
the study of the systematic construction of a variety of examples of algorithm
developments. Part 11 consists of the following chapters:

Chapter 9 Sequencing and Loops

Chapter 10 Programming Examples

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information

What is the B-Book?

Part 1V

XX1

Part IV presents a notion of refinement for both generalized substitutions
and abstract machines. Refinement is given a mathematical foundation within
set theory. The construction of large software systems by means of layered
architectures of modules is also explained. Finally, a number of large examples of
complete development are studied with a special emphasis on the methodological
approach. Part 1V consists of the following chapters:

Chapter 11

Refinement

Chapter 12

Constructing Large Software Systems

Chapter 13

Examples of Refinement

Appendices

A collection of appendices contains a summary of all the logical and math-
ematical definitions. It also contains a summary of all the rules and proof

obligations:

Appendix A Summary of Notations

Appendix B Syntax

Appendix C Definitions

Appendix D Visibility Rules

Appendix E Rules and Axioms

Appendix F Proof Obligations

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

How to use this book

This book can be used by people having very different concerns.

For instance, you might intend to learn the method as a formal method practi-
tioner. In this case, you are probably not (although you might be) interested in
the detailed mathematics presented in the book. It is then recommended to read
the book as follows:

Appendix A Summary of Notations

Chapter 2 Set Notation (section 2.7)

Chapter 4 Introduction to Abstract Machines

Chapter 7 Constructing Large Abstract Machines (sections 7.2 and 7.3)
Chapter 8 Examples of Abstract Machines

Chapter 11 Refinement (sections 11.1.1, 11.2.1, 11.2.5, 11.2.7 and 11.2.8)

Chapter 12 Constructing Large Software Systems (sections 12.1 and 12.2)

Chapter 13 Examples of Refinement

At the other extreme of the spectrum, you are a computer scientist and you
are interested in the mathematical foundation of the method. In that case, you
might be reading the book as follows:

xxii

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

How to use this book XXiii

Appendix A Summary of Notations

Chapter 1 Mathematical Reasoning
Chapter 2 Set Notation

Chapter 3 Mathematical Objects
Chapter 6 Theory of Abstract Machines
Chapter 9 Sequencing and Loops
Chapter 11 Refinement

Appendix C Definitions

Appendix E Rules and Axioms

In between, there might be people interested in looking at how the method can
be used in order to structure large specifications and large designs. The following
reading can then be recommended:

Appendix A Summary of Notations

Chapter 4 Introduction to Abstract Machines
Chapter 6 Theory of Abstract Machines
Chapter 7 Constructing Large Abstract Machines

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

XXiv How to use this book

Chapter 11 Refinement

Chapter 12 Constructing Large Software Systems

Chapter 13 Examples of Refinement

People interested in developing small programs in a systematic fashion can read
the book as follows:

Appendix A Summary of Notations
Chapter 4 Introduction to Abstract Machines
Chapter 10 Programming Examples

For people interested in the formal details of the notations, it is recommended to
read the book as follows:

Chapter 5 Formal Definition of Abstract Machines

Chapter 7 Constructing Large Abstract Machines (section 7.4)
Chapter 11 Refinement (section 11.3)

Chapter 12 Constructing Large Software Systems (section 12.6)

Appendix D Visibility Rules

Appendix F Proof Obligations

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information

Contents

I Mathematics

1 Mathematical Reasoning

1.1 Formal Reasoning

1.1.1
1.1.2
1.1.3
1.14

Sequent and Predicate
Rule of Inference
Proofs

Basic Rules

1.2 Propositional Calculus

1.2.1
1.2.2
1.23
1.24
1.25
1.2.6

The Notation of Elementary Assertions
Inference Rules for Propositional Calculus
Some Proofs

A Proof Procedure

Extending the Notation

Some Classical Results

1.3 Predicate Calculus

1.3.1
1.3.2
133
1.3.4
1.35
1.3.6
1.3.7
1.3.8
1.3.9

The Notation of Quantified Predicates and Substitutions
Universal Quantification

Non-freeness

Substitution

Inference Rules for Predicate Calculus

Some Proofs

Extending the Proof Procedure

Existential Quantification

Some Classical Results

1.4 Equality
1.5 Ordered Pairs
1.6 Exercises

XXV

p—

— 0 O N N b R R W

R R R W W W W W W WERDN NN -
— =N = O 0N R NNNY DO NN S

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

XXVI Contents

2 Set Notation

2.1 Basic Set Constructs
2.1.1 Syntax
212 Axioms
2.1.3 Properties
2.2 Type-checking
23 Derived Constructs
2.3.1 Definitions
232 Examples
2.3.3 Type-checking
234 Properties
24 Binary Relations
2.4.1 Binary Relation Constructs: First Series
2.4.2 Binary Relation Constructs: Second Series
2.4.3 Examples of Binary Relation Constructs
2.44 Type-checking of Binary Relation Constructs
2.5 Functions
2.5.1 Function Constructs: First Series
2.5.2 Function Constructs: Second Series
2.5.3 Examples of Function Constructs
254 Properties of Function Evaluation
255 Type-checking of Function Constructs
2.6 Catalogue of Properties
2.6.1 Membership Laws
2.6.2 Monotonicity Laws
2.6.3 Inclusion Laws
2.64 Equality Laws
2.7 Example
2.8 Exercises

3 Mathematical Objects

3.1 Generalized Intersection and Union
3.2 Constructing Mathematical Objects
3.21 Informal Introduction
3.2.2 Fixpoints
3.23 Induction Principle
3.3 The Set of Finite Subsets of a Set
34 Finite and Infinite Sets
3.5 Natural Numbers
3.5.1 Definition
3.5.2 Peano’s “Axioms”
353 Minimum
3.5.4 Strong Induction Principle
355 Maximum

55

56
57
60
62
64
72
72
72
73
75
77
77
79
82
84
85
86
89
90
90
93
94
95
96
97
99
115
120

123

123
130
130
131
136
141
144
145
145
148
153
156
158

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information
Contents Xxvii
3.5.6 Recursive Functions on Natural Numbers 158
357 Arithmetic 161
3,58 Iterate of a Relation 166
3.59 Cardinal of a Finite Set 167
3.5.10 Transitive Closures of a Relation 168
3.6 The Integers 170
3.7 Finite Sequences 174
3.71 Inductive Construction 174
3.7.2 Direct Construction 176
3.7.3 Operations on Sequences 177
3.7.4 Sorting and Related Topics 182
3.7.5 Lexicographical Order on Sequences of Integers 187
3.8 Finite Trees 188
3.8.1 Informal Introduction 188
3.8.2 Formal Construction 190
3.8.3 Induction 192
3.84 Recursion 194
3.85 Operations 197
3.8.6 Representing Trees 199
39 Labelled Trees 202
3.9.1 Direct Definition 203
3.9.2 Inductive Definition 203
3.9.3 Induction 205
394 Recursion 206
3.9.5 Operations Defined Recursively 206
3.9.6 Operations Defined Directly 208
3.10 Binary Trees 208
3.10.1 Direct Operations 209
3.10.2 Induction 209
3.10.3 Recursion 210
3.10.4 Operations Defined Recursively 210
3.11 Well-founded Relations 211
3.11.1 Definition 212
3.11.2 Proof by Induction on a Well-founded Set 213
3.11.3 Recursion on a Well-founded Set 214
3.11.4 Proving Well-foundedness 217
3.11.5 An Example of a Well-founded Relation 219
3.11.6 Other Examples of Non-classical Recursions 219
3.12 Exercises 221
II Abstract Machines 225
4 Introduction to Abstract Machines 227
4,1 Abstract Machines 228
4.2 The Statics: Specifying the State 229

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information
XXViil Contents
4.3 The Dynamics: Specifying the Operations 230
44 Before-after Predicates as Specifications 231
45 Proof Obligation 232
4.6 Substitutions as Specifications 232
47 Pre-conditioned Substitution (Termination) 234
4.8 Parameterization and Initialization 236
49 Operations with Input Parameters 238
4.10 Operations with Output Parameters 240
4.11 Generous versus Defensive Style of Specification 241
4,12 Multiple Simple Substitution 243
4.13 Conditional Substitution 244
4.14 Bounded Choice Substitution 244
4.15 Guarded Substitution (Feasibility) 246
4.16 A Substitution with no Effect 247
4.17 Contextual Information: Sets and Constants 248
4.18 Unbounded Choice Substitution 252
4.19 Explicit Definitions 256
4.20 Assertions 260
421 Concrete Variables and Abstract Constants 261
4.22 Exercises 262
5 Formal Definition of Abstract Machines 265
5.1 Generalized Substitution 265
5.1.1 Syntax 265
5.1.2 Type-checking 270
5.1.3 Axioms 271
5.2 Abstract Machines 272
5.2.1 Syntax 272
5.2.2 Visibility Rules 274
5.23 Type-checking 275
5.24 On the Constants 278
5.25 Proof Obligations 278
5.2.6 About the Given Sets and the Pre-defined Constants 280
6 Theory of Abstract Machines 283
6.1 Normalized Form 283
6.2 Two Useful Properties 287
6.3 Termination, Feasibility and Before-after Predicate 288
6.3.1 Termination 289
6.3.2 Feasibility 290
6.3.3 Before-after Predicate 292
6.4 Set-Theoretic Models 295
6.4.1 First Model: a Set and a Relation 295
6.4.2 Second Model: Set Transformer 298
6.43 Set-theoretic Interpretations of the Constructs 301

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information

Contents

6.5 Exercises

7 Constructing Large Abstract Machines

7.1 Multiple Generalized Substitution

7.1.1
7.1.2
713

Definition
Basic Properties
The Main Result

7.2 Incremental Specification

7.21
7.22
7.23
7.24
7.25
7.2.6
7.2.7
7.28

Informal Introduction

Operation Call

The INCLUDES Clause

Visibility Rules

Transitivity

Machine Renaming

The PROMOTES and the EXTENDS Clauses
Example

7.3 Incremental Specification and Sharing

7.3.1
7.3.2
733
734
735

Informal Introduction
The USES Clause
Visibility Rules
Transitivity

Machine Renaming

7.4 Formal Definition

7.4.1
742

7.43 Proof Obligations for the INCLUDES Clause

744

Syntax
Type-checking

Proof Obligations for the USES Clause

7.5 Exercises

8 Examples of Abstract Machines

8.1 An Invoice System

8.1.1
8.1.2
813
8.14
815

Informal Specification

The Client Machine

The Product Machine

The Invoice Machine

The Invoice_System Machine

8.2 A Telephone Exchange

8.21
8.2.2
823

Informal specification
The Simple_Exchange Machine
The Exchange Machine

8.3 A Lift Control System

83.1
8.3.2
833
834

Informal Specification

The Lift Machine

Liveness Proof

Expressing Liveness Proof Obligations

XXIX

303
307

307
308
308
311
312
312
314
316
318
319
320
320
320
322
322
323
324
324
325
325
325
326
331
334
336

337

338
338
339
341
343
348
349
349
352
355
358
358
358
364
366

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information

XXX Contents

8.4 Exercises

III Programming

9 Sequencing and Loop

9.1 Sequencing

9.1.1
9.1.2
9.1.3
9.2 Loop
9.2.1
9.2.2
9.23
9.24
9.25
9.2.6
9.2.7
9.2.8
9.29

Syntax
Axiom
Basic Properties

Introduction

Definition

Interpretation of Loop Termination

Interpretation of the Before-after Relation of the Loop
Examples of Loop Termination

The Invariant Theorem

The Variant Theorem

Making the Variant and Invariant Theorem Practical
The Traditional Loop

9.3 Exercises

10 Programming Examples

10.0 Methodology

10.0.1
10.0.2
10.0.3

Re-use of Previous Algorithms
Loop Proof Rules
Sequencing Proof Rule

10.1 Unbounded Search

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7

Introduction

Comparing two Sequences

Computing the Natural Number Inverse of a Function
Natural Number Division

The Special Case of Recursive Functions

Logarithm in a Given Base

Integer Square Root

10.2 Bounded Search

10.2.1
10.2.2
10.2.3
10.24
10.2.5
10.2.6
10.2.7

Introduction

Linear Search

Linear Search in an Array
Linear Search in a Matrix
Binary Search

Monotonic Functions Revisited
Binary Search in an Array

10.3 Natural Number

10.3.1
10.3.2

Basic Scheme
Natural Number Exponentiation

369
371
373

374
374
374
374
371
377
378
382
385
386
387
388
390
392
398

403

403
403
406
407
408
408
411
416
420
422
424
425
427
427
430
431
433
435
437
442
446
446
447

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information
Contents XXxi
10.3.3 Extending the Basic Scheme 448
10.3.4 Summing a Sequence 450
10.3.5 Shifting a Sub-sequence 451
10.3.6 Insertion into a Sorted Array 453
104 Sequences 455
10.4.1 Introduction 455
10.4.2 Accumulating the Elements of a Sequence 458
10.4.3 Decoding the Based Representation of a Number 461
10.44 Transforming a Natural Number into its Based Representation 462
10.4.5 Fast Binary Operation Computations 465
10.4.6 Left and Right Recursion 469
10.4.7 Filters 473
10.5 Trees 482
10.5.1 The Notion of Formula 483
10.5.2 Transforming a Tree into a Formula 484
10.5.3 Transforming a Tree into a Polish String 487
10.5.4 Transforming a Formula into a Polish String 488
10.6 Exercises 496
IV Refinement 499
11 Refinement 501
11.1 Refinement of Generalized Substitutions 501
11.1.1 Informal Approach 501
11.1.2 Definition 503
11.1.3 Equality of Generalized Substitution 503
11.1.4 Monotonicity 504
11.1.5 Refining a Generalized Assignment 506
11.2 Refinement of Abstract Machines 507
11.2.1 Informal Approach 507
11.2.2 Formal Definition 511
11.2.3 Sufficient Conditions 512
11.24 Monotonicity 516
11.2.5 Example Revisited 522
11.2.6 The Final Touch 523
11.2.7 An Intuitive Explanation of the Refinement Condition 530
11.2.8 Application to the Little Example 532
11.3 Formal Definition 533
11.3.1 Syntax 533
11.3.2 Type-checking 534
11.3.3 Proof Obligations 537
114 Exercises 540
12 Constructing Large Software Systems 551
12.1 Implementing a Refinement 551

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information
XXXil Contents
12.1.1 Introduction 551
12.1.2 The Practice of Importation 556
12.1.3 The IMPLEMENTATION Construct 559
12.1.4 The IMPORTS Clause 561
12.1.5 Visibility Rules 561
12.1.6 Machine Renaming 563
12.1.7 The VALUES Clause 563
12.1.8 Comparing the IMPORTS and the INCLUDES Clauses 565
12.1.9 The PROMOTES and EXTENDS Clauses 565
12.1.19 Concrete Constants and Concrete Variables Revisited 566
12.1.11 Allowed Constructs in an Implementation 566
12.2 Sharing 574
12.2.1 Introduction 574
12.2.2 The SEES Clause 579
12.2.3 Visibility Rules 579
12.2.4 Transitivity and Circularity 583
12.2.5 Machine Renaming 583
12.2.6 Comparing the USES and the SEES Clauses 583
12.3 Loops Revisited 584
12.4 Multiple Refinement and Implementation 584
12.5 Recursively Defined Operations 587
12.5.1 Introduction 588
12.5.2 Syntax 591
12.5.3 Proof Rule 591
12,6 Formal Definition 594
12.6.1 Syntax of an IMPLEMENTATION 594
12.6.2 Type-checking with an IMPORTS Clause 595
12.6.3 Type-checking with a SEES Clause 596
12.6.4 Proof Obligations of an IMPLEMENTATION 597
12.6.5 Proof Obligation for a SEES Clause 601
13 Examples of Refinements 603
13.1 A Library of Basic Machines 603
13.1.1 The BASIC_CONSTANTS Machine 604
13.1.2 The BASIC _I0 Machine 604
13.1.3 The BASIC_BOOL Machine 605
13.1.4 The BASIC _enum Machine for Enumerated Sets 606
13.1.5 The BASIC _FILE_VAR Machine 607
13.2 Case Study: Data-base System 608
13.2.1 Machines for Files 611
13.2.2 Machines for Objects 623
13.2.3 A Data-base 630
13.2.4 Interfaces 637
13.3 A Library of Useful Abstract Machines 647
13.3.1 The ARRAY _VAR Machine 647

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521021758 - The B-Book: Assigning Programs to Meanings
J.-R. Abrial

Frontmatter

More information

Contents

13.3.2 The SEQUENCE_VAR Machine
13.3.3 The SET_VAR Machine
13.3.4 The ARRAY _COLLECTION Machine
13.3.5 The SEQUENCE_COLLECTION Machine
13.3.6 The SET_COLLECTION Machine
13.3.7 The TREE_VAR Machine
13.4 Case Study: Boiler Control System
13.4.1 Introduction
13.4.2 Informal Specification
13.4.3 System Analysis
13.44 System Synthesis
13.4.5 Formal Specification and Design
13.4.6 Final Architecture
13.4.7 Modifying the Initial Specification
Appendix A Summary of Notations
A.1 Propositional Calculus
A.2 Predicate Calculus
A.3 Equality and Ordered Pairs
A.4 Basic and Derived Set Constructs
A.5 Binary Relations
A.6 Functions
A.7 Generalized Intersection and Union
A.8 Finiteness
A.9 Natural Numbers
A.10 Integers
A.11 Finite Sequences
A.12 Finite Trees
Appendix B Syntax
B.1 Predicate
B.2 Expression
B.3 Substitution
B.4 Machine
B.5 Refinement
B.6 Implementation
B.7 Statement
Appendix C Definitions
C.1 Logic Definitions
C.2 Basic Set-theoretic Definitions
C.3 Binary Relation Definitions
C.4 Function Definitions
C.5 Fixpoint Definitions
C.6 Finiteness Definitions
C.7 Natural Number Definitions
C.8 Integer Extensions
C.9 Finite Sequence Definitions

XXXiii

647
647
648
648
650
650
655
655
656
661
673
676
693
694
701
701
702
702
702
703
705
706
706
707
709
11
713
715
715
716
716
717
719
720
721
725
725
726
726
728
728
729
730
732
734

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521021758 - The B-Book: Assigning Programs to Meanings

J.-R. Abrial
Frontmatter
More information
XXXIV Contents
C.10 Finite Tree Definitions 736
C.11 Well-founded Relation Definition 738
C.12 Generalized Substitution Definitions 738
C.13 Set-theoretic Models 741
C.14 Refinement Conditions 742
Appendix D Visibility Rules 743
D.1 Visibility of a Machine 743
D.2 Visibility of a Refinement 747
D.3 Visibility of an Implementation 750
Appendix E Rules and Axioms 753
E.1 Non-freeness Rules 753
E.2 Substitution Rules 754
E.3 Basic Inference Rules 756
E.4 Derived Inference Rules 758
E.5 Set Axioms 760
E.6 Generalized Substitution Axioms 761
E.7 Loop Proof Rules 761
E.8 Sequencing Proof Rule 762
Appendix F Proof Obligations 763
F.1 Machine Proof Obligations 763
F.2 mNcLUDEs Proof Obligations 765
F.3 usEks Proof Obligations 767
F.4 Refinement Proof Obligations 769
F.5 Implementation Proof Obligations 771
Index 775

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521021758
http://www.cambridge.org
http://www.cambridge.org

