NETWORK

SECURITY
ESSENTIALS

Apf&m.twm .cuut Standavds

WILLIAM STALLINGS

T
NETWORK SECURITY
ESSENTIALS:

APPLICATIONS AND STANDARDS
FOURTH EDITION

William Stallings

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS: Managing Editor: Scott Disanno

Marcia J. Horton Production Manager: Wanda Rockwell
Editor in Chief, Computer Science: Michael Art Director: Jayne Conte

Hirsch Cover Designer: Bruce Kenselaar
Executive Editor: Tracy Dunkelberger Cover Art: Shutterstock
Assistant Editor: Melinda Haggerty Art Editor: Greg Dulles

Editorial Assistant: Allison Michael

Copyright © 2011 Pearson Education, Inc., publishing as [Prentice Hall, 1 Lake Street, Upper Saddle
River, NJ 07458]. All rights reserved. Manufactured in the United States of America. This publication is protected
by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, [imprint permissions address|.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

10987654321

Prentice Hall
is an imprint of

P EARSON ISBN 10: 0-13-610805-9

www.pearsonhighered.com ISBN 13:978-0-13-610805-4

P

To Antigone
never dull
never boring
always a Sage

This page intentionally left blank

CONTENTS

Preface ix

About the Author xiv

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

Introduction 1

Computer Security Concepts 3
The OSI Security Architecture 8
Security Attacks 9

Security Services 13

Security Mechanisms 16

A Model for Network Security 19
Standards 21

Outline of This Book 21
Recommended Reading 22
Internet and Web Resources 23
Key Terms, Review Questions, and Problems 25

PART ONE CRYPTOGRAPHY 27

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Chapter 3

31
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Symmetric Encryption and Message Confidentiality 27

Symmetric Encryption Principles 28
Symmetric Block Encryption Algorithms 34
Random and Pseudorandom Numbers 42
Stream Ciphers and RC4 45

Cipher Block Modes of Operation 50
Recommended Reading and Web Sites 55

Key Terms, Review Questions, and Problems 56

Public-Key Cryptography and Message Authentication 61

Approaches to Message Authentication 62
Secure Hash Functions 67

Message Authentication Codes 73

Public-Key Cryptography Principles 79
Public-Key Cryptography Algorithms 83
Digital Signatures 90

Recommended Reading and Web Sites 90

Key Terms, Review Questions, and Problems 91

PART TWO NETWORK SECURITY APPLICATIONS 97

Chapter 4

4.1
4.2
4.3
4.4
4.5

Key Distribution and User Authentication 97
Symmetric Key Distribution Using Symmetric Encryption 98
Kerberos 99

Key Distribution Using Asymmetric Encryption 114

X.509 Certificates 116

Public-Key Infrastructure 124

vi CONTENTS

4.6 Federated Identity Management 126
4.7 Recommended Reading and Web Sites 132
4.8 Key Terms, Review Questions, and Problems 133

Chapter 5 Transport-Level Security 139

5.1 Web Security Considerations 140

5.2 Secure Socket Layer and Transport Layer Security 143
5.3 Transport Layer Security 156

5.4 HTTPS 160

5.5 Secure Shell (SSH) 162

5.6 Recommended Reading and Web Sites 173

5.7 Key Terms, Review Questions, and Problems 173

Chapter 6 Wireless Network Security 175

6.1 IEEE 802.11 Wireless LAN Overview 177

6.2 IEEE 802.111 Wireless LAN Security 183

6.3 Wireless Application Protocol Overview 197

6.4 Wireless Transport Layer Security 204

6.5 WAP End-to-End Security 214

6.6 Recommended Reading and Web Sites 217

6.7 Key Terms, Review Questions, and Problems 218

Chapter 7 Electronic Mail Security 221

7.1 Pretty Good Privacy 222

7.2 S/MIME 241

7.3 DomainKeys Identified Mail 257

7.4 Recommended Reading and Web Sites 264

7.5 Key Terms, Review Questions, and Problems 265
Appendix 7A Radix-64 Conversion 266

Chapter 8 IP Security 269

8.1 IP Security Overview 270

8.2 IP Security Policy 276

8.3 Encapsulating Security Payload 281

8.4 Combining Security Associations 288

8.5 Internet Key Exchange 292

8.6 Cryptographic Suites 301

8.7 Recommended Reading and Web Sites 302

8.8 Key Terms, Review Questions, and Problems 303

PART THREE SYSTEM SECURITY 305
Chapter 9 Intruders 305

9.1 Intruders 307

9.2 Intrusion Detection 312

9.3 Password Management 323

9.4 Recommended Reading and Web Sites 333

9.5 Key Terms, Review Questions, and Problems 334
Appendix 9A The Base-Rate Fallacy 337

CONTENTS

Chapter 10 Malicious Software 340

10.1 Types of Malicious Software 341

10.2 Viruses 346

10.3 Virus Countermeasures 351

10.4 Worms 356

10.5 Distributed Denial of Service Attacks 365

10.6 Recommended Reading and Web Sites 370

10.7 Key Terms, Review Questions, and Problems 371

Chapter 11 Firewalls 374

11.1 The Need for Firewalls 375

11.2 Firewall Characteristics 376

11.3 Types of Firewalls 378

11.4 Firewall Basing 385

11.5 Firewall Location and Configurations 388

11.6 Recommended Reading and Web Site 393

11.7 Key Terms, Review Questions, and Problems 394

APPENDICES 398
Appendix A Some Aspects of Number Theory 398

A1l Prime and Relatively Prime Numbers 399
A2 Modular Arithmetic 401

Appendix B Projects for Teaching Network Security 403

B.1 Research Projects 404

B.2 Hacking Project 405

B.3 Programming Projects 405

B.4 Laboratory Exercises 406

B.5 Practical Security Assessments 406
B.6 Writing Assignments 406

B.7 Reading/Report Assignments 407

Index 408

ONLINE CHAPTERS
Chapter 12 Network Management Security

12.1 Basic Concepts of SNMP

12.2 SNMPv1 Community Facility

12.3 SNMPv3

12.4 Recommended Reading and Web Sites

12.5 Key Terms, Review Questions, and Problems

Chapter 13 Legal and Ethical Aspects

13.1 Cybercrime and Computer Crime
13.2 Intellectual Property

13.3 Privacy

13.4 Ethical Issues

13.5 Recommended Reading and Web Sites

vii

viii CONTENTS

13.6 Key Terms, Review Questions, and Problems

ONLINE APPENDICES
Appendix C Standards and Standards-Setting Organizations

C1 The Importance of Standards
C.2 Internet Standards and the Internet Society
C.3 National Institute of Standards and Technology

Appendix D TCP/IP and OSI

D.1 Protocols and Protocol Architectures
D.2 The TCP/IP Protocol Architecture
D.3 The Role of an Internet Protocol
D.4 IPv4
D.5 IPv6
D.6 The OSI Protocol Architecture
Appendix E Pseudorandom Number Generation

EA1 PRING Requirements
E.2 PRNG Using a Block Cipher
E.3 PRNG Using a Hash Function or Message Authentication Code

Appendix F Kerberos Encryption Techniques

E1 Password-to-Key Transformation
E2 Propagating Cipher Block Chaining Mode

Appendix G Data Compression Using ZIP

G.1 Compression Algorithm
G.2 Decompression Algorithm

Appendix H PGP Random Number Generation

H.1 True Random Numbers
H.2 Pseudorandom Numbers

Appendix I The International Reference Alphabet
Glossary

References

PREFACE

“The tie, if I might suggest it, sir, a shade more tightly knotted. One
aims at the perfect butterfly effect. If you will permit me _”

“What does it matter, Jeeves, at a time like this? Do you realize that
Mr. Little’s domestic happiness is hanging in the scale?”

“There is no time, sir, at which ties do not matter.”
—Very Good, Jeeves! P. G. Wodehouse

In this age of universal electronic connectivity, of viruses and hackers, of electronic eaves-
dropping and electronic fraud, there is indeed no time at which security does not matter. Two
trends have come together to make the topic of this book of vital interest. First, the explosive
growth in computer systems and their interconnections via networks has increased the
dependence of both organizations and individuals on the information stored and communi-
cated using these systems. This, in turn, has led to a heightened awareness of the need to
protect data and resources from disclosure, to guarantee the authenticity of data and
messages, and to protect systems from network-based attacks. Second, the disciplines of
cryptography and network security have matured, leading to the development of practical,
readily available applications to enforce network security.

OBJECTIVES

It is the purpose of this book to provide a practical survey of network security applications and
standards. The emphasis is on applications that are widely used on the Internet and for corpo-
rate networks, and on standards (especially Internet standards) that have been widely deployed.

INTENDED AUDIENCE

This book is intended for both an academic and a professional audience. As a textbook, it is

intended as a one-semester undergraduate course on network security for computer science,

computer engineering, and electrical engineering majors. It covers the material in IAS2

Security Mechanisms, a core area in the Information Technology body of knowledge; and

NET#4 Security, another core area in the Information Technology body of knowledge. These

subject areas are part of the Draft ACM/IEEE Computer Society Computing Curricula 2005.
The book also serves as a basic reference volume and is suitable for self-study.

PLAN OF THE BOOK

The book is organized in three parts:

Part One. Cryptography: A concise survey of the cryptographic algorithms and protocols
underlying network security applications, including encryption, hash functions, digital

signatures, and key exchange. .
ix

X PREFACE

Part Two. Network Security Applications: Covers important network security tools and
applications, including Kerberos, X.509v3 certificates, PGP, SSMIME, IP Security,
SSL/TLS, SET, and SNMPv3.

Part Three. System Security: Looks at system-level security issues, including the threat of
and countermeasures for intruders and viruses and the use of firewalls and trusted systems.

In addition, this book includes an extensive glossary, a list of frequently used acronyms,
and a bibliography. Each chapter includes homework problems, review questions, a list of
key words, suggestions for further reading, and recommended Web sites. In addition, a test
bank is available to instructors.

ONLINE DOCUMENTS FOR STUDENTS

For this new edition, a tremendous amount of original supporting material has been made
available online in the following categories.

* Online chapters: To limit the size and cost of the book, two chapters of the book are
provided in PDF format. This includes a chapter on SNMP security and one on legal
and ethical issues. The chapters are listed in this book’s table of contents.

* Online appendices: There are numerous interesting topics that support material found
in the text but whose inclusion is not warranted in the printed text. Seven online appen-
dices cover these topics for the interested student. The appendices are listed in this
book’s table of contents.

* Homework problems and solutions: To aid the student in understanding the material,
a separate set of homework problems with solutions are provided. These enable the
students to test their understanding of the text.

* Supporting documents: A variety of other useful documents are referenced in the text
and provided online.

e Key papers: Twenty-Four papers from the professional literature, many hard to find,
are provided for further reading.

Purchasing this textbook new grants the reader six months of access to this online
material.

INSTRUCTIONAL SUPPORT MATERIALS

To support instructors, the following materials are provided.

e Solutions Manual: Solutions to end-of-chapter Review Questions and Problems.

* Projects Manual: Suggested project assignments for all of the project categories listed
subsequently in this Preface.

* PowerPoint Slides: A set of slides covering all chapters, suitable for use in lecturing.

e PDF Files: Reproductions of all figures and tables from the book.

e Test Bank: A chapter-by-chapter set of questions.

All of these support materials are available at the Instructor Resource Center (IRC)
for this textbook, which can be reached via pearsonhighered.com/stallings or by clicking
on the button labeled “Book Info and More Instructor Resources” at this book’s Web site
WilliamStallings.com/Crypto/CryptoSe.html. To gain access to the IRC, please contact your

PREFACE xi

local Prentice Hall sales representative via pearsonhighered.com/educator/replocator/
requestSalesRep.page or call Prentice Hall Faculty Services at 1-800-526-0485.

INTERNET SERVICES FOR INSTRUCTORS AND STUDENTS

There is a Web page for this book that provides support for students and instructors. The
page includes links to other relevant sites, transparency masters of figures and tables in the
book in PDF (Adobe Acrobat) format, and PowerPoint slides. The Web page is at
WilliamStallings.com/NetSec/NetSecde.html.

An Internet mailing list has been set up so that instructors using this book can
exchange information, suggestions, and questions with each other and with the author. As
soon as typos or other errors are discovered, an errata list for this book will be available at
WilliamStallings.com. In addition, the Computer Science Student Resource site, at
WilliamStallings.com/StudentSupport.html, provides documents, information, and useful
links for computer science students and professionals.

PROJECTS FOR TEACHING NETWORK SECURITY

For many instructors, an important component of a network security course is a project or
set of projects by which the student gets hands-on experience to reinforce concepts from the
text. This book provides an unparalleled degree of support for including a projects compo-
nent in the course. The IRC not only includes guidance on how to assign and structure the
projects, but also includes a set of suggested projects that covers a broad range of topics from
the text:
* Research projects: A series of research assignments that instruct the student to
research a particular topic on the Internet and write a report.
e Hacking project: This exercise is designed to illuminate the key issues in intrusion
detection and prevention.
* Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.
* Lab exercises: A series of projects that involve programming and experimenting with
concepts from the book.
* Practical security assessments: A set of exercises to examine current infrastructure
and practices of an existing organization.
* Writing assignments: A set of suggested writing assignments organized by chapter.
* Reading/report assignments: A list of papers in the literature, one for each chapter,
that can be assigned for the student to read and then write a short report.

See Appendix B for details.

WHAT’S NEW IN THE FOURTH EDITION

The changes for this new edition of Network Security Essentials are more substantial and
comprehensive than those for any previous revision.

In the four years since the third edition of this book was published, the field has seen
continued innovations and improvements. In this fourth edition, I try to capture these

xii

PREFACE

changes while maintaining a broad and comprehensive coverage of the entire field. To begin
this process of revision, the third edition was extensively reviewed by a number of professors
who teach the subject. In addition, a number of professionals working in the field reviewed
individual chapters. The result is that, in many places, the narrative has been clarified and
tightened, and illustrations have been improved. Also, a large number of new “field-tested”
problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, there have been

major substantive changes throughout the book. Highlights include:

Pseudorandom number generation and pseudorandom functions (revised): The treat-
ment of this important topic has been expanded, with the addition of new material in
Chapter 2 and a new appendix on the subject.

Cryptographic hash functions and message authentication codes (revised): The material
on hash functions and MAC has been revised and reorganized to provide a clearer and
more systematic treatment.

Key distribution and remote user authentication (revised): In the third edition, these
topics were scattered across three chapters. In the fourth edition, the material is revised
and consolidated into a single chapter to provide a unified, systematic treatment.
Federated identity (new): A new section covers this common identity management
scheme across multiple enterprises and numerous applications and supporting many
thousands, even millions, of users.

HTTPS (new): A new section covers this protocol for providing secure communication
between Web browser and Web server.

Secure Shell (new): SSH, one of the most pervasive applications of encryption tech-
nology, is covered in a new section.

DomainKeys Identified Mail (new): A new section covers DKIM, which has become
the standard means of authenticating e-mail to counter spam.

Wireless network security (new): A new chapter covers this important area of network
security. The chapter deals with the IEEE 802.11 (WiFi) security standard for wireless
local area networks and the Wireless Application Protocol (WAP) security standard
for communication between a mobile Web browser and a Web server.

IPsec (revised): The chapter on IPsec has been almost completely rewritten. It now
covers [Psecv3 and IKEv2. In addition, the presentation has been revised to improve
clarity and breadth.

Legal and ethical issues (new): A new online chapter covers these important topics.
Online appendices (new): Six online appendices provide addition breadth and depth
for the interested student on a variety of topics.

Homework problems with solutions: A separate set of homework problems (with solu-
tions) is provided online for students.

Test bank: A test bank of review questions is available to instructors. This can be used
for quizzes or to enable the students to check their understanding of the material.
Firewalls (revised): The chapter on firewalls has been significantly expanded.

With each new edition, it is a struggle to maintain a reasonable page count while adding

new material. In part, this objective is realized by eliminating obsolete material and tightening
the narrative. For this edition, chapters and appendices that are of less general interest have

PREFACE Xiil

been moved online as individual PDF files. This has allowed an expansion of material without
the corresponding increase in size and price.

RELATIONSHIP TO CRYPTOGRAPHY AND NETWORK SECURITY

This book is adapted from Cryptography and Network Security, Fifth Edition (CNS5¢). CNS5e
provides a substantial treatment of cryptography, including detailed analysis of algorithms and
a significant mathematical component, all of which covers 400 pages. Network Security Essen-
tials: Applications and Standards, Fourth Edition (NSE4e) provides instead a concise overview
of these topics in Chapters 2 and 3. NSE4e includes all of the remaining material of CNS5e.
NSE4e also covers SNMP security, which is not covered in CNS5e. Thus, NSE4e is intended for
college courses and professional readers where the interest is primarily in the application of
network security and without the need or desire to delve deeply into cryptographic theory and
principles.

ACKNOWLEDGEMENTS

This new edition has benefited from review by a number of people who gave generously
their time and expertise. The following people reviewed all or a large part of the manuscript:
Marius Zimand (Towson State University), Shambhu Upadhyaya (University of Buffalo),
Nan Zhang (George Washington University), Dongwan Shin (New Mexico Tech), Michael
Kain (Drexel University), William Bard (University of Texas), David Arnold (Baylor
University), Edward Allen (Wake Forest University), Michael Goodrich (UC-Irvine),
Xunhua Wang (James Madison University), Xianyang Li (Illinois Institute of Technology),
and Paul Jenkins (Brigham Young University).

Thanks also to the many people who provided detailed technical reviews of one or more
chapters: Martin Bealby, Martin Hlavac (Department of Algebra, Charles University in Prague,
Czech Republic), Martin Rublik (BSP Consulting and University of Economics in Bratislava),
Rafael Lara (President of Venezuela’s Association for Information Security and Cryptography
Research), Amitabh Saxena, and Michael Spratte (Hewlett-Packard Company). I would
especially like to thank Nikhil Bhargava (IIT Delhi) for providing detailed reviews of various
chapters of the book.

Nikhil Bhargava (IIT Delhi) developed the set of online homework problems and
solutions. Professor Sreekanth Malladi of Dakota State University developed the hacking
exercises. Sanjay Rao and Ruben Torres of Purdue developed the laboratory exercises that
appear in the IRC.

The following people contributed project assignments that appear in the instructor’s
supplement: Henning Schulzrinne (Columbia University), Cetin Kaya Koc (Oregon State
University), and David Balenson (Trusted Information Systems and George Washington
University). Kim McLaughlin developed the test bank.

Finally, I would like to thank the many people responsible for the publication of the
book, all of whom did their usual excellent job. This includes my editor Tracy Dunkelberger
and her assistants Melinda Hagerty and Allison Michael. Also, Jake Warde of Warde
Publishers managed the reviews.

With all this assistance, little remains for which I can take full credit. However, I am
proud to say that, with no help whatsoever, I selected all of the quotations.

ABOUT THE AUTHOR

William Stallings has made a unique contribution to understanding the broad sweep of tech-
nical developments in computer security, computer networking, and computer architecture.
He has authored 17 titles and, counting revised editions, a total of 42 books on various aspects
of these subjects. His writings have appeared in numerous ACM and IEEE publications,
including the Proceedings of the IEEE and ACM Computing Reviews.

He has 11 times received the award for the best Computer Science textbook of the
year from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical manager, and
an executive with several high-technology firms. He has designed and implemented both
TCP/IP-based and OSI-based protocol suites on a variety of computers and operating systems,
ranging from microcomputers to mainframes. As a consultant, he has advised government
agencies, computer and software vendors, and major users on the design, selection, and use of
networking software and products.

He created and maintains the Computer Science Student Resource Site at WilliamStallings
.com/StudentSupport.html. This site provides documents and links on a variety of subjects of
general interest to computer science students (and professionals). He is a member of the editorial
board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from M.L.T. in Computer Science and a B.S. from Notre
Dame in electrical engineering.

Xiv

INTRODUCTION

1.1

1.2
1.3

1.4

1.5
1.6
1.7
1.8
1.9

Computer Security Concepts

A Definition of Computer Security
Examples
The Challenges of Computer Security

The OSI Security Architecture
Security Attacks

Passive Attacks
Active Attacks

Security Services

Authentication
Access Control
Data Confidentiality
Data Integrity
Nonrepudiation
Availability Service

Security Mechanisms

A Model for Network Security
Standards

Outline of This Book

Recommended Reading

1.10 Internet and Web Resources

Web Sites for This Book
Other Web Sites
USENET Newsgroups

1.11 Key Terms, Review Questions, and Problems

2 CHAPTER 1 / INTRODUCTION

The combination of space, time, and strength that must be considered as the basic
elements of this theory of defense makes this a fairly complicated matter. Conse-
quently, it is not easy to find a fixed point of departure.

— On War, Carl Von Clausewitz

The art of war teaches us to rely not on the likelihood of the enemy’s not coming,
but on our own readiness to receive him; not on the chance of his not attacking,
but rather on the fact that we have made our position unassailable.

— The Art of War, Sun Tzu

The requirements of information security within an organization have undergone
two major changes in the last several decades. Before the widespread use of data pro-
cessing equipment, the security of information felt to be valuable to an organization
was provided primarily by physical and administrative means. An example of the
former is the use of rugged filing cabinets with a combination lock for storing sensi-
tive documents. An example of the latter is personnel screening procedures used dur-
ing the hiring process.

With the introduction of the computer, the need for automated tools for
protecting files and other information stored on the computer became evident. This
is especially the case for a shared system, such as a time-sharing system, and the
need is even more acute for systems that can be accessed over a public telephone
network, data network, or the Internet. The generic name for the collection of tools
designed to protect data and to thwart hackers is computer security.

The second major change that affected security is the introduction of
distributed systems and the use of networks and communications facilities for carry-
ing data between terminal user and computer and between computer and computer.
Network security measures are needed to protect data during their transmission. In
fact, the term network security is somewhat misleading, because virtually all busi-
ness, government, and academic organizations interconnect their data processing
equipment with a collection of interconnected networks. Such a collection is often
referred to as an internet,' and the term internet security is used.

There are no clear boundaries between these two forms of security. For exam-
ple, one of the most publicized types of attack on information systems is the com-
puter virus. A virus may be introduced into a system physically when it arrives on an
optical disk and is subsequently loaded onto a computer. Viruses may also arrive
over an internet. In either case, once the virus is resident on a computer system,
internal computer security tools are needed to detect and recover from the virus.

This book focuses on internet security, which consists of measures to deter,
prevent, detect, and correct security violations that involve the transmission of
information. That is a broad statement that covers a host of possibilities. To give
you a feel for the areas covered in this book, consider the following examples of
security violations:

@i
1

'We use the term internet with a lowercase “i” to refer to any interconnected collection of network. A
corporate intranet is an example of an internet. The Internet with a capital “I” may be one of the facilities
used by an organization to construct its internet.

1.1 / COMPUTER SECURITY CONCEPTS 3

1. User A transmits a file to user B. The file contains sensitive information (e.g.,
payroll records) that is to be protected from disclosure. User C, who is not
authorized to read the file, is able to monitor the transmission and capture a
copy of the file during its transmission.

2. A network manager, D, transmits a message to a computer, E, under its
management. The message instructs computer E to update an authorization file
to include the identities of a number of new users who are to be given access to
that computer. User F intercepts the message, alters its contents to add or
delete entries, and then forwards the message to E, which accepts the message
as coming from manager D and updates its authorization file accordingly.

3. Rather than intercept a message, user F constructs its own message with the
desired entries and transmits that message to E as if it had come from manager
D. Computer E accepts the message as coming from manager D and updates its
authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a message
to a server system to invalidate the employee’s account. When the invalidation is
accomplished, the server is to post a notice to the employee’s file as confirma-
tion of the action. The employee is able to intercept the message and delay it
long enough to make a final access to the server to retrieve sensitive informa-
tion. The message is then forwarded, the action taken, and the confirmation
posted. The employee’s action may go unnoticed for some considerable time.

5. A message is sent from a customer to a stockbroker with instructions for various
transactions. Subsequently, the investments lose value and the customer denies
sending the message.

Although this list by no means exhausts the possible types of security violations, it illus-
trates the range of concerns of network security.

This chapter provides a general overview of the subject matter that structures
the material in the remainder of the book. We begin with a general discussion of
network security services and mechanisms and of the types of attacks they are
designed for. Then we develop a general overall model within which the security
services and mechanisms can be viewed.

1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security
The NIST Computer Security Handbook [NIST95] defines the term computer security as

COMPUTER SECURITY

The protection afforded to an automated information system in order to attain the
applicable objectives of preserving the integrity, availability, and confidentiality of
information system resources (includes hardware, software, firmware, information/
data, and telecommunications).

4 CHAPTER 1 / INTRODUCTION

This definition introduces three key objectives that are at the heart of com-
puter security.

* Confidentiality: This term covers two related concepts:

Data’ confidentiality: Assures that private or confidential information is not
made available or disclosed to unauthorized individuals.

Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom that
information may be disclosed.

e Integrity: This term covers two related concepts:

Data integrity: Assures that information and programs are changed only in
a specified and authorized manner.

System integrity: Assures that a system performs its intended function in an
unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

e Availability: Assures that systems work promptly and service is not denied to
authorized users.

These three concepts form what is often referred to as the CIA triad (Figure 1.1).
The three concepts embody the fundamental security objectives for both data and
for information and computing services. For example, the NIST Standards for Security
Categoriation of Federal Information and Information Systems (FIPS 199) lists
confidentiality, integrity, and availability as the three security objectives for informa-
tion and for information systems. FIPS 199 provides a useful characterization of these
three objectives in terms of requirements and the definition of a loss of security in each
category.

services

Figure 1.1 The Security Requirements
Triad

ZRFC 2828 defines information as “facts and ideas, which can be represented (encoded) as various forms
of data,” and data as “information in a specific physical representation, usually a sequence of symbols
that have meaning; especially a representation of information that can be processed or produced by a
computer.” Security literature typically does not make much of a distinction, nor does this book.

1.1 / COMPUTER SECURITY CONCEPTS 5

¢ Confidentiality: Preserving authorized restrictions on information access
and disclosure, including means for protecting personal privacy and propri-
etary information. A loss of confidentiality is the unauthorized disclosure of
information.

e Integrity: Guarding against improper information modification or des-
truction, including ensuring information nonrepudiation and authenticity.
A loss of integrity is the unauthorized modification or destruction of
information.

* Availability: Ensuring timely and reliable access to and use of information. A loss
of availability is the disruption of access to or use of information or an informa-
tion system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present
a complete picture. Two of the most commonly mentioned are

e Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

* Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudiation,
deterrence, fault isolation, intrusion detection and prevention, and after-action
recovery and legal action. Because truly secure systems are not yet an achiev-
able goal, we must be able to trace a security breach to a responsible party.
Systems must keep records of their activities to permit later forensic analysis
to trace security breaches or to aid in transaction disputes.

Examples

We now provide some examples of applications that illustrate the requirements just
enumerated.? For these examples, we use three levels of impact on organizations or
individuals should there be a breach of security (i.e., a loss of confidentiality,
integrity, or availability). These levels are defined in FIPS 199:

e Low: The loss could be expected to have a limited adverse effect on organiza-
tional operations, organizational assets, or individuals. A limited adverse effect
means that, for example, the loss of confidentiality, integrity, or availability
might (i) cause a degradation in mission capability to an extent and duration
that the organization is able to perform its primary functions, but the effec-
tiveness of the functions is noticeably reduced; (ii) result in minor damage to
organizational assets; (iii) result in minor financial loss; or (iv) result in minor
harm to individuals.

3These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

6 CHAPTER 1 / INTRODUCTION

* Moderate: The loss could be expected to have a serious adverse effect on
organizational operations, organizational assets, or individuals. A serious
adverse effect means that, for example, the loss might (i) cause a significant
degradation in mission capability to an extent and duration that the organi-
zation is able to perform its primary functions, but the effectiveness of the
functions is significantly reduced; (ii) result in significant damage to organi-
zational assets; (iii) result in significant financial loss; or (iv) result in signifi-
cant harm to individuals that does not involve loss of life or serious,
life-threatening injuries.

e High: The loss could be expected to have a severe or catastrophic adverse
effect on organizational operations, organizational assets, or individuals. A
severe or catastrophic adverse effect means that, for example, the loss might
(i) cause a severe degradation in or loss of mission capability to an extent and
duration that the organization is not able to perform one or more of its pri-
mary functions; (ii) result in major damage to organizational assets; (iii) result
in major financial loss; or (iv) result in severe or catastrophic harm to individ-
uals involving loss of life or serious, life-threatening injuries.

ConNrFIDENTIALITY Student grade information is an asset whose confidentiality is
considered to be highly important by students. In the United States, the release of
such information is regulated by the Family Educational Rights and Privacy Act
(FERPA). Grade information should only be available to students, their parents,
and employees that require the information to do their job. Student enrollment
information may have a moderate confidentiality rating. While still covered by
FERPA, this information is seen by more people on a daily basis, is less likely to be
targeted than grade information, and results in less damage if disclosed. Directory
information (such as lists of students, faculty, or departmental lists) may be assigned
a low confidentiality rating or indeed no rating. This information is typically freely
available to the public and published on a school’s Web site.

InTEGRITY Several aspects of integrity are illustrated by the example of a
hospital patient’s allergy information stored in a database. The doctor should be
able to trust that the information is correct and current. Now suppose that an
employee (e.g., a nurse) who is authorized to view and update this information
deliberately falsifies the data to cause harm to the hospital. The database needs
to be restored to a trusted basis quickly, and it should be possible to trace the
error back to the person responsible. Patient allergy information is an example of
an asset with a high requirement for integrity. Inaccurate information could
result in serious harm or death to a patient and expose the hospital to massive
liability.

An example of an asset that may be assigned a moderate level of integrity
requirement is a Web site that offers a forum to registered users to discuss some
specific topic. Either a registered user or a hacker could falsify some entries or
deface the Web site. If the forum exists only for the enjoyment of the users, brings in
little or no advertising revenue, and is not used for something important such as
research, then potential damage is not severe. The Web master may experience
some data, financial, and time loss.

1.1 / COMPUTER SECURITY CONCEPTS 7

An example of a low-integrity requirement is an anonymous online poll. Many
Web sites, such as news organizations, offer these polls to their users with very few
safeguards. However, the inaccuracy and unscientific nature of such polls is well
understood.

Avareasicity The more critical a component or service, the higher is the level of
availability required. Consider a system that provides authentication services for
critical systems, applications, and devices. An interruption of service results in the
inability for customers to access computing resources and for the staff to access
the resources they need to perform critical tasks. The loss of the service translates
into a large financial loss due to lost employee productivity and potential
customer loss.

An example of an asset that typically would be rated as having a moderate
availability requirement is a public Web site for a university; the Web site provides
information for current and prospective students and donors. Such a site is not a
critical component of the university’s information system, but its unavailability will
cause some embarrassment.

An online telephone directory lookup application would be classified as a low-
availability requirement. Although the temporary loss of the application may be an
annoyance, there are other ways to access the information, such as a hardcopy direc-
tory or the operator.

The Challenges of Computer Security

Computer and network security is both fascinating and complex. Some of the reasons
include:

1. Security is not as simple as it might first appear to the novice. The require-
ments seem to be straightforward; indeed, most of the major requirements for
security services can be given self-explanatory, one-word labels: confidential-
ity, authentication, nonrepudiation, integrity. But the mechanisms used to
meet those requirements can be quite complex, and understanding them may
involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always
consider potential attacks on those security features. In many cases, successful
attacks are designed by looking at the problem in a completely different way,
therefore exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are often
counterintuitive. Typically, a security mechanism is complex, and it is not obvious
from the statement of a particular requirement that such elaborate measures are
needed. It is only when the various aspects of the threat are considered that elab-
orate security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide where to
use them. This is true both in terms of physical placement (e.g., at what points in
a network are certain security mechanisms needed) and in a logical sense [e.g., at
what layer or layers of an architecture such as TCP/IP (Transmission Control
Protocol/Internet Protocol) should mechanisms be placed].

8 CHAPTER 1 / INTRODUCTION

5.

10.

Security mechanisms typically involve more than a particular algorithm or
protocol. They also require that participants be in possession of some secret
information (e.g., an encryption key), which raises questions about the cre-
ation, distribution, and protection of that secret information. There also may
be a reliance on communications protocols whose behavior may complicate
the task of developing the security mechanism. For example, if the proper
functioning of the security mechanism requires setting time limits on the
transit time of a message from sender to receiver, then any protocol or net-
work that introduces variable, unpredictable delays may render such time
limits meaningless.

Computer and network security is essentially a battle of wits between a perpetra-
tor who tries to find holes and the designer or administrator who tries to close
them. The great advantage that the attacker has is that he or she need only find a
single weakness, while the designer must find and eliminate all weaknesses to
achieve perfect security.

There is a natural tendency on the part of users and system managers to perceive
little benefit from security investment until a security failure occurs.

Security requires regular, even constant, monitoring, and this is difficult in today’s
short-term, overloaded environment.

Security is still too often an afterthought to be incorporated into a system
after the design is complete rather than being an integral part of the design
process.

Many users (and even security administrators) view strong security as an
impediment to efficient and user-friendly operation of an information system
or use of information.

The difficulties just enumerated will be encountered in numerous ways as we

examine the various security threats and mechanisms throughout this book.

1.2 THE OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to evaluate and
choose various security products and policies, the manager responsible for com-
puter and network security needs some systematic way of defining the requirements
for security and characterizing the approaches to satisfying those requirements. This
is difficult enough in a centralized data processing environment; with the use of
local and wide area networks, the problems are compounded.

ITU-T* Recommendation X.800, Security Architecture for OSI, defines such a

systematic approach.5 The OSI security architecture is useful to managers as a way

“The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)
is a United Nations-sponsored agency that develops standards, called Recommendations, relating to
telecommunications and to open systems interconnection (OSI).

SThe OSI security architecture was developed in the context of the OST protocol architecture, which is
described in Appendix D. However, for our purposes in this chapter, an understanding of the OSI protocol
architecture is not required.

1.3 / SECURITY ATTACKS 9

Table 1.1 Threats and Attacks (RFC 2828)

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action,
or event that could breach security and cause harm. That is, a threat is a possible danger that might
exploit a vulnerability.

Attack

An assault on system security that derives from an intelligent threat. That is, an intelligent act that is
a deliberate attempt (especially in the sense of a method or technique) to evade security services and
violate the security policy of a system.

of organizing the task of providing security. Furthermore, because this architecture
was developed as an international standard, computer and communications vendors
have developed security features for their products and services that relate to this
structured definition of services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract,
overview of many of the concepts that this book deals with. The OSI security archi-
tecture focuses on security attacks, mechanisms, and services. These can be defined
briefly as

e Security attack: Any action that compromises the security of information
owned by an organization.

* Security mechanism: A process (or a device incorporating such a process) that
is designed to detect, prevent, or recover from a security attack.

e Security service: A processing or communication service that enhances the
security of the data processing systems and the information transfers of an
organization. The services are intended to counter security attacks, and they
make use of one or more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used to mean more
or less the same thing. Table 1.1 provides definitions taken from RFC 2828, Internet
Security Glossary.

1.3 SECURITY ATTACKS

A useful means of classifying security attacks, used both in X.800 and RFC 2828, is
in terms of passive attacks and active attacks. A passive attack attempts to learn or
make use of information from the system but does not affect system resources. An
active attack attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions.
The goal of the opponent is to obtain information that is being transmitted. Two types
of passive attacks are the release of message contents and traffic analysis.

10 CHAPTER 1 / INTRODUCTION

Read contents of
message from Bob
to Alice

Darth

Internet or
other comms facility

Observe pattern of
messages from Bob
to Alice

Internet or
other comms facility

(b) Traffic analysis
Figure 1.2 Passive Network Security Attacks

The release of message contents is easily understood (Figure 1.2a). A tele-
phone conversation, an electronic mail message, and a transferred file may contain
sensitive or confidential information. We would like to prevent an opponent from
learning the contents of these transmissions.

1.3 / SECURITY ATTACKS 11

A second type of passive attack, traffic analysis, is subtler (Figure 1.2b).
Suppose that we had a way of masking the contents of messages or other
information traffic so that opponents, even if they captured the message,
could not extract the information from the message. The common technique
for masking contents is encryption. If we had encryption protection in place,
an opponent still might be able to observe the pattern of these messages. The
opponent could determine the location and identity of communicating hosts
and could observe the frequency and length of messages being exchanged.
This information might be useful in guessing the nature of the communica-
tion that was taking place.

Passive attacks are very difficult to detect, because they do not
involve any alteration of the data. Typically, the message traffic is sent and
received in an apparently normal fashion, and neither the sender nor the
receiver is aware that a third party has read the messages or observed the
traffic pattern. However, it is feasible to prevent the success of these
attacks, usually by means of encryption. Thus, the emphasis in dealing with
passive attacks is on prevention rather than detection.

Active Attacks

Active attacks involve some modification of the data stream or the creation
of a false stream and can be subdivided into four categories: masquerade,
replay, modification of messages, and denial of service.

A masquerade takes place when one entity pretends to be a different
entity (Figure 1.3a). A masquerade attack usually includes one of the other
forms of active attack. For example, authentication sequences can be cap-
tured and replayed after a valid authentication sequence has taken place,
thus enabling an authorized entity with few privileges to obtain extra privi-
leges by impersonating an entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent
retransmission to produce an unauthorized effect (Figure 1.3b).

Modification of messages simply means that some portion of a
legitimate message is altered, or that messages are delayed or reordered,
to produce an unauthorized effect (Figure 1.3¢). For example, a message
meaning “Allow John Smith to read confidential file accounts” is
modified to mean “Allow Fred Brown to read confidential file
accounts.”

The denial of service prevents or inhibits the normal use or manage-
ment of communications facilities (Figure 1.3d). This attack may have a
specific target; for example, an entity may suppress all messages directed
to a particular destination (e.g., the security audit service). Another form
of service denial is the disruption of an entire network—either by dis-
abling the network or by overloading it with messages so as to degrade
performance.

Active attacks present the opposite characteristics of passive attacks.
Whereas passive attacks are difficult to detect, measures are available to

12 CHAPTER 1 / INTRODUCTION

prevent their success. On the other hand, it is quite difficult to prevent active attacks
absolutely because of the wide variety of potential physical, software, and network
vulnerabilities. Instead, the goal is to detect active attacks and to recover from any dis-
ruption or delays caused by them. If the detection has a deterrent effect, it also may
contribute to prevention.

Darth Message from Darth
that appears to be
from Bob

Internet or
other comms facility

(a) Masquerade

Darth Capture message from
Bob to Alice; later
replay message to Alice

Internet or
other comms facility

(b) Replay
Figure 1.3 Active Attacks

1.4 / SECURITY SERVICES 13

Darth modifies
message from Bob
to Alice

Internet or
other comms facility

(c) Modification of messages

Darth disrupts service
provided by server

Internet or
other comms facility

Server

(d) Denial of service
Figure 1.3 Active Attacks (Continued)

1.4 SECURITY SERVICES

X.800 defines a security service as a service that is provided by a protocol layer of
communicating open systems and that ensures adequate security of the systems or
of data transfers. Perhaps a clearer definition is found in RFC 2828, which provides
the following definition: A processing or communication service that is provided by

14 CHAPTER 1 / INTRODUCTION

a system to give a specific kind of protection to system resources; security services
implement security policies and are implemented by security mechanisms.

X.800 divides these services into five categories and fourteen specific services
(Table 1.2). We look at each category in turn.’

Table 1.2 Security Services (X.800)

AUTHENTICATION DATA INTEGRITY
The assurance that the communicating entity is the The assurance that data received are exactly as
one that it claims to be. sent by an authorized entity (i.e., contain no

modification, insertion, deletion, or replay).
Peer Entity Authentication

Used in association with a logical connection to Connection Integrity with Recovery

provide confidence in the identity of the entities Provides for the integrity of all user data on a

connected. connection and detects any modification, insertion,
deletion, or replay of any data within an entire data

Data-Origin Authentication sequence, with recovery attempted.

In a connectionless transfer, provides assurance that

the source of received data is as claimed. Connection Integrity without Recovery

As above, but provides only detection without recovery.
ACCESS CONTROL

The prevention of unauthorized use of a resource
(i-e., this service controls who can have access to a
resource, under what conditions access can occur,
and what those accessing the resource are allowed

Selective-Field Connection Integrity

Provides for the integrity of selected fields within the
user data of a data block transferred over a connec-
tion and takes the form of determination of whether
the selected fields have been modified, inserted,

to do). deleted, or replayed.
DATA CONFIDENTIALITY Connectionless Integrity
The protection of data from unauthorized Provides for the integrity of a single connectionless
disclosure. data block and may take the form of detection of
data modification. Additionally, a limited form of
Connection Confidentiality replay detection may be provided.

The protection of all user data on a connection.
Selective-Field Connectionless Integrity
Connectionless Confidentiality Provides for the integrity of selected fields within a single
The protection of all user data in a single data block. connectionless data block; takes the form of determina-

. . . tion of whether the selected fields have been modified.
Selective-Field Confidentiality

The confidentiality of selected fields within the user NONREPUDIATION

data on a connection or in a single data block. .)))
Provides protection against denial by one of the

Traffic-Flow Confidentiality entities involved in a communication of having
The protection of the information that might be participated in all or part of the communication.

derived from observation of traffic flows.
Nonrepudiation, Origin

Proof that the message was sent by the specified party.

Nonrepudiation, Destination
Proof that the message was received by the specified

party.

®There is no universal agreement about many of the terms used in the security literature. For example,
the term integrity is sometimes used to refer to all aspects of information security. The term authentication
is sometimes used to refer both to verification of identity and to the various functions listed under
integrity in this chapter. Our usage here agrees with both X.800 and RFC 2828.

1.4 / SECURITY SERVICES 15

Authentication

The authentication service is concerned with assuring that a communication is
authentic. In the case of a single message, such as a warning or alarm signal, the
function of the authentication service is to assure the recipient that the message is
from the source that it claims to be from. In the case of an ongoing interaction,
such as the connection of a terminal to a host, two aspects are involved. First, at
the time of connection initiation, the service assures that the two entities are
authentic (that is, that each is the entity that it claims to be). Second, the service
must assure that the connection is not interfered with in such a way that a third
party can masquerade as one of the two legitimate parties for the purposes of
unauthorized transmission or reception.
Two specific authentication services are defined in X.800:

* Peer entity authentication: Provides for the corroboration of the identity of a
peer entity in an association. Two entities are considered peers if they imple-
ment the same protocol in different systems (e.g., two TCP modules in two
communicating systems). Peer entity authentication is provided for use at the
establishment of or during the data transfer phase of a connection. It attempts
to provide confidence that an entity is not performing either a masquerade or
an unauthorized replay of a previous connection.

e Data origin authentication: Provides for the corroboration of the source of a
data unit. It does not provide protection against the duplication or modification
of data units. This type of service supports applications like electronic mail,
where there are no prior interactions between the communicating entities.

Access Control

In the context of network security, access control is the ability to limit and control
the access to host systems and applications via communications links. To achieve
this, each entity trying to gain access must first be identified, or authenticated, so
that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With
respect to the content of a data transmission, several levels of protection can be
identified. The broadest service protects all user data transmitted between two users
over a period of time. For example, when a TCP connection is set up between two
systems, this broad protection prevents the release of any user data transmitted over
the TCP connection. Narrower forms of this service can also be defined, including
the protection of a single message or even specific fields within a message. These
refinements are less useful than the broad approach and may even be more complex
and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from
analysis. This requires that an attacker not be able to observe the source and des-
tination, frequency, length, or other characteristics of the traffic on a communica-
tions facility.

16 CHAPTER 1 / INTRODUCTION

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single message,
or selected fields within a message. Again, the most useful and straightforward
approach is total stream protection.

A connection-oriented integrity service deals with a stream of messages
and assures that messages are received as sent with no duplication, insertion, mod-
ification, reordering, or replays. The destruction of data is also covered under this
service. Thus, the connection-oriented integrity service addresses both message
stream modification and denial of service. On the other hand, a connectionless
integrity service deals with individual messages without regard to any larger con-
text and generally provides protection against message modification only.

We can make a distinction between service with and without recovery. Because
the integrity service relates to active attacks, we are concerned with detection rather
than prevention. If a violation of integrity is detected, then the service may simply report
this violation, and some other portion of software or human intervention is required to
recover from the violation. Alternatively, there are mechanisms available to recover
from the loss of integrity of data, as we will review subsequently. The incorporation of
automated recovery mechanisms is typically the more attractive alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted mes-
sage. Thus, when a message is sent, the receiver can prove that the alleged sender in
fact sent the message. Similarly, when a message is received, the sender can prove
that the alleged receiver in fact received the message.

Availability Service

Both X.800 and RFC 2828 define availability to be the property of a system or a sys-
tem resource being accessible and usable upon demand by an authorized system
entity, according to performance specifications for the system (i.e., a system is avail-
able if it provides services according to the system design whenever users request
them). A variety of attacks can result in the loss of or reduction in availability. Some
of these attacks are amenable to automated countermeasures, such as authentica-
tion and encryption, whereas others require some sort of physical action to prevent
or recover from loss of availability of elements of a distributed system.

X.800 treats availability as a property to be associated with various security
services. However, it makes sense to call out specifically an availability service. An
availability service is one that protects a system to ensure its availability. This service
addresses the security concerns raised by denial-of-service attacks. It depends on
proper management and control of system resources and thus depends on access
control service and other security services.

1.5 SECURITY MECHANISMS

Table 1.3 lists the security mechanisms defined in X.800. The mechanisms are divided into
those that are implemented in a specific protocol layer, such as TCP or an application-
layer protocol, and those that are not specific to any particular protocol layer or security

Table 1.3 Security Mechanisms (X.800)

1.5 / SECURITY MECHANISMS 17

SPECIFIC SECURITY MECHANISMS

May be incorporated into the appropriate protocol
layer in order to provide some of the OSI security
services.

Encipherment

The use of mathematical algorithms to transform
data into a form that is not readily intelligible. The
transformation and subsequent recovery of the
data depend on an algorithm and zero or more
encryption keys.

Digital Signature

Data appended to, or a cryptographic transformation
of, a data unit that allows a recipient of the data unit
to prove the source and integrity of the data unit and
protect against forgery (e.g., by the recipient).

Access Control
A variety of mechanisms that enforce access rights to
resources.

Data Integrity
A variety of mechanisms used to assure the integrity
of a data unit or stream of data units.

Authentication Exchange
A mechanism intended to ensure the identity of an
entity by means of information exchange.

Traffic Padding
The insertion of bits into gaps in a data stream to
frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure
routes for certain data and allows routing changes,
especially when a breach of security is suspected.

Notarization
The use of a trusted third party to assure certain
properties of a data exchange.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular
OSI security service or protocol layer.

Trusted Functionality
That which is perceived to be correct with respect to
some criteria (e.g., as established by a security policy).

Security Label

The marking bound to a resource (which may be a
data unit) that names or designates the security
attributes of that resource.

Event Detection
Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a
security audit, which is an independent review and
examination of system records and activities.

Security Recovery

Deals with requests from mechanisms, such as event
handling and management functions, and takes
recovery actions.

service. These mechanisms will be covered in the appropriate places in the book, so we do
not elaborate now except to comment on the definition of encipherment. X.800 distin-
guishes between reversible encipherment mechanisms and irreversible encipherment
mechanisms. A reversible encipherment mechanism is simply an encryption algorithm
that allows data to be encrypted and subsequently decrypted. Irreversible encipherment
mechanisms include hash algorithms and message authentication codes, which are used in
digital signature and message authentication applications.

Table 1.4, based on one in X.800, indicates the relationship between security

services and security mechanisms.

81

Table 1.4 Relationship Between Security Services and Mechanisms

Mechanism

Digital Access Data Authentication Traffic Routing
Service Encipherment | Signature | Control | Integrity Exchange Padding | Control | Notarization
Peer Entity Authentication Y Y Y
Data-Origin Authentication Y Y
Access Control Y
Confidentiality Y Y
Traffic-Flow Confidentiality Y Y Y
Data Integrity Y Y Y
Nonrepudiation Y Y Y
Auvailability Y Y

1.6 / A MODEL FOR NETWORK SECURITY 19

1.6 A MODEL FOR NETWORK SECURITY

A model for much of what we will be discussing is captured, in very general
terms, in Figure 1.4. A message is to be transferred from one party to another
across some sort of Internet service. The two parties, who are the principals in this
transaction, must cooperate for the exchange to take place. A logical information
channel is established by defining a route through the Internet from source to
destination and by the cooperative use of communication protocols (e.g.,
TCP/IP) by the two principals.

Security aspects come into play when it is necessary or desirable to protect
the information transmission from an opponent who may present a threat to
confidentiality, authenticity, and so on. All of the techniques for providing security
have two components:

1. A security-related transformation on the information to be sent. Examples
include the encryption of the message, which scrambles the message so that
it is unreadable by the opponent, and the addition of a code based on the
contents of the message, which can be used to verify the identity of the
sender.

2. Some secret information shared by the two principals and, it is hoped, unknown
to the opponent. An example is an encryption key used in conjunction with the
transformation to scramble the message before transmission and unscramble it
on reception.’

Trusted third party
(e.g., arbiter, distributer
of secret information)

Sender . Recipient
Information
Security-related channel Security-related
@ transformation o g o g transformation @
80 =)) 0
g N £ —{g—' £ 3) 5
7] Q9 wn 9w @
D D D D D]
- \f/ Ly 3 \T/ s
Secret Secret
information information
Opponent

Figure 1.4 Model for Network Security

"Chapter 3 discusses a form of encryption, known as asymmetric encryption, in which only one of the two
principals needs to have the secret information.

20 CHAPTER 1 / INTRODUCTION

A trusted third party may be needed to achieve secure transmission. For
example, a third party may be responsible for distributing the secret information to
the two principals while keeping it from any opponent. Or a third party may be
needed to arbitrate disputes between the two principals concerning the authenticity
of a message transmission.

This general model shows that there are four basic tasks in designing a particular
security service:

1. Design an algorithm for performing the security-related transformation. The
algorithm should be such that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.
3. Develop methods for the distribution and sharing of the secret information.

4. Specity a protocol to be used by the two principals that makes use of the security
algorithm and the secret information to achieve a particular security service.

Parts One and Two of this book concentrate on the types of security mechanisms
and services that fit into the model shown in Figure 1.4. However, there are other
security-related situations of interest that do not neatly fit this model but are consid-
ered in this book. A general model of these other situations is illustrated by Figure 1.5,
which reflects a concern for protecting an information system from unwanted access.
Most readers are familiar with the concerns caused by the existence of hackers who
attempt to penetrate systems that can be accessed over a network. The hacker can be
someone who, with no malign intent, simply gets satisfaction from breaking and enter-
ing a computer system. The intruder can be a disgruntled employee who wishes to do
damage or a criminal who seeks to exploit computer assets for financial gain (e.g.,
obtaining credit card numbers or performing illegal money transfers).

Another type of unwanted access is the placement in a computer system of
logic that exploits vulnerabilities in the system and that can affect application pro-
grams as well as utility programs, such as editors and compilers. Programs can pre-
sent two kinds of threats:

1. Information access threats: Intercept or modify data on behalf of users who
should not have access to that data.

2. Service threats: Exploit service flaws in computers to inhibit use by legitimate

users.
Information System
Computing resources
Opponent (processor, memory, 1/0)
— human (e.g., hacker) Data
—software (' ,
(e.g., virus, worm) Processes
Access Channel SRS
Gatekeeper
function Internal security controls

Figure 1.5 Network Access Security Model

1.8 / OUTLINE OF THIS BOOK 21

Viruses and worms are two examples of software attacks. Such attacks can be
introduced into a system by means of a disk that contains the unwanted logic con-
cealed in otherwise useful software. They also can be inserted into a system across a
network; this latter mechanism is of more concern in network security.

The security mechanisms needed to cope with unwanted access fall into two
broad categories (see Figure 1.5). The first category might be termed a gatekeeper
function. It includes password-based login procedures that are designed to deny
access to all but authorized users and screening logic that is designed to detect and
reject worms, viruses, and other similar attacks. Once either an unwanted user or
unwanted software gains access, the second line of defense consists of a variety of
internal controls that monitor activity and analyze stored information in an attempt to
detect the presence of unwanted intruders. These issues are explored in Part Three.

1.7 STANDARDS

Many of the security techniques and applications described in this book have been
specified as standards. Additionally, standards have been developed to cover man-
agement practices and the overall architecture of security mechanisms and services.
Throughout this book, we describe the most important standards in use or being
developed for various aspects of cryptography and network security. Various organi-
zations have been involved in the development or promotion of these standards.
The most important (in the current context) of these organizations are as follows.

* National Institute of Standards and Technology: NIST is a U.S. federal agency
that deals with measurement science, standards, and technology related to
U.S. government use and to the promotion of U.S. private-sector innovation.
Despite its national scope, NIST Federal Information Processing Standards
(FIPS) and Special Publications (SP) have a worldwide impact.

 Internet Society: ISOC is a professional membership society with worldwide
organizational and individual membership. It provides leadership in address-
ing issues that confront the future of the Internet and is the organization home
for the groups responsible for Internet infrastructure standards, including the
Internet Engineering Task Force (IETF) and the Internet Architecture Board
(IAB). These organizations develop Internet standards and related specifica-
tions, all of which are published as Requests for Comments (RFCs).

A more detailed discussion of these organizations is contained in Appendix C.

1.8 OUTLINE OF THIS BOOK

This chapter serves as an introduction to the entire book. The remainder of the book
is organized into three parts.

Part One: Provides a concise survey of the cryptographic algorithms and proto-
cols underlying network security applications, including encryption,
hash functions, and digital signatures.

22 CHAPTER 1 / INTRODUCTION

Part Two: Examines the use of cryptographic algorithms and security proto-
cols to provide security over networks and the Internet. Topics cov-
ered include key management, user authentication, transport-level
security, wireless network security, e-mail security, and IP security.

Part Three: Deals with security facilities designed to protect a computer sys-
tem from security threats, including intruders, viruses, and worms.
This part also looks at firewall technology.

In addition, two online chapters cover network management security and legal
and ethical issues.

1.9 RECOMMENDED READING

[STALOS] provides a broad introduction to computer security. [SCHNO0] is valuable reading
for any practitioner in the field of computer or network security: It discusses the limitations of
technology (and cryptography in particular) in providing security and the need to consider
the hardware, the software implementation, the networks, and the people involved in provid-
ing and attacking security.

It is useful to read some of the classic tutorial papers on computer security; these provide
a historical perspective from which to appreciate current work and thinking. The papers to read
are [WARE79], [BROW72], [SALT75], [SHAN77], and [SUMMS84]. Two more recent, short
treatments of computer security are [ANDRO04] and [LAMPO04]. [NIST95] is an exhaustive (290
pages) treatment of the subject. Another good treatment is [NRC91]. Also useful is [FRAS97].

ANDRO04 Andrews, M., and Whittaker, J. “Computer Security.” IEEE Security and
Privacy, September/October 2004.

BROW?72 Browne, P. “Computer Security — A Survey.” ACM SIGMIS Database, Fall 1972.

FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.

LAMP04 Lampson, B. “Computer Security in the Real World.” Computer, June 2004.

NIST9S National Institute of Standards and Technology. An Introduction to Computer
Security: The NIST Handbook. Special Publication 800-12. October 1995.

NRC91 National Research Council. Computers at Risk: Safe Computing in the
Information Age. Washington, D.C.: National Academy Press, 1991.

SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer
Systems.” Proceedings of the IEEE, September 1975.

SCHNO0 Schneier, B. Secrets and Lies: Digital Security in a Networked World. New
York: Wiley 2000.

SHAN77 Shanker, K. “The Total Computer Security Problem: An Overview.”
Computer, June 1977.

STALO8 Stallings, W., and Brown, L. Computer Security. Upper Saddle River, NJ:
Prentice Hall, 2008.

SUMMBS84 Summers, R. “An Overview of Computer Security.” IBM Systems durnal ,
Vol. 23, No. 4, 1984.

WARE?79 Ware, W., ed. Security Controls for Computer Systems. RAND Report 609-1.
October 1979. http://www.rand.org/pubs/reports/R609-1/R609.1.html

1.10 / INTERNET AND WEB RESOURCES 23

1.10 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web to support this book
and to help one keep up with developments in this field.

Web Sites for This Book

There is a Web page for this book at WilliamStallings.com/NetSec/NetSecde.html. The site
includes the following:

* Useful Web sites: There are links to other relevant Web sites organized by chapter,
including the sites listed in this section and throughout this book.

* Online documents: Link to the Companion Website at Pearson that includes supple-
mental online chapters and appendices, homework problems and solutions, impor-
tant papers from the literature, and other supporting documents. See Preface for
details.

e Errata sheet: An errata list for this book will be maintained and updated as needed.
Please e-mail any errors that you spot to me. Errata sheets for my other books are at
WilliamStallings.com.

* Internet mailing list: The site includes sign-up information for the book’s Internet mail-
ing list.
e Network security courses: There are links to home pages for courses based on this

book; these pages may be useful to instructors in providing ideas about how to struc-
ture their course.

I also maintain the Computer Science Student Resource Site at WilliamStallings.com/
StudentSupport.html. The purpose of this site is to provide documents, information, and links
for computer science students and professionals. Links and documents are organized into six
categories:

° Math: Includes a basic math refresher, a queuing analysis primer, a number system
primer, and links to numerous math sites.

* How-to: Advice and guidance for solving homework problems, writing technical
reports, and preparing technical presentations.

* Research resources: Links to important collections of papers, technical reports, and
bibliographies.

* Computer science careers: Useful links and documents for those considering a career
in computer science.

* Miscellaneous: A variety of other interesting documents and links.

° Humor and other diversions: You have to take your mind off your work once in a
while.

24 CHAPTER 1 / INTRODUCTION

Other Web Sites

There are numerous Web sites that provide information related to the topics of this
book. In subsequent chapters, pointers to specific Web sites can be found in the
Recommended Reading and Web Sites section. Because the addresses for Web sites tend
to change frequently, I have not included URLs in the book. For all of the Web sites
listed in the book, the appropriate link can be found at this book’s Web site. Other links
not mentioned in this book will be added to the Web site over time.

The following Web sites are of general interest related to cryptography and network security.

o IETF Security Area: Material related to Internet security standardization efforts.

* Computer and Network Security Reference Index: A good index to vendor and
commercial products, frequently asked questions (FAQs), newsgroup archives,
papers, and other Web sites.

* The Cryptography FAQ: Lengthy and worthwhile FAQ covering all aspects of
cryptography.

* Tom Dunigan’s Security Page: An excellent list of pointers to cryptography and
network security Web sites.

* Helger Lipmaa’s Cryptology Pointers: Another excellent list of pointers to cryptography
and network security Web sites.

* IEEE Technical Committee on Security and Privacy: Copies of their newsletter and
information on IEEE-related activities.

e Computer Security Resource Center: Maintained by the National Institute of
Standards and Technology (NIST); contains a broad range of information on security
threats, technology, and standards.

* Security Focus: A wide variety of security information with an emphasis on vendor
products and end-user concerns.

* SANS Institute: Similar to Security Focus. Extensive collection of white papers.

* Center for Internet Security: Provides freeware benchmark and scoring tools for eval-
uating security of operating systems, network devices, and applications. Includes case
studies and technical papers.

¢ Institute for Security and Open Methodologies: An open, collaborative security
research community. Lots of interesting information.

USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of network security or cryp-
tography. As with virtually all USENET groups, there is a high noise-to-signal ratio, but it is
worth experimenting to see if any meet your needs. The most relevant are the following:

* sci.crypt.research: The best group to follow. This is a moderated newsgroup that deals
with research topics; postings must have some relationship to the technical aspects of

cryptology.

1.11 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 25

sci.crypt: A general discussion of cryptology and related topics.
sci.crypt.random-numbers: A discussion of cryptographic strength randomness.
alt.security: A general discussion of security topics.

comp.security.misc: A general discussion of computer security topics.
comp.security.firewalls: A discussion of firewall products and technology.
comp.security.announce: News and announcements from CERT.

comp.risks: A discussion of risks to the public from computers and users.

comp.virus: A moderated discussion of computer viruses.

In addition, there are a number of forums dealing with cryptography available on the

Internet. Among the most worthwhile are

Security and Cryptography forum: Sponsored by DevShed. Discusses issues related to cod-
ing, server applications, network protection, data protection, firewalls, ciphers, and the like.

Cryptography forum: On Topix. Fairly good focus on technical issues.

Security forums: On WindowsSecurity.com. Broad range of forums, including crypto-
graphic theory, cryptographic software, firewalls, and malware.

Links to these forums are provided at this book’s Web site.

1.11 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access control
active threat
authentication
authenticity
availability

data confidentiality
data integrity

denial of service
encryption

integrity

intruder

masquerade
nonrepudiation

OSI security architecture

passive threat
replay

security attacks
security mechanisms
security services
traffic analysis

Review Questions

1.1
1.2
1.3
1.4
1.5

What is the OSI security architecture?

What is the difference between passive and active security threats?
List and briefly define categories of passive and active security attacks.
List and briefly define categories of security services.

List and briefly define categories of security mechanisms.

Problems

1.1

Consider an automated teller machine (ATM) in which users provide a personal
identification number (PIN) and a card for account access. Give examples of confi-
dentiality, integrity, and availability requirements associated with the system. In each
case, indicate the degree of importance of the requirement.

26 CHAPTER 1 / INTRODUCTION

1.2

1.3

1.4

1.5

1.6

Repeat Problem 1.1 for a telephone switching system that routes calls through a
switching network based on the telephone number requested by the caller.

Consider a desktop publishing system used to produce documents for various
organizations.

a.

b.

C.

Give an example of a type of publication for which confidentiality of the stored
data is the most important requirement.

Give an example of a type of publication in which data integrity is the most
important requirement.

Give an example in which system availability is the most important requirement.

For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.

a.

b.

g

An organization managing public information on its Web server.

A law-enforcement organization managing extremely sensitive investigative
information.

A financial organization managing routine administrative information (not
privacy-related information).

An information system used for large acquisitions in a contracting organization that
contains both sensitive, pre-solicitation phase contract information and routine
administrative information. Assess the impact for the two data sets separately and
the information system as a whole.

A power plant contains a SCADA (supervisory control and data acquisition) system
controlling the distribution of electric power for a large military installation.
The SCADA system contains both real-time sensor data and routine administrative
information. Assess the impact for the two data sets separately and the information
system as a whole.

Draw a matrix similar to Table 1.4 that shows the relationship between security
services and attacks.

Draw a matrix similar to Table 1.4 that shows the relationship between security
mechanisms and attacks.

PART 1: CRYPTOGRAPHY

SYMMETRIC ENCRYPTION AND
MESSAGE CONFIDENTIALITY

2.1 Symmetric Encryption Principles

Cryptography
Cryptanalysis
Feistel Cipher Structure

2.2 Symmetric Block Encryption Algorithms

Data Encryption Standard
Triple DES
Advanced Encryption Standard

2.3 Random and Pseudorandom Numbers

The Use of Random Numbers
TRNGs, PRNGs, and PRFs
Algorithm Design

2.4 Stream Ciphers and RC4

Stream Cipher Structure
The RC4 Algorithm

2.5 Cipher Block Modes of Operation

Electronic Codebook Mode
Cipher Block Chaining Mode
Cipher Feedback Mode
Counter Mode

2.6 Recommended Reading and Web Sites

2.7 Key Terms, Review Questions, and Problems

27

28 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

All the afternoon Mungo had been working on Stern’s code, principally with the
aid of the latest messages which he had copied down at the Nevin Square drop.
Stern was very confident. He must be well aware London Central knew about that
drop. It was obvious that they didn’t care how often Mungo read their messages, so
confident were they in the impenetrability of the code.

— Talking to Strange Men, Ruth Rendell

Amongst the tribes of Central Australia every man, woman, and child has a secret
or sacred name which is bestowed by the older men upon him or her soon after
birth, and which is known to none but the fully initiated members of the group. This
secret name is never mentioned except upon the most solemn occasions; to utter it
in the hearing of men of another group would be a most serious breach of tribal
custom. When mentioned at all, the name is spoken only in a whisper, and not until
the most elaborate precautions have been taken that it shall be heard by no one but
members of the group. The native thinks that a stranger knowing his secret name
would have special power to work him ill by means of magic.

—The Golden Bough, Sir James George Frazer

Symmetric encryption, also referred to as conventional encryption, secret-key, or
single-key encryption, was the only type of encryption in use prior to the develop-
ment of public-key encryption in the late 1970s.! It remains by far the most widely
used of the two types of encryption.

This chapter begins with a look at a general model for the symmetric encryp-
tion process; this will enable us to understand the context within which the
algorithms are used. Then we look at three important block encryption algorithms:
DES, triple DES, and AES. This is followed by a discussion of random and
pseudorandom number generation. Next, the chapter introduces symmetric stream
encryption and describes the widely used stream cipher RC4. Finally, we look at the
important topic of block cipher modes of operation.

2.1 SYMMETRIC ENCRYPTION PRINCIPLES

A symmetric encryption scheme has five ingredients (Figure 2.1):

¢ Plaintext: This is the original message or data that is fed into the algorithm as
input.

¢ Encryption algorithm: The encryption algorithm performs various substitutions
and transformations on the plaintext.

e Secret key: The secret key is also input to the algorithm. The exact substitutions
and transformations performed by the algorithm depend on the key.

1Public-key encryption was first described in the open literature in 1976; the National Security Agency
(NSA) claims to have discovered it some years earlier.

2.1 / SYMMETRIC ENCRYPTION PRINCIPLES 29

Secret key shared by Secret key shared by
sender and recipient sender and recipient
&‘ (
7 K iw K
— Transmitted .
= X ciphertext o 5 =
| — _—
= Y = E[K, X] X =DIK,Y] |=—_
Plaintext Plaintext
input Encryption algorithm Decryption algorithm output
(e.g., AES) (reverse of encryption
algorithm)

Figure 2.1 Simplified Model of Symmetric Encryption

¢ Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

* Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the same secret key and produces the orig-
inal plaintext.

There are two requirements for secure use of symmetric encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the
algorithm to be such that an opponent who knows the algorithm and has
access to one or more ciphertexts would be unable to decipher the ciphertext
or figure out the key. This requirement is usually stated in a stronger form: The
opponent should be unable to decrypt ciphertext or discover the key even if he
or she is in possession of a number of ciphertexts together with the plaintext
that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in
a secure fashion and must keep the key secure. If someone can discover
the key and knows the algorithm, all communication using this key is
readable.

It is important to note that the security of symmetric encryption depends on
the secrecy of the key, not the secrecy of the algorithm. That is, it is assumed that it is
impractical to decrypt a message on the basis of the ciphertext plus knowledge of
the encryption/decryption algorithm. In other words, we do not need to keep the
algorithm secret; we need to keep only the key secret.

This feature of symmetric encryption is what makes it feasible for widespread
use. The fact that the algorithm need not be kept secret means that manufacturers
can and have developed low-cost chip implementations of data encryption algo-
rithms. These chips are widely available and incorporated into a number of products.
With the use of symmetric encryption, the principal security problem is maintaining
the secrecy of the key.

30 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

Cryptography
Cryptographic systems are generically classified along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All
encryption algorithms are based on two general principles: substitution, in
which each element in the plaintext (bit, letter, group of bits or letters) is
mapped into another element, and transposition, in which elements in the
plaintext are rearranged. The fundamental requirement is that no information
be lost (that is, that all operations be reversible). Most systems, referred to as
product systems, involve multiple stages of substitutions and transpositions.

2. The number of keys used. If both sender and receiver use the same key, the system
is referred to as symmetric, single-key, secret-key, or conventional encryption. If the
sender and receiver each use a different key, the system is referred to as asymmetric,
two-key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the input
one block of elements at a time, producing an output block for each input
block. A stream cipher processes the input elements continuously, producing
output one element at a time, as it goes along.

Cryptanalysis

The process of attempting to discover the plaintext or key is known as cryptanalysis.
The strategy used by the cryptanalyst depends on the nature of the encryption
scheme and the information available to the cryptanalyst.

Table 2.1 summarizes the various types of cryptanalytic attacks based on the
amount of information known to the cryptanalyst. The most difficult problem is
presented when all that is available is the ciphertext only. In some cases, not even the
encryption algorithm is known, but in general, we can assume that the opponent
does know the algorithm used for encryption. One possible attack under these
circumstances is the brute-force approach of trying all possible keys. If the key space
is very large, this becomes impractical. Thus, the opponent must rely on an analysis
of the ciphertext itself, generally applying various statistical tests to it. To use this
approach, the opponent must have some general idea of the type of plaintext that is
concealed, such as English or French text, an EXE file, a Java source listing, an
accounting file, and so on.

The ciphertext-only attack is the easiest to defend against because the opponent
has the least amount of information to work with. In many cases, however, the analyst
has more information. The analyst may be able to capture one or more plaintext
messages as well as their encryptions. Or the analyst may know that certain plain-
text patterns will appear in a message. For example, a file that is encoded in the
Postscript format always begins with the same pattern, or there may be a standardized
header or banner to an electronic funds transfer message, and so on. All of these are
examples of known plaintext. With this knowledge, the analyst may be able to deduce
the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some general

2.1 / SYMMETRIC ENCRYPTION PRINCIPLES 31

Table 2.1 Types of Attacks on Encrypted Messages

Type of Attack

Known to Cryptanalyst

Ciphertext only

¢ Encryption algorithm

e Ciphertext to be decoded

Known plaintext

¢ Encryption algorithm

e Ciphertext to be decoded

* One or more plaintext—ciphertext pairs formed with the secret key

Chosen plaintext ¢ Encryption algorithm

¢ Ciphertext to be decoded

¢ Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext
generated with the secret key

Chosen ciphertext ¢ Encryption algorithm

¢ Ciphertext to be decoded

¢ Purported ciphertext chosen by cryptanalyst, together with its corresponding
decrypted plaintext generated with the secret key

Chosen text ¢ Encryption algorithm

e Ciphertext to be decoded

¢ Plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

* Purported ciphertext chosen by cryptanalyst, together with its corresponding
decrypted plaintext generated with the secret key

prose message, he or she may have little knowledge of what is in the message.
However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmitted,
the opponent may know the placement of certain key words in the header of the file.
As another example, the source code for a program developed by a corporation might
include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the
system a message chosen by the analyst, then a chosen-plaintext attack is possible. In
general, if the analyst is able to choose the messages to encrypt, the analyst may
deliberately pick patterns that can be expected to reveal the structure of the key.

Table 2.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack.
Generally, an encryption algorithm is designed to withstand a known-plaintext attack.

An encryption scheme is computationally secure if the ciphertext generated
by the scheme meets one or both of the following criteria:

e The cost of breaking the cipher exceeds the value of the encrypted information.

e The time required to break the cipher exceeds the useful lifetime of the
information.

32 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

Unfortunately, it is very difficult to estimate the amount of effort required to
cryptanalyze ciphertext successfully. However, assuming there are no inherent
mathematical weaknesses in the algorithm, then a brute-force approach is indicated,
and here we can make some reasonable estimates about costs and time.

A brute-force approach involves trying every possible key until an intelligi-
ble translation of the ciphertext into plaintext is obtained. On average, half of all
possible keys must be tried to achieve success. Table 2.2 shows how much time is
involved for various key sizes. The 56-bit key size is used with the DES
(Data Encryption Standard) algorithm. For each key size, the results are shown
assuming that it takes 1 us to perform a single decryption, which is a reasonable
order of magnitude for today’s machines. With the use of massively parallel
organizations of microprocessors, it may be possible to achieve processing rates
many orders of magnitude greater. The final column of Table 2.2 considers the
results for a system that can process 1 million keys per microsecond. As you can
see, at this performance level, DES no longer can be considered computationally
secure.

Feistel Cipher Structure

Many symmetric block encryption algorithms, including DES, have a structure first
described by Horst Feistel of IBM in 1973 [FEIS73] and shown in Figure 2.2. The
inputs to the encryption algorithm are a plaintext block of length 2w bits and a key
K. The plaintext block is divided into two halves, LEj and RE|. The two halves of
the data pass through n rounds of processing and then combine to produce the
ciphertext block. Each round i has as inputs LE; ; and RE;_; derived from the
previous round, as well as a subkey K; derived from the overall K. In general,
the subkeys K; are different from K and from each other and are generated from
the key by a subkey generation algorithm. In Figure 2.2, 16 rounds are used,
although any number of rounds could be implemented. The right-hand side of
Figure 2.2 shows the decryption process.

All rounds have the same structure. A substitution is performed on the left half
of the data. This is done by applying a round function F to the right half of the data and
then taking the exclusive-OR (XOR) of the output of that function and the left half of
the data. The round function has the same general structure for each round but is

Table 2.2 Average Time Required for Exhaustive Key Search

Number of Time Required at 1 Time Required at
Key Size (bits) Alternative Keys Decryption/us 10° Decryptions/us
3D 232 = 43 % 10° 23us = 35.8 minutes 2.15 milliseconds
56 2% =72 x 10 2%us = 1142 years 10.01 hours
128 218 =34 x 10% 21%us = 5.4 X 10** years 5.4 X 10" years
168 2 = 37 s 1T 217us = 5.9 X 10 years 5.9 X 10% years
26 ch t
Characiers 26! = 4 X 10% 2 X 10%us = 6.4 X 10'? years 6.4 X 100 years
(permutation)

2.1 / SYMMETRIC ENCRYPTION PRINCIPLES 33

Output (plaintext)

| RD{;=LEy LD1;=RE, |

Input (plaintext)
LEy, . RE, | [LD15=RE, RDs= LE, |
= =
E T
H =
S =]
= &
a n
E 7
3 =
S 1=
E &
°
°
°
LD,=RE14; RD,=LE 4|
e 3
E E
g 5
&~ &~
S -
E :
2 =]
& &
| LE | REy | LDy=RE s RDy=LEqq |
>< Input (ciphertext)
[LEy;, | RE; |
Output (ciphertext)

Figure 2.2 Feistel Encryption and Decryption (16 rounds)

parameterized by the round subkey K;. Following this substitution, a permutation is
performed that consists of the interchange of the two halves of the data.

The Feistel structure is a particular example of the more general structure
used by all symmetric block ciphers. In general, a symmetric block cipher consists of
a sequence of rounds, with each round performing substitutions and permutations
conditioned by a secret key value. The exact realization of a symmetric block cipher
depends on the choice of the following parameters and design features.

34 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

* Block size: Larger block sizes mean greater security (all other things being
equal) but reduced encryption/decryption speed. A block size of 128 bits is
a reasonable tradeoff and is nearly universal among recent block cipher
designs.

e Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The most common key length in modern algorithms is 128 bits.

e Number of rounds: The essence of a symmetric block cipher is that a single
round offers inadequate security but that multiple rounds offer increasing
security. A typical size is 16 rounds.

* Subkey generation algorithm: Greater complexity in this algorithm should
lead to greater difficulty of cryptanalysis.

* Round function: Again, greater complexity generally means greater resistance
to cryptanalysis.

There are two other considerations in the design of a symmetric block cipher:

 Fast software encryption/decryption: In many cases, encryption is embedded
in applications or utility functions in such a way as to preclude a hardware
implementation. Accordingly, the speed of execution of the algorithm
becomes a concern.

* Ease of analysis: Although we would like to make our algorithm as difficult as
possible to cryptanalyze, there is great benefit in making the algorithm easy to
analyze. That is, if the algorithm can be concisely and clearly explained, it is
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore
develop a higher level of assurance as to its strength. DES, for example, does
not have an easily analyzed functionality.

Decryption with a symmetric block cipher is essentially the same as the encryp-
tion process. The rule is as follows: Use the ciphertext as input to the algorithm,
but use the subkeys K; in reverse order. That is, use K,, in the first round, K,,_; in the
second round, and so on until K; is used in the last round. This is a nice feature,
because it means we need not implement two different algorithms—one for encryp-
tion and one for decryption.

SYMMETRIC BLOCK ENCRYPTION ALGORITHMS

The most commonly used symmetric encryption algorithms are block ciphers.
A block cipher processes the plaintext input in fixed-sized blocks and produces a
block of ciphertext of equal size for each plaintext block. This section focuses on the
three most important symmetric block ciphers: the Data Encryption Standard
(DES), triple DES (3DES), and the Advanced Encryption Standard (AES).

Data Encryption Standard

The most widely used encryption scheme is based on the Data Encryption Standard
(DES) issued in 1977, as Federal Information Processing Standard 46 (FIPS 46) by
the National Bureau of Standards, now known as the National Institute of Standards

2.2 / SYMMETRIC BLOCK ENCRYPTION ALGORITHMS 35

and Technology (NIST). The algorithm itself is referred to as the Data Encryption
Algorithm (DEA).?

DescrirtioN OF THE ALcoriTHM The plaintext is 64 bits in length and the key is 56
bits in length; longer plaintext amounts are processed in 64-bit blocks. The DES
structure is a minor variation of the Feistel network shown in Figure 2.2. There are
16 rounds of processing. From the original 56-bit key, 16 subkeys are generated, one
of which is used for each round.

The process of decryption with DES is essentially the same as the encryption
process. The rule is as follows: Use the ciphertext as input to the DES algorithm, but
use the subkeys K; in reverse order. That is, use Kj¢ on the first iteration, K;5 on the
second iteration, and so on until K is used on the 16th and last iteration.

Tue STrRENGTH oF DES Concerns about the strength of DES fall into two
categories: concerns about the algorithm itself and concerns about the use of a
56-bit key. The first concern refers to the possibility that cryptanalysis is possible by
exploiting the characteristics of the DES algorithm. Over the years, there have been
numerous attempts to find and exploit weaknesses in the algorithm, making DES
the most-studied encryption algorithm in existence. Despite numerous approaches,
no one has so far succeeded in discovering a fatal weakness in DES.?

A more serious concern is key length. With a key length of 56 bits, there are 2%
possible keys, which is approximately 7.2 x 10'6 keys. Thus, on the face of it, a brute-
force attack appears impractical. Assuming that on average half the key space has to
be searched, a single machine performing one DES encryption per microsecond
would take more than a thousand years (see Table 2.2) to break the cipher.

However, the assumption of one encryption per microsecond is overly conserv-
ative. DES finally and definitively proved insecure in July 1998, when the Electronic
Frontier Foundation (EFF) announced that it had broken a DES encryption using a
special-purpose “DES cracker” machine that was built for less than $250,000. The
attack took less than three days. The EFF has published a detailed description of the
machine, enabling others to build their own cracker [EFF98]. And, of course, hard-
ware prices will continue to drop as speeds increase, making DES virtually worthless.

It is important to note that there is more to a key-search attack than simply
running through all possible keys. Unless known plaintext is provided, the analyst
must be able to recognize plaintext as plaintext. If the message is just plain text in
English, then the result pops out easily, although the task of recognizing English
would have to be automated. If the text message has been compressed before
encryption, then recognition is more difficult. And if the message is some more gen-
eral type of data, such as a numerical file, and this has been compressed, the problem
becomes even more difficult to automate. Thus, to supplement the brute-force

2The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchange-
ably. However, the most recent edition of the DES document includes a specification of the DEA
described here plus the triple DEA (3DES) described subsequently. Both DEA and 3DES are part of the
Data Encryption Standard. Furthermore, until the recent adoption of the official term 3DES, the triple
DEA algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience,
we will use 3DES.

3At least, no one has publicly acknowledged such a discovery.

36 CHAPTER 2/ SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

approach, some degree of knowledge about the expected plaintext is needed, and
some means of automatically distinguishing plaintext from garble is also needed. The
EFF approach addresses this issue as well and introduces some automated tech-
niques that would be effective in many contexts.

A final point: If the only form of attack that could be made on an encryption
algorithm is brute force, then the way to counter such attacks is obvious: use longer
keys. To get some idea of the size of key required, let us use the EFF cracker as a
basis for our estimates. The EFF cracker was a prototype, and we can assume that
with today’s technology a faster machine is cost effective. If we assume that a cracker
can perform one million decryptions per us, which is the rate used in Table 2.2, then a
DES code would take about 10 hours to crack. This is a speed-up of approximately a
factor of 7 compared to the EFF result. Using this rate, Figure 2.3 shows how long it
would take to crack a DES-style algorithm as a function of key size. For example, for
a 128-bit key, which is common among contemporary algorithms, it would take over
10'8 years to break the code using the EFF cracker. Even if we managed to speed up
the cracker by a factor of 1 trillion (10'?), it would still take over 1 million years to
break the code. So a 128-bit key is guaranteed to result in an algorithm that is
unbreakable by brute force.

Triple DES

Triple DES (3DES) was first standardized for use in financial applications in ANSI
standard X9.17 in 1985. 3DES was incorporated as part of the Data Encryption
Standard in 1999 with the publication of FIPS 46-3.

1 044

1 040

1 036

1 032

1028

/

/
A
/

/

|
|
|
|
|
|
T
|
10° / !
|
|
0 Il

10 / |

|

10~ !

50 56 100 128 150 1
Key Length (bits)

|
|
|
T
|
|
|
|
1
|
|
|
|
|
|
1024 ,
|
|

1020

1016

Years to Break

1012

108

8 200

Figure 2.3 Time to Break a Code (assuming 10° decryptions/us)

2.2 / SYMMETRIC BLOCK ENCRYPTION ALGORITHMS 37

K, K, K;
P—(®)~ @ic
(a) Encryption
K3 K, K,
C“—“—é— : (0 J—r
(b) Decryption

Figure 2.4 Triple DES

3DES uses three keys and three executions of the DES algorithm. The function
follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 2.4a):
C = E(K3,D(K, E(Ky, P)))
where
C = ciphertext
P = plaintext
E[K, X] = encryption of X using key K
D[K, Y] = decryption of Y using key K
Decryption is simply the same operation with the keys reversed (Figure 2.4b):
P =D(Ky, E(Kz, D(K3, C)))

There is no cryptographic significance to the use of decryption for the second
stage of 3DES encryption. Its only advantage is that it allows users of 3DES to
decrypt data encrypted by users of the older single DES:

C = E(K;,D(K},E(K}, P))) = E[K, P]

With three distinct keys, 3DES has an effective key length of 168 bits. FIPS 46-3
also allows for the use of two keys, with K; = Kj3; this provides for a key length of 112
bits. FIPS 46-3 includes the following guidelines for 3DES.

* 3DES is the FIPS approved symmetric encryption algorithm of choice.

¢ The original DES, which uses a single 56-bit key, is permitted under the standard
for legacy systems only. New procurements should support 3DES.

e Government organizations with legacy DES systems are encouraged to
transition to 3DES.

e Itis anticipated that 3DES and the Advanced Encryption Standard (AES) will
coexist as FIPS-approved algorithms, allowing for a gradual transition to AES.

It is easy to see that 3DES is a formidable algorithm. Because the underlying
cryptographic algorithm is DEA,3DES can claim the same resistance to cryptanalysis

38 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

based on the algorithm as is claimed for DEA. Furthermore, with a 168-bit key length,
brute-force attacks are effectively impossible.

Ultimately, AES is intended to replace 3DES, but this process will take a number
of years. NIST anticipates that 3DES will remain an approved algorithm (for U.S.
government use) for the foreseeable future.

Advanced Encryption Standard

3DES has two attractions that assure its widespread use over the next few years.
First, with its 168-bit key length, it overcomes the vulnerability to brute-force attack
of DEA. Second, the underlying encryption algorithm in 3DES is the same as in
DEA. This algorithm has been subjected to more scrutiny than any other encryption
algorithm over a longer period of time, and no effective cryptanalytic attack based
on the algorithm rather than brute force has been found. Accordingly, there is a high
level of confidence that 3DES is very resistant to cryptanalysis. If security were the
only consideration, then 3DES would be an appropriate choice for a standardized
encryption algorithm for decades to come.

The principal drawback of 3DES is that the algorithm is relatively sluggish in
software. The original DEA was designed for mid-1970s hardware implementation
and does not produce efficient software code. 3DES, which has three times as many
rounds as DEA, is correspondingly slower. A secondary drawback is that both DEA
and 3DES use a 64-bit block size. For reasons of both efficiency and security, a larger
block size is desirable.

Because of these drawbacks, 3DES is not a reasonable candidate for long-term
use. As a replacement, NIST in 1997 issued a call for proposals for a new Advanced
Encryption Standard (AES), which should have a security strength equal to or better
than 3DES and significantly improved efficiency. In addition to these general
requirements, NIST specified that AES must be a symmetric block cipher with a
block length of 128 bits and support for key lengths of 128, 192, and 256 bits.
Evaluation criteria included security, computational efficiency, memory require-
ments, hardware and software suitability, and flexibility.

In a first round of evaluation, 15 proposed algorithms were accepted. A second
round narrowed the field to five algorithms. NIST completed its evaluation process
and published a final standard (FIPS PUB 197) in November of 2001. NIST selected
Rijndael as the proposed AES algorithm. The two researchers who developed and
submitted Rijndael for the AES are both cryptographers from Belgium: Dr. Joan
Daemen and Dr. Vincent Rijmen.

OverviEw or THE ALcoriTHM AES uses a block length of 128 bits and a key length
that can be 128, 192, or 256 bits. In the description of this section, we assume a key
length of 128 bits, which is likely to be the one most commonly implemented.
Figure 2.5 shows the overall structure of AES. The input to the encryption and
decryption algorithms is a single 128-bit block. In FIPS PUB 197, this block is depicted
as a square matrix of bytes. This block is copied into the State array, which is modified
at each stage of encryption or decryption. After the final stage, State is copied to an
output matrix. Similarly, the 128-bit key is depicted as a square matrix of bytes. This
key is then expanded into an array of key schedule words: each word is four bytes and
the total key schedule is 44 words for the 128-bit key. The ordering of bytes within a

2.2 / SYMMETRIC BLOCK ENCRYPTION ALGORITHMS 39

Key
Plaintext (16 bytes) Plaintext
(16 bytes) | Expand key | (16 bytes)
+ v 1
| Add round key I: w[0, 3] :I Add round key |
v -
| Substitute bytes | | Inverse sub bytes | ‘_;
] :
i | Shift rows | | Inverse shift rows | &
=
E R e RO
= | Mix columns | _l | Inverse mix cols |
v i
| Add round key :: w(4,7] :: Add round key |
v s
=
: [Inverse sub bytes | é
* | Inverse shift rows |
v i}
| Substitute bytes | .
v .
o | Shiftrows | .
: I t
é | Mix columns | _l | Inverse mix cols |
v i
| Add round key |<—— w[36, 39] —>| Add round key | -
v E
[Substitute bytes | [Inverse sub bytes | E
= ! f
B | Shift rows | | Inverse shift rows |
g 1
& v T

| Add round key |<— w[40, 43] —>| Add round key |
v i}

Ciphertext Ciphertext
(16 bytes) (16 bytes)
(a) Encryption (b) Decryption

Figure 2.5 AES Encryption and Decryption

matrix is by column. So, for example, the first four bytes of a 128-bit plaintext input to
the encryption cipher occupy the first column of the in matrix, the second four bytes
occupy the second column, and so on. Similarly, the first four bytes of the expanded
key, which form a word, occupy the first column of the w matrix.

The following comments give some insight into AES.

1. One noteworthy feature of this structure is that it is not a Feistel structure. Recall
that in the classic Feistel structure, half of the data block is used to modify the
other half of the data block, and then the halves are swapped. AES does not use

40 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

10.

a Feistel structure but processes the entire data block in parallel during each
round using substitutions and permutation.

. The key that is provided as input is expanded into an array of forty-four 32-bit

words, w[i]. Four distinct words (128 bits) serve as a round key for each round.

. Four different stages are used, one of permutation and three of substitution:

o Substitute bytes: Uses a table, referred to as an S-box,* to perform a byte-by-
byte substitution of the block.

¢ Shift rows: A simple permutation that is performed row by row.
* Mix columns: A substitution that alters each byte in a column as a function
of all of the bytes in the column.

* Add round key: A simple bitwise XOR of the current block with a portion
of the expanded key.

. The structure is quite simple. For both encryption and decryption, the cipher

begins with an Add Round Key stage, followed by nine rounds that each includes
all four stages, followed by a tenth round of three stages. Figure 2.6 depicts the
structure of a full encryption round.

. Only the Add Round Key stage makes use of the key. For this reason, the cipher

begins and ends with an Add Round Key stage. Any other stage, applied at the
beginning or end, is reversible without knowledge of the key and so would add
no security.

. The Add Round Key stage by itself would not be formidable. The other three

stages together scramble the bits, but by themselves, they would provide no secu-
rity because they do not use the key. We can view the cipher as alternating oper-
ations of XOR encryption (Add Round Key) of a block, followed by scrambling
of the block (the other three stages), followed by XOR encryption, and so on.
This scheme is both efficient and highly secure.

. Each stage is easily reversible. For the Substitute Byte, Shift Row, and Mix

Columns stages, an inverse function is used in the decryption algorithm. For the
Add Round Key stage, the inverse is achieved by XORing the same round key to
the block, using the result that A @ B @ B = A.

. As with most block ciphers, the decryption algorithm makes use of the expanded

key in reverse order. However, the decryption algorithm is not identical to the
encryption algorithm. This is a consequence of the particular structure of AES.

. Once it is established that all four stages are reversible, it is easy to verify that

decryption does recover the plaintext. Figure 2.5 lays out encryption and decryp-
tion going in opposite vertical directions. At each horizontal point (e.g., the
dashed line in the figure), State is the same for both encryption and decryption.

The final round of both encryption and decryption consists of only three
stages. Again, this is a consequence of the particular structure of AES and is
required to make the cipher reversible.

“The term S-box, or substitution box, is commonly used in the description of symmetric ciphers to refer to
a table used for a table-lookup type of substitution mechanism.

v

SubBytes

ShiftRows

MixColumns

State

AddRoundKey

State

1 01 O]]] B0 G O]] O] O8] O]] s O] [

a

_I__

1

_I__

b ¢

b ¢

D 4

D g

/l\(:]’

¢

b ¢

D §

b ¢

s
o

Figure 2.6 AES Encryption Round

42 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

2.3 RANDOM AND PSEUDORANDOM NUMBERS

Random numbers play an important role in the use of encryption for various network
security applications. We provide an overview in this section. The topic is examined in
more detail in Appendix E.

The Use of Random Numbers

A number of network security algorithms based on cryptography make use of random
numbers. For example,

e Generation of keys for the RSA public-key encryption algorithm (described
in Chapter 3) and other public-key algorithms.

* Generation of a stream key for symmetric stream cipher (discussed in the
following section).

* Generation of a symmetric key for use as a temporary session key. This function
is used in a number of networking applications, such as Transport Layer Security
(Chapter 5), Wi-Fi (Chapter 6), e-mail security (Chapter 7), and IP security
(Chapter 8).

* In a number of key distribution scenarios, such as Kerberos (Chapter 4),
random numbers are used for handshaking to prevent replay attacks.

These applications give rise to two distinct and not necessarily compatible
requirements for a sequence of random numbers: randomness and unpredictability.

RanpomnEss Traditionally, the concern in the generation of a sequence of allegedly
random numbers has been that the sequence of numbers be random in some well-
defined statistical sense. The following criteria are used to validate that a sequence
of numbers is random.

* Uniform distribution: The distribution of bits in the sequence should be uniform;
that is, the frequency of occurrence of ones and zeros should be approximately
the same.

* Independence: No one subsequence in the sequence can be inferred from the
others.

Although there are well-defined tests for determining that a sequence of num-
bers matches a particular distribution, such as the uniform distribution, there is no such
test to “prove” independence. Rather, a number of tests can be applied to demonstrate
if a sequence does not exhibit independence. The general strategy is to apply a number
of such tests until the confidence that independence exists is sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear
statistically random often occurs in the design of algorithms related to cryptography.
For example, a fundamental requirement of the RSA public-key encryption scheme
discussed in Chapter 3 is the ability to generate prime numbers. In general, it is
difficult to determine if a given large number N is prime. A brute-force approach
would be to divide N by every odd integer less than VN. If N is on the order, say, of
10" (a not uncommon occurrence in public-key cryptography), such a brute-force

2.3 / RANDOM AND PSEUDORANDOM NUMBERS 43

approach is beyond the reach of human analysts and their computers. However, a
number of effective algorithms exist that test the primality of a number by using a
sequence of randomly chosen integers as input to relatively simple computations. If
the sequence is sufficiently long (but far, far less than \V/10'°), the primality of a
number can be determined with near certainty. This type of approach, known as ran-
domization, crops up frequently in the design of algorithms. In essence, if a problem
is too hard or time-consuming to solve exactly, a simpler, shorter approach based on
randomization is used to provide an answer with any desired level of confidence.

Unrrepict4BiLITY In applications such as reciprocal authentication and session
key generation, the requirement is not so much that the sequence of numbers be
statistically random but that the successive members of the sequence are
unpredictable. With “true” random sequences, each number is statistically
independent of other numbers in the sequence and therefore unpredictable.
However, as is discussed shortly, true random numbers are not always used; rather,
sequences of numbers that appear to be random are generated by some algorithm.
In this latter case, care must be taken that an opponent not be able to predict future
elements of the sequence on the basis of earlier elements.

TRNGs, PRNGs, and PRFs

Cryptographic applications typically make use of algorithmic techniques for random
number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many reasonable tests of randomness. Such
numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might
be called “philosophical” objections to such a practice, it generally works. As one
expert on probability theory puts it [HAMMO1],

For practical purposes we are forced to accept the awkward concept
of “relatively random” meaning that with regard to the proposed use
we can see no reason why they will not perform as if they were
random (as the theory usually requires). This is highly subjective and
is not very palatable to purists, but it is what statisticians regularly
appeal to when they take “a random sample”—they hope that any
results they use will have approximately the same properties as a
complete counting of the whole sample space that occurs in their
theory.

Figure 2.7 contrasts a true random number generator (TRNG) with two
forms of pseudorandom number generators. A TRNG takes as input a source that
is effectively random; the source is often referred to as an entropy source. In
essence, the entropy source is drawn from the physical environment of the com-
puter and could include things such as keystroke timing patterns, disk electrical
activity, mouse movements, and instantaneous values of the system clock. The
source, or combination of sources, serves as input to an algorithm that produces

44 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

Source of Context-
true specific
randomness Seed Seed values
Conversion Deterministic Deterministic
to binary algorithm algorithm
Random Pseudorandom Pseudorandom
bit stream bit stream value
(a) TRNG (b) PRNG (¢) PRF

TRNG = true random number generator
PRNG = pseudorandom number generator
PRF = pseudorandom function

Figure 2.7 Random and Pseudorandom Number Generators

random binary output. The TRNG may simply involve conversion of an analog
source to a binary output. The TRNG may involve additional processing to over-
come any bias in the source.

In contrast, a PRNG takes as input a fixed value, called the seed, and produces a
sequence of output bits using a deterministic algorithm. Typically, as shown in Figure 2.7,
there is some feedback path by which some of the results of the algorithm are fed back
as input as additional output bits are produced. The important thing to note is that the
output bit stream is determined solely by the input value or values, so that an adversary
who knows the algorithm and the seed can reproduce the entire bit stream.

Figure 2.7 shows two different forms of PRNGs, based on application.

* Pseudorandom number generator: An algorithm that is used to produce an
open-ended sequence of bits is referred to as a PRNG. A common application
for an open-ended sequence of bits is as input to a symmetric stream cipher, as
discussed in the following section.

¢ Pseudorandom function (PRF): A PRF is used to produce a pseudorandom
string of bits of some fixed length. Examples are symmetric encryption keys
and nonces. Typically, the PRF takes as input a seed plus some context specific
values, such as a user ID or an application ID. A number of examples of PRFs
will be seen throughout this book.

Other than the number of bits produced, there is no difference between a
PRNG and a PRF. The same algorithms can be used in both applications. Both
require a seed and both must exhibit randomness and unpredictability. Furthermore,
a PRNG application may also employ context-specific input.

2.4 / STREAM CIPHERS AND RC4 45

Algorithm Design

Cryptographic PRNGs have been the subject of much research over the years, and a
wide variety of algorithms have been developed. These fall roughly into two categories:

* Purpose-built algorithms: These are algorithms designed specifically and solely
for the purpose of generating pseudorandom bit streams. Some of these algo-
rithms are used for a variety of PRNG applications;several of these are described
in the next section. Others are designed specifically for use in a stream cipher.
The most important example of the latter is RC4, described in the next section.

* Algorithms based on existing cryptographic algorithms: Cryptographic algo-
rithms have the effect of randomizing input. Indeed, this is a requirement of
such algorithms. For example, if a symmetric block cipher produced ciphertext
that had certain regular patterns in it, it would aid in the process of cryptanalysis.
Thus, cryptographic algorithms can serve as the core of PRNGs. Three broad
categories of cryptographic algorithms are commonly used to create PRNGs:

—Symmetric block ciphers
— Asymmetric ciphers
—Hash functions and message authentication codes

Any of these approaches can yield a cryptographically strong PRNG. A
purpose-built algorithm may be provided by an operating system for general use.
For applications that already use certain cryptographic algorithms for encryption or
authentication, it makes sense to re-use the same code for the PRNG. Thus, all of
these approaches are in common use.

2.4 STREAM CIPHERS AND RC4

A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements
continuously, producing output one element at a time as it goes along. Although
block ciphers are far more common, there are certain applications in which a stream
cipher is more appropriate. Examples are given subsequently in this book. In this
section, we look at perhaps the most popular symmetric stream cipher, RC4.
We begin with an overview of stream cipher structure, and then examine RC4.

Stream Cipher Structure

A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a byte
at a time. Figure 2.8 is a representative diagram of stream cipher structure. In this
structure, a key is input to a pseudorandom bit generator that produces a stream of
8-bit numbers that are apparently random. A pseudorandom stream is one that is
unpredictable without knowledge of the input key and which has an apparently
random character. The output of the generator, called a keystream, is combined one
byte at a time with the plaintext stream using the bitwise exclusive-OR (XOR)

46 CHAPTER 2/ SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

Key Key
K K
Pseudorandom byte Pseudorandom byte
generator generator
(key stream generator) (key stream generator)

Plaintext Ciphertext Plaintext
byte stream k byte stream k byte stream
M @ ¢ @ M
U X
ENCRYPTION DECRYPTION

Figure 2.8 Stream Cipher Diagram

operation. For example, if the next byte generated by the generator is 01101100
and the next plaintext byte is 11001100, then the resulting ciphertext byte is

11001100 plaintext
01101100 key stream
10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:

10100000 ciphertext
@ 01101100 key stream
11001100 plaintext

[KUMAO97] lists the following important design considerations for a stream
cipher.

1. The encryption sequence should have a large period. A pseudorandom num-
ber generator uses a function that produces a deterministic stream of bits that
eventually repeats. The longer the period of repeat, the more difficult it will be
to do cryptanalysis.

2. The keystream should approximate the properties of a true random number
stream as close as possible. For example, there should be an approximately equal
number of 1s and Os. If the keystream is treated as a stream of bytes, then all of
the 256 possible byte values should appear approximately equally often. The
more random-appearing the keystream is, the more randomized the ciphertext is,
making cryptanalysis more difficult.

3. Note from Figure 2.8 that the output of the pseudorandom number generator
is conditioned on the value of the input key. To guard against brute-force
attacks, the key needs to be sufficiently long. The same considerations as apply
for block ciphers are valid here. Thus, with current technology, a key length of
at least 128 bits is desirable.

2.4 / STREAM CIPHERS AND RC4 47

With a properly designed pseudorandom number generator, a stream cipher
can be as secure as block cipher of comparable key length. The primary advantage of
a stream cipher is that stream ciphers are almost always faster and use far less code
than do block ciphers. The example in this section, RC4, can be implemented in just a
few lines of code. Table 2.3, using data from [RESCO01], compares execution times of
RC4 with three well-known symmetric block ciphers. The advantage of a block
cipher is that you can reuse keys. However, if two plaintexts are encrypted with the
same key using a stream cipher, then cryptanalysis is often quite simple [DAWS96]. If
the two ciphertext streams are XORed together, the result is the XOR of the original
plaintexts. If the plaintexts are text strings, credit card numbers, or other byte streams
with known properties, then cryptanalysis may be successful.

For applications that require encryption/decryption of a stream of data (such
as over a data-communications channel or a browser/Web link), a stream cipher
might be the better alternative. For applications that deal with blocks of data (such
as file transfer, e-mail, and database), block ciphers may be more appropriate.
However, either type of cipher can be used in virtually any application.

The RC4 Algorithm

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a vari-
able key-size stream cipher with byte-oriented operations. The algorithm is based
on the use of a random permutation. Analysis shows that the period of the cipher is
overwhelmingly likely to be greater than 10'%° [ROBS95a]. Eight to sixteen machine
operations are required per output byte, and the cipher can be expected to run very
quickly in software. RC4 is used in the Secure Sockets Layer/Transport Layer Security
(SSL/TLS) standards that have been defined for communication between Web
browsers and servers. It is also used in the Wired Equivalent Privacy (WEP) protocol
and the newer WiFi Protected Access (WPA) protocol that are part of the IEEE
802.11 wireless LAN standard. RC4 was kept as a trade secret by RSA Security. In
September 1994, the RC4 algorithm was anonymously posted on the Internet on the
Cypherpunks anonymous remailers list.

The RC4 algorithm is remarkably simple and quite easy to explain. A variable-
length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state
vector S, with elements S[0], S[1], .. ., S[255]. At all times, S contains a permutation of
all 8-bit numbers from 0 through 255. For encryption and decryption, a byte k (see
Figure 2.8) is generated from S by selecting one of the 255 entries in a systematic
fashion. As each value of & is generated, the entries in S are once again permuted.

Table 2.3 Speed Comparisons of Symmetric Ciphers on a Pentium II

Cipher Key Length Speed (Mbps)
DES 56 9

3DES 168 3

RC2 Variable 0.9

RC4 Variable 45

48 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

Inrtiarization or S To begin, the entries of S are set equal to the values from 0
through 255 in ascending order; that is, S[0] = 0, S[1] = 1, . . ., S[255] = 255. A
temporary vector, T, is also created. If the length of the key K is 256 bytes, then K is
transferred to T. Otherwise, for a key of length keylen bytes, the first keylen elements
of T are copied from K, and then K is repeated as many times as necessary to fill out
T. These preliminary operations can be summarized as:

/* Initialization */
for 1 = 0 to 255 do
S[il = 1i;

T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting
with S[0] and going through to S[255] and, for each S[i], swapping S[i] with another
byte in S according to a scheme dictated by TT[i]:

/* Initial Permutation of S */

j = 0;

for i = 0 to 255 do
j = (3 + S[i] + T[i]) mod 256;
Swap (S[il, S[J1);

Because the only operation on S is a swap, the only effect is a permutation. S
still contains all the numbers from O through 255.

StreaM GENErRATION Once the S vector is initialized, the input key is no longer
used. Stream generation involves cycling through all the elements of S[i] and, for
each S[i], swapping S[i] with another byte in S according to a scheme dictated by the
current configuration of S. After S[255] is reached, the process continues, starting
over again at S[0]:

/* Stream Generation */

i, 3 = 0;
while (true)
i = (1 + 1) mod 256;
j = (3 + S[i]) mod 256;

Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR
the value k with the next byte of ciphertext.
Figure 2.9 illustrates the RC4 logic.

STRENGTH OF RC4 A number of papers have been published analyzing methods of
attacking RC4 (e.g., [KNUD98], [MIST98], [FLUHO00], [MANTO01], [PUDOO02],
[PAULO3], [PAULO04]). None of these approaches is practical against RC4 with a
reasonable key length, such as 128 bits. A more serious problem is reported in

6v

T

(a) Initial state of S and T

J=1j+ Sl + TI[i]

Swap

(b) Initial permutation of S

J=j+ Sl

Swap

Figure 2.9 RC4

t = S[i] + SI[j]

g
[T 1]
[T T]

(c) Stream generation

-

50 CHAPTER 2/ SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

[FLUHO1]. The authors demonstrate that the WEP protocol, intended to provide
confidentiality on 802.11 wireless LAN networks, is vulnerable to a particular attack
approach. In essence, the problem is not with RC4 itself but the way in which keys
are generated for use as input to RC4. This particular problem does not appear to be
relevant to other applications using RC4 and can be remedied in WEP by changing
the way in which keys are generated. This problem points out the difficulty in
designing a secure system that involves both cryptographic functions and protocols
that make use of them.

2.5 CIPHER BLOCK MODES OF OPERATION

A symmetric block cipher processes one block of data at a time. In the case of DES and
3DES, the block length is b = 64 bits; for AES, the block length is b = 128 bits. For
longer amounts of plaintext, it is necessary to break the plaintext into b-bit blocks
(padding the last block if necessary). To apply a block cipher in a variety of applica-
tions, five modes of operation have been defined by NIST (Special Publication 800-
38A). The five modes are intended to cover virtually all of the possible applications of
encryption for which a block cipher could be used. These modes are intended for use
with any symmetric block cipher, including triple DES and AES. The most important
modes are described briefly in the remainder of this section.

Electronic Codebook Mode

The simplest way to proceed is using what is known as electronic codebook (ECB)
mode, in which plaintext is handled b bits at a time and each block of plaintext is
encrypted using the same key. The term codebook is used because, for a given key,
there is a unique ciphertext for every b-bit block of plaintext. Therefore, one can
imagine a gigantic codebook in which there is an entry for every possible b-bit plain-
text pattern showing its corresponding ciphertext.

With ECB, if the same b-bit block of plaintext appears more than once in the
message, it always produces the same ciphertext. Because of this, for lengthy mes-
sages, the ECB mode may not be secure. If the message is highly structured, it may
be possible for a cryptanalyst to exploit these regularities. For example, if it is known
that the message always starts out with certain predefined fields, then the cryptana-
lyst may have a number of known plaintext—ciphertext pairs to work with. If the
message has repetitive elements with a period of repetition a multiple of b bits, then
these elements can be identified by the analyst. This may help in the analysis or may
provide an opportunity for substituting or rearranging blocks.

To overcome the security deficiencies of ECB, we would like a technique in
which the same plaintext block, if repeated, produces different ciphertext blocks.

Cipher Block Chaining Mode

In the cipher block chaining (CBC) mode (Figure 2.10), the input to the encryption
algorithm is the XOR of the current plaintext block and the preceding ciphertext
block; the same key is used for each block. In effect, we have chained together the
processing of the sequence of plaintext blocks. The input to the encryption function

2.5 / CIPHER BLOCK MODES OF OPERATION 51

I P, I I P, I I Py |
v
& & Y.
K \ 4 K \4 K \

|—> Encrypt |—> Encrypt o o o |—> Encrypt

\ 4 Y Y
| Cy I— C, | Cy |

(a) Encryption

[[— C, [Cy |
K A/ K v K 2

|—> Decrypt |—> Decrypt o o o |—> Decrypt

4
N
Y
4

H \U:

Y
H4 P <
H

(b) Decryption
Figure 2.10 Cipher Block Chaining (CBC) Mode

for each plaintext block bears no fixed relationship to the plaintext block.
Therefore, repeating patterns of b bits are not exposed.

For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

C;=E(K,[C-1 @ P}])

where E[K, X] is the encryption of plaintext X using key K, and @ is the exclusive-
OR operation. Then

D(K, C)) = D(K,E(K, [Ci-1 @ Pj]))
D(K,C)=Ci1 @ P;
Cj_1 @ D(K, C]) = Cj—l @ Cj_1 @ P] = P/
which verifies Figure 2.10b.
To produce the first block of ciphertext, an initialization vector (IV) is XORed
with the first block of plaintext. On decryption, the IV is XORed with the output of
the decryption algorithm to recover the first block of plaintext.

The IV must be known to both the sender and receiver. For maximum security,
the IV should be protected as well as the key. This could be done by sending the IV

52 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

using ECB encryption. One reason for protecting the IV is as follows: If an opponent
is able to fool the receiver into using a different value for IV, then the opponent is able
to invert selected bits in the first block of plaintext. To see this, consider the following:

¢, =E(K.[IV® P1])
P =1V ® D(K, Cy)
Now use the notation that X[j] denotes the jth bit of the b-bit quantity X. Then
Py[i] = 1V[i] @ D(K, Cy)[i]
Then, using the properties of XOR, we can state
Pyfi]" = IV[i]' © D(K, C)[i]

where the prime notation denotes bit complementation. This means that if an oppo-
nent can predictably change bits in IV, the corresponding bits of the received value
of Py can be changed.

Cipher Feedback Mode

It is possible to convert any block cipher into a stream cipher by using the cipher
feedback (CFB) mode. A stream cipher eliminates the need to pad a message to be
an integral number of blocks. It also can operate in real time. Thus, if a character
stream is being transmitted, each character can be encrypted and transmitted imme-
diately using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same
length as the plaintext. Thus, if 8-bit characters are being transmitted, each character
should be encrypted using 8 bits. If more than 8 bits are used, transmission capacity
is wasted.

Figure 2.11 depicts the CFB scheme. In the figure, it is assumed that the unit of
transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext
are chained together, so that the ciphertext of any plaintext unit is a function of all
the preceding plaintext.

First, consider encryption. The input to the encryption function is a b-bit shift
register that is initially set to some initialization vector (IV). The leftmost (most
significant) s bits of the output of the encryption function are XORed with the first unit
of plaintext P to produce the first unit of ciphertext Cy, which is then transmitted. In
addition, the contents of the shift register are shifted left by s bits, and Cj is placed in
the rightmost (least significant) s bits of the shift register. This process continues until
all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext
unit is XORed with the output of the encryption function to produce the plaintext
unit. Note that it is the encryption function that is used, not the decryption function.
This is easily explained. Let S;(X) be defined as the most significant s bits of X. Then

Ci = P1 @ S{E(K, V)]
Therefore,
Py = C; @ S,{E(K,1V)]

The same reasoning holds for subsequent steps in the process.

v

I

[

Encrypt

s bits

Select| Discard
s bits| b —s bits

2.5 / CIPHER BLOCK MODES OF OPERATION 53

< Y

Shift register
b — s bits |s bits

K

N

Encrypt

Select| Discard
s bits| b —s bits
s bits

Cna
< \ 4
Shift register
b — s bits |s bits
K

N

Encrypt

s bits

Select| Discard
s bits | b —s bits

}

Y Y

3 D D

\ 4 y A
[F— Cy
s bits s bits s bits
(a) Encryption
Cna
< Y
Shift register Shlft reglster
_ b — s bits | s bits — s bits |s bits
! K
Encrypt I—> Encrypt Encrypt
Select| Di d Select| Di d Select| Di d
L
Y Y Y
o]
s bits s bits s bits
\ 4 y y
Py P, Py
s bits s bits s bits
(b) Decryption

Figure 2.11 s-bit Cipher Feedback (CFB) Mode

Counter Mode

Although interest in the counter mode (CTR) has increased recently, with applica-
tions to ATM (asynchronous transfer mode) network security and IPSec (IP secu-
rity), this mode was proposed early on (e.g., [DIFF79]).

Figure 2.12 depicts the CTR mode. A counter equal to the plaintext block size
is used. The only requirement stated in SP 800-38A is that the counter value must be
different for each plaintext block that is encrypted. Typically, the counter is initial-
ized to some value and then incremented by 1 for each subsequent block (modulo

54 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

Y Y Y
D D D
Y Y y

Y Y Y
D D D
Y Y y

(b) Decryption
Figure 2.12 Counter (CTR) Mode

2", where b is the block size). For encryption, the counter is encrypted and then
XORed with the plaintext block to produce the ciphertext block; there is no chain-
ing. For decryption, the same sequence of counter values is used, with each
encrypted counter XORed with a ciphertext block to recover the corresponding
plaintext block.

[LIPMOO] lists the following advantages of CTR mode.

° Hardware efficiency: Unlike the chaining modes, encryption (or decryption) in
CTR mode can be done in parallel on multiple blocks of plaintext or ciphertext.
For the chaining modes, the algorithm must complete the computation on one
block before beginning on the next block. This limits the maximum throughput of

2.6 / RECOMMENDED READING AND WEB SITES 55

the algorithm to the reciprocal of the time for one execution of block encryption
or decryption. In CTR mode, the throughput is only limited by the amount of
parallelism that is achieved.

* Software efficiency: Similarly, because of the opportunities for parallel exe-
cution in CTR mode, processors that support parallel features (such
as aggressive pipelining, multiple instruction dispatch per clock cycle, a
large number of registers, and SIMD instructions) can be effectively
utilized.

* Preprocessing: The execution of the underlying encryption algorithm does
not depend on input of the plaintext or ciphertext. Therefore, if sufficient
memory is available and security is maintained, preprocessing can be used to
prepare the output of the encryption boxes that feed into the XOR functions
in Figure 2.12. When the plaintext or ciphertext input is presented, then the
only computation is a series of XORs. Such a strategy greatly enhances
throughput.

¢ Random access: The ith block of plaintext or ciphertext can be processed in
random-access fashion. With the chaining modes, block C; cannot be com-
puted until the i — 1 prior block are computed. There may be applications in
which a ciphertext is stored, and it is desired to decrypt just one block; for such
applications, the random access feature is attractive.

* Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this section.

e Simplicity: Unlike ECB and CBC modes, CTR mode requires only the imple-
mentation of the encryption algorithm and not the decryption algorithm. This
matters most when the decryption algorithm differs substantially from the
encryption algorithm, as it does for AES. In addition, the decryption key
scheduling need not be implemented.

2.6 RECOMMENDED READING AND WEB SITES

The topics in this chapter are covered in greater detail in [STAL11]. For coverage of crypto-
graphic algorithms, [SCHN96] is an essential reference work; it contains descriptions of virtu-
ally every cryptographic algorithm and protocol published up to the time of the writing of the
book. Another worthwhile and detailed survey is [MENE97]. A more in-depth treatment,
with rigorous mathematical discussion, is [STINO6].

MENEY97 Menezes, A.; van Oorschot, P.; and Vanstone, S. Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, 1997.

SCHNY6 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

STAL11 Stallings, W. Cryptography and Network Security: Principles and Practice, Fifth
Edition. Upper Saddle River, NJ: Prentice Hall, 2011.

STINO06 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: Chapman&Hall/
CRC Press, 2006.

56 CHAPTER 2/ SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

NS

Recommended Web Sites:

* AES home page: NIST’s page on AES. Contains the standard plus a number of other
relevant documents.

* AES Lounge: Contains a comprehensive bibliography of documents and papers on
AES with access to electronic copies.

* Block Cipher Modes of Operation: NIST page with full information on NIST-approved
modes of operation.

2.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Advanced Encryption Cryptography keystream
Standard (AES) Data Encryption Standard link encryption

block cipher (DES) plaintext

brute-force attack decryption session key

cipher block chaining (CBC) electronic codebook (ECB) stream cipher
mode mode subkey

cipher feedback (CFB) mode encryption symmetric encryption

ciphertext end-to-end encryption triple DES (3DES)

counter mode (CTR) Feistel cipher

cryptanalysis key distribution

Review Questions

2.1 What are the essential ingredients of a symmetric cipher?

2.2 What are the two basic functions used in encryption algorithms?

2.3 How many keys are required for two people to communicate via a symmetric
cipher?

2.4 What is the difference between a block cipher and a stream cipher?

2.5 What are the two general approaches to attacking a cipher?

2.6 Why do some block cipher modes of operation only use encryption while others use
both encryption and decryption?

2.7 What is triple encryption?
2.8 Why is the middle portion of 3DES a decryption rather than an encryption?

Problems

2.1 This problem uses a real-world example of a symmetric cipher, from an old U.S.
Special Forces manual (public domain). The document, filename SpecialForces.pdyf, is
available at this book’s Web site.

2.2

2.3

24
2.5

2.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 57

a. Using the two keys (memory words) cryptographic and network security, encrypt
the following message:

Be at the third pillar from the left outside the lyceum theatre tonight at
seven. If you are distrustful bring two friends.

Make reasonable assumptions about how to treat redundant letters and
excess letters in the memory words and how to treat spaces and punctuation.
Indicate what your assumptions are. Nofte: The message is from the Sherlock
Holmes novel, The Sign of Four.

b. Decrypt the ciphertext. Show your work.
c. Comment on when it would be appropriate to use this technique and what its
advantages are.

Consider a very simple symmetric block encryption algorithm in which 32-bits blocks
of plaintext are encrypted using a 64-bit key. Encryption is defined as

= (P @ Ko H K,

where C = ciphertext, K = secret key, Ky = leftmost 64 bits of K, K| = rightmost
64 bits of K, @ = bitwise exclusive OR, and [is addition mod 2.
a. Show the decryption equation. That is, show the equation for P as a function of C,
K(), and Kl
b. Suppose and adversary has access to two sets of plaintexts and their correspond-
ing ciphertexts and wishes to determine K. We have the two equations:

=(P@K)HK;C = (P @ K)H Ky

First, derive an equation in one unknown (e.g., Ky). Is it possible to proceed fur-
ther to solve for K?
Perhaps the simplest “serious” symmetric block encryption algorithm is the Tiny
Encryption Algorithm (TEA). TEA operates on 64-bit blocks of plaintext using a
128-bit key. The plaintext is divided into two 32-bit blocks (Lg, Ry), and the key is
divided into four 32-bit blocks (K, K1, K,, K3). Encryption involves repeated applica-
tion of a pair of rounds, defined as follows for rounds i and i+1:

L;=R;
R =L 1HHF(R; 1, Ky, Ky, §)
L1 =R;

RH—I L . F(Rh K27 K37 H—l)

where F is defined as
F(M, K, K;,) = (M <<) E K) @ (M >> 5) E K) @ (M 5)

and where the logical shift of x by y bits is denoted by x << y, the logical right shift of

x by y bits is denoted by x >> y, and §; is a sequence of predetermined constants.

a. Comment on the significance and benefit of using the sequence of constants.

b. Illustrate the operation of TEA using a block diagram or flow chart type of
depiction.

c. If only one pair of rounds is used, then the ciphertext consists of the 64-bit
block (L;, R;). For this case, express the decryption algorithm in terms of
equations.

d. Repeat part (c) using an illustration similar to that used for part (b).

Show that Feistel decryption is the inverse of Feistel encryption.

Consider a Feistel cipher composed of 16 rounds with block length 128 bits and key

length 128 bits. Suppose that, for a given k, the key scheduling algorithm determines

values for the first eight round keys, k1, k, . . ., kg, and then sets

kg = kg, k1o = k7, k11 = ke, . . ., kig = ki

58 CHAPTER 2/ SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

2.6

2.7

2.8

2.9

2.10

Suppose you have a ciphertext c. Explain how, with access to an encryption oracle,
you can decrypt ¢ and determine m using just a single oracle query. This shows that
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can
be thought of as a device that, when given a plaintext, returns the corresponding
ciphertext. The internal details of the device are not known to you, and you cannot
break open the device. You can only gain information from the oracle by making
queries to it and observing its responses.)

For any block cipher, the fact that it is a nonlinear function is crucial to its security.
To see this, suppose that we have a linear block cipher EL that encrypts 128-bit
blocks of plaintext into 128-bit blocks of ciphertext. Let EL(k, m) denote the
encryption of a 128-bit message m under a key k (the actual bit length of k is irrel-
evant). Thus,

EL(k, [my @ my])= EL(k,mqy) @ EL(k, my) for all 128-bit patterns my, m;

Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you
have 128 plaintext—ciphertext pairs to work with, and you have the ability to chose
the value of the ciphertexts.)

Suppose you have a true random bit generator where each bit in the generated
stream has the same probability of being a 0 or 1 as any other bit in the stream and
that the bits are not correlated; that is, the bits are generated from identical indepen-
dent distribution. However, the bit stream is biased. The probability of a 1is 0.5 + &
and the probability of a 0is 0.5 — §, where 0 < 6 < 0.5. A simple deskewing algorithm
is as follows: Examine the bit stream as a sequence of non-overlapping pairs. Discard

all 00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.

a. What is the probability of occurrence of each pair in the original sequence?

b. What is the probability of occurrence of 0 and 1 in the modified sequence?

c. What is the expected number of input bits to produce x output bits?

d. Suppose that the algorithm uses overlapping successive bit pairs instead of
nonoverlapping successive bit pairs. That is, the first output bit is based on input
bits 1 and 2, the second output bit is based on input bits 2 and 3, and so on. What
can you say about the output bit stream?

Another approach to deskewing is to consider the bit stream as a sequence of

non-overlapping groups of n bits each and output the parity of each group. That is,

if a group contains an odd number of ones, the output is 1; otherwise the output

is 0.

a. Express this operation in terms of a basic Boolean function.

b. Assume, as in the Problem 2.7, that the probability of a 1is 0.5 + &. If each group
consists of 2 bits, what is the probability of an output of 1?

c. If each group consists of 4 bits, what is the probability of an output of 1?

d. Generalize the result to find the probability of an output of 1 for input groups of
n bits.

What RC4 key value will leave S unchanged during initialization? That is, after the
initial permutation of S, the entries of S will be equal to the values from 0 through 255
in ascending order.

RC4 has a secret internal state which is a permutation of all the possible values of the

vector S and the two indices i and j.

a. Using a straightforward scheme to store the internal state, how many bits are
used?

b. Suppose we think of it from the point of view of how much information is repre-
sented by the state. In that case, we need to determine how may different states

2.11

2.12

213

2.14

2.15

2.16

217

218

2.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 59

there are, then take the log to the base 2 to find out how many bits of information
this represents. Using this approach, how many bits would be needed to represent
the state?

Alice and Bob agree to communicate privately via e-mail using a scheme based on

RC4, but they want to avoid using a new secret key for each transmission. Alice and

Bob privately agree on a 128-bit key k. To encrypt a message m consisting of a string

of bits, the following procedure is used.

1. Choose a random 80-bit value v

2. Generate the ciphertext c = RC4(v | k) @ m

3. Send the bit string (v | ¢)

a. Suppose Alice uses this procedure to send a message m to Bob. Describe how Bob
can recover the message m from (v | ¢) using k.

b. If an adversary observes several values (v{ | ¢1), (v2| ¢2), . . . transmitted between
Alice and Bob, how can he/she determine when the same key stream has been
used to encrypt two messages?

With the ECB mode, if there is an error in a block of the transmitted ciphertext, only

the corresponding plaintext block is affected. However, in the CBC mode, this error

propagates. For example, an error in the transmitted Cy (Figure 2.10) obviously cor-

rupts Py and P;.

a. Are any blocks beyond P, affected?

b. Suppose that there is a bit error in the source version of P. Through how
many ciphertext blocks is this error propagated? What is the effect at the
receiver?

Is it possible to perform encryption operations in parallel on multiple blocks of plain-
text in CBC mode? How about decryption?

Suppose an error occurs in a block of ciphertext on transmission using CBC. What
effect is produced on the recovered plaintext blocks?

CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it
could be used in any block cipher. CBC-Pad handles plaintext of any length. The
ciphertext is longer than the plaintext by at most the size of a single block.
Padding is used to assure that the plaintext input is a multiple of the block length.
It is assumed that the original plaintext is an integer number of bytes. This plain-
text is padded at the end by from 1 to bb bytes, where bb equals the block size in
bytes. The pad bytes are all the same and set to a byte that represents the number
of bytes of padding. For example, if there are 8 bytes of padding, each byte has the
bit pattern 00001000. Why not allow zero bytes of padding? That is, if the orig-
inal plaintext is an integer multiple of the block size, why not refrain from
padding?

Padding may not always be appropriate. For example, one might wish to store the
encrypted data in the same memory buffer that originally contained the plaintext. In
that case, the ciphertext must be the same length as the original plaintext. A mode for
that purpose is the ciphertext stealing (CTS) mode. Figure 2.13a shows an implemen-
tation of this mode.

a. Explain how it works.

b. Describe how to decrypt C,_; and C,,.

Figure 2.13b shows an alternative to CTS for producing ciphertext of equal length to
the plaintext when the plaintext is not an integer multiple of the block size.

a. Explain the algorithm.

b. Explain why CTS is preferable to this approach illustrated in Figure 2.13b.

If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode,
how far does the error propagate?

60 CHAPTER 2 / SYMMETRIC ENCRYPTION AND MESSAGE CONFIDENTIALITY

v Py Py,
) Cy—3 —@) + +
K —>Encrypt e e K —Encrypt K —>EncryptI
EEE——
G Cn-2 X
(a) Cipheretext stealing mode
Py Py_ Py—y Py
v (b bits) (bb bits) (bb bits) (j bits)
|—> Cy-3 + +
Select
K —>|Encrypt|| © ¢ ¢ K —>{Encrypt K —>{Encrypt K —>EncryptI le;tl;?t(;St
¢ Cn-2 Cy-1 Cn
(bb bits) (bb bits) (bb bits) (j bits)
(b) Alternative method

Figure 2.13 Block Cipher Modes for Plaintext not a Multiple of Block Size

PuBLIC-KEY CRYPTOGRAPHY
AND MESSAGE AUTHENTICATION

3.1 Approaches to Message Authentication

Authentication Using Conventional Encryption
Message Authentication without Message Encryption

3.2 Secure Hash Functions

Hash Function Requirements
Security of Hash Functions
Simple Hash Functions

The SHA Secure Hash Function

3.3 Message Authentication Codes

HMAC
MACs Based on Block Ciphers

3.4 Public-Key Cryptography Principles

Public-Key Encryption Structure
Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography

3.5 Public-Key Cryptography Algorithms

The RSA Public-Key Encryption Algorithm
Diffie-Hellman Key Exchange
Other Public-Key Cryptography Algorithms

3.6 Digital Signatures
3.7 Recommended Reading and Web Sites

3.8 Key Terms, Review Questions, and Problems

61

62 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Every Egyptian received two names, which were known respectively as the true
name and the good name, or the great name and the little name; and while the
good or little name was made public, the true or great name appears to have been
carefully concealed.

—The Golden Bough, Sir James George Frazer

To guard against the baneful influence exerted by strangers is therefore an ele-
mentary dictate of savage prudence. Hence before strangers are allowed to enter a
district, or at least before they are permitted to mingle freely with the inhabitants,
certain ceremonies are often performed by the natives of the country for the pur-
pose of disarming the strangers of their magical powers, or of disinfecting, so to
speak, the tainted atmosphere by which they are supposed to be surrounded.

—The Golden Bough, Sir James George Frazer

In addition to message confidentiality, message authentication is an important
network security function. This chapter examines three aspects of message
authentication. First, we look at the use of message authentication codes and hash
functions to provide message authentication. Then we look at public-key encryp-
tion principles and two specific public-key algorithms. These algorithms are useful
in the exchange of conventional encryption keys. Then we look at the use of
public-key encryption to produce digital signatures, which provides an enhanced
form of message authentication.

APPROACHES TO MESSAGE AUTHENTICATION

Encryption protects against passive attack (eavesdropping). A different requirement
is to protect against active attack (falsification of data and transactions). Protection
against such attacks is known as message authentication.

A message, file, document, or other collection of data is said to be authentic
when it is genuine and comes from its alleged source. Message authentication is a
procedure that allows communicating parties to verify that received messages are
authentic.! The two important aspects are to verify that the contents of the message
have not been altered and that the source is authentic. We may also wish to verify a
message’s timeliness (it has not been artificially delayed and replayed) and
sequence relative to other messages flowing between two parties. All of these
concerns come under the category of data integrity as described in Chapter 1.

Authentication Using Conventional Encryption

It would seem possible to perform authentication simply by the use of symmetric
encryption. If we assume that only the sender and receiver share a key (which is as
it should be), then only the genuine sender would be able to encrypt a message

For simplicity, for the remainder of this chapter, we refer to message authentication. By this we mean
both authentication of transmitted messages and of stored data (data authentication).

3.1 / APPROACHES TO MESSAGE AUTHENTICATION 63

successfully for the other participant, provided the receiver can recognize a valid
message. Furthermore, if the message includes an error-detection code and a
sequence number, the receiver is assured that no alterations have been made and
that sequencing is proper. If the message also includes a timestamp, the receiver is
assured that the message has not been delayed beyond that normally expected for
network transit.

In fact, symmetric encryption alone is not a suitable tool for data authentica-
tion. To give one simple example, in the ECB mode of encryption, if an attacker
reorders the blocks of ciphertext, then each block will still decrypt successfully.
However, the reordering may alter the meaning of the overall data sequence.
Although sequence numbers may be used at some level (e.g., each IP packet), it is
typically not the case that a separate sequence number will be associated with each
b-bit block of plaintext. Thus, block reordering is a threat.

Message Authentication without Message Encryption

In this section, we examine several approaches to message authentication that do
not rely on encryption. In all of these approaches, an authentication tag is generated
and appended to each message for transmission. The message itself is not encrypted
and can be read at the destination independent of the authentication function at the
destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. As was mentioned, message encryption by
itself does not provide a secure form of authentication. However, it is possible to
combine authentication and confidentiality in a single algorithm by encrypting a
message plus its authentication tag. Typically, however, message authentication is
provided as a separate function from message encryption. [DAVI89] suggests three
situations in which message authentication without confidentiality is preferable:

1. There are a number of applications in which the same message is broadcast to
a number of destinations. Two examples are notification to users that the net-
work is now unavailable and an alarm signal in a control center. It is cheaper
and more reliable to have only one destination responsible for monitoring
authenticity. Thus, the message must be broadcast in plaintext with an associ-
ated message authentication tag. The responsible system performs authenti-
cation. If a violation occurs, the other destination systems are alerted by a
general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and
cannot afford the time to decrypt all incoming messages. Authentication is car-
ried out on a selective basis with messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having to decrypt it every time,
which would be wasteful of processor resources. However, if a message
authentication tag were attached to the program, it could be checked when-
ever assurance is required of the integrity of the program.

Thus, there is a place for both authentication and encryption in meeting security
requirements.

64 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

MEssAGE AuTHENTICATION CoDE One authentication technique involves the use of a
secret key to generate a small block of data, known as a message authentication code
(MAC), that is appended to the message. This technique assumes that two
communicating parties, say A and B, share a common secret key K 45 When A has a
message to send to B, it calculates the message authentication code as a function of the
message and the key: MAC,; = F(K 45, M). The message plus code are transmitted to
the intended recipient. The recipient performs the same calculation on the received
message, using the same secret key, to generate a new message authentication code.
The received code is compared to the calculated code (Figure 3.1). If we assume that
only the receiver and the sender know the identity of the secret key, and if the
received code matches the calculated code, then the following statements apply:

1. The receiver is assured that the message has not been altered. If an attacker
alters the message but does not alter the code, then the receiver’s calculation
of the code will differ from the received code. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the code to correspond to
the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because no one
else knows the secret key, no one else could prepare a message with a proper code.

3. If the message includes a sequence number (such as is used with HDLC and
TCP), then the receiver can be assured of the proper sequence, because an
attacker cannot successfully alter the sequence number.

Message
K
_ MAC
Transmit algorithm
—_—
j \ ——————> Compare
MAC
algorithm MAC
K

Figure 3.1 Message Authentication Using a Message Authentication Code (MAC)

3.1 / APPROACHES TO MESSAGE AUTHENTICATION 65

A number of algorithms could be used to generate the code. The NIST specifi-
cation, FIPS PUB 113, recommends the use of DES. DES is used to generate an
encrypted version of the message, and the last number of bits of ciphertext are used
as the code. A 16- or 32-bit code is typical.

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. Because
of the mathematical properties of the authentication function, it is less vulnerable to
being broken than encryption.

ONE-WAY Hasa FunctioN An alternative to the message authentication code is
the one-way hash function. As with the message authentication code, a hash
function accepts a variable-size message M as input and produces a fixed-size
message digest H(M) as output. Unlike the MAC, a hash function does not take a
secret key as input. To authenticate a message, the message digest is sent with the
message in such a way that the message digest is authentic.

Figure 3.2 illustrates three ways in which the message can be authenticated.
The message digest can be encrypted using conventional encryption (part a); if it is
assumed that only the sender and receiver share the encryption key, then authentic-
ity is assured. The message digest can be encrypted using public-key encryption
(part b); this is explained in Section 3.5. The public-key approach has two advan-
tages: (1) It provides a digital signature as well as message authentication. (2) It does
not require the distribution of keys to communicating parties.

These two approaches also have an advantage over approaches that encrypt
the entire message in that less computation is required. Nevertheless, there has been
interest in developing a technique that avoids encryption altogether. Several reasons
for this interest are pointed out in [TSUD92]:

e Encryption software is quite slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

e Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

e Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

e An encryption algorithm may be protected by a patent.

Figure 3.2c shows a technique that uses a hash function but no encryption for
message authentication. This technique assumes that two communicating parties,
say A and B, share a common secret value S5 When A has a message to send to B,
it calculates the hash function over the concatenation of the secret value and the
message: MDy; = H(S45|M).% It then sends [M|MD,] to B. Because B possesses
S4B, it can recompute H(S 4| M) and verify MD,,. Because the secret value itself is

2| denotes concatenation.

66 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

~—— Source A ——> ~—— Destination B ——>

Message
Message
Message

(a) Using conventional encryption

Message
Message
Message

(b) Using public-key encryption

%)
]

Message
Message
Message

Compare

.

(¢) Using secret value

Figure 3.2 Message Authentication Using a One-Way Hash Function

not sent, it is not possible for an attacker to modify an intercepted message. As long
as the secret value remains secret, it is also not possible for an attacker to generate a
false message.

A variation on the third technique, called HMAC, is the one adopted for IP
security (described in Chapter 8); it also has been specified for SNMPv3 (Chapter 12).

3.2 / SECURE HASH FUNCTIONS 67

3.2 SECURE HASH FUNCTIONS

The one-way hash function, or secure hash function, is important not only in mes-
sage authentication but in digital signatures. In this section, we begin with a discus-
sion of requirements for a secure hash function. Then we look at the most important
hash function, SHA.

Hash Function Requirements

The purpose of a hash function is to produce a “fingerprint” of a file, message, or
other block of data.To be useful for message authentication, a hash function H must
have the following properties:

1. H can be applied to a block of data of any size.
2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

4. For any given code £, it is computationally infeasible to find x such that H(x) = A.
A hash function with this property is referred to as one-way or preimage
resistant.’

5. For any given block x, it is computationally infeasible to find y # x with H(y) =
H(x). A hash function with this property is referred to as second preimage resis-
tant. This is sometimes referred to as weak collision resistant.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).
A hash function with this property is referred to as collision resistant. This is
sometimes referred to as strong collision resistant.

The first three properties are requirements for the practical application of a
hash function to message authentication. The fourth property, preimage resistant, is
the “one-way” property: It is easy to generate a code given a message, but virtually
impossible to generate a message given a code. This property is important if the
authentication technique involves the use of a secret value (Figure 3.2¢). The secret
value itself is not sent; however, if the hash function is not one way, an attacker can
easily discover the secret value: If the attacker can observe or intercept a transmis-
sion, the attacker obtains the message M and the hash code C = H(S45|M). The
attacker then inverts the hash function to obtain S,z|M = H '(C). Because the
attacker now has both M and S 45| M, it is a trivial matter to recover S 4.

The second preimage resistant property guarantees that it is impossible to find an
alternative message with the same hash value as a given message. This prevents forgery
when an encrypted hash code is used (Figures 3.2a and b). If this property were not
true, an attacker would be capable of the following sequence: First, observe or intercept
a message plus its encrypted hash code; second, generate an unencrypted hash code
from the message; third, generate an alternate message with the same hash code.

3For f(x) = y, x is said to be a preimage of y. Unless f is one-to-one, there may be multiple preimage
values for a given y.

68 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

A hash function that satisfies the first five properties in the preceding list is
referred to as a weak hash function. If the sixth property is also satisfied, then it is
referred to as a strong hash function. The sixth property, collision resistant, protects
against a sophisticated class of attack known as the birthday attack. Details of this
attack are beyond the scope of this book. The attack reduces the strength of an
m-bit hash function from 2" to 22, See [STALI11] for details.

In addition to providing authentication, a message digest also provides data
integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

Security of Hash Functions

As with symmetric encryption, there are two approaches to attacking a secure hash
function: cryptanalysis and brute-force attack. As with symmetric encryption algorithms,
cryptanalysis of a hash function involves exploiting logical weaknesses in the algorithm.

The strength of a hash function against brute-force attacks depends solely on
the length of the hash code produced by the algorithm. For a hash code of length #,
the level of effort required is proportional to the following:

Preimage resistant 2"
Second preimage resistant 2"
Collision resistant oni2

If collision resistance is required (and this is desirable for a general-purpose
secure hash code), then the value 2""? determines the strength of the hash code
against brute-force attacks. Van Oorschot and Wiener [VANOY4] presented a
design for a $10 million collision search machine for MD5, which has a 128-bit hash
length, that could find a collision in 24 days. Thus, a 128-bit code may be viewed as
inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, is a
160-bit hash length. With a hash length of 160 bits, the same search machine would
require over four thousand years to find a collision. With today’s technology, the
time would be much shorter, so that 160 bits now appears suspect.

Simple Hash Functions

All hash functions operate using the following general principles. The input (mes-
sage, file, etc.) is viewed as a sequence of n-bit blocks. The input is processed one
block at a time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of
every block. This can be expressed as

Ci=bi@Dbn®...Dbin
where
C; = ith bit of the hash code, 1 <i<n
m = number of n-bit blocks in the input
b;; = ith bit in jth block
@ = XOR operation

3.2 / SECURE HASH FUNCTIONS 69

bit 1 bit 2 e o o bit n
Block 1 by by, b
Block 2 b|2 b22 an
[] L] L] []
[] [] L] []
[] [] [] []
Block m bim bs,, bym
Hash code Cy C, C,

Figure 3.3 Simple Hash Function Using Bitwise XOR

Figure 3.3 illustrates this operation; it produces a simple parity for each bit
position and is known as a longitudinal redundancy check. It is reasonably effective
for random data as a data integrity check. Each n-bit hash value is equally likely.
Thus, the probability that a data error will result in an unchanged hash value is 27".
With more predictably formatted data, the function is less effective. For example, in
most normal text files, the high-order bit of each octet is always zero. So if a 128-bit
hash value is used, instead of an effectiveness of 2728, the hash function on this type
of data has an effectiveness of 2712,

A simple way to improve matters is to perform a 1-bit circular shift, or rotation,
on the hash value after each block is processed. The procedure can be summarized as

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data:
a. Rotate the current hash value to the left by one bit.
b. XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming any
regularities that appear in the input.

Although the second procedure provides a good measure of data integrity, it
is virtually useless for data security when an encrypted hash code is used with a
plaintext message, as in Figures 3.2a and b. Given a message, it is an easy matter to
produce a new message that yields that hash code: Simply prepare the desired alter-
nate message and then append an n-bit block that forces the combined new message
plus block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the
hash code is encrypted, you may still feel that such a simple function could be useful
when the message as well as the hash code are encrypted. But one must be careful. A
technique originally proposed by the National Bureau of Standards used the simple
XOR applied to 64-bit blocks of the message and then an encryption of the entire
message using the cipher block chaining (CBC) mode. We can define the scheme as
follows: Given a message consisting of a sequence of 64-bit blocks X7, X, . . ., Xn,
define the hash code C as the block-by-block XOR or all blocks and append the hash
code as the final block:

C=Xnn=X1DX2@... D XN

70 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Next, encrypt the entire message plus hash code using CBC mode to produce the
encrypted message Yy, Yy, . . ., Y41 [JUENSS] points out several ways in which
the ciphertext of this message can be manipulated in such a way that it is not
detectable by the hash code. For example, by the definition of CBC (Figure 2.10),
we have

X1 =1V DK, Y,
Xi=Y 1 ®DK,Y)
Xn+1 = YN @ D(K, Yyi1)
But X is the hash code:

XN =X X@. .. ©Xy
=[lVODK. YN ®[Y1 ®DK. V)| ®. .. D[Yn-1 D DK, Yy)]

Because the terms in the preceding equation can be XORed in any order, it follows
that the hash code would not change if the ciphertext blocks were permuted.

The SHA Secure Hash Function

In recent years, the most widely used hash function has been the Secure Hash
Algorithm (SHA). Indeed, because virtually every other widely used hash function
had been found to have substantial cryptanalytic weaknesses, SHA was more or less
the last remaining standardized hash algorithm by 2005. SHA was developed by the
National Institute of Standards and Technology (NIST) and published as a federal
information processing standard (FIPS 180) in 1993. When weaknesses were discov-
ered in SHA (now known as SHA-0), a revised version was issued as FIPS 180-1 in
1995 and is referred to as SHA-1. The actual standards document is entitled “Secure
Hash Standard.” SHA is based on the hash function MD4, and its design closely
models MD4. SHA-1 is also specified in RFC 3174, which essentially duplicates the
material in FIPS 180-1 but adds a C code implementation.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised
version of the standard, FIPS 180-2, that defined three new versions of SHA with
hash value lengths of 256,384, and 512 bits known as SHA-256, SHA-384, and SHA-
512, respectively. Collectively, these hash algorithms are known as SHA-2. These
new versions have the same underlying structure and use the same types of modular
arithmetic and logical binary operations as SHA-1. A revised document was issued
as FIP PUB 180-3 in 2008, which added a 224-bit version (Table 3.1). SHA-2 is also
specified in RFC 4634, which essentially duplicates the material in FIPS 180-3 but
adds a C code implementation.

In 2005, NIST announced the intention to phase out approval of SHA-1 and
move to a reliance on SHA-2 by 2010. Shortly thereafter, a research team described
an attack in which two separate messages could be found that deliver the same
SHA-1 hash using 2% operations, far fewer than the 25 operations previously
thought needed to find a collision with an SHA-1 hash [WANGOS5]. This result
should hasten the transition to SHA-2.

In this section, we provide a description of SHA-512. The other versions are
quite similar.

3.2 / SECURE HASH FUNCTIONS 71

Table 3.1 Comparison of SHA Parameters

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512

Message Digest Size 160 224 256 384 512
Message Size < 2% <2 <Z* <2 < @B
Block Size 512 512 512 1024 1024
Word Size 32 32 32 64 64
Number of Steps 80 64 64 80 80
Security 80 112 128 192 256
Notes: 1. All sizes are measured in bits.

2. Security refers to the fact that a birthday attack on a message digest of size n produces a
collision with a workfactor of approximately 2">,

The algorithm takes as input a message with a maximum length of less than
2128 bits and produces as output a 512-bit message digest. The input is processed in
1024-bit blocks. Figure 3.4 depicts the overall processing of a message to produce a
digest. The processing consists of the following steps.

Step 1

Step 2

Step 3

Append padding bits: The message is padded so that its length is congruent
to 896 modulo 1024 [length = 896 (mod 1024)]. Padding is always added,
even if the message is already of the desired length. Thus, the number of
padding bits is in the range of 1 to 1024. The padding consists of a single 1 bit
followed by the necessary number of 0 bits.

Append length: A block of 128 bits is appended to the message. This block is
treated as an unsigned 128-bit integer (most significant byte first) and contains
the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer
multiple of 1024 bits in length. In Figure 3.4, the expanded message is repre-
sented as the sequence of 1024-bit blocks My, M, . . ., My, so that the total
length of the expanded message is N x 1024 bits.

Initialize hash buffer: A 512-bit buffer is used to hold intermediate and final
results of the hash function. The buffer can be represented as eight 64-bit reg-
isters (a, b, ¢, d, e, f, g, h). These registers are initialized to the following 64-bit
integers (hexadecimal values):

a = 6A09E667F3BCC908
b = BB67AE8584CAA73B
¢ = 3C6EF372FE94F82B
d = AS4FF53A5F1D36F1

e = 510E527FADE682D1
f=9B05688C2B3E6CILF
g = 1F83D9ABFB41BD6B
h = 5BEOCD19137E2179

These values are stored in big-endian format, which is the most significant
byte of a word in the low-address (leftmost) byte position. These words were
obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the first eight prime numbers.

72 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

N X 1024 bits

128 bits

L bits -

Message 1000000..0 | L
T T T

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
< 1024 bits ——>+<—— 1024 bits —> ——— 1024 bits —>1

M1 M2 XX} MN

—() —0) — i
) —® . 0

LN J

IV=Hy| [H H H, [— Hy

512 bits

512 bits 512 bits hash code

+ = word-by-word addition mod 264

Figure 3.4

Step 4

Step 5

Message Digest Generation Using SHA-512

Process message in 1024-bit (128-word) blocks: The heart of the algorithm is a
module that consists of 80 rounds; this module is labeled F in Figure 3.4. The
logic is illustrated in Figure 3.5.

Each round takes as input the 512-bit buffer value abedefgh and
updates the contents of the buffer. At input to the first round, the buffer has
the value of the intermediate hash value, H; ;. Each round ¢ makes use of a
64-bit value W, derived from the current 1024-bit block being processed
(M,). Each round also makes use of an additive constant K,, where 0 =<¢=79
indicates one of the 80 rounds. These words represent the first 64 bits of the
fractional parts of the cube roots of the first 80 prime numbers. The con-
stants provide a “randomized” set of 64-bit patterns, which should eliminate
any regularities in the input data.

The output of the 80th round is added to the input to the first round
(H—1) to produce H,;. The addition is done independently for each of the eight
words in the buffer with each of the corresponding words in H;_;, using addi-
tion modulo 2%,

Output: After all N 1024-bit blocks have been processed, the output from
the Nth stage is the 512-bit message digest.

3.3 / MESSAGE AUTHENTICATION CODES 73

M; Hy_
Message 64
schedule al b] ¢| al e|l £l 2] »1
Wo KO
—»(Round 0

Py v
of by e} 4y ey 1y 5y 1y

K,
—»[Round ¢

EEEEEEE
PR S
j<_

Round 79

z
oz

(+]+]+[+]+]+]+]+

Y

H;
Figure 3.5 SHA-512 Processing of a Single 1024-Bit Block

The SHA-512 algorithm has the property that every bit of the hash code is a
function of every bit of the input. The complex repetition of the basic function
F produces results that are well mixed; that is, it is unlikely that two messages chosen
at random, even if they exhibit similar regularities, will have the same hash code.
Unless there is some hidden weakness in SHA-512, which has not so far been pub-
lished, the difficulty of coming up with two messages having the same message
digest is on the order of 22°° operations, while the difficulty of finding a message
with a given digest is on the order of 23! operations.

3.3 MESSAGE AUTHENTICATION CODES

HMAC

In recent years, there has been increased interest in developing a MAC derived
from a cryptographic hash code, such as SHA-1. The motivations for this interest are

e Cryptographic hash functions generally execute faster in software than con-
ventional encryption algorithms such as DES.

e Library code for cryptographic hash functions is widely available.

74 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

A hash function such as SHA-1 was not designed for use as a MAC and
cannot be used directly for that purpose because it does not rely on a secret key.
There have been a number of proposals for the incorporation of a secret key into
an existing hash algorithm. The approach that has received the most support is
HMAC [BELLY96a, BELL96b]. HMAC has been issued as RFC 2104, has been
chosen as the mandatory-to-implement MAC for IP Security, and is used in other
Internet protocols, such as Transport Layer Security (TLS) and Secure Electronic
Transaction (SET).

HMAC Desioy Opjectives RFC 2104 lists the following design objectives for
HMAC.

e To use, without modifications, available hash functions. In particular, hash
functions that perform well in software, and for which code is freely and
widely available

e To allow for easy replaceability of the embedded hash function in case faster
or more secure hash functions are found or required

e To preserve the original performance of the hash function without incurring a
significant degradation

e To use and handle keys in a simple way

e To have a well-understood cryptographic analysis of the strength of the
authentication mechanism based on reasonable assumptions on the embedded
hash function

The first two objectives are important to the acceptability of HMAC. HMAC
treats the hash function as a “black box.” This has two benefits. First, an existing
implementation of a hash function can be used as a module in implementing
HMAC. In this way, the bulk of the HMAC code is prepackaged and ready to use
without modification. Second, if it is ever desired to replace a given hash function in
an HMAC implementation, all that is required is to remove the existing hash func-
tion module and drop in the new module. This could be done if a faster hash func-
tion were desired. More important, if the security of the embedded hash function
were compromised, the security of HMAC could be retained simply by replacing
the embedded hash function with a more secure one.

The last design objective in the preceding list is, in fact, the main advantage of
HMAC over other proposed hash-based schemes. HMAC can be proven secure
provided that the embedded hash function has some reasonable cryptographic
strengths. We return to this point later in this section, but first we examine the
structure of HMAC.

HMAC Arcoritam Figure 3.6 illustrates the overall operation of HMAC. The
following terms are defined:
H = embedded hash function (e.g., SHA-1)

M = message input to HMAC (including the padding specified in the embed-
ded hash function)

Y;=ithblock of M,0<i< (L — 1)
L = number of blocks in M

3.3 / MESSAGE AUTHENTICATION CODES 75

Kt ipad
LJ
b bits b bits b bits
RN R Yo,
Y
n bits

IV —— | Hash

K+ Opad n bits
L J _TH(S; 1 M)
i pad to b bits
n bits
IV —— > Hash
J n bits
[1HMAC(K, M)

Figure 3.6 HMAC Structure

b = number of bits in a block
n = length of hash code produced by embedded hash function

K = secret key; if key length is greater than b, the key is input to the hash

function to produce an n-bit key; recommended length is > n

K" = K padded with zeros on the left so that the result is b bits in length

ipad = 00110110 (36 in hexadecimal) repeated b/8 times
opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as
HMAC(K, M) = H[(K" @ opad) || H[(K" @ ipad) | M]]
In words, HMAC is defined as follows:

. Append zeros to the left end of K to create a b-bit string K (e.g., if K is of
length 160 bits and b = 512, then K will be appended with 44 zero bytes).

. XOR (bitwise exclusive-OR) K™ with ipad to produce the b-bit block S;.

76 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

. Append M to S;

. Apply H to the stream generated in step 3.

. XOR K" with opad to produce the b-bit block S,
. Append the hash result from step 4 to S,

N SN 0 AW

. Apply H to the stream generated in step 6 and output the result.

Note that the XOR with ipad results in flipping one-half of the bits of K.
Similarly, the XOR with opad results in flipping one-half of the bits of K, but a dif-
ferent set of bits. In effect, by passing S; and S, through the hash algorithm, we have
pseudorandomly generated two keys from K.

HMAC should execute in approximately the same time as the embedded hash
function for long messages. HMAC adds three executions of the basic hash function
(for S;, Sy, and the block produced from the inner hash).

MACs Based on Block Ciphers
In this section, we look at several MACs based on the use of a block cipher.

CIPHER-BASED MESSAGE AUTHENTICATION CODE (CMAC) The Cipher-based
Message Authentication Code (CMAC) mode of operation is for use with AES and
triple DES. It is specified in NIST Special Publication 800-38B.

First, let us consider the operation of CMAC when the message is an integer
multiple » of the cipher block length b. For AES, b = 128, and for triple DES, b = 64.
The message is divided into n blocks (M1, M,, . . ., M,,). The algorithm makes use of
a k-bit encryption key K and an n-bit key, K;. For AES, the key size k is 128,192, or
256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is calculated as follows

(Figure 3.7).
Ci = E(K, My)
G, = E(K, [M, @ Ci])
G =E(K, [M3@ G])
.
Gy =E(K, [My ® C1 @ Ki])
T = MSByen(Cp)
where
T = message authentication code, also referred to as the tag
Tlen = bit length of T

MSB,(X) = the s leftmost bits of the bit string X

If the message is not an integer multiple of the cipher block length, then the
final block is padded to the right (least significant bits) with a 1 and as many Os as
necessary so that the final block is also of length b. The CMAC operation then
proceeds as before, except that a different n-bit key K, is used instead of Kj.

3.3 / MESSAGE AUTHENTICATION CODES 77

M, M, M,
b
NP : > K
L .
k |
K—“>| Encrypt K —>| Encrypt : K —>| Encrypt
|
| I | IN—— !
MSB(Tlen) |—> T
(a) Message length is integer multiple of block size
M, M, e o o M, | 10..0
i > K,
| T
v |
K—>| Encrypt K —>| Encrypt : K —>| Encrypt
|
| I | IN—— ! l
MSB(Tlen) ——> T

(b) Message length is not integer multiple of block size

Figure 3.7 Cipher-Based Message Authentication Code (CMAC)

To generate the two n-bit keys, the block cipher is applied to the block that
consists entirely of 0 bits. The first subkey is derived from the resulting ciphertext by
a left shift of one bit and, conditionally, by XORing a constant that depends on the
block size. The second subkey is derived in the same manner from the first subkey.

CoUNTER wiTH CIPHER BLOCK CHAINING-MESSAGE AUTHENTICATION CoDE The
CCM mode of operation, defined in NIST SP 800-38C, is referred to as an
authenticated encryption mode. Authenticated encryption is a term used to describe
encryption systems that simultaneously protect confidentiality and authenticity
(integrity) of communications. Many applications and protocols require both forms
of security, but until recently the two services have been designed separately.

The key algorithmic ingredients of CCM are the AES encryption algorithm
(Section 2.2), the CTR mode of operation (Section 2.5), and the CMAC authentica-
tion algorithm. A single key K is used for both encryption and MAC algorithms. The
input to the CCM encryption process consists of three elements.

1. Data that will be both authenticated and encrypted. This is the plaintext
message P of data block.

2. Associated data A that will be authenticated but not encrypted. An example is a
protocol header that must be transmitted in the clear for proper protocol opera-
tion but which needs to be authenticated.

78 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

| Nonce | | Plaintext | |Ass. Data |

N—— V g
I

el N

T 7 5]

~— V T

(a) Authentication

Plaintext | Ctry |
Y

K—> Encrypt

Y
Ctry, Ctry, ..., Ctr,, —>] l
K —>]

MSB(Tlen)

Tag

< !4
™

L

Ciphertext

(b) Encryption
Figure 3.8 Counter with Cipher Block Chaining-Message Authentication Code (CCM)

3. A nonce N that is assigned to the payload and the associated data. This is a
unique value that is different for every instance during the lifetime of a proto-
col association and is intended to prevent replay attacks and certain other
types of attacks.

Figure 3.8 illustrates the operation of CCM. For authentication, the input
includes the nonce, the associated data, and the plaintext. This input is formatted as
a sequence of blocks By through B,. The first block contains the nonce plus some
formatting bits that indicate the lengths of the N, A, and P elements. This is followed

3.4 / PUBLIC-KEY CRYPTOGRAPHY PRINCIPLES 79

by zero or more blocks that contain A, followed by zero of more blocks that contain
P. The resulting sequence of blocks serves as input to the CMAC algorithm, which
produces a MAC value with length Tlen, which is less than or equal to the block
length (Figure 3.8a).

For encryption, a sequence of counters is generated that must be independent
of the nonce. The authentication tag is encrypted in CTR mode using the single
counter Ctry. The Tlen most significant bits of the output are XORed with the tag to
produce an encrypted tag. The remaining counters are used for the CTR mode
encryption of the plaintext (Figure 2.12). The encrypted plaintext is concatenated
with the encrypted tag to form the ciphertext output (Figure 3.8b).

3.4 PUBLIC-KEY CRYPTOGRAPHY PRINCIPLES

Of equal importance to conventional encryption is public-key encryption, which
finds use in message authentication and key distribution. This section looks first at
the basic concept of public-key encryption and takes a preliminary look at key dis-
tribution issues. Section 3.5 examines the two most important public-key algorithms:
RSA and Diffie-Hellman. Section 3.6 introduces digital signatures.

Public-Key Encryption Structure

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976
[DIFF76],is the first truly revolutionary advance in encryption in literally thousands
of years. Public-key algorithms are based on mathematical functions rather than on
simple operations on bit patterns, such as are used in symmetric encryption algo-
rithms. More important, public-key cryptography is asymmetric, involving the use of
two separate keys—in contrast to the symmetric conventional encryption, which
uses only one key. The use of two keys has profound consequences in the areas of
confidentiality, key distribution, and authentication.

Before proceeding, we should first mention several common misconceptions
concerning public-key encryption. One is that public-key encryption is more secure
from cryptanalysis than conventional encryption. In fact, the security of any
encryption scheme depends on (1) the length of the key and (2) the computational
work involved in breaking a cipher. There is nothing in principle about either con-
ventional or public-key encryption that makes one superior to another from the
point of view of resisting cryptanalysis. A second misconception is that public-key
encryption is a general-purpose technique that has made conventional encryption
obsolete. On the contrary, because of the computational overhead of current
public-key encryption schemes, there seems no foreseeable likelihood that conven-
tional encryption will be abandoned. Finally, there is a feeling that key distribution
is trivial when using public-key encryption, compared to the rather cumbersome
handshaking involved with key distribution centers for conventional encryption.
In fact, some form of protocol is needed, often involving a central agent, and the
procedures involved are no simpler or any more efficient than those required for
conventional encryption.

80 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Bobs's
public key

Joy Ted ﬁb
Mike Alice
PU, | Alice's public PR, | Alice's private
key key
Transmitted =
¢~ ciphertext DI[PR,, Y]
@ ||—=
2 A Y = E[PU,, X] (|
Plaintext Plaintext
input Encryption algorithm Decryption algorithm output

(e.g., RSA)

Bob (a) Encryption with public key Alice

Alice's
public key
ring

jb Joy Ted
Mike Bob
PR, | Bob's private PU, | Bob's public
key key
Transmitted =
L ciphertext D[PU,, Y]
@l ||——
Ny Y = E[PR,, X] (|
Plaintext Plaintext
input Encryption algorithm Decryption algorithm output
(e.g., RSA)
Bob (b) Encryption with private key Alice

Figure 3.9 Public-Key Cryptography

A public-key encryption scheme has six ingredients (Figure 3.9a).

e Plaintext: This is the readable message or data that is fed into the algorithm
as input.

* Encryption algorithm: The encryption algorithm performs various transforma-
tions on the plaintext.

3.4 / PUBLIC-KEY CRYPTOGRAPHY PRINCIPLES 81

* Public and private key: This is a pair of keys that have been selected so that
if one is used for encryption, the other is used for decryption. The exact trans-
formations performed by the encryption algorithm depend on the public or
private key that is provided as input.

¢ Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

* Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

As the names suggest, the public key of the pair is made public for others to
use, while the private key is known only to its owner. A general-purpose public-key
cryptographic algorithm relies on one key for encryption and a different but related
key for decryption.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

2. Each user places one of the two keys in a public register or other accessible file.
This is the public key. The companion key is kept private. As Figure 3.9a suggests,
each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the message using
Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

With this approach, all participants have access to public keys, and private
keys are generated locally by each participant and therefore need never be distrib-
uted. As long as a user protects his or her private key, incoming communication is
secure. At any time, a user can change the private key and publish the companion
public key to replace the old public key.

The key used in conventional encryption is typically referred to as a secret key.
The two keys used for public-key encryption are referred to as the public key and the
private key. Invariably, the private key is kept secret, but it is referred to as a private
key rather than a secret key to avoid confusion with conventional encryption.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is
otherwise likely to lead to confusion. Public-key systems are characterized by the
use of a cryptographic type of algorithm with two keys, one held private and one
available publicly. Depending on the application, the sender uses either the sender’s
private key, the receiver’s public key, or both to perform some type of cryptographic
function. In broad terms, we can classify the use of public-key cryptosystems into
three categories:

* Encryption/decryption: The sender encrypts a message with the recipient’s
public key.

82 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Table 3.2 Applications for Public-Key Cryptosystems

Algorithm Encryption/Decryption Digital Signature Key Exchange
RSA Yes Yes Yes
Diffie-Hellman No No Yes
DSS No Yes No
Elliptic curve Yes Yes Yes

¢ Digital signature: The sender “signs” a message with its private key. Signing is

achieved by a cryptographic algorithm applied to the message or to a small
block of data that is a function of the message.

* Key exchange: Two sides cooperate to exchange a session key. Several different

approaches are possible, involving the private key(s) of one or both parties.

Some algorithms are suitable for all three applications, whereas others can be

used only for one or two of these applications. Table 3.2 indicates the applications
supported by the algorithms discussed in this chapter: RSA and Diffie Hellman.
This table also includes the Digital Signature Standard (DSS) and elliptic-curve
cryptography, also mentioned later in this chapter.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figure 3.9 depends on a cryptographic algorithm
based on two related keys. Diffie and Hellman postulated this system without
demonstrating that such algorithms exist. However, they did lay out the conditions
that such algorithms must fulfill [DIFF76]:

1.

It is computationally easy for a party B to generate a pair (public key PUy,,
private key PRy).

. It is computationally easy for a sender A, knowing the public key and the mes-

sage to be encrypted, M, to generate the corresponding ciphertext:

C = E(PU,, M)

. It is computationally easy for the receiver B to decrypt the resulting ciphertext

using the private key to recover the original message:

M = D(PRy, C) = D[PRy,, E(PUp, M)]

. It is computationally infeasible for an opponent, knowing the public key, PUp, to

determine the private key, PRy,

. Itis computationally infeasible for an opponent, knowing the public key, PUy,

and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all

public-key applications.

6.

Either of the two related keys can be used for encryption, with the other used
for decryption.

M = D[PU,, E(PRy,, M)] = D[PR,, E(PU,,, M)]

3.5 / PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS 83

3.5 PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS

The two most widely used public-key algorithms are RSA and Diffie-Hellman. We
look at both of these in this section and then briefly introduce two other algorithms.*

The RSA Public-Key Encryption Algorithm

One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA
scheme has since that time reigned supreme as the most widely accepted and imple-
mented approach to public-key encryption. RSA is a block cipher in which the
plaintext and ciphertext are integers between 0 and n — 1 for some 7.

Encryption and decryption are of the following form period for some plaintext
block M and ciphertext block C:

C=M°modn
M = C?'mod n = (M°)% mod n = M** mod n

Both sender and receiver must know the values of n and e, and only the
receiver knows the value of d. This is a public-key encryption algorithm with a pub-
lic key of KU = {e, n} and a private key of KR = {d, n}. For this algorithm to be sat-
isfactory for public-key encryption, the following requirements must be met.

1. Itis possible to find values of e, d, n such that M modn = M forall M < n.
2. Itis relatively easy to calculate M and C for all values of M < .
3. Itis infeasible to determine d given e and n.

The first two requirements are easily met. The third requirement can be met
for large values of e and n.

Figure 3.10 summarizes the RSA algorithm. Begin by selecting two prime
numbers p and g and calculating their product », which is the modulus for encryp-
tion and decryption. Next, we need the quantity ¢(n), referred to as the Euler
totient of n, which is the number of positive integers less than n and relatively prime
to n. Then select an integer e that is relatively prime to ¢(n) [i.e., the greatest com-
mon divisor of e and ¢(n) is 1]. Finally, calculate d as the multiplicative inverse of e,
modulo ¢ (7). It can be shown that d and e have the desired properties.

Suppose that user A has published its public key and that user B wishes to
send the message M to A. Then B calculates C = M¢ (mod n) and transmits C. On
receipt of this ciphertext, user A decrypts by calculating M = c? (mod n).

An example, from [SING99], is shown in Figure 3.11. For this example, the
keys were generated as follows:

1. Select two prime numbers,p = 17 and g = 11.
2. Calculate n = pg = 17 x 11 = 187.

“This section uses some elementary concepts from number theory. For a review, see Appendix A.

84 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

Figure 3.10 The RSA Algorithm

3. Calculate ¢(n) = (p — 1)(g — 1) = 16 x 10 = 160.

4. Select e such that e is relatively prime to ¢(n) = 160 and less than ¢(n); we choose
e=1.

5. Determine d such that de mod 160 = 1 and d < 160.The correct value is d = 23,
because 23 x 7 = 161 = (1 x 160) + 1.

The resulting keys are public key PU = {7, 187} and private key PR = {23,
187}. The example shows the use of these keys for a plaintext input of M = 88. For

Encryption Decryption

plaintext
88

plaintext
88

PU =17,187 PR = 23,187
Figure 3.11 Example of RSA Algorithm

3.5 / PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS 85

encryption, we need to calculate C = 88’ mod 187. Exploiting the properties of
modular arithmetic, we can do this as follows:

887 mod 187 = [(88* mod 187) x (88> mod 187) x (88! mod 187)] mod 187
88! mod 187 = 88

882 mod 187 = 7744 mod 187 = 77

88* mod 187 = 59,969,536 mod 187 = 132

887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 1123 mod 187:

112 mod 187 = [(11' mod 187) x (112 mod 187) x (11* mod 187) x
(118 mod 187) x (11% mod 187)] mod 187

11! mod 187 = 11

11?2 mod 187 = 121

11* mod 187 = 14,641 mod 187 = 55

118 mod 187 = 214,358,881 mod 187 = 33

112 mod 187 = (11 x 121 x 55 x 33 x 33) mod 187
= 79,720,245 mod 187 = 88

There are two possible approaches to defeating the RSA algorithm. The first is
the brute-force approach: Try all possible private keys. Thus, the larger the number
of bits in e and d, the more secure the algorithm. However, because the calculations
involved (both in key generation and in encryption/decryption) are complex, the
larger the size of the key, the slower the system will run.

Most discussions of the cryptanalysis of RSA have focused on the task of fac-
toring # into its two prime factors. For a large n with large prime factors, factoring is
a hard problem, but not as hard as it used to be. A striking illustration of this
occurred in 1977; the three inventors of RSA challenged Scientific American readers
to decode a cipher they printed in Martin Gardner’s “Mathematical Games” column
[GARD77]. They offered a $100 reward for the return of a plaintext sentence, an
event they predicted might not occur for some 40 quadrillion years. In April of 1994,
a group working over the Internet and using over 1600 computers claimed the prize
after only eight months of work [LEUT94]. This challenge used a public-key size
(length of n) of 129 decimal digits (approximately 428 bits). This result does not
invalidate the use of RSA; it simply means that larger key sizes must be used.
Currently, a 1024-bit key size (about 300 decimal digits) is considered strong enough
for virtually all applications.

Diffie-Hellman Key Exchange

The first published public-key algorithm appeared in the seminal paper by Diffie
and Hellman that defined public-key cryptography [DIFF76] and is generally
referred to as the Diffie-Hellman key exchange. A number of commercial products
employ this key exchange technique.

86 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

The purpose of the algorithm is to enable two users to exchange a secret key
securely that then can be used for subsequent encryption of messages. The algo-
rithm itself is limited to the exchange of the keys.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. First, we define a primitive root of a prime number p as one whose
powers generate all the integers from 1 to p — 1. That is, if a is a primitive root of the
prime number p, then the numbers

amod p,a>mod p, . . .,ap ' mod p

are distinct and consist of the integers from 1 through p — 1 in some permutation.
For any integer b less than p and a primitive root a of prime number p, one can
find a unique exponent i such that

b=dmodp 0=i=(p—1)

The exponent i is referred to as the discrete logarithm, or index, of b for the base a,
mod p. We denote this value as dlog, p(b).s

THE Arcorrtam With this background, we can define the Diffie-Hellman key
exchange, which is summarized in Figure 3.12. For this scheme, there are two publicly
known numbers: a prime number g and an integer « that is a primitive root of q.
Suppose the users A and B wish to exchange a key. User A selects a random integer
X4 < g and computes Y, = o modgq. Similarly, user B independently selects a
random integer X < g and computes Yz = a**mod g.Each side keeps the X value
private and makes the Y value available publicly to the other side. User A computes
the key as K = (Y3)* modgq and user B computes the key as K = (Y,)** modg.
These two calculations produce identical results:

K = (Yg)*" modq
= (a** mod ¢)** modq
= (a*)* modgq
= o#*1 modgq
= (a«’)*» modgq
(a® mod ¢q)** modq
(Y1) modg

The result is that the two sides have exchanged a secret value. Furthermore,
because X4 and Xp are private, an adversary only has the following ingredients to
work with: g, «, Y4, and Y. Thus, the adversary is forced to take a discrete loga-
rithm to determine the key. For example, to determine the private key of user B, an
adversary must compute

XB = dlogow(YB)

SMany texts refer to the discrete logarithm as the index. There is no generally agreed notation for this
concept, much less an agreed name.

3.5 / PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS 87

Global Public Elements
q prime number
e a < g and « a primitive root of ¢

User A Key Generation

Select private X, X, <gq

Calculate public Y, Y, = a*Amod ¢

User B Key Generation
Select private Xp Xp<gq

Calculate public Yp Yy = o*Bmod ¢

Generation of Secret Key by User A

K = (Yp)*amod ¢

Generation of Secret Key by User B

K = (Y,)*smod ¢

Figure 3.12 The Diffie-Hellman Key Exchange Algorithm

The adversary can then calculate the key K in the same manner as user B does.
The security of the Diffie-Hellman key exchange lies in the fact that, while it is
relatively easy to calculate exponentials modulo a prime, it is very difficult to calcu-
late discrete logarithms. For large primes, the latter task is considered infeasible.
Here is an example. Key exchange is based on the use of the prime number
g = 353 and a primitive root of 353, in this case o = 3. A and B select secret keys
X4 =97 and X = 233, respectively. Each computes its public key:
A computes Y4 = 3°" mod 353 = 40.

B computes Y = 323% mod 353 = 248.
After they exchange public keys, each can compute the common secret key:

A computes K = (Y5)* mod 353 = 248°" mod 353 = 160.
B computes K = (Y,4)** mod 353 = 40?** mod 353 = 160.

We assume an attacker would have available the following information:

q=353; a=3; Y,4=40; Yp=248

88 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

User A User B

Generate
random X, < ¢;

Calculate Y Generate
Y, = a® mod ¢ \ random Xz < ¢;

Calculate
Yy = o®8 mod ¢;

Y
Calculate
Calculate K = (Y,)*8 mod ¢

K = (Yp)*a mod ¢

Figure 3.13 Diffie-Hellman Key Exchange

In this simple example, it would be possible to determine the secret key 160 by brute
force. In particular, an attacker E can determine the common key by discovering a
solution to the equation 3* mod 353 = 40 or the equation 3” mod 353 = 248. The
brute-force approach is to calculate powers of 3 modulo 353, stopping when the
result equals either 40 or 248. The desired answer is reached with the exponent
value of 97, which provides 3°” mod 353 = 40.

With larger numbers, the problem becomes impractical.

Key ExcHANGE Protocors Figure 3.13 shows a simple protocol that makes use of
the Diffie-Hellman calculation. Suppose that user A wishes to set up a connection
with user B and use a secret key to encrypt messages on that connection. User A can
generate a one-time private key X4, calculate Y4, and send that to user B. User B
responds by generating a private value Xp, calculating Y, and sending Yz to user A.
Both users can now calculate the key. The necessary public values g and o would
need to be known ahead of time. Alternatively, user A could pick values for g and o
and include those in the first message.

As an example of another use of the Diffie-Hellman algorithm, suppose that a
group of users (e.g., all users on a LAN) each generate a long-lasting private value
X 4 and calculate a public value Y 4. These public values, together with global public
values for ¢ and ¢, are stored in some central directory. At any time, user B can
access user A’s public value, calculate a secret key, and use that to send an encrypted
message to user A. If the central directory is trusted, then this form of communica-
tion provides both confidentiality and a degree of authentication. Because only A
and B can determine the key, no other user can read the message (confidentiality).
Recipient A knows that only user B could have created a message using this key
(authentication). However, the technique does not protect against replay attacks.

MAaN-IN-THE-MIDDLE ATTACK The protocol depicted in Figure 3.13 is insecure
against a man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys,
and Darth is the adversary. The attack proceeds as follows:

1. Darth prepares for the attack by generating two random private keys Xp; and
Xpo, and then computing the corresponding public keys Yp; and Ypo.

3.5 / PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS 89

2. Alice transmits Y4 to Bob.

3. Darth intercepts Y, and transmits Yp; to Bob. Darth also calculates
K2 = (Y,4)*">modg.

4. Bob receives Y and calculates K1 = (Y;)** modgq.
5. Bob transmits Y to Alice.

6. Darth intercepts Yp and transmits Yp, to Alice. Darth calculates
K1 = (Yg)*» modg.
7. Alice receives Yp, and calculates K2 = (Yp,)* modgq.

At this point, Bob and Alice think that they share a secret key. Instead Bob
and Darth share secret key K1, and Alice and Darth share secret key K2. All future
communication between Bob and Alice is compromised in the following way:

1. Alice sends an encrypted message M: E(K2, M).
2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M"), where M' is any message. In the first
case, Darth simply wants to eavesdrop on the communication without altering
it. In the second case, Darth wants to modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it does not
authenticate the participants. This vulnerability can be overcome with the use of
digital signatures and public-key certificates; these topics are explored later in this
chapter and in Chapter 4.

Other Public-Key Cryptography Algorithms

Two other public-key algorithms have found commercial acceptance: DSS and
elliptic-curve cryptography.

Dicrrar SIGNATURE STANDARD The National Institute of Standards and Technology
(NIST) has published Federal Information Processing Standard FIPS PUB 186,
known as the Digital Signature Standard (DSS). The DSS makes use of the SHA-1
and presents a new digital signature technique, the Digital Signature Algorithm
(DSA). The DSS was originally proposed in 1991 and revised in 1993 in response to
public feedback concerning the security of the scheme. There was a further minor
revision in 1996. The DSS uses an algorithm that is designed to provide only the
digital signature function. Unlike RSA, it cannot be used for encryption or key
exchange.

Erriptic-CUrve CryPTOGRAPHY The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA.The
bit length for secure RSA use has increased over recent years, and this has put a
heavier processing load on applications using RSA. This burden has ramifications,
especially for electronic commerce sites that conduct large numbers of secure
transactions. Recently, a competing system has begun to challenge RSA: elliptic
curve cryptography (ECC). Already, ECC is showing up in standardization efforts,
including the IEEE P1363 Standard for Public-Key Cryptography.

The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On

90 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie-
Hellman, and a full mathematical description is beyond the scope of this book. The
technique is based on the use of a mathematical construct known as the elliptic curve.

3.6 DIGITAL SIGNATURES

Public-key encryption can be used in another way, as illustrated in Figure 3.9b.
Suppose that Bob wants to send a message to Alice, and although it is not impor-
tant that the message be kept secret, he wants Alice to be certain that the message
is indeed from him. In this case, Bob uses his own private key to encrypt the mes-
sage. When Alice receives the ciphertext, she finds that she can decrypt it with
Bob’s public key, thus proving that the message must have been encrypted by Bob.
No one else has Bob’s private key, and therefore no one else could have created a
ciphertext that could be decrypted with Bob’s public key. Therefore, the entire
encrypted message serves as a digital signature. In addition, it is impossible to
alter the message without access to Bob’s private key, so the message is authenti-
cated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted. Although validating
both author and contents, this requires a great deal of storage. Each document must
be kept in plaintext to be used for practical purposes. A copy also must be stored in
ciphertext so that the origin and contents can be verified in case of a dispute.
A more efficient way of achieving the same results is to encrypt a small block of bits
that is a function of the document. Such a block, called an authenticator, must have
the property that it is infeasible to change the document without changing the
authenticator. If the authenticator is encrypted with the sender’s private key, it
serves as a signature that verifies origin, content, and sequencing. A secure hash
code such as SHA-1 can serve this function. Figure 3.2b illustrates this scenario.

It is important to emphasize that the encryption process just described does
not provide confidentiality. That is, the message being sent is safe from alteration
but not safe from eavesdropping. This is obvious in the case of a signature based on
a portion of the message, because the rest of the message is transmitted in the clear.
Even in the case of complete encryption, there is no protection of confidentiality
because any observer can decrypt the message by using the sender’s public key.

3.7 RECOMMENDED READING AND WEB SITES

Solid treatments of hash functions and message authentication codes are found in [STINO6]
and {MENE97].

The recommended treatments of encryption provided in Chapter 2 cover public-key as
well as conventional encryption. [DIFF88] describes in detail the several attempts to devise secure
two-key cryptoalgorithms and the gradual evolution of a variety of protocols based on them.

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 91

DIFF88 Diffie, W. “The First Ten Years of Public-Key Cryptography.” Procedings of the
MENE97 Menezes, A.; Oorschot, P; and Vanstone, S. Handbook of Applied Cryptography.

STINO6 Stinson, D. Cryptography: Theory and Practice.

IEEE, May 1988.

Boca Raton, FL: CRC Press, 1997.

Boca Raton, FL:
Chapmané&Hall/ CRC Press, 2006.

Recommended Web Sites:

NIST Secure Hashing Page: SHA FIPS and related documents.

RSA Laboratories: Extensive collection of technical material on RSA and other topics
in cryptography.

Digital Signatures: NIST page with information on NIST-approved digital signature
options.

3.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

authenticated encryption

Diffie-Hellman key exchange

digital signature

Digital Signature Standard
(DSS)

elliptic-curve cryptography
(ECC)

HMAC

key exchange

MD5

message authentication

message authentication code
(MAC)

message digest

one-way hash function

private key

public key

public-key certificate

public-key encryption
RIPEMD-160

RSA

secret key

secure hash function
SHA-1

strong collision resistance
weak collision resistance

Review Questions

31
3.2
3.3
34
3.5
3.6
3.7

List three approaches to message authentication.
What is a message authentication code?
Briefly describe the three schemes illustrated in Figure 3.2.
What properties must a hash function have to be useful for message authentication?

In the context of a hash function, what is a compression function?
What are the principal ingredients of a public-key cryptosystem?
List and briefly define three uses of a public-key cryptosystem.

92 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

3.8 What is the difference between a private key and a secret key?
3.9 Whatis a digital signature?
Problems
3.1 Consider a 32-bit hash function defined as the concatenation of two 16-bit functions:
XOR and RXOR, which are defined in Section 3.2 as “two simple hash functions.”
a. Will this checksum detect all errors caused by an odd number of error bits?
Explain.

b. Will this checksum detect all errors caused by an even number of error bits? If
not, characterize the error patterns that will cause the checksum to fail.

c. Comment on the effectiveness of this function for use as a hash function for
authentication.

3.2 Suppose H(m) is a collision-resistant hash function that maps a message of arbitrary
bit length into an n-bit hash value. Is it true that, for all messages x, x' with x # x', we
have H(x) # H(x')? Explain your answer.

3.3 State the value of the padding field in SHA-512 if the length of the message is
a. 1919 bits
b. 1920 bits
c. 1921 bits

3.4 State the value of the length field in SHA-512 if the length of the message is
a. 1919 bits
b. 1920 bits
c. 1921 bits

3.5 a. Consider the following hash function. Messages are in the form of a sequence of

t
decimal numbers, M = (ay, as, . . ., a,). The hash value 4 is calculated as < Ea,«)mod n,
=
for some predefined value n. Does this hash function satisfy any of the requirements
for a hash function listed in Section 3.2? Explain your answer.
t
b. Repeat part (a) for the hash function & = (> (a,-)z)mod n.
=

c. Calculate the hash function of part (b) for M = (189,632,900, 722,349) and n = 989.

3.6 This problem introduces a hash function similar in spirit to SHA that operates on let-

ters instead of binary data. It is called the toy tetragraph hash (tth).% Given a message
consisting of a sequence of letters, tth produces a hash value consisting of four letters.
First, tth divides the message into blocks of 16 letters, ignoring spaces, punctuation, and
capitalization. If the message length is not divisible by 16, it is padded out with nulls.
A four-number running total is maintained that starts out with the value (0, 0,0, 0); this
is input to the compression function for processing the first block. The compression
function consists of two rounds. Round 1: Get the next block of text and arrange it as a
row-wise 4 x 4 block of text and covert it to numbers (A = 0,B = 1, etc.). For example,
for the block ABCDEFGHIJKLMNOP, we have

A | B C | D 0 1 2 3
E F G | H 5 6 7

J K | L 8 9 10 | 11
M| N | O P 12 | 13 | 14 | 15

I thank William K. Mason of the magazine staff of The Cryptogram for providing this example.

3.7

3.8

3.9

3.10

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 93

Then, add each column mod 26 and add the result to the running total, mod 26. In this
example, the running total is (24, 2, 6, 10). Round 2: Using the matrix from round 1,
rotate the first row left by 1, second row left by 2, third row left by 3, and reverse the
order of the fourth row. In our example:

B C|D| A 1 2 3 0
G| H|E F 6 7 4

L I J K 11 8 10
P O | N | M 15 14|13 |12

Now, add each column mod 26 and add the result to the running total. The new run-
ning total is (5,7, 9, 11). This running total is now the input into the first round of the
compression function for the next block of text. After the final block is processed,
convert the final running total to letters. For example, if the message is ABCDE
FGHIJKLMNOP, then the hash is FHJL.

a. Draw figures comparable to Figures 3.4 and 3.5 to depict the overall tth logic and
the compression function logic.

b. Calculate the hash function for the 48-letter message “I leave twenty million dollars
to my friendly cousin Bill.”

c. To demonstrate the weakness of tth, find a 48-letter block that produces the same
hash as that just derived. Hint: Use lots of A’s.

It is possible to use a hash function to construct a block cipher with a structure similar
to DES. Because a hash function is one way and a block cipher must be reversible (to
decrypt), how is it possible?

Now consider the opposite problem: Use an encryption algorithm to construct a one-
way hash function. Consider using RSA with a known key. Then process a message con-
sisting of a sequence of blocks as follows: Encrypt the first block, XOR the result with
the second block and encrypt again, and so on. Show that this scheme is not secure by
solving the following problem. Given a two-block message B1, B2, and its hash, we have

RSAH(B1,B2) = RSA(RSA(B1) @ B2)

Given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2).
Thus, the hash function does not satisfy weak collision resistance.

One of the most widely used MACs, referred to as the Data Authentication Algorithm,
is based on DES. The algorithm is both a FIPS publication (FIPS PUB 113) and
an ANSI standard (X9.17). The algorithm can be defined as using the cipher block
chaining (CBC) mode of operation of DES with an initialization vector of zero
(Figure 2.10). The data (e.g., message, record, file, or program) to be authenticated is
grouped into contiguous 64-bit blocks: Py, Py, . . . , Py. If necessary, the final block is
padded on the right with Os to form a full 64-bit block. The MAC consists of either the
entire ciphertext block Cy or the leftmost M bits of the block with 16 = M = 64. Show
that the same result can be produced using the cipher feedback mode.

In this problem, we will compare the security services that are provided by digital sig-
natures (DS) and message authentication codes (MAC). We assume that Oscar is able
to observe all messages send from Alice to Bob and vice versa. Oscar has no knowl-
edge of any keys but the public one in case of DS. State whether and how (i) DS and
(i) MAC protect against each attack. The value auth (x) is computed with a DS or a
MAC algorithm, respectively.

a. (Message integrity) Alice sends a message x = “Transfer $1000 to Mark”
in the clear and also sends auth (x) to Bob. Oscar intercepts the message and
replaces “Mark” with “Oscar”. Will Bob detect this?

94 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

3.11

3.12

b. (Replay) Alice sends a message x = “Transfer $1000 to Oscar” in the
clear and also sends auth (x) to Bob. Oscar observes the message and signature
and sends them 100 times to Bob. Will Bob detect this?

c. (Sender Authentication with cheating third party) Oscar claims that he sent some
message x with a valid auth (x) to Bob, but Alice claims the same. Can Bob clear
the question in either case?

d. (Authentication with Bob cheating) Bob claims that he received a message x
with a valid signature auth (x) from Alice (e.g., “Transfer $1000 from Alice to
Bob”) but Alice claims she has never sent it. Can Alice clear this question in
either case?

Figure 3.14 shows an alternative means of implementing HMAC.

a. Describe the operation of this implementation.

b. What potential benefit does this implementation have over that shown in Figure 3.6?

In this problem, we demonstrate that for CMAC, a variant that XORs the second key

after applying the final encryption doesn’t work. Let us consider this for the case of

the message being an integer multiple of the block size. Then the variant can be
expressed as VMAC(K, M) = CBC(K, M) @ K;.Now suppose an adversary is able to
ask for the MACs of three messages: the message 0 = 0", where 7 is the cipher block
size; the message 1 = 1"; and the message 1| 0. As a result of these three queries, the

Precomputed Computed per message

ipad

K"’<J
1

b bits b bits b bits
—
| 0 | Y | ¢ Y-
b bitsl +
v —(1) 2 > Hash
ln bits
+
K™ opad 1 HS; 1 M)
LL':_I Pad to b bits

[]
n bits @

n bits
[THMAC(K, M)
Figure 3.14 Efficient Implementation of HMAC

3.14

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 95

adversary gets Tp = CBC(K, 0) ® Ky; T1 = CBC(K,1) @ K; and T, = CBC(K,
[CBC(K, 1)]) @ K;. Show that the adversary can compute the correct MAC for the
(unqueried) message 0| (7y @ T7).

Prior to the discovery of any specific public-key schemes, such as RSA, an existence
proof was developed whose purpose was to demonstrate that public-key encryption is
possible in theory. Consider the functions f1(x1) = z1; f2(x2, o) = 22; f3(x3, y3) = z3,
where all values are integers with 1 <x;, y;, z; < N. Function f; can be represented by a
vector M1 of length N in which the kth entry is the value of f|(k). Similarly, f, and f3
can be represented by N x N matrices M2 and M3. The intent is to represent the
encryption/decryption process by table lookups for tables with very large values of N.
Such tables would be impractically huge but in principle could be constructed. The
scheme works as follows: construct M1 with a random permutation of all integers
between 1 and N; that is, each integer appears exactly once in M1. Construct M2 so
that each row contains a random permutation of the first NV integers. Finally, fill in M3
to satisfy the condition:

f3(f(f1(k), p), k)=p forallk,pwithl=k,p=N
In words,

1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.
3. M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.
a. Itshould be clear that it is possible to construct M3 to satisfy the preceding condition.
As an example, fill in M3 for the following simple case:

502|13(4]1
4125|113
113|245 M3=
311(4(2]5
215|341

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3
corresponds to z = i; the jth column of M3 corresponds to k = j.

b. Describe the use of this set of tables to perform encryption and decryption
between two users.

c. Argue that this is a secure scheme.

Perform encryption and decryption using the RSA algorithm (Figure 3.10) for the

following:

a p=3;qg=1l,e=7M=5
b. p=5qg=11,e=3M=9
c. p=Tq=11,e=17;M=38
d. p=11;9g=13,e=11;M =17
e. p=17,q=3l,e=T,M=2

Hint: Decryption is not as hard as you think; use some finesse.

In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user
whose public key is e = 5,n = 35. What is the plaintext M?

In an RSA system, the public key of a given user is e = 31, n = 3599. What is the pri-
vate key of this user?

Suppose we have a set of blocks encoded with the RSA algorithm and we don’t have the
private key. Assume n = pq, e is the public key. Suppose also someone tells us they know
one of the plaintext blocks has a common factor with n. Does this help us in any way?

96 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

3.18
3.19

3.20

Show how RSA can be represented by matrices M1, M2, and M3 of Problem 3.4.
Consider the following scheme.

1. Pick an odd number, E.
2. Pick two prime numbers, P and Q, where (P — 1)(Q — 1) — 1 is evenly divisible by E.
3. Multiply P and Q to get N.

P-1 -1(E-1)+1
4. Calculate D = (NQ E)() .
Is this scheme equivalent to RSA? Show why or why not.
Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the
factorization cannot be found in a reasonable amount of time. Suppose Alice sends a
message to Bob by representing each alphabetic character as an integer between
0and 25 (A — 0,...,Z — 25),and then encrypting each number separately using
RSA with large e and large n. Is this method secure? If not, describe the most efficient
attack against this encryption method.
Consider a Diffie-Hellman scheme with a common prime g = 11 and a primitive root
o=2.

a. If user A has public key Y4 = 9, what is A’s private key X4?
b. If user B has public key Y = 3, what is the shared secret key K?

PART 2: NETWORK SECURITY APPLICATIONS

CHAPTER

KEY DISTRIBUTION AND USER
AUTHENTICATION

4.1 Symmetric Key Distribution Using Symmetric Encryption
4.2 Kerberos

Kerberos Version 4
Kerberos Version 5

4.3 Key Distribution Using Asymmetric Encryption

Public-Key Certificates
Public-Key Distribution of Secret Keys

4.4 X.509 Certificates

Certificates
X.509 Version 3

4.5 Public-Key Infrastructure

PKIX Management Functions
PKIX Management Protocols

4.6 Federated Identity Management

Identity Management
Identity Federation

4.7 Recommended Reading and Web Sites

4.8 Key Terms, Review Questions, and Problems

97

98 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

No Singhalese, whether man or woman, would venture out of the house without
a bunch of keys in his hand, for without such a talisman he would fear that some
devil might take advantage of his weak state to slip into his body.

—The Golden Bough, Sir James George Frazer

This chapter covers two important, related concepts. First is the complex topic of cryp-
tographic key distribution, involving cryptographic, protocol, and management
considerations. This chapter gives the reader a feel for the issues involved and provides
a broad survey of the various aspects of key management and distribution.

This chapter also examines some of the authentication functions that have
been developed to support network-based user authentication. The chapter includes
a detail discussion of one of the earliest and also one of the most widely used key
distribution and user authentication services: Kerberos. Next, the chapter looks at
key distribution schemes that rely on asymmetric encryption. This is followed by a
discussion of X.509 certificates and public-key infrastructure. Finally, the concept of
federated identity management is introduced.

SYMMETRIC KEY DISTRIBUTION USING SYMMETRIC

ENCRYPTION

For symmetric encryption to work, the two parties to an exchange must share the
same key, and that key must be protected from access by others. Furthermore, fre-
quent key changes are usually desirable to limit the amount of data compromised if
an attacker learns the key. Therefore, the strength of any cryptographic system rests
with the key distribution technique, a term that refers to the means of delivering a
key to two parties that wish to exchange data, without allowing others to see the key.
Key distribution can be achieved in a number of ways. For two parties A and B,
there are the following options:

1. A key could be selected by A and physically delivered to B.
2. A third party could select the key and physically deliver it to A and B.

3. If A and B have previously and recently used a key, one party could transmit the
new key to the other, using the old key to encrypt the new key.

4. If A and B each have an encrypted connection to a third party C, C could
deliver a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this is a
reasonable requirement, because each link encryption device is only going to be
exchanging data with its partner on the other end of the link. However, for end-to-
end encryption over a network, manual delivery is awkward. In a distributed system,
any given host or terminal may need to engage in exchanges with many other hosts
and terminals over time. Thus, each device needs a number of keys supplied dynam-
ically. The problem is especially difficult in a wide-area distributed system.

Option 3 is a possibility for either link encryption or end-to-end encryption,
but if an attacker ever succeeds in gaining access to one key, then all subsequent

4.2 / KERBEROS 99

keys are revealed. Even if frequent changes are made to the link encryption keys,
these should be done manually. To provide keys for end-to-end encryption, option 4
is preferable.

For option 4, two kinds of keys are used:

e Session key: When two end systems (hosts, terminals, etc.) wish to communicate,
they establish a logical connection (e.g., virtual circuit). For the duration of that
logical connection, called a session, all user data are encrypted with a one-time
session key. At the conclusion of the session the session key is destroyed.

* Permanent key: A permanent key is a key used between entities for the
purpose of distributing session keys.

A necessary element of option 4 is a key distribution center (KDC). The KDC
determines which systems are allowed to communicate with each other. When per-
mission is granted for two systems to establish a connection, the key distribution
center provides a one-time session key for that connection.

In general terms, the operation of a KDC proceeds as follows:

1. When host A wishes to set up a connection to host B, it transmits a connection-
request packet to the KDC. The communication between A and the KDC is
encrypted using a master key shared only by A and the KDC.

2. If the KDC approves the connection request, it generates a unique one-time ses-
sion key. It encrypts the session key using the permanent key it shares with A and
delivers the encrypted session key to A. Similarly, it encrypts the session key using
the permanent key it shares with B and delivers the encrypted session key to B.

3. A and B can now set up a logical connection and exchange messages and data,
all encrypted using the temporary session key.

The automated key distribution approach provides the flexibility and dynamic
characteristics needed to allow a number of users to access a number of servers and
for the servers to exchange data with each other. The most widely used application
that implements this approach is Kerberos, described in the next section.

4.2 KERBEROS

Kerberos is a key distribution and user authentication service developed at MIT.
The problem that Kerberos addresses is this: Assume an open distributed environ-
ment in which users at workstations wish to access services on servers distributed
throughout the network. We would like for servers to be able to restrict access to
authorized users and to be able to authenticate requests for service. In this environ-
ment, a workstation cannot be trusted to identify its users correctly to network ser-
vices. In particular, the following three threats exist:

1. A user may gain access to a particular workstation and pretend to be another
user operating from that workstation.

2. A user may alter the network address of a workstation so that the requests sent
from the altered workstation appear to come from the impersonated workstation.

100 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance
to a server or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services and
data that he or she is not authorized to access. Rather than building elaborate authen-
tication protocols at each server, Kerberos provides a centralized authentication
server whose function is to authenticate users to servers and servers to users. Kerberos
relies exclusively on symmetric encryption, making no use of public-key encryption.

Two versions of Kerberos are in use. Version 4 [MILL88, STEI88] imple-
mentations still exist, although this version is being phased out. Version 5
[KOHL94] corrects some of the security deficiencies of version 4 and has been
issued as a proposed Internet Standard (RFC 4120).

Because of the complexity of Kerberos, it is best to start with a description of
version 4. This enables us to see the essence of the Kerberos strategy without con-
sidering some of the details required to handle subtle security threats. Then, we
examine version 5.

Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide
the authentication service. Viewing the protocol as a whole, it is difficult to see the
need for the many elements contained therein. Therefore, we adopt a strategy used
by Bill Bryant [BRYAS&8] and build up to the full protocol by looking first at several
hypothetical dialogues. Each successive dialogue adds additional complexity to
counter security vulnerabilities revealed in the preceding dialogue.

After examining the protocol, we look at some other aspects of version 4.

A SimMpLE AUTHENTICATION D14rocut In an unprotected network environment,
any client can apply to any server for service. The obvious security risk is that of
impersonation. An opponent can pretend to be another client and obtain
unauthorized privileges on server machines. To counter this threat, servers must be
able to confirm the identities of clients who request service. Each server can be
required to undertake this task for each client/server interaction, but in an open
environment, this places a substantial burden on each server.

An alternative is to use an authentication server (AS) that knows the passwords
of all users and stores these in a centralized database. In addition, the AS shares a
unique secret key with each server. These keys have been distributed physically or in
some other secure manner. Consider the following hypothetical dialogue:!

(1) C— AS: ID¢|Pc|IDy

(2) AS—C: Ticket

(3) C—V: ID¢|Ticket

Ticket = E(K,, [ID¢c|AD¢ | IDv])

The portion to the left of the colon indicates the sender and receiver, the portion to the right indicates
the contents of the message, and the symbol | indicates concatenation.

4.2 / KERBEROS 101

where
C = client
AS = authentication server
\Y% = server

ID . = identifier of user on C

IDy = identifier of V

Pc = password of user on C

AD ¢ = network address of C

K, = secret encryption key shared by AS and V

In this scenario, the user logs on to a workstation and requests access to server V.
The client module C in the user’s workstation requests the user’s password and then
sends a message to the AS that includes the user’s ID, the server’s ID, and the user’s
password. The AS checks its database to see if the user has supplied the proper pass-
word for this user ID and whether this user is permitted access to server V. If both
tests are passed, the AS accepts the user as authentic and must now convince the
server that this user is authentic. To do so, the AS creates a ticket that contains the
user’s ID and network address and the server’s ID. This ticket is encrypted using the
secret key shared by the AS and this server. This ticket is then sent back to C.
Because the ticket is encrypted, it cannot be altered by C or by an opponent.

With this ticket, C can now apply to V for service. C sends a message to V con-
taining C’s ID and the ticket. V decrypts the ticket and verifies that the user ID in
the ticket is the same as the unencrypted user ID in the message. If these two match,
the server considers the user authenticated and grants the requested service.

Each of the ingredients of message (3) is significant. The ticket is encrypted to
prevent alteration or forgery. The server’s ID (IDy) is included in the ticket so that
the server can verify that it has decrypted the ticket properly. ID ¢ is included in the
ticket to indicate that this ticket has been issued on behalf of C. Finally, AD ¢ serves
to counter the following threat. An opponent could capture the ticket transmitted in
message (2), then use the name /D, and transmit a message of form (3) from
another workstation. The server would receive a valid ticket that matches the user
ID and grant access to the user on that other workstation. To prevent this attack, the
AS includes in the ticket the network address from which the original request came.
Now the ticket is valid only if it is transmitted from the same workstation that ini-
tially requested the ticket.

A MORE SECURE AUTHENTICATION DraLocue Although the foregoing scenario solves
some of the problems of authentication in an open network environment, problems
remain. Two in particular stand out. First, we would like to minimize the number of
times that a user has to enter a password. Suppose each ticket can be used only once.
If user C logs on to a workstation in the morning and wishes to check his or her mail
at a mail server, C must supply a password to get a ticket for the mail server. If C
wishes to check the mail several times during the day, each attempt requires
reentering the password. We can improve matters by saying that tickets are reusable.
For a single logon session, the workstation can store the mail-server ticket after it is
received and use it on behalf of the user for multiple accesses to the mail server.

102 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

However, under this scheme, it remains the case that a user would need a new
ticket for every different service. If a user wished to access a print server, a mail
server, a file server, and so on, the first instance of each access would require a new
ticket and hence require the user to enter the password.

The second problem is that the earlier scenario involved a plaintext transmis-
sion of the password [message (1)]. An eavesdropper could capture the password
and use any service accessible to the victim.

To solve these additional problems, we introduce a scheme for avoiding plain-
text passwords and a new server, known as the ticket-granting server (TGS). The
new (but still hypothetical) scenario is as follows.

Once per user logon session:
(1) C—=AS: IDc||ID g
(2) AS—=C: E(K,, Ticket;g)
Once per type of service:
(3) C—=TGS: IDc|IDy| Ticket,g
4) TGS — C: Ticket,
Once per service session:
(5) C—>V: IDc| Ticket,
Ticketygg = E(K g5, [ID || AD || ID g || TSy || Lifetime])
Ticket, = E(K,,[IDc| ADc| ID, || TS, | Lifetime;))

The new service, TGS, issues tickets to users who have been authenticated to
AS. Thus, the user first requests a ticket-granting ticket (7icket;s) from the AS. The
client module in the user workstation saves this ticket. Each time the user requires
access to a new service, the client applies to the TGS, using the ticket to authenticate
itself. The TGS then grants a ticket for the particular service. The client saves each
service-granting ticket and uses it to authenticate its user to a server each time a
particular service is requested. Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by sending its
user’s ID to the AS, together with the TGS ID, indicating a request to use the
TGS service.

2. The AS responds with a ticket that is encrypted with a key that is derived from
the user’s password (K), which is already stored at the AS. When this
response arrives at the client, the client prompts the user for his or her pass-
word, generates the key, and attempts to decrypt the incoming message. If the
correct password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct
user can recover the ticket. Thus, we have used the password to obtain credentials
from Kerberos without having to transmit the password in plaintext. The ticket
itself consists of the ID and network address of the user and the ID of the TGS.

4.2 / KERBEROS 103

This corresponds to the first scenario. The idea is that the client can use this ticket
to request multiple service-granting tickets. So the ticket-granting ticket is to be
reusable. However, we do not wish an opponent to be able to capture the ticket and
use it. Consider the following scenario: An opponent captures the login ticket and
waits until the user has logged off his or her workstation. Then the opponent either
gains access to that workstation or configures his workstation with the same net-
work address as that of the victim. The opponent would be able to reuse the ticket
to spoof the TGS. To counter this, the ticket includes a timestamp, indicating the
date and time at which the ticket was issued, and a lifetime, indicating the length of
time for which the ticket is valid (e.g., eight hours). Thus, the client now has a
reusable ticket and need not bother the user for a password for each new service
request. Finally, note that the ticket-granting ticket is encrypted with a secret key
known only to the AS and the TGS. This prevents alteration of the ticket. The ticket
is reencrypted with a key based on the user’s password. This assures that the ticket
can be recovered only by the correct user, providing the authentication.

Now that the client has a ticket-granting ticket, access to any server can be
obtained with steps 3 and 4.

3. The client requests a service-granting ticket on behalf of the user. For this pur-
pose, the client transmits a message to the TGS containing the user’s ID, the
ID of the desired service, and the ticket-granting ticket.

4. The TGS decrypts the incoming ticket using a key shared only by the AS and
the TGS (Kq,) and verifies the success of the decryption by the presence of its
ID. It checks to make sure that the lifetime has not expired. Then it compares
the user ID and network address with the incoming information to authenti-
cate the user. If the user is permitted access to the server V, the TGS issues a
ticket to grant access to the requested service.

The service-granting ticket has the same structure as the ticket-granting ticket.
Indeed, because the TGS is a server, we would expect that the same elements are
needed to authenticate a client to the TGS and to authenticate a client to an appli-
cation server. Again, the ticket contains a timestamp and lifetime. If the user wants
access to the same service at a later time, the client can simply use the previously
acquired service-granting ticket and need not bother the user for a password. Note
that the ticket is encrypted with a secret key (K,) known only to the TGS and the
server, preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access to
the corresponding service with step 5.

5. The client requests access to a service on behalf of the user. For this purpose, the
client transmits a message to the server containing the user’s ID and the service-
granting ticket. The server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query
per user session and protection of the user password.

THE VERSION 4 AUTHENTICATION Diarocue Although the foregoing scenario
enhances security compared to the first attempt, two additional problems remain.
The heart of the first problem is the lifetime associated with the ticket-granting

104 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

ticket. If this lifetime is very short (e.g., minutes), then the user will be repeatedly
asked for a password. If the lifetime is long (e.g., hours), then an opponent has a
greater opportunity for replay. An opponent could eavesdrop on the network and
capture a copy of the ticket-granting ticket and then wait for the legitimate user to
log out. Then the opponent could forge the legitimate user’s network address and
send the message of step (3) to the TGS. This would give the opponent unlimited
access to the resources and files available to the legitimate user.

Similarly, if an opponent captures a service-granting ticket and uses it before it
expires, the opponent has access to the corresponding service.

Thus, we arrive at an additional requirement. A network service (the TGS or
an application service) must be able to prove that the person using a ticket is the
same person to whom that ticket was issued.

The second problem is that there may be a requirement for servers to authen-
ticate themselves to users. Without such authentication, an opponent could sabotage
the configuration so that messages to a server were directed to another location. The
false server then would be in a position to act as a real server, capture any informa-
tion from the user, and deny the true service to the user.

We examine these problems in turn and refer to Table 4.1, which shows the
actual Kerberos protocol.

First, consider the problem of captured ticket-granting tickets and the need to
determine that the ticket presenter is the same as the client for whom the ticket was
issued. The threat is that an opponent will steal the ticket and use it before it expires.

Table 4.1 Summary of Kerberos Version 4 Message Exchanges

(1) C—AS DDy | TS,
2)AS—>C E(Ka [Kc,tgs H IDtgs ” TS, ” Lifetimez ” Tith’ttgs])

TiCkettgs = E(thsv [Kc,tgs ” ID¢ ” ADc¢ H IDth ”TS2 H Lifetime2])

(a) Authentication Service Exchange to obtain ticket-granting ticket

@3) C—>TGS ID,| Ticketyg || Authenticator,
@ TGS —C E(Kq g0 [Ko | 1D, | TS4 | Ticket,])
Ticketigy = B(Kgs, [Ke s [IDc | AD || ID g4 | TS, | Lifetime,])
Ticket, = E(K,, [K., [ID¢| AD¢ | ID, | TS, || Lifetime,])

Authenticator, = E(Kc s, [IDc || AD¢ || TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C—V Ticket,|| Authenticator,
) V—C E(K,,,[TSs5 + 1]) (for mutual authentication)
Ticket, = E(K,, [K., [ID¢| AD¢ | ID, | TS4| Lifetime,])

Authenticator, = E(K,,, [ID¢| AD¢| TSs])

(c) Client/Server Authentication Exchange to obtain service

4.2 / KERBEROS 105

To get around this problem, let us have the AS provide both the client and the TGS
with a secret piece of information in a secure manner. Then the client can prove its
identity to the TGS by revealing the secret information, again in a secure manner.
An efficient way of accomplishing this is to use an encryption key as the secure
information; this is referred to as a session key in Kerberos.

Table 4.1a shows the technique for distributing the session key. As before, the
client sends a message to the AS requesting access to the TGS. The AS responds
with a message, encrypted with a key derived from the user’s password (K¢), that
contains the ticket. The encrypted message also contains a copy of the session key,
K 145, Where the subscripts indicate that this is a session key for C and TGS. Because
this session key is inside the message encrypted with K¢, only the user’s client can
read it. The same session key is included in the ticket, which can be read only by the
TGS. Thus, the session key has been securely delivered to both C and the TGS.

Note that several additional pieces of information have been added to this
first phase of the dialogue. Message (1) includes a timestamp, so that the AS knows
that the message is timely. Message (2) includes several elements of the ticket in a
form accessible to C.This enables C to confirm that this ticket is for the TGS and to
learn its expiration time.

Armed with the ticket and the session key, C is ready to approach the TGS. As
before, C sends the TGS a message that includes the ticket plus the ID of the
requested service (message (3) in Table 4.1b). In addition, C transmits an authentica-
tor, which includes the ID and address of C’s user and a timestamp. Unlike the ticket,
which is reusable, the authenticator is intended for use only once and has a very short
lifetime. The TGS can decrypt the ticket with the key that it shares with the AS. This
ticket indicates that user C has been provided with the session key K. In effect, the
ticket says, “Anyone who uses Ko, must be C.” The TGS uses the session key to
decrypt the authenticator. The TGS can then check the name and address from the
authenticator with that of the ticket and with the network address of the incoming
message. If all match, then the TGS is assured that the sender of the ticket is indeed
the ticket’s real owner. In effect, the authenticator says, “At time 753, I hereby use
K¢ 45" Note that the ticket does not prove anyone’s identity but is a way to distribute
keys securely. It is the authenticator that proves the client’s identity. Because the
authenticator can be used only once and has a short lifetime, the threat of an oppo-
nent stealing both the ticket and the authenticator for presentation later is countered.

The reply from the TGS in message (4) follows the form of message (2). The
message is encrypted with the session key shared by the TGS and C and includes a
session key to be shared between C and the server V, the ID of V, and the timestamp
of the ticket. The ticket itself includes the same session key.

Cnow has a reusable service-granting ticket for V. When C presents this ticket,
as shown in message (5), it also sends an authenticator. The server can decrypt the
ticket, recover the session key, and decrypt the authenticator.

If mutual authentication is required, the server can reply as shown in message
(6) of Table 4.1. The server returns the value of the timestamp from the authentica-
tor, incremented by 1, and encrypted in the session key. C can decrypt this message
to recover the incremented timestamp. Because the message was encrypted by the
session key, C is assured that it could have been created only by V. The contents of
the message assure C that this is not a replay of an old reply.

106 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

Finally, at the conclusion of this process, the client and server share a secret
key. This key can be used to encrypt future messages between the two or to
exchange a new random session key for that purpose.

Table 4.2 summarizes the justification for each of the elements in the Kerberos
protocol, and Figure 4.1 provides a simplified overview of the action.

Table 4.2 Rationale for the Elements of the Kerberos Version 4 Protocol

Message (1) Client requests ticket-granting ticket.
ID¢ Tells AS identity of user from this client.
ID g Tells AS that user requests access to TGS.
TS, Allows AS to verify that client’s clock is synchronized with that of AS.
Message (2) AS returns ticket-granting ticket.
K, Encryption is based on user’s password, enabling AS and client to verify password, and

protecting contents of message (2).

K 1gs Copy of session key accessible to client created by AS to permit secure exchange
between client and TGS without requiring them to share a permanent key.

D, Confirms that this ticket is for the TGS.

TS, Informs client of time this ticket was issued.

Lifetime, Informs client of the lifetime of this ticket.

Ticket;gq Ticket to be used by client to access TGS.

(a) Authentication Service Exchange

Message (3) Client requests service-granting ticket.
1Dy Tells TGS that user requests access to server V.
Ticket;gq Assures TGS that this user has been authenticated by AS.

Authenticator, ~ Generated by client to validate ticket.

Message (4) TGS returns service-granting ticket.
K 15 Key shared only by C and TGS protects contents of message (4).
K., Copy of session key accessible to client created by TGS to permit secure exchange

between client and server without requiring them to share a permanent key.

1Dy Confirms that this ticket is for server V.

TSy Informs client of time this ticket was issued.

Tickety Ticket to be used by client to access server V.

Ticket;gq Reusable so that user does not have to reenter password.

Kigs Ticket is encrypted with key known only to AS and TGS, to prevent tampering.

Wi Copy of session key accessible to TGS used to decrypt authenticator, thereby authenti-

cating ticket.

4.2 / KERBEROS 107

ID¢
ADc¢

ID g

TS,
Lifetime,

Authenticator,

Keges
ID¢
AD¢
TS,

Indicates the rightful owner of this ticket.

Prevents use of ticket from workstation other than one that initially requested the ticket.
Assures server that it has decrypted ticket properly.

Informs TGS of time this ticket was issued.

Prevents replay after ticket has expired.

Assures TGS that the ticket presenter is the same as the client for whom the ticket was
issued has very short lifetime to prevent replay.

Authenticator is encrypted with key known only to client and TGS, to prevent tampering.
Must match ID in ticket to authenticate ticket.
Must match address in ticket to authenticate ticket.

Informs TGS of time this authenticator was generated.

(b) Ticket-Granting Service Exchange

Message (5)
Tickety
Authenticator,.

Message (6)

Ky
TSs + 1
Ticket,

K,
Ky

ID¢
AD¢
IDy

TSy
Lifetimey

Authenticator,

IDc
AD,
TSs

Client requests service.

Assures server that this user has been authenticated by AS.
Generated by client to validate ticket.

Optional authentication of server to client.

Assures C that this message is from V.

Assures C that this is not a replay of an old reply.

Reusable so that client does not need to request a new ticket from TGS for each access
to the same server.

Ticket is encrypted with key known only to TGS and server, to prevent tampering.

Copy of session key accessible to client; used to decrypt authenticator, thereby
authenticating ticket.

Indicates the rightful owner of this ticket.

Prevents use of ticket from workstation other than one that initially requested the ticket.
Assures server that it has decrypted ticket properly.

Informs server of time this ticket was issued.

Prevents replay after ticket has expired.

Assures server that the ticket presenter is the same as the client for whom the ticket was
issued; has very short lifetime to prevent replay.

Authenticator is encrypted with key known only to client and server, to prevent tampering.
Must match ID in ticket to authenticate ticket.
Must match address in ticket to authenticate ticket.

Informs server of time this authenticator was generated.

(¢) Client/Server Authentication Exchange

108 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

2. AS verifies user's access right in
database, creates ticket-granting ticket
and session key. Results are encrypted
using key derived from user's password.

Once per
user logon Kerberos
session
Authentication
server (AS)
/

1. User logs on to
workstation and
requests service on host.

Ticket-
granting
server (TGS)
D Once per :
3. Workstation prompts type of service 4. TGS decrypts ticket and

authenticator, verifies request,
then creates ticket for requested
server.

user for password and
uses password to decrypt
incoming message, then
sends ticket and
authenticator that
contains user's name,
network address, and
time to TGS. Once per

5. Workstation sends ~ service session
ticket and authenticator
to server.

6. Server verifies that
ticket and authenticator
match, then grants access
to service. If mutual
authentication is
required, server returns
an authenticator.

Figure 4.1 Overview of Kerberos

KErRBEROS REALMS AND MurtipLE KErBERT A full-service Kerberos environment
consisting of a Kerberos server, a number of clients, and a number of application
servers requires the following:

1. The Kerberos server must have the user ID and hashed passwords of all partic-
ipating users in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are
registered with the Kerberos server.

Such an environment is referred to as a Kerberos realm. The concept of realm
can be explained as follows. A Kerberos realm is a set of managed nodes that share
the same Kerberos database. The Kerberos database resides on the Kerberos master
computer system, which should be kept in a physically secure room. A read-only
copy of the Kerberos database might also reside on other Kerberos computer sys-
tems. However, all changes to the database must be made on the master computer
system. Changing or accessing the contents of a Kerberos database requires the
Kerberos master password. A related concept is that of a Kerberos principal, which

4.2 / KERBEROS 109

is a service or user that is known to the Kerberos system. Each Kerberos principal is
identified by its principal name. Principal names consist of three parts: a service or
user name, an instance name, and a realm name

Networks of clients and servers under different administrative organizations
typically constitute different realms. That is, it generally is not practical or does not
conform to administrative policy to have users and servers in one administrative
domain registered with a Kerberos server elsewhere. However, users in one realm
may need access to servers in other realms, and some servers may be willing to pro-
vide service to users from other realms, provided that those users are authenticated.

Kerberos provides a mechanism for supporting such interrealm authentica-
tion. For two realms to support interrealm authentication, a third requirement is
added:

3. The Kerberos server in each interoperating realm shares a secret key with the
server in the other realm. The two Kerberos servers are registered with each
other.

The scheme requires that the Kerberos server in one realm trust the Kerberos
server in the other realm to authenticate its users. Furthermore, the participating
servers in the second realm also must be willing to trust the Kerberos server in the
first realm.

With these ground rules in place, we can describe the mechanism as follows
(Figure 4.2): A user wishing service on a server in another realm needs a ticket for
that server. The user’s client follows the usual procedures to gain access to the local
TGS and then requests a ticket-granting ticket for a remote TGS (TGS in another
realm). The client can then apply to the remote TGS for a service-granting ticket for
the desired server in the realm of the remote TGS.

The details of the exchanges illustrated in Figure 4.2 are as follows (compare
Table 4.1).

(1) C— AS: ID¢|ID, | TS,

2Q)AS—C: E(Kc, [Kcgs | IDqgs | TS2 || Lifetimes | Ticket,q])
3) C—TGS: ID g5rem | Ticket,s | Authenticatorc
@TGS—C: E(Kcugsr [Kcugsrem | IDigsrem | TSa | Ticket gspom])
(5) C—=>TGSem: IDyyep, | Ticketiggrem | Authenticatorc

(6) TGSrem — C: E(Kcgrems [Kcvrom | IDvrem | TS6 | Ticketyon])

(7 C—>Viem: Tickety,e,, | Authenticator ¢

The ticket presented to the remote server (V,,,,) indicates the realm in which the
user was originally authenticated. The server chooses whether to honor the remote
request.

One problem presented by the foregoing approach is that it does not scale well
to many realms. If there are N realms, then there must be N(N — 1)/2 secure key
exchanges so that each Kerberos realm can interoperate with all other Kerberos
realms.

110 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

Realm A

Kerberos

Client

TGS

4. Ticket for remote TGS

0w 1sanboy °/

Kerberos

QOTAII

AS

M

TGS

Server

Realm B

Figure 4.2 Request for Service in Another Realm

Kerberos Version 5

Kerberos version 5 is specified in RFC 4120 and provides a number of improve-
ments over version 4 [KOHL94]. To begin, we provide an overview of the changes
from version 4 to version 5 and then look at the version 5 protocol.

DIFFERENCES BETWEEN VERSIONS 4 AND 5 Version 5 is intended to address the
limitations of version 4 in two areas: environmental shortcomings and technical
deficiencies. We briefly summarize the improvements in each area. Kerberos version

4.2 / KERBEROS 111

4 did not fully address the need to be of general purpose. This led to the following
environmental shortcomings.

1.

Encryption system dependence: Version 4 requires the use of DES. Export
restriction on DES as well as doubts about the strength of DES were thus of
concern. In version 5, ciphertext is tagged with an encryption-type identifier so
that any encryption technique may be used. Encryption keys are tagged with a
type and a length, allowing the same key to be used in different algorithms and
allowing the specification of different variations on a given algorithm.

. Internet protocol dependence: Version 4 requires the use of Internet Protocol

(IP) addresses. Other address types, such as the ISO network address, are not
accommodated. Version 5 network addresses are tagged with type and length,
allowing any network address type to be used.

. Message byte ordering: In version 4, the sender of a message employs a byte

ordering of its own choosing and tags the message to indicate least significant
byte in lowest address or most significant byte in lowest address. This tech-
niques works but does not follow established conventions. In version 5, all
message structures are defined using Abstract Syntax Notation One (ASN.1)
and Basic Encoding Rules (BER), which provide an unambiguous byte
ordering.

. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity

in units of five minutes. Thus, the maximum lifetime that can be expressed is
28 % 5 = 1280 minutes (a little over 21 hours). This may be inadequate for some
applications (e.g., a long-running simulation that requires valid Kerberos cre-
dentials throughout execution). In version 5, tickets include an explicit start
time and end time, allowing tickets with arbitrary lifetimes.

. Authentication forwarding: Version 4 does not allow credentials issued to one

client to be forwarded to some other host and used by some other client. This
capability would enable a client to access a server and have that server access
another server on behalf of the client. For example, a client issues a request to a
print server that then accesses the client’s file from a file server, using the client’s
credentials for access. Version 5 provides this capability.

. Interrealm authentication: In version 4, interoperability among N realms

requires on the order of N> Kerberos-to-Kerberos relationships, as described
earlier. Version 5 supports a method that requires fewer relationships, as
described shortly.

Apart from these environmental limitations, there are technical deficiencies

in the version 4 protocol itself. Most of these deficiencies were documented in
[BELL90], and version 5 attempts to address these. The deficiencies are the
following.

1.

Double encryption: Note in Table 4.1 [messages (2) and (4)] that tickets pro-
vided to clients are encrypted twice—once with the secret key of the target
server and then again with a secret key known to the client. The second
encryption is not necessary and is computationally wasteful.

112 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

2. PCBC encryption: Encryption in version 4 makes use of a nonstandard mode of
DES known as propagating cipher block chaining (PCBC).? It has been
demonstrated that this mode is vulnerable to an attack involving the interchange
of ciphertext blocks [KOHLS89]. PCBC was intended to provide an integrity
check as part of the encryption operation. Version 5 provides explicit integrity
mechanisms, allowing the standard CBC mode to be used for encryption. In par-
ticular, a checksum or hash code is attached to the message prior to encryption
using CBC.

3. Session keys: Each ticket includes a session key that is used by the client to
encrypt the authenticator sent to the service associated with that ticket. In addi-
tion, the session key subsequently may be used by the client and the server to
protect messages passed during that session. However, because the same ticket
may be used repeatedly to gain service from a particular server, there is the risk
that an opponent will replay messages from an old session to the client or the
server. In version 5, it is possible for a client and server to negotiate a subsession
key, which is to be used only for that one connection. A new access by the client
would result in the use of a new subsession key.

4. Password attacks: Both versions are vulnerable to a password attack. The mes-
sage from the AS to the client includes material encrypted with a key based on
the client’s password.> An opponent can capture this message and attempt to
decrypt it by trying various passwords. If the result of a test decryption is of the
proper form, then the opponent has discovered the client’s password and may
subsequently use it to gain authentication credentials from Kerberos. This is
the same type of password attack described in Chapter 9, with the same kinds
of countermeasures being applicable. Version 5 does provide a mechanism
known as preauthentication, which should make password attacks more diffi-
cult, but it does not prevent them.

THE VERSION 5 AUTHENTICATION D1arocUE Table 4.3 summarizes the basic version
5 dialogue. This is best explained by comparison with version 4 (Table 4.1).

First, consider the authentication service exchange. Message (1) is a client
request for a ticket-granting ticket. As before, it includes the ID of the user and the
TGS. The following new elements are added:

* Realm: Indicates realm of user.

* Options: Used to request that certain flags be set in the returned ticket.

e Times: Used by the client to request the following time settings in the ticket:
from: the desired start time for the requested ticket
till: the requested expiration time for the requested ticket
rtime: requested renew-till time

* Nonce: A random value to be repeated in message (2) to assure that the
response is fresh and has not been replayed by an opponent.

This is described in Appendix F.
3Appendix F describes the mapping of passwords to encryption keys.

4.2 / KERBEROS 113

Table 4.3 Summary of Kerberos Version 5 Message Exchanges

(1) C— AS Options | ID. || Realm.|| ID | Times | Nonce;
(2) AS = C Realm,||IDc| Ticketsg | E(Ke, [Ke g5 | Times | Noncey | Realngg || 1D g4])
Ticket;gg = B(Kigs, [Flags | K¢ s || Realm, | ID¢ | AD ¢ || Times])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C—>TGS Options | ID, |Times|| Nonce, || Ticket;gs | Authenticator,.
(4) TGS — C Realm,||IDc Ticket, | E(K g, [Ke,y | Times | Nonce; | Realm,, || ID,])
Ticketigy = E(K gy, [Flags | K, gs | Realmc|| ID ¢ | AD ¢ | Times])
Ticket, = E(K,, [Flags | K, | Realm.|| ID ¢ | AD¢ |Times])
Authenticator, = E(Ky g, [IDc | Realm | TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C— V Options|| Ticket, || Authenticator,
6)V—C Egcv|TS,| Subkey| Seq# |
Ticket, = E(K,, [Flags | K, || Realm | ID ¢ | AD | Times])
Authenticator, = E(K,,,, [IDc|| Realm, | TS, || Subkey || Seq#])

(c) Client/Server Authentication Exchange to obtain service

Message (2) returns a ticket-granting ticket, identifying information for the
client, and a block encrypted using the encryption key based on the user’s password.
This block includes the session key to be used between the client and the TGS, times
specified in message (1), the nonce from message (1), and TGS identifying informa-
tion. The ticket itself includes the session key, identifying information for the client,
the requested time values, and flags that reflect the status of this ticket and the
requested options. These flags introduce significant new functionality to version 5.
For now, we defer a discussion of these flags and concentrate on the overall structure
of the version 5 protocol.

Let us now compare the ticket-granting service exchange for versions 4 and 5.
We see that message (3) for both versions includes an authenticator, a ticket, and the
name of the requested service. In addition, version 5 includes requested times and
options for the ticket and a nonce—all with functions similar to those of message (1).
The authenticator itself is essentially the same as the one used in version 4.

Message (4) has the same structure as message (2). It returns a ticket plus
information needed by the client, with the information encrypted using the session
key now shared by the client and the TGS.

Finally, for the client/server authentication exchange, several new features
appear in version 5. In message (5), the client may request as an option that mutual
authentication is required. The authenticator includes several new fields:

e Subkey: The client’s choice for an encryption key to be used to protect this
specific application session. If this field is omitted, the session key from the
ticket (K¢ y) is used.

114 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

e Sequence number: An optional field that specifies the starting sequence num-
ber to be used by the server for messages sent to the client during this session.
Messages may be sequence numbered to detect replays.

If mutual authentication is required, the server responds with message (6).
This message includes the timestamp from the authenticator. Note that in version 4,
the timestamp was incremented by one. This is not necessary in version 5, because
the nature of the format of messages is such that it is not possible for an opponent to
create message (6) without knowledge of the appropriate encryption keys. The sub-
key field, if present, overrides the subkey field, if present, in message (5). The
optional sequence number field specifies the starting sequence number to be used
by the client.

KEY DISTRIBUTION USING ASYMMETRIC ENCRYPTION

One of the major roles of public-key encryption is to address the problem of key
distribution. There are actually two distinct aspects to the use of public-key encryp-
tion in this regard.

e The distribution of public keys.
e The use of public-key encryption to distribute secret keys.

We examine each of these areas in turn.

Public-Key Certificates

On the face of it, the point of public-key encryption is that the public key is public.
Thus, if there is some broadly accepted public-key algorithm, such as RSA, any
participant can send his or her public key to any other participant or broadcast the
key to the community at large. Although this approach is convenient, it has a
major weakness. Anyone can forge such a public announcement. That is, some user
could pretend to be user A and send a public key to another participant or broad-
cast such a public key. Until such time as user A discovers the forgery and alerts
other participants, the forger is able to read all encrypted messages intended for A
and can use the forged keys for authentication.

The solution to this problem is the public-key certificate. In essence, a cer-
tificate consists of a public key plus a user ID of the key owner, with the whole
block signed by a trusted third party. Typically, the third party is a certificate
authority (CA) that is trusted by the user community, such as a government
agency or a financial institution. A user can present his or her public key to the
authority in a secure manner and obtain a certificate. The user can then publish
the certificate. Anyone needing this user’s public key can obtain the certificate
and verify that it is valid by way of the attached trusted signature. Figure 4.3 illus-
trates the process.

One scheme has become universally accepted for formatting public-key cer-
tificates: the X.509 standard. X.509 certificates are used in most network security
applications, including IP security, secure sockets layer (SSL), secure electronic

4.3 / KEY DISTRIBUTION USING ASYMMETRIC ENCRYPTION 115

Unsigned certificate:
contains user ID,
user's public key

Generate hash
code of unsigned
certificate

Encrypt hash code
—>| E | with CA's private key
to form signature

Signed certificate:
Recipient can verify
signature using CA's
public key

Figure 4.3 Public-Key Certificate Use

transactions (SET), and S/MIME —all of which are discussed in Part Two. X.509 is
examined in detail in the next section.

Public-Key Distribution of Secret Keys

With conventional encryption, a fundamental requirement for two parties to commu-
nicate securely is that they share a secret key. Suppose Bob wants to create a messag-
ing application that will enable him to exchange e-mail securely with anyone who has
access to the Internet or to some other network that the two of them share. Suppose
Bob wants to do this using conventional encryption. With conventional encryption,
Bob and his correspondent, say, Alice, must come up with a way to share a unique
secret key that no one else knows. How are they going to do that? If Alice is in the
next room from Bob, Bob could generate a key and write it down on a piece of paper
or store it on a diskette and hand it to Alice. But if Alice is on the other side of the con-
tinent or the world, what can Bob do? He could encrypt this key using conventional
encryption and e-mail it to Alice, but this means that Bob and Alice must share a
secret key to encrypt this new secret key. Furthermore, Bob and everyone else who
uses this new e-mail package faces the same problem with every potential correspon-
dent: Each pair of correspondents must share a unique secret key.

One approach is the use of Diffie-Hellman key exchange. This approach is
indeed widely used. However, it suffers the drawback that, in its simplest form,
Diffie-Hellman provides no authentication of the two communicating partners.

116 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

A powerful alternative is the use of public-key certificates. When Bob wishes
to communicate with Alice, Bob can do the following:

1. Prepare a message.

2. Encrypt that message using conventional encryption with a one-time conven-
tional session key.

3. Encrypt the session key using public-key encryption with Alice’s public key.
4. Attach the encrypted session key to the message and send it to Alice.

Only Alice is capable of decrypting the session key and therefore of recovering
the original message. If Bob obtained Alice’s public key by means of Alice’s public-
key certificate, then Bob is assured that it is a valid key.

4.4 X.509 CERTIFICATES

ITU-T recommendation X.509 is part of the X.500 series of recommendations that
define a directory service. The directory is, in effect, a server or distributed set of
servers that maintains a database of information about users. The information
includes a mapping from user name to network address, as well as other attributes
and information about the users.

X.509 defines a framework for the provision of authentication services by the
X.500 directory to its users. The directory may serve as a repository of public-key
certificates. Each certificate contains the public key of a user and is signed with the
private key of a trusted certification authority. In addition, X.509 defines alternative
authentication protocols based on the use of public-key certificates.

X.509 is an important standard because the certificate structure and authenti-
cation protocols defined in X.509 are used in a variety of contexts. For example, the
X.509 certificate format is used in S/MIME (Chapter 7), IP Security (Chapter 8),
and SSL/TLS (Chapter 5).

X.509 was initially issued in 1988. The standard was subsequently revised to
address some of the security concerns documented in [TANS90] and [MITC90]; a
revised recommendation was issued in 1993. A third version was issued in 1995 and
revised in 2000.

X.509 is based on the use of public-key cryptography and digital signatures. The
standard does not dictate the use of a specific algorithm but recommends RSA. The dig-
ital signature scheme is assumed to require the use of a hash function. Again, the
standard does not dictate a specific hash algorithm. The 1988 recommendation included
the description of a recommended hash algorithm; this algorithm has since been shown
to be insecure and was dropped from the 1993 recommendation. Figure 4.3 illustrates
the generation of a public-key certificate.

Certificates

The heart of the X.509 scheme is the public-key certificate associated with each
user. These user certificates are assumed to be created by some trusted certifica-
tion authority (CA) and placed in the directory by the CA or by the user. The
directory server itself is not responsible for the creation of public keys or for the

Signature
algorithm
identifier

Period of
validity

Subject's
public key %\

info

Signature %\

Figure 4.4

4.4 / X.509 CERTIFICATES 117

Signature Algorithm
Version algorithm< F————~-—————————
. e Parameters
identifier
Certificate L
serial number SSUCIAMT
Algorithm)
——————————————— This update date
Parameters _
g
Issuer name 'z Next update date
g S
_____ AR gl - Revoked) | User certificate serial #
Not after Z 5 certificate Revocation date
> =
o)
Subject name > °
Algorithms °
_____ Parameters _ __ _ ®
L U if al #
- ser certificate serial
Issuer unique Revoked)| °Cf CETHK e
identifier certificate Revocation date
e | | (k- Algorithms __ _ _
Subject unique Signature < | _ _ _ _ Parameters _ _ _ _
identifier Encrypted
Extensions (b) Certificate revocation list
_____ Algorithms __ 2
_____ Parameters __ _ _ %3
Encrypted hash 3

(a) X.509 certificate
X.509 Formats

certification function; it merely provides an easily accessible location for users to
obtain certificates.

Figure 4.4a shows the general format of a certificate, which includes the following

elements.

Version: Differentiates among successive versions of the certificate format; the
default is version 1. If the Issuer Unique Identifier or Subject Unique
Identifier are present, the value must be version 2. If one or more extensions
are present, the version must be version 3.

Serial number: An integer value, unique within the issuing CA, that is unam-
biguously associated with this certificate.

Signature algorithm identifier: The algorithm used to sign the certificate,
together with any associated parameters. Because this information is repeated in
the Signature field at the end of the certificate, this field has little, if any, utility.
Issuer name: X.500 name of the CA that created and signed this certificate.
Period of validity: Consists of two dates: the first and last on which the certifi-
cate is valid.

Subject name: The name of the user to whom this certificate refers. That is, this
certificate certifies the public key of the subject who holds the corresponding
private key.

118 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

e Subject’s public-key information: The public key of the subject, plus an identi-
fier of the algorithm for which this key is to be used, together with any associ-
ated parameters.

e Issuer unique identifier: An optional bit string field used to identify uniquely
the issuing CA in the event the X.500 name has been reused for different
entities.

* Subject unique identifier: An optional bit string field used to identify
uniquely the subject in the event the X.500 name has been reused for differ-
ent entities.

¢ Extensions: A set of one or more extension fields. Extensions were added in
version 3 and are discussed later in this section.

e Signature: Covers all of the other fields of the certificate; it contains the hash
code of the other fields encrypted with the CA’s private key. This field includes
the signature algorithm identifier.

The unique identifier fields were added in version 2 to handle the possible
reuse of subject and/or issuer names over time. These fields are rarely used.
The standard uses the following notation to define a certificate:

CA<<A>> = CA{V,SN,AL, CA,UCA, A, UA,Ap, TA}
where

Y <<X>> = the certificate of user X issued by certification authority Y
Y {I} = the signing of I by Y; consists of I with an encrypted hash code appended
V = version of the certificate

SN = serial number of the certificate

Al = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A

T = period of validity of the certificate

The CA signs the certificate with its private key. If the corresponding public
key is known to a user, then that user can verify that a certificate signed by the CA
is valid. This is the typical digital signature approach, as illustrated in Figure 4.5.

OBTAINING A USEr’s CERTIFICATE User certificates generated by a CA have the
following characteristics:

* Any user with access to the public key of the CA can verify the user public key
that was certified.

* No party other than the certification authority can modify the certificate without
this being detected.

4.4 / X.509 CERTIFICATES 119

Alice

Message M Bob’s
Message M public
key
\ 4 S (ﬁ
Cryptographic v
hash Cryptographic Y
function hash
Bob’s GO | Decrypt I{—l
private
key Y
b \ A \ 4
h n

Y
Compare

Y
S
Return
Bob’s .signature .
signature valid or not valid
for M

Figure 4.5 Simplified Depiction of Essential Elements of Digital Signature Process

Because certificates are unforgeable, they can be placed in a directory without the
need for the directory to make special efforts to protect them.

If all users subscribe to the same CA, then there is a common trust of that CA.
All user certificates can be placed in the directory for access by all users. In addition,
a user can transmit his or her certificate directly to other users. In either case, once
B is in possession of A’s certificate, B has confidence that messages it encrypts with
A’s public key will be secure from eavesdropping and that messages signed with A’s
private key are unforgeable.

If there is a large community of users, it may not be practical for all users to
subscribe to the same CA. Because it is the CA that signs certificates, each partic-
ipating user must have a copy of the CA’s own public key to verify signatures. This
public key must be provided to each user in an absolutely secure way (with
respect to integrity and authenticity) so that the user has confidence in the associ-
ated certificates. Thus, with many users, it may be more practical for there to be a
number of CAs, each of which securely provides its public key to some fraction of
the users.

120 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

Now suppose that A has obtained a certificate from certification authority
X and B has obtained a certificate from CA X,. If A does not securely know the
public key of X,, then B’s certificate, issued by X, is useless to A. A can read B’s
certificate, but A cannot verify the signature. However, if the two CAs have
securely exchanged their own public keys, the following procedure will enable A
to obtain B’s public key.

1. A obtains (from the directory) the certificate of X, signed by X;. Because A
securely knows X;’s public key, A can obtain X,’s public key from its certificate
and verify it by means of X;’s signature on the certificate.

2. A then goes back to the directory and obtains the certificate of B signed by Xo.
Because A now has a trusted copy of X,’s public key, A can verify the signature
and securely obtain B’s public key.

A has used a chain of certificates to obtain B’s public key. In the notation of
X.509, this chain is expressed as

Xi<<Xo>> Xo<>
In the same fashion, B can obtain A’s public key with the reverse chain:
Xo<<X >> X <<A>>

This scheme need not be limited to a chain of two certificates. An arbitrarily
long path of CAs can be followed to produce a chain. A chain with N elements
would be expressed as

Xi<<Xp>> Xo<<X3>>. L Xy<>

In this case, each pair of CAs in the chain (X, X;;1) must have created certificates
for each other.

All of these certificates of CAs by CAs need to appear in the directory, and the
user needs to know how they are linked to follow a path to another user’s public-key
certificate. X.509 suggests that CAs be arranged in a hierarchy so that navigation is
straightforward.

Figure 4.6, taken from X.509, is an example of such a hierarchy. The connected
circles indicate the hierarchical relationship among the CAs; the associated boxes
indicate certificates maintained in the directory for each CA entry. The directory
entry for each CA includes two types of certificates:

e Forward certificates: Certificates of X generated by other CAs
* Reverse certificates: Certificates generated by X that are the certificates of
other CAs

In this example, user A can acquire the following certificates from the direc-
tory to establish a certification path to B:

X<<KW>> WIS VKY S>> Y<<ZI>> Z<>

When A has obtained these certificates, it can unwrap the certification path in
sequence to recover a trusted copy of B’s public key. Using this public key, A can
send encrypted messages to B. If A wishes to receive encrypted messages back from

4.4 / X.509 CERTIFICATES 121

Uu<<v>>
v<<u>>

V<<W>>

W<<V>> vV<Yy>>

Y<<V>>

W<<X>> Y<<Z>>
X<<W>> 7<<Y>>
X<<Z>> 7<<X>>

Figure 4.6 X.509 Hierarchy: A Hypothetical Example

B, or to sign messages sent to B, then B will require A’s public key, which can be
obtained from the certification path:

Z<<Y>>Y<<V>> V<KW > WX > > X<<A>>

B can obtain this set of certificates from the directory, or A can provide them
as part of its initial message to B.

Revocation or CertiFicATES Recall from Figure 4.4 that each certificate includes a
period of validity, much like a credit card. Typically, a new certificate is issued just
before the expiration of the old one. In addition, it may be desirable on occasion to
revoke a certificate before it expires for one of the following reasons.

1. The user’s private key is assumed to be compromised.

2. The user is no longer certified by this CA. Reasons for this include subject’s name
has changed, the certificate is superseded, or the certificate was not issued in con-
formance with the CA’s policies.

3. The CA’s certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired certifi-
cates issued by that CA, including both those issued to users and to other CAs.
These lists also should be posted on the directory.

122 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

Each certificate revocation list (CRL) posted to the directory is signed by the
issuer and includes (Figure 4.4b) the issuer’s name, the date the list was created, the
date the next CRL is scheduled to be issued, and an entry for each revoked certifi-
cate. Each entry consists of the serial number of a certificate and revocation date for
that certificate. Because serial numbers are unique within a CA, the serial number is
sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine
whether the certificate has been revoked. The user could check the directory each
time a certificate is received. To avoid the delays (and possible costs) associated with
directory searches, it is likely that the user would maintain a local cache of certificates
and lists of revoked certificates.

X.509 Version 3

The X.509 version 2 format does not convey all of the information that recent
design and implementation experience has shown to be needed. [FORD95] lists the
following requirements not satisfied by version 2:

1. The Subject field is inadequate to convey the identity of a key owner to a public-
key user. X.509 names may be relatively short and lacking in obvious identifica-
tion details that may be needed by the user.

2. The Subject field is also inadequate for many applications, which typically recog-
nize entities by an Internet e-mail address,a URL, or some other Internet-related
identification.

3. There is a need to indicate security policy information. This enables a security
application or function, such as IPSec, to relate an X.509 certificate to a given
policy.

4. There is a need to limit the damage that can result from a faulty or malicious CA
by setting constraints on the applicability of a particular certificate.

5. It is important to be able to identify different keys used by the same owner at
different times. This feature supports key life cycle management, in particular
the ability to update key pairs for users and CAs on a regular basis or under
exceptional circumstances.

Rather than continue to add fields to a fixed format, standards developers
felt that a more flexible approach was needed. Thus, version 3 includes a number
of optional extensions that may be added to the version 2 format. Each extension
consists of an extension identifier, a criticality indicator, and an extension value.
The criticality indicator indicates whether an extension can be safely ignored.
If the indicator has a value of TRUE and an implementation does not recognize
the extension, it must treat the certificate as invalid.

The certificate extensions fall into three main categories: key and policy infor-
mation, subject and issuer attributes, and certification path constraints.

KEey anD Poricy INFormATION These extensions convey additional information
about the subject and issuer keys, plus indicators of certificate policy. A certificate
policy is a named set of rules that indicates the applicability of a certificate to a

4.4 / X.509 CERTIFICATES 123

particular community and/or class of application with common security
requirements. For example, a policy might be applicable to the authentication of
electronic data interchange (EDI) transactions for the trading of goods within a
given price range.

This area includes:

e Authority key identifier: Identifies the public key to be used to verify the sig-
nature on this certificate or CRL. Enables distinct keys of the same CA to be
differentiated. One use of this field is to handle CA key pair updating.

* Subject key identifier: Identifies the public key being certified. Useful for sub-
ject key pair updating. Also, a subject may have multiple key pairs and, corre-
spondingly, different certificates for different purposes (e.g., digital signature
and encryption key agreement).

e Key usage: Indicates a restriction imposed as to the purposes for which, and
the policies under which, the certified public key may be used. May indicate
one or more of the following: digital signature, nonrepudiation, key encryp-
tion, data encryption, key agreement, CA signature verification on certificates,
and CA signature verification on CRLs.

¢ Private-key usage period: Indicates the period of use of the private key corre-
sponding to the public key. Typically, the private key is used over a different
period from the validity of the public key. For example, with digital signature
keys, the usage period for the signing private key is typically shorter than that
for the verifying public key.

¢ Certificate policies: Certificates may be used in environments where multiple
policies apply. This extension lists policies that the certificate is recognized as
supporting, together with optional qualifier information.

e Policy mappings: Used only in certificates for CAs issued by other CAs. Policy
mappings allow an issuing CA to indicate that one or more of that issuer’s
policies can be considered equivalent to another policy used in the subject
CA’s domain.

CERTIFICATE SUBJECT AND IssUER ATTRIBUTES These extensions support alternative
names, in alternative formats, for a certificate subject or certificate issuer and can
convey additional information about the certificate subject to increase a certificate
user’s confidence that the certificate subject is a particular person or entity. For
example, information such as postal address, position within a corporation, or
picture image may be required.

The extension fields in this area include:

* Subject alternative name: Contains one or more alternative names, using any of a
variety of forms. This field is important for supporting certain applications, such
as electronic mail, EDI, and IPSec, which may employ their own name forms.

e Issuer alternative name: Contains one or more alternative names, using any of
a variety of forms.

* Subject directory attributes: Conveys any desired X.500 directory attribute
values for the subject of this certificate.

124 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

CERTIFICATION PATH CONSTRAINTS These extensions allow constraint specifications
to be included in certificates issued for CAs by other CAs. The constraints may
restrict the types of certificates that can be issued by the subject CA or that may
occur subsequently in a certification chain.

The extension fields in this area include:

¢ Basic constraints: Indicates if the subject may act as a CA. If so, a certification
path length constraint may be specified.

* Name constraints: Indicates a name space within which all subject names in
subsequent certificates in a certification path must be located.

e Policy constraints: Specifies constraints that may require explicit certificate
policy identification or inhibit policy mapping for the remainder of the certifi-
cation path.

4.5 PUBLIC-KEY INFRASTRUCTURE

RFC 2822 (Internet Security Glossary) defines public-key infrastructure (PKI) as
the set of hardware, software, people, policies, and procedures needed to create,
manage, store, distribute, and revoke digital certificates based on asymmetric cryp-
tography. The principal objective for developing a PKI is to enable secure, conve-
nient, and efficient acquisition of public keys. The Internet Engineering Task Force
(IETF) Public Key Infrastructure X.509 (PKIX) working group has been the dri-
ving force behind setting up a formal (and generic) model based on X.509 that is
suitable for deploying a certificate-based architecture on the Internet. This section
describes the PKIX model.

Figure 4.7 shows the interrelationship among the key elements of the PKIX
model. These elements are

* End entity: A generic term used to denote end users, devices (e.g., servers,
routers), or any other entity that can be identified in the subject field of a pub-
lic key certificate. End entities typically consume and/or support PKI-related
services.

¢ Certification authority (CA): The issuer of certificates and (usually) certifi-
cate revocation lists (CRLs). It may also support a variety of administrative
functions, although these are often delegated to one or more registration
authorities.

* Registration authority (RA): An optional component that can assume a num-
ber of administrative functions from the CA. The RA is often associated with
the end entity registration process, but can assist in a number of other areas as
well.

* CRL issuer: An optional component that a CA can delegate to publish CRLs.

* Repository: A generic term used to denote any method for storing certificates
and CRLs so that they can be retrieved by end entities.

4.5 / PUBLIC-KEY INFRASTRUCTURE 125

PKI
users
Certificate/CRL retrieval .
End entity
& Registration,
2 initialization,
% certification,
: ¢ Registration < key pair recovery,
=~ Certificate | authority key pair update
% publication | revocation request
E Certificate/CRL A 4
% < publication Certificate
) authority
Q
- I Cross-
<€ CRL CRL issuer certification
publication Certificate
authority
PKI
management
entities

Figure 4.7 PKIX Architectural Model

PKIX Management Functions

PKIX identifies a number of management functions that potentially need to be sup-
ported by management protocols. These are indicated in Figure 4.7 and include the

following:

* Registration: This is the process whereby a user first makes itself known to a

CA (directly, or through an RA), prior to that CA issuing a certificate or cer-
tificates for that user. Registration begins the process of enrolling in a PKI.
Registration usually involves some off-line or online procedure for mutual
authentication. Typically, the end entity is issued one or more shared secret
keys used for subsequent authentication.

Initialization: Before a client system can operate securely, it is necessary to
install key materials that have the appropriate relationship with keys stored
elsewhere in the infrastructure. For example, the client needs to be securely
initialized with the public key and other assured information of the trusted
CA(s) to be used in validating certificate paths.

Certification: This is the process in which a CA issues a certificate for a user’s
public key and returns that certificate to the user’s client system and/or posts
that certificate in a repository.

126 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

* Key pair recovery: Key pairs can be used to support digital signature creation
and verification, encryption and decryption, or both. When a key pair is used
for encryption/decryption, it is important to provide a mechanism to recover
the necessary decryption keys when normal access to the keying material is no
longer possible, otherwise it will not be possible to recover the encrypted data.
Loss of access to the decryption key can result from forgotten passwords/PINs,
corrupted disk drives, damage to hardware tokens, and so on. Key pair recov-
ery allows end entities to restore their encryption/decryption key pair from an
authorized key backup facility (typically, the CA that issued the end entity’s
certificate).

o Key pair update: All key pairs need to be updated regularly (i.e., replaced with
a new key pair) and new certificates issued. Update is required when the cer-
tificate lifetime expires and as a result of certificate revocation.

* Revocation request: An authorized person advises a CA of an abnormal situa-
tion requiring certificate revocation. Reasons for revocation include private
key compromise, change in affiliation, and name change.

e Cross certification: Two CAs exchange information used in establishing a
cross-certificate. A cross-certificate is a certificate issued by one CA to another
CA that contains a CA signature key used for issuing certificates.

PKIX Management Protocols

The PKIX working group has defines two alternative management protocols
between PKIX entities that support the management functions listed in the preced-
ing subsection. RFC 2510 defines the certificate management protocols (CMP).
Within CMP, each of the management functions is explicitly identified by specific
protocol exchanges. CMP is designed to be a flexible protocol able to accommodate
a variety of technical, operational, and business models.

RFC 2797 defines certificate management messages over CMS (CMC), where
CMS refers to RFC 2630, cryptographic message syntax. CMC is built on earlier work
and is intended to leverage existing implementations. Although all of the PKIX func-
tions are supported, the functions do not all map into specific protocol exchanges.

4.6 FEDERATED IDENTITY MANAGEMENT

Federated identity management is a relatively new concept dealing with the use of a
common identity management scheme across multiple enterprises and numerous
applications and supporting many thousands, even millions, of users. We begin our
overview with a discussion of the concept of identity management and then examine
federated identity management.

Identity Management

Identity management is a centralized, automated approach to provide enterprise-
wide access to resources by employees and other authorized individuals. The focus
of identity management is defining an identity for each user (human or process),

4.6 / FEDERATED IDENTITY MANAGEMENT 127

associating attributes with the identity, and enforcing a means by which a user can
verify identity. The central concept of an identity management system is the use
of single sign-on (SSO). SSO enables a user to access all network resources after a
single authentication.

[PELTO7] lists the following as the principal elements of an identity management
system.

¢ Authentication: Confirmation that a user corresponds to the user name
provided.

* Authorization: Granting access to specific services and/or resources based on
the authentication.

e Accounting: A process for logging access and authorization.
e Provisioning: The enrollment of users in the system.
* Workflow automation: Movement of data in a business process.

* Delegated administration: The use of role-based access control to grant
permissions.

e Password synchronization: Creating a process for single sign-on (SSO) or
reduced sign-on (RSO). Single sign-on enables a user to access all network
resources after a single authentication. RSO may involve multiple sign-ons but
requires less user effort than if each resource and service maintained its own
authentication facility.

* Self-service password reset: Enables the user to modify his or her password.

e Federation: A process where authentication and permission will be passed on
from one system to another—usually across multiple enterprises, thereby
reducing the number of authentications needed by the user.

Note that Kerberos contains a number of the elements of an identity manage-
ment system.

Figure 4.8 [LINNOG6] illustrates entities and data flows in a generic identity
management architecture. A principal is an identity holder. Typically, this is a
human user that seeks access to resources and services on the network. User
devices, agent processes, and server systems may also function as principals.
Principals authenticate themselves to an identity provider. The identity provider
associates authentication information with a principal, as well as attributes and
one or more identifiers.

Increasingly, digital identities incorporate attributes other than simply an
identifier and authentication information (such as passwords and biometric infor-
mation). An attribute service manages the creation and maintenance of such
attributes. For example, a user needs to provide a shipping address each time an
order is placed at a new Web merchant, and this information needs to be revised
when the user moves. Identity management enables the user to provide this infor-
mation once, so that it is maintained in a single place and released to data con-
sumers in accordance with authorization and privacy policies. Users may create
some of the attributes to be associated with their digital identity, such as address.
Administrators may also assign attributes to users, such as roles, access permis-
sions, and employee information.

128 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

Administrators
provide
attributes

Administrator

Attribute service

Data consumers apply
references to obtain
attribute data

Identity Provider
AP Data consumer
Pr1nc1pflls Identity control Attribute
authenticate, .
; interface locator
manage their
identity elements
Principal Identifier Data consumers obtain
authentication translation identifiers, attribute
references

Figure 4.8 Generic Identity Management Architecture

Data consumers are entities that obtain and employ data maintained and pro-
vided by identity and attribute providers, which are often used to support authoriza-
tion decisions and to collect audit information. For example, a database server or
file server is a data consumer that needs a client’s credentials so as to know what
access to provide to that client.

Identity Federation

Identity federation is, in essence, an extension of identity management to multiple
security domains. Such domains include autonomous internal business units, exter-
nal business partners, and other third-party applications and services. The goal is to
provide the sharing of digital identities so that a user can be authenticated a single
time and then access applications and resources across multiple domains. Because
these domains are relatively autonomous or independent, no centralized control is
possible. Rather, the cooperating organizations must form a federation based on
agreed standards and mutual levels of trust to securely share digital identities.
Federated identity management refers to the agreements, standards, and tech-
nologies that enable the portability of identities, identity attributes, and entitlements
across multiple enterprises and numerous applications and supporting many thou-
sands, even millions, of users. When multiple organizations implement interoperable
federated identity schemes, an employee in one organization can use a single sign-
on to access services across the federation with trust relationships associated with
the identity. For example, an employee may log onto her corporate intranet and be
authenticated to perform authorized functions and access authorized services on

4.6 / FEDERATED IDENTITY MANAGEMENT 129

that intranet. The employee could then access their health benefits from an outside
health-care provider without having to reauthenticate.

Beyond SSO, federated identity management provides other capabilities. One
is a standardized means of representing attributes. Increasingly, digital identities
incorporate attributes other than simply an identifier and authentication informa-
tion (such as passwords and biometric information). Examples of attributes include
account numbers, organizational roles, physical location, and file ownership. A user
may have multiple identifiers; for example, each identifier may be associated with a
unique role with its own access permissions.

Another key function of federated identity management is identity mapping.
Different security domains may represent identities and attributes differently.
Furthermore, the amount of information associated with an individual in one
domain may be more than is necessary in another domain. The federated identity
management protocols map identities and attributes of a user in one domain to the
requirements of another domain.

Figure 4.9 illustrates entities and data flows in a generic federated identity
management architecture.

User

£

Identity Provider
(source domain)

®
— e
®
A
®
\/

>

/ Administrator

@ End user's browser or other application engages
in an authentication dialogue with identity provider
in the same domain. End user also provides attribute
values associated with user's identity.

=

Service Provider
(destination domain)

@ Some attributes associated with an identity, such as
allowable roles, may be provided by an administrator
in the same domain.

@ A service provider in a remote domain, which the user
wishes to access, obtains identity information,
authentication information, and associated attributes
from the identity provider in the source domain.

@ Service provider opens session with remote user and
enforces access control restrictions based on user's
identity and attributes.

Figure 4.9 Federated Identity Operation

130 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

The identity provider acquires attribute information through dialogue and
protocol exchanges with users and administrators. For example, a user needs to
provide a shipping address each time an order is placed at a new Web merchant,
and this information needs to be revised when the user moves. Identity manage-
ment enables the user to provide this information once, so that it is maintained in a
single place and released to data consumers in accordance with authorization and
privacy policies.

Service providers are entities that obtain and employ data maintained and
provided by identity providers, often to support authorization decisions and to
collect audit information. For example, a database server or file server is a data
consumer that needs a client’s credentials so as to know what access to provide to
that client. A service provider can be in the same domain as the user and the
identity provider. The power of this approach is for federated identity manage-
ment, in which the service provider is in a different domain (e.g., a vendor or
supplier network).

Stanparps Federated identity management uses a number of standards as the
building blocks for secure identity exchange across different domains or
heterogeneous systems. In essence, organizations issue some form of security
tickets for their users that can be processed by cooperating partners. Identity
federation standards are thus concerned with defining these tickets in terms of
content and format, providing protocols for exchanging tickets, and performing a
number of management tasks. These tasks include configuring systems to
perform attribute transfers and identity mapping and performing logging and
auditing functions.

The principal underlying standard for federated identity is the Security
Assertion Markup Language (SAML), which defines the exchange of security infor-
mation between online business partners. SAML conveys authentication informa-
tion in the form of assertions about subjects. Assertions are statements about the
subject issued by an authoritative entity.

SAML is part of a broader collection of standards being issued by the
Organization for the Advancement of Structured Information Standards (OASIS)
for federated identity management. For example, WS-Federation enables browser-
based federation; it relies on a security token service to broker trust of identities,
attributes, and authentication between participating Web services.

The challenge with federated identity management is to integrate multiple
technologies, standards, and services to provide a secure, user-friendly utility. The
key, as in most areas of security and networking, is the reliance on a few mature
standards widely accepted by industry. Federated identity management seems to
have reached this level of maturity.

Examrres To get some feel for the functionality of identity federation, we look at
three scenarios, taken from [COMPO6]. In the first scenario (Figure 4.10a),
Workplace.com contracts with Health.com to provide employee health benefits.
An employee uses a Web interface to sign on to Workplace.com and goes through
an authentication procedure there. This enables the employee to access
authorized services and resources at Workplace.com. When the employee clicks

Initial

authentication m authentication 2 D
pr—

4.6 / FEDERATED IDENTITY MANAGEMENT 131

(— Workplace.com)

‘Workplace.com
(employee portal) User store

(employee portal) User store Initial

Links: —_— Links:
health benefits parts supplier
etc. avi_| 1603 | etc.

———

End user End user
(employee) (employee)
VT p—
PartsSupplier.com
Iatzzllin gmm Welcome Joe! User store
— S —— Technical doc. |___Role |
Troubleshooting |__Engincer |
Purchaser
————
(a) Federation based on account linking (b) Federation based on roles

Initial message
authentication

Workplace.com) Soap (" PinSupplies.com)

- Proiurefnent ‘I P sing I
lE g I Web servicel
J & J

Soap

E-ship.com

Shipping
Web service

(b) Chained Web services

Figure 4.10 Federated Identity Scenarios

on a link to access health benefits, her browser is redirected to Health.com. At
the same time, the Workplace.com software passes the user’s identifier to
Health.com in a secure manner. The two organizations are part of a federation
that cooperatively exchanges user identifiers. Health.com maintains user
identities for every employee at Workplace.com and associates with each identity
health-benefits information and access rights. In this example, the linkage
between the two companies is based on account information and user
participation is browser based.

Figure 4.10b shows a second type of browser-based scheme. PartsSupplier.
com is a regular supplier of parts to Workplace.com. In this case, a role-based
access-control (RBAC) scheme is used for access to information. An engineer
of Workplace.com authenticates at the employee portal at Workplace.com and
clicks on a link to access information at PartsSupplier.com. Because the user is
authenticated in the role of an engineer, he is taken to the technical documen-
tation and troubleshooting portion of PartSupplier.com’s Web site without hav-
ing to sign on. Similarly, an employee in a purchasing role signs on at
Workplace.com and is authorized, in that role, to place purchases at
PartSupplier.com without having to authenticate to PartSupplier.com. For this
scenario, PartSupplier.com does not have identity information for individual

132 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

employees at Workplace.com. Rather, the linkage between the two federated
partners is in terms of roles.

The scenario illustrated in Figure 4.10c can be referred to as document based
rather than browser based. In this third example, Workplace.com has a purchasing
agreement with PinSupplies.com, and PinSupplies.com has a business relationship
with E-Ship.com. An employee of Workplace.com signs on and is authenticated to
make purchases. The employee goes to a procurement application that provides a
list of Workplace.com’s suppliers and the parts that can be ordered. The user clicks
on the PinSupplies button and is presented with a purchase order Web page
(HTML page). The employee fills out the form and clicks the submit button. The
procurement application generates an XML/SOAP document that it inserts into
the envelope body of an XML-based message. The procurement application then
inserts the user’s credentials in the envelope header of the message, together with
Workplace.com’s organizational identity. The procurement application posts the
message to the PinSupplies.com’s purchasing Web service. This service authenti-
cates the incoming message and processes the request. The purchasing Web
service then sends a SOAP message its shipping partner to fulfill the order. The
message includes a PinSupplies.com security token in the envelope header and
the list of items to be shipped as well as the end user’s shipping information in the
envelope body. The shipping Web service authenticates the request and processes
the shipment order.

4.7 RECOMMENDED READING AND WEB SITES

An exhaustive and essential resource on the topics of this chapter is the three-volume NIST
SP800-57 [BARKO07b. BARKO07¢c, BARKOS]. [FUMY93] is a good survey of key management
principles. Another interesting survey, which looks at many key management techniques, is
[HEGLO6].

A painless way to get a grasp of Kerberos concepts is found in [BRYASS]. One of the
best treatments of Kerberos is [KOHL94].

[PERL99] reviews various trust models that can be used in a PKI. [GUTMO02] high-
lights difficulties in PKI use and recommends approaches for an effective PKI.

[SHIMOS] provides a brief overview of federated identity management and examines
one approach to standardization. [BHATO07] describes an integrated approach to federated
identity management couple with management of access control privileges.

BARKO07b Barker, E., et al. Recommendation for Key Management— Part 1: General.
NIST SP800-57, March 2007.

BARKO07¢ Barker, E., et al. Recommendation for Key Management— Part 2: Best
Practices for Key Management Organization. NIST SP800-57, March 2007.

BARKO08 Barker, E., et al. Recommendation for Key Management— Part 3: Specific Key
Management Guidance. NIST SP800-57, August 2008.

BHATO07 Bhatti, R.; Bertino, E.; and Ghafoor, A. “An Integrated Approach to
Federated Identity and Privilege Management in Open Systems.” Communications
of the ACM, February 2007.

4.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 133

BRYAS88 Bryant, W. Designing an Authentication System: A Dialogue in Four Scenes.
Project Athena document, February 1988. Available at http://web.mit.edu/kerberos/
www/dialogue.html.

FUMY93 Fumy,S., and Landrock, P.“Principles of Key Management.” I[EEE Journal on
Selected Areas in Communications, June 1993.

GUTMO02 Gutmann, P. “PKI: It’s Not Dead, Just Resting.” Computer, August 2002.

HEGL06 Hegland, A., et al. “A Survey of Key Management in Ad Hoc Networks.”
IEEE Communications Surveys & Tutorials. 3" Quarter, 2006.

KOHLY94 Kohl, J.; Neuman, B.; and Ts’o, T. “The Evolution of the Kerberos
Authentication Service.” in Brazier, F., and Johansen, D. Distributed Open Systems.
Los Alamitos, CA: IEEE Computer Society Press, 1994. Available at
http://web.mit.edu/kerberos/www/papers.html.

PERLY99 Perlman, R. “An Overview of PKI Trust Models.” I[EEE Network,
November/December 1999.

SHIMOS Shim, S.; Bhalla, G.; and Pendyala, V. “Federated Identity Management.”
Computer, December 2005.

Recommended Web Sites:

e MIT Kerberos Site: Information about Kerberos, including the FAQ, papers and docu-
ments, and pointers to commercial product sites.

* MIT Kerberos Consortium: Created to establish Kerberos as the universal authentica-
tion platform for the world’s computer networks.

e USCI/ISI Kerberos Page: Another good source of Kerberos material.
* Kerberos Working Group: IETF group developing standards based on Kerberos.

e Public-Key Infrastructure Working Group: IETF group developing standards based on
X.509v3.

* Verisign: A leading commercial vendor of X.509-related products; white papers and
other worthwhile material at this site.

e NIST PKI Program: Good source of information.

4.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
authentication Kerberos key management
authentication server (AS) Kerberos realm master key
federated identity manage- key distribution mutual authentication
ment key distribution center nonce
identity management (KDC) one-way authentication

134 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

propagating cipher block realm ticket-granting server (TGS)
chaining (PCBC) mode replay attack timestamp

public-key certificate ticket X.509 certificate

public-key directory

Review Questions

4.1 List ways in which secret keys can be distributed to two communicating parties.
4.2 What is the difference between a session key and a master key?
4.3 What is a key distribution center?
4.4 What entities constitute a full-service Kerberos environment?
4.5 1In the context of Kerberos, what is a realm?
4.6 What are the principal differences between version 4 and version 5 of Kerberos?
4.7 What is a nonce?
4.8 What are two different uses of public-key cryptography related to key distribution?
4.9 What are the essential ingredients of a public-key directory?
4.10 What is a public-key certificate?
4.11 What are the requirements for the use of a public-key certificate scheme?
4.12 What is the purpose of the X.509 standard?
4.13 What is a chain of certificates?
4.14 How is an X.509 certificate revoked?
Problems
4.1 “We are under great pressure, Holmes.” Detective Lestrade looked nervous. “We have

learned that copies of sensitive government documents are stored in computers of one
foreign embassy here in London. Normally these documents exist in electronic form only
on a selected few government computers that satisfy the most stringent security require-
ments. However, sometimes they must be sent through the network connecting all gov-
ernment computers. But all messages in this network are encrypted using a top secret
encryption algorithm certified by our best crypto experts. Even the NSA and the KGB
are unable to break it. And now these documents have appeared in hands of diplomats of
a small, otherwise insignificant, country. And we have no idea how it could happen.”

“But you do have some suspicion who did it, do you?” asked Holmes.

“Yes, we did some routine investigation. There is a man who has legal access to
one of the government computers and has frequent contacts with diplomats from the
embassy. But the computer he has access to is not one of the trusted ones where these
documents are normally stored. He is the suspect, but we have no idea how he could
obtain copies of the documents. Even if he could obtain a copy of an encrypted docu-
ment, he couldn’t decrypt it.”

“Hmm, please describe the communication protocol used on the network.”
Holmes opened his eyes, thus proving that he had followed Lestrade’s talk with an
attention that contrasted with his sleepy look.

“Well, the protocol is as follows. Each node N of the network has been assigned
a unique secret key K,,. This key is used to secure communication between the node
and a trusted server. That is, all the keys are stored also on the server. User A, wishing
to send a secret message M to user B, initiates the following protocol:

1. A generates a random number R and sends to the server his name A, destination
B,and E(K,, R).

4.2

4.3

44

4.5

4.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 135

2. Server responds by sending E(Kj,, R) to A.

3. Asends E(R, M) together with E(K}, R) to B.

4. B knows K, thus decrypts E(K}, R) to get R and will subsequently use R to
decrypt E(R, M) to get M.

You see that a random key is generated every time a message has to be sent. I admit

the man could intercept messages sent between the top secret trusted nodes, but I see

no way he could decrypt them.”

“Well, I think you have your man, Lestrade. The protocol isn’t secure because
the server doesn’t authenticate users who send him a request. Apparently designers
of the protocol have believed that sending E(K,, R) implicitly authenticates user X as
the sender, as only X (and the server) knows K,. But you know that E(K,, R) can be
intercepted and later replayed. Once you understand where the hole is, you will
be able to obtain enough evidence by monitoring the man’s use of the computer he
has access to. Most likely he works as follows: After intercepting E(K,, R) and
E(R, M) (see steps 1 and 3 of the protocol), the man, let’s denote him as Z, will con-
tinue by pretending to be A and...

Finish the sentence for Holmes.

There are three typical ways to use nonces as challenges. Suppose N, is a nonce gen-
erated by A, A and B share key K, and f() is a function (such as increment). The three
usages are

Usage 1 Usage 2 Usage 3
(1)A—B:N, (1)A—B:E(K,N,) | (1) A—B:E(K,N,)
2)B—A:E(K,N,) | 2)B—A:N, (2) B— A:E(K,f(N,))

Describe situations for which each usage is appropriate.

Show that a random error in one block of ciphertext is propagated to all subsequent
blocks of plaintext in PCBC mode (see Figure F.2 in Appendix F).

Suppose that, in PCBC mode, blocks C; and C;;; are interchanged during transmis-
sion. Show that this affects only the decrypted blocks P; and P;,; but not subsequent
blocks.

In addition to providing a standard for public-key certificate formats, X.509 specifies
an authentication protocol. The original version of X.509 contains a security flaw. The
essence of the protocol is

A — B: A{lA,}’A,IDB}
B—A: B{IB,YB,IDA,I'A}
A—B: Alrg

where t4 and tg are timestamps, 4 and rp are nonces, and the notation X {Y} indicates
that the message Y is transmitted, encrypted, and signed by X.

The text of X.509 states that checking timestamps ¢4 and ¢ is optional for
three-way authentication. But consider the following example: Suppose A and B have
used the preceding protocol on some previous occasion, and that opponent C has
intercepted the preceding three messages. In addition, suppose that timestamps are
not used and are all set to 0. Finally, suppose C wishes to impersonate A to B. C
initially sends the first captured message to B:

C—B: A{0,r4,IDp}
B responds, thinking it is talking to A but is actually talking to C:
B—C: B{0,73,ID 4, 1}

136 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

4.6

4.7

4.8
4.9

4.10

4.11
4.12

4.14

C meanwhile causes A to initiate authentication with C by some means. As a result, A
sends C the following:

A—C: A{0,7r4, ID¢}
Cresponds to A using the same nonce provided to C by B.
C—A: C|{0,rp, ID4, 14}
A responds with
A—C: Afrp)

This is exactly what C needs to convince B that it is talking to A, so C now repeats the
incoming message back out to B.

C—B: Af{rp}

So B will believe it is talking to A, whereas it is actually talking to C. Suggest a simple
solution to this problem that does not involve the use of timestamps.

Consider a one-way authentication technique based on asymmetric encryption:
A—B: IDy
B—A: Ry
A —B: E(PR,R))

a. Explain the protocol.
b. What type of attack is this protocol susceptible to?

Consider a one-way authentication technique based on asymmetric encryption:

A—B: ID,
B—A: E(PU,R,)
A—B: R,

a. Explain the protocol.
b. What type of attack is this protocol susceptible to?

In Kerberos, when Bob receives a ticket from Alice, how does he know it is genuine?
In Kerberos, when Bob receives a ticket from Alice, how does he know it came from
Alice?

In Kerberos, Alice receives a reply, how does she know it came from Bob (that it’s not
a replay of an earlier message from Bob)?

In Kerberos, what does the ticket contain that allows Alice and Bob to talk securely?

The 1988 version of X.509 lists properties that RSA keys must satisfy to be secure,
given current knowledge about the difficulty of factoring large numbers. The discus-
sion concludes with a constraint on the public exponent and the modulus #:

It must be ensured that e > log,(n) to prevent attack by taking the
eth root mod # to disclose the plaintext.

Although the constraint is correct, the reason given for requiring it is incorrect. What
is wrong with the reason given and what is the correct reason?

Find at least one intermediate certification authority’s certificate and one trusted root
certification authority’s certificate on your computer (e.g. in the browser). Print
screenshots of both the general and details tab for each certificate.

NIST defines the term cryptoperiod as the time span during which a specific key is
authorized for use or in which the keys for a given system or application may remain
in effect. One document on key management uses the following time diagram for a
shared secret key.

4.15

4.16
4.17
4.18

4.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 137

Originator Usage Period
_»

Recipient Usage Period
< >

Cryptoperiod
< >

Explain the overlap by giving an example application in which the originator’s usage
period for the shared secret key begins before the recipient’s usage period and also
ends before the recipient’s usage period.

Consider the following protocol, designed to let A and B decide on a fresh, shared

session key K' 4 3. We assume that they already share a long-term key K 4.

1. A—>B:A, Ny

2. B— A:E(Kap,[Na, K'apl)

3. A—>B: E(K'AB, NA)

a. We first try to understand the protocol designer’s reasoning:

e Why would A and B believe after the protocol ran that they share K'4p with
the other party?
* Why would they believe that this shared key is fresh?

In both cases, you should explain both the reasons of both A and B, so your answer

should complete the following sentences.

A believes that she shares K'y g with B since . . .
B believes that he shares K'4 g with A since . . .
A believes that K'4p is fresh since . . .

B believes that K'p is fresh since . . .

b. Assume now that A starts a run of this protocol with B. However, the connection
is intercepted by the adversary C. Show how C can start a new run of the protocol
using reflection, causing A to believe that she has agreed on a fresh key with B (in
spite of the fact that she has only been communicating with C). Thus, in particular,
the belief in (a) is false.

c. Propose a modification of the protocol that prevents this attack.

What are the core components of a PKI? Briefly describe each component.

Explain the problems with key management and how it affects symmetric cryptography.

Consider the following protocol:
A —KDC: 1D 4 ”IDB H]Vl

KDC— A: E(K,, [Ks[[Dp N1 [E(Kp, [Ks [[D]))

A—B: E(Kp, [Ks[ID A])
B— A: E(Kg, Ny)
A — B: E(Ks, £(N,))

a. Explain the protocol.

b. Can you think of a possible attack on this protocol? Explain how it can be done.

c. Mention a possible technique to get around the attack—not a detailed mechanism,
just the basics of the idea.

Note: The remaining problems deal with a cryptographic product developed by IBM,

which is briefly described in a document at this book’s Web site in IBMCrypto . pdf.

Try these problems after reviewing the document.

138 CHAPTER 4 / KEY DISTRIBUTION AND USER AUTHENTICATION

4.19 What is the effect of adding the instruction EMK;?
EMK; X - E(KMH;,X) i=0,1

4.20 Suppose N different systems use the IBM Cryptographic Subsystem with host master
keys KMH[/] i = 1,2, ..., N). Devise a method for communicating between sys-
tems without requiring the system to either share a common host master key or to
divulge their individual host master keys. Hint: Each system needs three variants of its
host master key.

4.21 The principal objective of the IBM Cryptographic Subsystem is to protect transmis-
sions between a terminal and the processing system. Devise a procedure, perhaps
adding instructions, which will allow the processor to generate a session key KS and
distribute it to Terminal i and Terminal j without having to store a key-equivalent
variable in the host.

TRANSPORT-LEVEL SECURITY

5.1 Web Security Considerations

Web Security Threats
Web Traffic Security Approaches

5.2 Secure Socket Layer and Transport Layer Security

5.3

54

5.5

5.6
5.7

SSL Architecture

SSL Record Protocol

Change Cipher Spec Protocol
Alert Protocol

Handshake Protocol
Cryptographic Computations

Transport Layer Security

Version Number

Message Authentication Code

Pseudorandom Function

Alert Codes

Cipher Suites

Client Certificate Types
Certificate_Verify and Finished Messages
Cryptographic Computations

Padding

HTTPS
Connection Initiation
Connection Closure
Secure Shell (SSH)
Transport Layer Protocol

User Authentication Protocol
Connection Protocol

Recommended Reading and Web Sites

Key Terms, Review Questions, and Problems

139

140 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

£é your mentality
Wake up to reality

— From the song, “I’ve Got You Under My Skin” by Cole Porter

KEY POINTS

¢ Secure Socket Layer (SSL) provides security services between TCP and
applications that use TCP. The Internet standard version is called Transport
Layer Service (TLS).

¢ SSL/TLS provides confidentiality using symmetric encryption and message
integrity using a message authentication code.

¢ SSL/TLS includes protocol mechanisms to enable two TCP users to deter-
mine the security mechanisms and services they will use.

¢ HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to
implement secure communication between a Web browser and a Web server.

¢ Secure Shell (SSH) provides secure remote logon and other secure
client/server facilities.

Virtually all businesses, most government agencies, and many individuals now have
Web sites. The number of individuals and companies with Internet access is expanding
rapidly and all of these have graphical Web browsers. As a result, businesses are enthu-
siastic about setting up facilities on the Web for electronic commerce. But the reality is
that the Internet and the Web are extremely vulnerable to compromises of various
sorts. As businesses wake up to this reality, the demand for secure Web services grows.

The topic of Web security is a broad one and can easily fill a book. In this
chapter, we begin with a discussion of the general requirements for Web security
and then focus on three standardized schemes that are becoming increasingly
important as part of Web commerce and that focus on security at the transport
layer: SSL/TLS, HTTPS, and SSH.

5.1 WEB SECURITY CONSIDERATIONS

The World Wide Web is fundamentally a client/server application running over the
Internet and TCP/IP intranets. As such, the security tools and approaches discussed
so far in this book are relevant to the issue of Web security. But, as pointed out in
[GARFO02], the Web presents new challenges not generally appreciated in the con-
text of computer and network security.

e The Internet is two-way. Unlike traditional publishing environments—even
electronic publishing systems involving teletext, voice response, or fax-back —
the Web is vulnerable to attacks on the Web servers over the Internet.

5.1 / WEB SECURITY CONSIDERATIONS 141

* The Web is increasingly serving as a highly visible outlet for corporate and
product information and as the platform for business transactions. Reputations
can be damaged and money can be lost if the Web servers are subverted.

e Although Web browsers are very easy to use, Web servers are relatively easy
to configure and manage, and Web content is increasingly easy to develop, the
underlying software is extraordinarily complex. This complex software may
hide many potential security flaws. The short history of the Web is filled with
examples of new and upgraded systems, properly installed, that are vulnerable
to a variety of security attacks.

e A Web server can be exploited as a launching pad into the corporation’s or
agency’s entire computer complex. Once the Web server is subverted, an
attacker may be able to gain access to data and systems not part of the Web
itself but connected to the server at the local site.

e Casual and untrained (in security matters) users are common clients for
Web-based services. Such users are not necessarily aware of the security
risks that exist and do not have the tools or knowledge to take effective
countermeasures.

Web Security Threats

Table 5.1 provides a summary of the types of security threats faced when using the
Web. One way to group these threats is in terms of passive and active attacks.
Passive attacks include eavesdropping on network traffic between browser and
server and gaining access to information on a Web site that is supposed to be
restricted. Active attacks include impersonating another user, altering messages in
transit between client and server, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the
threat: Web server, Web browser, and network traffic between browser and server.
Issues of server and browser security fall into the category of computer system secu-
rity; Part Four of this book addresses the issue of system security in general but is
also applicable to Web system security. Issues of traffic security fall into the category
of network security and are addressed in this chapter.

Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The various
approaches that have been considered are similar in the services they provide and,
to some extent, in the mechanisms that they use, but they differ with respect to their
scope of applicability and their relative location within the TCP/IP protocol stack.

Figure 5.1 illustrates this difference. One way to provide Web security is to use
IP security (IPsec) (Figure 5.1a). The advantage of using IPsec is that it is transpar-
ent to end users and applications and provides a general-purpose solution.
Furthermore, IPsec includes a filtering capability so that only selected traffic need
incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just
above TCP (Figure 5.1b). The foremost example of this approach is the Secure

142 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

Table 5.1 A Comparison of Threats on the Web

Threats Consequences Countermeasures
Integrity Modification of user data o Loss of information Cryptographic
. . . checksums
Trojan horse browser e Compromise of machine
Modification of memory e Vulnerabilty to all other
Modification of message threats
traffic in transit
Confidentiality Eavesdropping on the net e Loss of information Encryption, Web
Theft of info from server e Loss of privacy proxies
Theft of data from client
Info about network
configuration
Info about which client
talks to server
Denial of Killing of user threads e Disruptive Difficult to prevent
Service Flooding machine with e Annoying
bogus requests ¢ Prevent user from getting
Filling up disk or memory work done
Isolating machine by DNS
attacks
Authentication Impersonation of legitimate | ® Misrepresentation of user Cryptographic
LSCTS e Belief that false information AT
Data forgery is valid

Sockets Layer (SSL) and the follow-on Internet standard known as Transport Layer
Security (TLS). At this level, there are two implementation choices. For full general-
ity, SSL (or TLS) could be provided as part of the underlying protocol suite and
therefore be transparent to applications. Alternatively, SSL can be embedded in
specific packages. For example, Netscape and Microsoft Explorer browsers come
equipped with SSL, and most Web servers have implemented the protocol.
Application-specific security services are embedded within the particular appli-
cation. Figure 5.1c shows examples of this architecture. The advantage of this
approach is that the service can be tailored to the specific needs of a given application.

HTTP FTP SMTP S/MIME
HTTP FTP SMTP SSL or TLS Kerberos| SMTP | HTTP
TCP TCP UDP TCP
IP/IPSec P P
(a) Network level (b) Transport level (c) Application level

Figure 5.1 Relative Location of Security Facilities in the TCP/IP Protocol Stack

5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 143

5.2 SECURE SOCKET LAYER AND TRANSPORT

LAYER SECURITY

Netscape originated SSL. Version 3 of the protocol was designed with public review
and input from industry and was published as an Internet draft document.
Subsequently, when a consensus was reached to submit the protocol for Internet
standardization, the TLS working group was formed within IETF to develop a com-
mon standard. This first published version of TLS can be viewed as essentially an
SSLv3.1 and is very close to and backward compatible with SSLv3.

This section is devoted to a discussion of SSLv3. In the next section, the principal
differences between SSLv3 and TLS are described.

SSL Architecture

SSL is designed to make use of TCP to provide a reliable end-to-end secure service.
SSL is not a single protocol but rather two layers of protocols, as illustrated in
Figure 5.2.

The SSL Record Protocol provides basic security services to various higher-
layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which pro-
vides the transfer service for Web client/server interaction, can operate on top of
SSL. Three higher-layer protocols are defined as part of SSL: the Handshake
Protocol, The Change Cipher Spec Protocol, and the Alert Protocol. These SSL-
specific protocols are used in the management of SSL exchanges and are examined
later in this section.

Two important SSL concepts are the SSL session and the SSL connection,
which are defined in the specification as follows.

e Connection: A connection is a transport (in the OSI layering model defini-
tion) that provides a suitable type of service. For SSL, such connections are
peer-to-peer relationships. The connections are transient. Every connection is
associated with one session.

e Session: An SSL session is an association between a client and a server. Sessions
are created by the Handshake Protocol. Sessions define a set of cryptographic

SSL
Handshake
Protocol

SSL Change
Cipher Spec
Protocol

SSL Alert
Protocol

SSL Record Protocol

TCP

1P

Figure 5.2 SSL Protocol Stack

144 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

security parameters which can be shared among multiple connections. Sessions
are used to avoid the expensive negotiation of new security parameters for
each connection.

Between any pair of parties (applications such as HTTP on client and server),
there may be multiple secure connections. In theory, there may also be multiple
simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is
established, there is a current operating state for both read and write (i.e., receive
and send). In addition, during the Handshake Protocol, pending read and write
states are created. Upon successful conclusion of the Handshake Protocol, the
pending states become the current states.

A session state is defined by the following parameters.

e Session identifier: An arbitrary byte sequence chosen by the server to identify
an active or resumable session state.

* Peer certificate: An X509.v3 certificate of the peer. This element of the state
may be null.

e Compression method: The algorithm used to compress data prior to encryption.

e Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES,
etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation.
It also defines cryptographic attributes such as the hash_size.

* Master secret: 48-byte secret shared between the client and server.

e Isresumable: A flagindicating whether the session can be used to initiate new
connections.

A connection state is defined by the following parameters.

e Server and client random: Byte sequences that are chosen by the server and
client for each connection.

e Server write MAC secret: The secret key used in MAC operations on data
sent by the server.

¢ Client write MAC secret: The secret key used in MAC operations on data
sent by the client.

e Server write key: The secret encryption key for data encrypted by the server
and decrypted by the client.

* Client write key: The symmetric encryption key for data encrypted by the
client and decrypted by the server.

e Initialization vectors: When a block cipher in CBC mode is used, an initializa-
tion vector (IV) is maintained for each key. This field is first initialized by the
SSL Handshake Protocol. Thereafter, the final ciphertext block from each
record is preserved for use as the IV with the following record.

¢ Sequence numbers: Each party maintains separate sequence numbers for
transmitted and received messages for each connection. When a party sends or
receives a change cipher spec message, the appropriate sequence number is set
to zero. Sequence numbers may not exceed 2641,

5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 145

SSL Record Protocol

The SSL Record Protocol provides two services for SSL connections:

* Confidentiality: The Handshake Protocol defines a shared secret key that is
used for conventional encryption of SSL payloads.

* Message Integrity: The Handshake Protocol also defines a shared secret key
that is used to form a message authentication code (MAC).

Figure 5.3 indicates the overall operation of the SSL Record Protocol. The
Record Protocol takes an application message to be transmitted, fragments the data
into manageable blocks, optionally compresses the data, applies a MAC, encrypts,
adds a header, and transmits the resulting unit in a TCP segment. Received data are
decrypted, verified, decompressed, and reassembled before being delivered to
higher-level users.

The first step is fragmentation. Each upper-layer message is fragmented
into blocks of 2'* bytes (16384 bytes) or less. Next, compression is optionally
applied. Compression must be lossless and may not increase the content
length by more than 1024 bytes.! In SSLv3 (as well as the current version of TLS),
no compression algorithm is specified, so the default compression algorithm
is null.

The next step in processing is to compute a message authentication code over
the compressed data. For this purpose, a shared secret key is used. The calculation is
defined as

Application data | |

Fragment | | |

| 7/

Compres //{/
Add MAC ///l//

Encrypt

Append SSL
record header

Figure 5.3 SSL Record Protocol Operation

LOf course, one hopes that compression shrinks rather than expands the data. However, for very short
blocks, it is possible, because of formatting conventions, that the compression algorithm will actually
provide output that is longer than the input.

146 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

hash (MAC_write_secret || pad_2||
hash (MAC_write_secret | pad_1| seqg num ||
SSLCompressed.type | SSLCompressed.length ||
SSLCompressed. fragment))

where
| = concatenation
MAC_write_secret = shared secret key
hash = cryptographic hash algorithm; either
MD?S5 or SHA-1
pad_1 = the byte 0x36 (0011 0110) repeated

48 times (384 bits) for MD5 and 40
times (320 bits) for SHA-1

pad_2 = the byte 0x5C (0101 1100) repeated 48
times for MDS5 and 40 times for SHA-1
seg_num = the sequence number for this message
SSLCompressed. type = the higher-level protocol used to process
this fragment
SSLCompressed.length = the length of the compressed fragment

SSLCompressed. fragment = the compressed fragment (if compression
is not used, this is the plaintext fragment)

Note that this is very similar to the HMAC algorithm defined in Chapter 3. The
difference is that the two pads are concatenated in SSLv3 and are XORed in HMAC.
The SSLv3 MAC algorithm is based on the original Internet draft for HMAC, which
used concatenation. The final version of HMAC (defined in RFC 2104) uses the XOR.

Next, the compressed message plus the MAC are encrypted using symmetric
encryption. Encryption may not increase the content length by more than 1024
bytes, so that the total length may not exceed 2'* + 2048. The following encryption
algorithms are permitted:

Block Cipher Stream Cipher
Algorithm Key Size Algorithm Key Size
AES 128,256 RC4-40 40
IDEA 128 RC4-128 128
RC2-40 40
DES-40 40
DES 56
3DES 168
Fortezza 80

Fortezza can be used in a smart card encryption scheme.

For stream encryption, the compressed message plus the MAC are encrypted.
Note that the MAC is computed before encryption takes place and that the MAC
is then encrypted along with the plaintext or compressed plaintext.

For block encryption, padding may be added after the MAC prior to encryp-
tion. The padding is in the form of a number of padding bytes followed by a one-byte

5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 147

indication of the length of the padding. The total amount of padding is the smallest
amount such that the total size of the data to be encrypted (plaintext plus MAC plus
padding) is a multiple of the cipher’s block length. An example is a plaintext (or
compressed text if compression is used) of 58 bytes, with a MAC of 20 bytes (using
SHA-1), that is encrypted using a block length of 8 bytes (e.g., DES). With the
padding-length byte, this yields a total of 79 bytes. To make the total an integer
multiple of 8, one byte of padding is added.

The final step of SSL Record Protocol processing is to prepare a header
consisting of the following fields:

¢ Content Type (8 bits): The higher-layer protocol used to process the enclosed
fragment.

* Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the
value is 3.

e Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value is 0.

* Compressed Length (16 bits): The length in bytes of the plaintext fragment (or
compressed fragment if compression is used). The maximum value is 2'4+2048.

The content types that have been defined are change_cipher_spec,alert,
handshake, and application_data. The first three are the SSL-specific proto-
cols, discussed next. Note that no distinction is made among the various applications
(e.g., HTTP) that might use SSL; the content of the data created by such applications
is opaque to SSL.

Figure 5.4 illustrates the SSL record format.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the three SSL-specific protocols that use
the SSL Record Protocol, and it is the simplest. This protocol consists of a single
message (Figure 5.5a), which consists of a single byte with the value 1. The sole pur-
pose of this message is to cause the pending state to be copied into the current state,
which updates the cipher suite to be used on this connection.

Content | Major | Minor Compressed
type | version | version length

Encrypted

Figure 5.4 SSL Record Format

148 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

1 byte 1 byte 3 bytes = (bytes
1 Type Length Content
(a) Change Cipher Spec Protocol (c) Handshake Protocol
1 byte 1 byte = | byte
Level | Alert Opaque content
(b) Alert Protocol (d) Other Upper-Layer Protocol (e.g., HTTP)
Figure 5.5 SSL Record Protocl Payload

Alert Protocol

The Alert Protocol is used to convey SSL-related alerts to the peer entity. As with
other applications that use SSL, alert messages are compressed and encrypted, as
specified by the current state.

Each message in this protocol consists of two bytes (Figure 5.5b). The first byte

takes the value warning (1) or fatal (2) to convey the severity of the message. If the
level is fatal, SSL immediately terminates the connection. Other connections on the
same session may continue, but no new connections on this session may be estab-
lished. The second byte contains a code that indicates the specific alert. First, we list
those alerts that are always fatal (definitions from the SSL specification):

unexpected message: An inappropriate message was received.
bad_record_mac: An incorrect MAC was received.

decompression_failure: The decompression function received improper
input (e.g., unable to decompress or decompress to greater than maximum
allowable length).

handshake failure: Sender was unable to negotiate an acceptable set of
security parameters given the options available.

illegal_parameter: A fieldin a handshake message was out of range or
inconsistent with other fields.
The remaining alerts are the following.

close_notify: Notifies the recipient that the sender will not send any
more messages on this connection. Each party is required to send a
close_notify alert before closing the write side of a connection.

no_certificate: May be sent in response to a certificate request if no
appropriate certificate is available.

bad_certificate: A received certificate was corrupt (e.g., contained a
signature that did not verify).

unsupported_certificate: The type of the received certificate is not
supported.

certificate_revoked: A certificate has been revoked by its signer.

certificate_expired: A certificate has expired.

5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 149

° certificate_unknown: Some other unspecified issue arose in processing
the certificate, rendering it unacceptable.

Handshake Protocol

The most complex part of SSL is the Handshake Protocol. This protocol allows the
server and client to authenticate each other and to negotiate an encryption and
MAC algorithm and cryptographic keys to be used to protect data sent in an SSL
record. The Handshake Protocol is used before any application data is transmitted.

The Handshake Protocol consists of a series of messages exchanged by client
and server. All of these have the format shown in Figure 5.5c. Each message has
three fields:

* Type (1 byte): Indicates one of 10 messages. Table 5.2 lists the defined
message types.

¢ Length (3 bytes): The length of the message in bytes.

e Content (= 0 bytes): The parameters associated with this message; these are
listed in Table 5.2.

Figure 5.6 shows the initial exchange needed to establish a logical connection
between client and server. The exchange can be viewed as having four phases.

Praske 1. EstaBrisH SECURITY CaArapiLrties This phase is used to initiate a logical
connection and to establish the security capabilities that will be associated with it.
The exchange is initiated by the client, which sends a client_hello message with
the following parameters:

* Version: The highest SSL version understood by the client.

¢ Random: A client-generated random structure consisting of a 32-bit timestamp
and 28 bytes generated by a secure random number generator. These values
serve as nonces and are used during key exchange to prevent replay attacks.

Table 5.2 SSL Handshake Protocol Message Types

Message Type Parameters
hello_request null
client_hello version, random, session id, cipher suite, compression method
server hello version, random, session id, cipher suite, compression method
certificate chain of X.509v3 certificates
server_key exchange parameters, signature
certificate_request type, authorities
server_ done null
certificate_verify signature
client_key exchange parameters, signature
finished hash value

150 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

Client

Server

Client_pey;,,

server _hello

Phase 1

Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

ceﬂ'\ﬁca‘e

ange
server_key _exchan®

st
certiﬁcate,‘eq“e

server ,he\\o _done

Phase 2

Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

Time

:ent‘key\exch ange

Certificate
cl
certiﬂcate\verify

Phase 3

Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

change‘cipher spec

m‘

change_<iPhe! e

Phase 4
Change cipher suite and finish
handshake protocol.

Figure 5.6

Handshake Protocol Action

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

e Session ID: A variable-length session identifier. A nonzero value indicates
that the client wishes to update the parameters of an existing connection or to

create a new connection on this session. A zero value indicates that the client

wishes to establish a new connection on a new session.

e CipherSuite: This is a list that contains the combinations of cryptographic
algorithms supported by the client, in decreasing order of preference. Each
element of the list (each cipher suite) defines both a key exchange algorithm
and a CipherSpec; these are discussed subsequently.

5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 151

* Compression Method: This is a list of the compression methods the client
supports.

After sending the client_hello message, the client waits for the
server_hello message, which contains the same parameters as the
client_hello message. For the server_hello message, the following conven-
tions apply. The Version field contains the lower of the versions suggested by the
client and the highest supported by the server. The Random field is generated by
the server and is independent of the client’s Random field. If the SessionID field of
the client was nonzero, the same value is used by the server; otherwise the server’s
SessionlD field contains the value for a new session. The CipherSuite field contains
the single cipher suite selected by the server from those proposed by the client. The
Compression field contains the compression method selected by the server from
those proposed by the client.

The first element of the CipherSuite parameter is the key exchange method
(i.e., the means by which the cryptographic keys for conventional encryption and
MAC are exchanged). The following key exchange methods are supported.

* RSA: The secret key is encrypted with the receiver’s RSA public key. A public-
key certificate for the receiver’s key must be made available.

* Fixed Diffie-Hellman: This is a Diffie-Hellman key exchange in which the
server’s certificate contains the Diffie-Hellman public parameters signed by
the certificate authority (CA). That is, the public-key certificate contains the
Diffie-Hellman public-key parameters. The client provides its Diffie-Hellman
public-key parameters either in a certificate, if client authentication is
required, or in a key exchange message. This method results in a fixed secret
key between two peers based on the Diffie-Hellman calculation using the
fixed public keys.

* Ephemeral Diffie-Hellman: This technique is used to create ephemeral
(temporary, one-time) secret keys. In this case, the Diffie-Hellman public
keys are exchanged, signed using the sender’s private RSA or DSS key.
The receiver can use the corresponding public key to verify the signature.
Certificates are used to authenticate the public keys. This would appear to
be the most secure of the three Diffie-Hellman options, because it results in a
temporary, authenticated key.

* Anonymous Diffie-Hellman: The base Diffie-Hellman algorithm is used with
no authentication. That is, each side sends its public Diffie-Hellman parameters
to the other with no authentication. This approach is vulnerable to man-in-the-
middle attacks, in which the attacker conducts anonymous Diffie-Hellman with
both parties.

e Fortezza: The technique defined for the Fortezza scheme.

Following the definition of a key exchange method is the CipherSpec, which
includes the following fields.

e CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES,
3DES, DES40, IDEA, or Fortezza

152 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

°* MACAIgorithm: MD5 or SHA-1

e CipherType: Stream or Block

e IsExportable: True or False

e HashSize: 0,16 (for MD5), or 20 (for SHA-1) bytes

* Key Material: A sequence of bytes that contain data used in generating the
write keys

e IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC)
encryption

PHASE 2. SERVER AUTHENTICATION AND KEy ExcHANGE The server begins this phase
by sending its certificate if it needs to be authenticated; the message contains one or
a chain of X.509 certificates. The certificate message is required for any agreed-on
key exchange method except anonymous Diffie-Hellman. Note that if fixed Diffie-
Hellman is used, this certificate message functions as the server’s key exchange
message because it contains the server’s public Diffie-Hellman parameters.

Next, a server_key_ exchange message may be sent if it is required. It
is not required in two instances: (1) The server has sent a certificate with fixed
Diffie-Hellman parameters or (2) a RSA key exchange is to be used. The
server_key_exchange message is needed for the following:

* Anonymous Diffie-Hellman: The message content consists of the two global
Diffie-Hellman values (a prime number and a primitive root of that number)
plus the server’s public Diffie-Hellman key (see Figure 3.12).

¢ Ephemeral Diffie-Hellman: The message content includes the three Diffie-
Hellman parameters provided for anonymous Diffie-Hellman plus a signature
of those parameters.

* RSA key exchange (in which the server is using RSA but has a signature-only
RSA key): Accordingly, the client cannot simply send a secret key encrypted
with the server’s public key. Instead, the server must create a temporary RSA
public/private key pair and use the server_key_exchange message to send
the public key. The message content includes the two parameters of the
temporary RSA public key (exponent and modulus; see Figure 3.10) plus a
signature of those parameters.

¢ Fortezza

Some further details about the signatures are warranted. As usual, a signature
is created by taking the hash of a message and encrypting it with the sender’s private
key. In this case, the hash is defined as

hash(ClientHello.random | ServerHello.random ||
ServerParams)

So the hash covers not only the Diffie-Hellman or RSA parameters but also the two
nonces from the initial hello messages. This ensures against replay attacks and
misrepresentation. In the case of a DSS signature, the hash is performed using the

5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 153

SHA-1 algorithm. In the case of an RSA signature, both an MDS5 and an SHA-1
hash are calculated, and the concatenation of the two hashes (36 bytes) is encrypted
with the server’s private key.

Next, a nonanonymous server (server not using anonymous Diffie-Hellman)
can request a certificate from the client. The certificate_request message
includes two parameters: certificate_type and certificate_authorities.
The certificate type indicates the public-key algorithm and its use:

e RSA, signature only
* DSS, signature only

e RSA for fixed Diffie-Hellman; in this case the signature is used only for
authentication, by sending a certificate signed with RSA

e DSS for fixed Diffie-Hellman; again, used only for authentication
e RSA for ephemeral Diffie-Hellman

e DSS for ephemeral Diffie-Hellman

e Fortezza

The second parameter in the certificate_request message is a list of the
distinguished names of acceptable certificate authorities.

The final message in phase 2, and one that is always required, is the
server_done message, which is sent by the server to indicate the end of the
server hello and associated messages. After sending this message, the server will
wait for a client response. This message has no parameters.

PuASE 3. CLIENT AUTHENTICATION AND KEy EXxcHANGE Upon receipt of the
server_done message, the client should verify that the server provided a valid
certificate (if required) and check that the server_hello parameters are acceptable.
If all is satisfactory, the client sends one or more messages back to the server.

If the server has requested a certificate, the client begins this phase by sending
a certificate message. If no suitable certificate is available, the client sends a
no_certificate alert instead.

Next is the client_key exchange message, which must be sent in this
phase. The content of the message depends on the type of key exchange, as follows.

* RSA: The client generates a 48-byte pre-master secret and encrypts with the
public key from the server’s certificate or temporary RSA key from a
server_key_exchange message. [ts use to compute a master secret is
explained later.

* Ephemeral or Anonymous Diffie-Hellman: The client’s public Diffie-Hellman
parameters are sent.

* Fixed Diffie-Hellman: The client’s public Diffie-Hellman parameters were
sent in a certificate message, so the content of this message is null.

¢ Fortezza: The client’s Fortezza parameters are sent.
Finally, in this phase, the client may send a certificate_verify message

to provide explicit verification of a client certificate. This message is only sent fol-
lowing any client certificate that has signing capability (i.e., all certificates except

154 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

those containing fixed Diffie-Hellman parameters). This message signs a hash code
based on the preceding messages, defined as

CertificateVerify.signature.md5_hash=

MD5 (master_secret | pad_2 | MD5(handshake_messages ||
master_secret | pad_1));
CertificateVerify.signature.sha_hash=
SHA (master_secret | pad_2 | SHA(handshake_messages ||
master_secret | pad_1));

where pad_1 and pad_2 are the values defined earlier for the MAC,
handshake_messages refers to all Handshake Protocol messages sent or
received starting at client_hello but not including this message, and
master_secret is the calculated secret whose construction is explained later in
this section. If the user’s private key is DSS, then it is used to encrypt the SHA-1
hash. If the user’s private key is RSA, it is used to encrypt the concatenation of the
MDS5 and SHA-1 hashes. In either case, the purpose is to verify the client’s owner-
ship of the private key for the client certificate. Even if someone is misusing the
client’s certificate, he or she would be unable to send this message.

Prase 4. Finisz This phase completes the setting up of a secure connection. The
client sends a change_cipher_spec message and copies the pending CipherSpec
into the current CipherSpec. Note that this message is not considered part of the
Handshake Protocol but is sent using the Change Cipher Spec Protocol. The client
then immediately sends the finished message under the new algorithms, keys, and
secrets. The finished message verifies that the key exchange and authentication
processes were successful. The content of the finished message is the concatenation of
two hash values:

MD5 (master_secret | pad2 | MD5(handshake_messages ||
Sender || master_secret | padl))

SHA (master_secret | pad2 | SHA(handshake_messages ||
Sender || master_secret | padl))

where Sender is a code that identifies that the sender is the client and
handshake_messages is all of the data from all handshake messages up to but
not including this message.

In response to these two messages, the server sends its own
change_cipher_spec message, transfers the pending to the current CipherSpec,
and sends its finished message. At this point, the handshake is complete and the
client and server may begin to exchange application-layer data.

Cryptographic Computations

Two further items are of interest: (1) the creation of a shared master secret by means
of the key exchange and (2) the generation of cryptographic parameters from the
master secret.

5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 155

MasTer SECRET CrEATION The shared master secret is a one-time 48-byte value
(384 bits) generated for this session by means of secure key exchange. The creation
is in two stages. First, a pre_master_secret is exchanged. Second, the
master_secret is calculated by both parties. For pre_master_ secret
exchange, there are two possibilities.

e RSA: A 48-byte pre_master_secret is generated by the client, encrypted
with the server’s public RSA key, and sent to the server. The server decrypts
the ciphertext using its private key to recover the pre_master_secret.

¢ Diffie-Hellman: Both client and server generate a Diffie-Hellman public key.
After these are exchanged, each side performs the Diffie-Hellman calculation
to create the shared pre_master_secret.

Both sides now compute the master_secret as

master_secret = MD5 (pre_master_secret | SHA('A' |

pre_master_secret | ClientHello.random ||
ServerHello.random)) ||

MD5 (pre_master_secret | SHA('BB' ||
pre_master_secret || ClientHello.random ||
ServerHello.random)) ||

MD5 (pre_master_secret || SHA('ccC' ||
pre_master_secret | ClientHello.random ||
ServerHello.random))

where ClientHello.random and ServerHello.random are the two
nonce values exchanged in the initial hello messages.

GENERATION OF CRYPTOGRAPHIC PARAMETERS CipherSpecs require a client write
MAC secret, a server write MAC secret, a client write key, a server write key, a client
write IV, and a server write IV, which are generated from the master secret in that
order. These parameters are generated from the master secret by hashing the master
secret into a sequence of secure bytes of sufficient length for all needed parameters.

The generation of the key material from the master secret uses the same format
for generation of the master secret from the pre-master secret as

key_block = MD5 (master_secret | SHA('A' | master_secret ||
ServerHello.random | ClientHello.random)) ||
MD5 (master_secret || SHA('BB' || master_secret ||
ServerHello.random | ClientHello.random)) ||
MD5 (master_secret || SHA('CCC' || master_secret ||

ServerHello.random | ClientHello.random)) | . . .

until enough output has been generated. The result of this algorithmic structure is a
pseudorandom function. We can view the master_secret as the pseudorandom
seed value to the function. The client and server random numbers can be viewed as
salt values to complicate cryptanalysis (see Chapter 9 for a discussion of the use of salt
values).

156 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

5.3 TRANSPORT LAYER SECURITY

TLS is an IETF standardization initiative whose goal is to produce an Internet
standard version of SSL. TLS is defined as a Proposed Internet Standard in RFC
5246. RFC 5246 is very similar to SSLv3. In this section, we highlight the
differences.

Version Number

The TLS Record Format is the same as that of the SSL Record Format (Figure 5.4),
and the fields in the header have the same meanings. The one difference is in ver-
sion values. For the current version of TLS, the major version is 3 and the minor
version is 3.

Message Authentication Code

There are two differences between the SSLv3 and TLS MAC schemes: the actual
algorithm and the scope of the MAC calculation. TLS makes use of the HMAC
algorithm defined in RFC 2104. Recall from Chapter 3 that HMAC is defined as

HMACk (M) = H[(K" @ opad) |H[(K" @ ipad) || M]]

where
H = embedded hash function (for TLS, either MD5 or SHA-1)
M = message input to HMAC
K" = secret key padded with zeros on the left so that the result is equal

to the block length of the hash code (for MD5 and SHA-1, block
length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)

opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

SSLv3 uses the same algorithm, except that the padding bytes are
concatenated with the secret key rather than being XORed with the secret key
padded to the block length. The level of security should be about the same in
both cases.

For TLS, the MAC calculation encompasses the fields indicated in the following
expression:

MAC (MAC_write_secret,seq num || TLSCompressed.type ||
TLSCompressed.version | TLSCompressed.length ||
TLSCompressed. fragment)

The MAC calculation covers all of the fields covered by the SSLv3 calculation,
plus the field TLSCompressed.version, which is the version of the protocol
being employed.

5.3 / TRANSPORT LAYER SECURITY 157

Pseudorandom Function

TLS makes use of a pseudorandom function referred to as PRF to expand secrets
into blocks of data for purposes of key generation or validation. The objective is to
make use of a relatively small shared secret value but to generate longer blocks of
data in a way that is secure from the kinds of attacks made on hash functions and
MACs. The PRF is based on the data expansion function (Figure 5.7) given as

P_hash (secret, seed) = HMAC_hash(secret,A(1l) | seed) |
HMAC_hash (secret, A(2) || seed) ||
HMAC_hash (secret, A(3) || seed) ||

where A () is defined as

A(0) = seed
A (1) = HMAC hash(secret, A(i - 1))

Seed

Secret —>~{ HMAC

A(l)

(ka Seed

Secret —>| HMAC Secret —>~{ HMAC

AQ2)

%}4— Seed

Secret —>| HMAC Secret —>{ HMAC

AQ3)

(iD@ Seed

Secret —>| HMAC

Length = hash size
Figure 5.7 TLS Function P_hash (secret, seed)

158 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

The data expansion function makes use of the HMAC algorithm with either MD5
or SHA-1 as the underlying hash function. As can be seen, P_hash can be
iterated as many times as necessary to produce the required quantity of data. For
example, if P_SHA-1 was used to generate 64 bytes of data, it would have to be
iterated four times, producing 80 bytes of data of which the last 16 would be dis-
carded. In this case, P_MD5 would also have to be iterated four times, producing
exactly 64 bytes of data. Note that each iteration involves two executions of
HMAC—each of which in turn involves two executions of the underlying hash
algorithm.

To make PRF as secure as possible, it uses two hash algorithms in a way
that should guarantee its security if either algorithm remains secure. PRF is
defined as

PRF (secret, label, seed) = P_hash(S1,label | seed)

PRF takes as input a secret value, an identifying label, and a seed value and
produces an output of arbitrary length.

Alert Codes

TLS supports all of the alert codes defined in SSLv3 with the exception of
no_certificate. A number of additional codes are defined in TLS; of these, the
following are always fatal.

° record _overflow: A TLS record wasreceived with a payload (ciphertext)
whose length exceeds 2'4+2048 bytes, or the ciphertext decrypted to a length
of greater than 2'+1024 bytes.

* unknown_ca: A valid certificate chain or partial chain was received, but the
certificate was not accepted because the CA certificate could not be located or
could not be matched with a known, trusted CA.

* access_denied: A valid certificate was received, but when access control
was applied, the sender decided not to proceed with the negotiation.

* decode_error: A message could not be decoded, because either a field
was out of its specified range or the length of the message was incorrect.

* protocol_version: The protocol version the client attempted to negoti-
ate is recognized but not supported.

e insufficient_security: Returned instead of handshake_failure
when a negotiation has failed specifically because the server requires ciphers
more secure than those supported by the client.

° unsupported_extension: Sent by clients that receive an extended server
hello containing an extension not in the corresponding client hello.

° internal_error: An internal error unrelated to the peer or the correct-
ness of the protocol makes it impossible to continue.

* decrypt_error: A handshake cryptographic operation failed, including
being unable to verify a signature, decrypt a key exchange, or validate a fin-
ished message.

5.3 / TRANSPORT LAYER SECURITY 159

The remaining alerts include the following.

* user_ canceled: This handshake is being canceled for some reason unre-
lated to a protocol failure.

°* no_renegotiation: Sent by a client in response to a hello request or by
the server in response to a client hello after initial handshaking. Either
of these messages would normally result in renegotiation, but this alert
indicates that the sender is not able to renegotiate. This message is always a
warning.

Cipher Suites

There are several small differences between the cipher suites available under SSLv3
and under TLS:

* Key Exchange: TLS supports all of the key exchange techniques of SSLv3
with the exception of Fortezza.

° Symmetric Encryption Algorithms: TLS includes all of the symmetric encryp-
tion algorithms found in SSLv3, with the exception of Fortezza.

Client Certificate Types

TLS defines the following certificate types to be requested in a
certificate_request message: rsa_sign,dss_sign, rsa_fixed_dh, and
dss_fixed_dh. These are all defined in SSLv3. In addition, SSLv3 includes
rsa_ephemeral_ dh, dss_ephemeral_dh, and fortezza_kea. Ephemeral
Diffie-Hellman involves signing the Diffie-Hellman parameters with either RSA or
DSS. For TLS, the rsa_sign and dss_sign types are used for that function; a
separate signing type is not needed to sign Diffie-Hellman parameters. TLS does
not include the Fortezza scheme.

Certificate_Verify and Finished Messages

In the TLS certificate_verify message, the MDS and SHA-1 hashes are
calculated only over handshake_messages. Recall that for SSLv3, the hash
calculation also included the master secret and pads. These extra fields were felt to
add no additional security.

As with the finished message in SSLv3, the finished message in TLS is a hash
based on the shared master_secret, the previous handshake messages, and a
label that identifies client or server. The calculation is somewhat different. For TLS,
we have

PRF (master_secret, finished_label, MD5 (handshake messages)||
SHA-1 (handshake_messages))

where finished_label is the string “client finished” for the client and “server
finished” for the server.

160 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

Cryptographic Computations

The pre_master_secret for TLS is calculated in the same way as in SSLv3. As in
SSLv3, the master_secret in TLS is calculated as a hash function of the
pre_master_secret and the two hello random numbers. The form of the TLS
calculation is different from that of SSLv3 and is defined as

master_secret= PRF (pre_master_secret, "master secret",
ClientHello.random| ServerHello.random)

The algorithm is performed until 48 bytes of pseudorandom output are produced.
The calculation of the key block material (MAC secret keys, session encryption
keys, and I'Vs) is defined as

key_block = PRF (master_secret, "key expansion",
SecurityParameters.server_randomn ||
SecurityParameters.client_random)

until enough output has been generated. As with SSLv3, the key_block is a func-
tion of the master_secret and the client and server random numbers, but for
TLS, the actual algorithm is different.

Padding

In SSL, the padding added prior to encryption of user data is the minimum
amount required so that the total size of the data to be encrypted is a multiple
of the cipher’s block length. In TLS, the padding can be any amount that results
in a total that is a multiple of the cipher’s block length, up to a maximum of 255
bytes. For example, if the plaintext (or compressed text if compression is used)
plus MAC plus padding.length byte is 79 bytes long, then the padding length
(in bytes) can be 1,9, 17, and so on, up to 249. A variable padding length may be
used to frustrate attacks based on an analysis of the lengths of exchanged
messages.

5.4 HTTPS

HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to imple-
ment secure communication between a Web browser and a Web server. The HTTPS
capability is built into all modern Web browsers. Its use depends on the Web server
supporting HTTPS communication. For example, search engines do not support
HTTPS.

The principal difference seen by a user of a Web browser is that URL (uni-
form resource locator) addresses begin with https:// rather than http://. A normal
HTTP connection uses port 80. If HTTPS is specified, port 443 is used, which
invokes SSL.

5.4 /HTTPS 161

When HTTPS is used, the following elements of the communication are

encrypted:

* URL of the requested document

e Contents of the document

e Contents of browser forms (filled in by browser user)

e Cookies sent from browser to server and from server to browser
Contents of HTTP header
HTTPS is documented in RFC 2818, HTTP Over TLS. There is no fundamen-

tal change in using HTTP over either SSL or TLS, and both implementations are
referred to as HTTPS.

Connection Initiation

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The
client initiates a connection to the server on the appropriate port and then sends the
TLS ClientHello to begin the TLS handshake. When the TLS handshake has fin-
ished, the client may then initiate the first HTTP request. All HTTP data is to be
sent as TLS application data. Normal HTTP behavior, including retained connec-
tions, should be followed.

We need to be clear that there are three levels of awareness of a connection in
HTTPS. At the HTTP level, an HTTP client requests a connection to an HTTP
server by sending a connection request to the next lowest layer. Typically, the next
lowest layer is TCP, but it also may be TLS/SSL. At the level of TLS, a session is
established between a TLS client and a TLS server. This session can support one or
more connections at any time. As we have seen, a TLS request to establish a connec-
tion begins with the establishment of a TCP connection between the TCP entity on
the client side and the TCP entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the
following line in an HTTP record: Connection: close. This indicates that the
connection will be closed after this record is delivered.

The closure of an HTTPS connection requires that TLS close the connection
with the peer TLS entity on the remote side, which will involve closing the underly-
ing TCP connection. At the TLS level, the proper way to close a connection is for
each side to use the TLS alert protocol to send a close_notify alert. TLS imple-
mentations must initiate an exchange of closure alerts before closing a connection.
A TLS implementation may, after sending a closure alert, close the connection with-
out waiting for the peer to send its closure alert, generating an “incomplete close”.
Note that an implementation that does this may choose to reuse the session. This
should only be done when the application knows (typically through detecting HTTP
message boundaries) that it has received all the message data that it cares about.

HTTP clients also must be able to cope with a situation in which the underlying
TCP connection is terminated without a prior close_notify alert and without a
Connection: close indicator. Such a situation could be due to a programming

162 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

error on the server or a communication error that causes the TCP connection to drop.
However, the unannounced TCP closure could be evidence of some sort of attack. So
the HTTPS client should issue some sort of security warning when this occurs.

5.5 SECURE SHELL (SSH)

Secure Shell (SSH) is a protocol for secure network communications designed to be
relatively simple and inexpensive to implement. The initial version, SSH1 was focused
on providing a secure remote logon facility to replace TELNET and other remote
logon schemes that provided no security. SSH also provides a more general
client/server capability and can be used for such network functions as file transfer and
e-mail. A new version, SSH2, fixes a number of security flaws in the original scheme.
SSH2 is documented as a proposed standard in IETF RFCs 4250 through 4256.

SSH client and server applications are widely available for most operating sys-
tems. It has become the method of choice for remote login and X tunneling and is
rapidly becoming one of the most pervasive applications for encryption technology
outside of embedded systems.

SSH is organized as three protocols that typically run on top of TCP
(Figure 5.8):

e Transport Layer Protocol: Provides server authentication, data confidentiality,
and data integrity with forward secrecy (i.e., if a key is compromised during
one session, the knowledge does not affect the security of earlier sessions). The
transport layer may optionally provide compression.

SSH User SSH
Authentication Protocol Connection Protocol
Multiplexes the encrypted
tunnel into several logical
channels.

Authenticates the client-side
user to the server.

SSH Transport Layer Protocol

Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression.

TCP

Transmission control protocol provides reliable, connection-
oriented end-to-end delivery.

1P
Internet protocol provides datagram delivery across
multiple networks.

Figure 5.8 SSH Protocol Stack

5.5 / SECURE SHELL (SSH) 163

¢ User Authentication Protocol: Authenticates the user to the server.

¢ Connection Protocol: Multiplexes multiple logical communications channels
over a single, underlying SSH connection.

Transport Layer Protocol

Host KEvs Server authentication occurs at the transport layer, based on the server
possessing a public/private key pair. A server may have multiple host keys using
multiple different asymmetric encryption algorithms. Multiple hosts may share the
same host key. In any case, the server host key is used during key exchange to
authenticate the identity of the host. For this to be possible, the client must have a
priori knowledge of the server’s public host key. RFC 4251 dictates two alternative
trust models that can be used:

1. The client has a local database that associates each host name (as typed by
the user) with the corresponding public host key. This method requires no
centrally administered infrastructure and no third-party coordination. The
downside is that the database of name-to-key associations may become
burdensome to maintain.

2. The host name-to-key association is certified by a trusted certification author-
ity (CA). The client only knows the CA root key and can verify the validity of
all host keys certified by accepted CAs. This alternative eases the maintenance
problem, since ideally, only a single CA key needs to be securely stored on the
client. On the other hand, each host key must be appropriately certified by a
central authority before authorization is possible.

Packer ExcHANGE Figure 5.9 illustrates the sequence of events in the SSH
Transport Layer Protocol. First, the client establishes a TCP connection to the
server. This is done via the TCP protocol and is not part of the Transport Layer
Protocol. Once the connection is established, the client and server exchange data,
referred to as packets, in the data field of a TCP segment. Each packet is in the
following format (Figure 5.10).

e Packet length: Length of the packet in bytes, not including the packet length
and MAC fields.

¢ Padding length: Length of the random padding field.

e Payload: Useful contents of the packet. Prior to algorithm negotiation, this
field is uncompressed. If compression is negotiated, then in subsequent pack-
ets, this field is compressed.

* Random padding: Once an encryption algorithm has been negotiated, this
field is added. It contains random bytes of padding so that that total length of
the packet (excluding the MAC field) is a multiple of the cipher block size, or
8 bytes for a stream cipher.

* Message authentication code (MAC): If message authentication has been
negotiated, this field contains the MAC value. The MAC value is computed
over the entire packet plus a sequence number, excluding the MAC field. The
sequence number is an implicit 32-bit packet sequence that is initialized to

164 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

Client
Server

>
| |

| Establish TCP Connection |

SSH-protoversion-softwarevers ion‘
Identification string >
exchange _SSH-protoversion-softwareversion
SSH_MSG_KEXINIT _
Algorithm g
negotiation SSH_MSG_KEXINIT
Key Exchange
SSH_MSG_NEWKEYS _
End of >
key exchange | SSH_MSG_NEWKEYS
Service SSH_MSG_SERVICE_REQUEST |
request ~

Figure 5.9 SSH Transport Layer Protocol Packet Exchanges

zero for the first packet and incremented for every packet. The sequence num-
ber is not included in the packet sent over the TCP connection.

Once an encryption algorithm has been negotiated, the entire packet (exclud-
ing the MAC field) is encrypted after the MAC value is calculated.

The SSH Transport Layer packet exchange consists of a sequence of steps
(Figure 5.9). The first step, the identification string exchange, begins with the client
sending a packet with an identification string of the form:

SSH-protoversion-softwareversion SP comments CR LF

where SP, CR, and LF are space character, carriage return, and line feed, respectively.
An example of a valid string is SSH-2.0-bi11sSSH_3.6.3g3<CR><LF>. The
server responds with its own identification string. These strings are used in the Diffie-
Hellman key exchange.

Next comes algorithm negotiation. Each side sends an SSH_MSG_KEXINIT con-
taining lists of supported algorithms in the order of preference to the sender. There is
one list for each type of cryptographic algorithm. The algorithms include key exchange,
encryption, MAC algorithm, and compression algorithm. Table 5.3 shows the allowable
options for encryption, MAC, and compression. For each category, the algorithm cho-
sen is the first algorithm on the client’s list that is also supported by the server.

5.5 / SECURE SHELL (SSH) 165

Payload

seq # pktl |pd

[/, /777 / /777 / K
Compressed payloa / padding
/ LLLLL L LSS

SSH Packet

pktl = packet length
pdl = padding length

Figure 5.10 SSH Transport Layer Protocol Packet Formation

The next step is key exchange. The specification allows for alternative methods
of key exchange, but at present, only two versions of Diffie-Hellman key exchange are
specified. Both versions are defined in RFC 2409 and require only one packet in each
direction. The following steps are involved in the exchange. In this, C is the client; S is
the server; p is a large safe prime; g is a generator for a subgroup of GF(p); g is the
order of the subgroup; V_s is S’s identification string; V_C is C’s identification string;
K_S is S’s public host key; I_C is C’s SSH_MSG_KEXINIT message and I_S is S’s
SSH_MSG_KEXINIT message that have been exchanged before this part begins. The
values of p, g, and g are known to both client and server as a result of the algorithm
selection negotiation. The hash function hash () is also decided during algorithm
negotiation.

1. C generates a random number x(1 < x < ¢) and computes ¢ = g* mod p. C
sends e to S.

2. S generates a random number y(0 < y < ¢g) and computes f = g” mod p.
S receives e. It computes K = ¢’ mod p, H = hash(V_C || V_S||I_C|| LS ||
K S| el fllK), and signature s on H with its private host key. S sends
(K_S || £l s) to C.The signing operation may involve a second hashing operation.

166 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

Table 5.3 SSH Transport Layer Cryptographic Algorithms

Cipher MAC algorithm
3des-cbc™® Three-key 3DES in hmac-shal* HMAC-SHAL; digest length =
CBC mode key length = 20
blowfish-cbc Blowfish in CBC mode hmac-shal-96%*| First 96 bits of HMAC-SHAI;
digest length = 12; key length = 20
twofish256-cbec | Twofish in CBC mode hmac-md5 HMAC-SHAL,; digest length =
with a 256-bit key key length = 16
twofishl192-cbec | Twofish with a 192-bit key hmac-md5-96 First 96 bits of HMAC-SHAL,;

digest length = 12; key length = 16

twofish128-cbe | Twofish with a 128-bit key

aes256-cbc AES in CBC mode with a Compression algorithm
256-bit key
aesl92-cbc AES with a 192-bit key none* No compression
aesl128-cbc** AES with a 128-bit key zlib Defined in RFC 1950 and
RFC 1951

Serpent256-cbec | Serpentin CBC mode
with a 256-bit key

Serpent192-cbe | Serpent with a 192-bit key

Serpent128-cbc | Serpent with a 128-bit key

arcfour RC4 with a 128-bit key
cast128-cbc CAST-128 in CBC mode
* = Required

= Recommended

3. C verifies that K_S really is the host key for S (e.g., using certificates or a
local database). C is also allowed to accept the key without verification;
however, doing so will render the protocol insecure against active attacks
(but may be desirable for practical reasons in the short term in many
environments). C then computes K = f*mod p, H = hash(V_C || V_S ||
ILC|[I_S||K_S|le]lfl| K),and verifies the signature s on H.

As aresult of these steps, the two sides now share a master key K. In addition,
the server has been authenticated to the client, because the server has used its pri-
vate key to sign its half of the Diffie-Hellman exchange. Finally, the hash value H
serves as a session identifier for this connection. Once computed, the session identi-
fier is not changed, even if the key exchange is performed again for this connection
to obtain fresh keys.

The end of key exchange is signaled by the exchange of SSH_MSG_NEWKEYS
packets. At this point, both sides may start using the keys generated from K, as dis-
cussed subsequently.

5.5 / SECURE SHELL (SSH) 167

The final step is service request. The client sends an SSH_MSG_
SERVICE_REQUEST packet to request either the User Authentication or the
Connection Protocol. Subsequent to this, all data is exchanged as the payload of an
SSH Transport Layer packet, protected by encryption and MAC.

Key Generation The keys used for encryption and MAC (and any needed I'Vs)
are generated from the shared secret key K, the hash value from the key exchange
H, and the session identifier, which is equal to H unless there has been a subsequent
key exchange after the initial key exchange. The values are computed as follows.

e Initial IV client to server: HASH(K || H || "A" || session_id)

e Initial IV server to client: HASH(K || H || "B" || session_id)

e Encryption key client to server: HASH(K || H || "C" || session_id)

e Encryption key server to client: HASH(K || H || "D" || session_id)

e Integrity key client to server: HASH(K || H || "E" || session_id)

e Integrity key server to client: HASH(K || H || "F" || session_id)

where HASH () is the hash function determined during algorithm negotiation.

User Authentication Protocol

The User Authentication Protocol provides the means by which the client is authen-
ticated to the server.

MEssAGE Types AND Formats Three types of messages are always used in the User
Authentication Protocol. Authentication requests from the client have the format:

byte SSH_MSG_USERAUTH_REQUEST (50)
string user name
string service name

string method name
method specific fields

where user name is the authorization identity the client is claiming, service name
is the facility to which the client is requesting access (typically the SSH
Connection Protocol), and method name is the authentication method being used
in this request. The first byte has decimal value 50, which is interpreted as
SSH_MSG_USERAUTH_REQUEST.

If the server either (1) rejects the authentication request or (2) accepts the
request but requires one or more additional authentication methods, the server
sends a message with the format:

byte SSH_MSG_USERAUTH_FAILURE (51)
name-list authentications that can continue
boolean partial success

where the name-list is a list of methods that may productively continue the dialog. If
the server accepts authentication, it sends a single byte message: SSH_MSG_
USERAUTH_SUCCESS (52).

168 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

Messace ExcaHANGE The message exchange involves the following steps.

1.

2.

The client sends a SSH_MSG_USERAUTH_REQUEST with a requested method
of none.

The server checks to determine if the user name is valid. If not, the server returns
SSH_MSG_USERAUTH_FAILURE with the partial success value of false. If the
user name is valid, the server proceeds to step 3.

. The server returns SSH_MSG_USERAUTH_FAILURE with a list of one or more

authentication methods to be used.

. The client selects one of the acceptable authentication methods and sends a

SSH_MSG_USERAUTH_REQUEST with that method name and the required
method-specific fields. At this point, there may be a sequence of exchanges to
perform the method.

. If the authentication succeeds and more authentication methods are required, the

server proceeds to step 3, using a partial success value of true. If the authentication
fails, the server proceeds to step 3, using a partial success value of false.

. When all required authentication methods succeed, the server sends a

SSH_MSG_USERAUTH_SUCCESS message, and the Authentication Protocol is
over.

AuvTHENTICATION METHODS The server may require one or more of the following
authentication methods.

publickey: The details of this method depend on the public-key algorithm
chosen. In essence, the client sends a message to the server that contains the
client’s public key, with the message signed by the client’s private key. When
the server receives this message, it checks whether the supplied key is accept-
able for authentication and, if so, it checks whether the signature is correct.

password: The client sends a message containing a plaintext password,
which is protected by encryption by the Transport Layer Protocol.

hostbased: Authentication is performed on the client’s host rather than the
client itself. Thus, a host that supports multiple clients would provide authenti-
cation for all its clients. This method works by having the client send a signa-
ture created with the private key of the client host. Thus, rather than directly
verifying the user’s identity, the SSH server verifies the identity of the client
host—and then believes the host when it says the user has already authenti-
cated on the client side.

Connection Protocol

The SSH Connection Protocol runs on top of the SSH Transport Layer Protocol and
assumes that a secure authentication connection is in use.? That secure authentication

2RFC 4254, The Secure Shell (SSH) Connection Protocol, states that the Connection Protocol runs on top
of the Transport Layer Protocol and the User Authentication Protocol. RFC 4251, SSH Protocol
Architecture, states that the Connection Protocol runs over the User Authentication Protocol. In fact, the
Connection Protocol runs over the Transport Layer Protocol, but assumes that the User Authentication
Protocol has been previously invoked.

5.5 / SECURE SHELL (SSH) 169

connection, referred to as a tunnel, is used by the Connection Protocol to multiplex a
number of logical channels.

CHANNEL MEcHANISM All types of communication using SSH, such as a terminal
session, are supported using separate channels. Either side may open a channel. For
each channel, each side associates a unique channel number, which need not be the
same on both ends. Channels are flow controlled using a window mechanism. No
data may be sent to a channel until a message is received to indicate that window
space is available.

The life of a channel progresses through three stages: opening a channel, data
transfer, and closing a channel.

When either side wishes to open a new channel, it allocates a local number for
the channel and then sends a message of the form:

byte SSH_MSG_CHANNEL_OPEN
string channel type

uint32 sender channel

uint32 initial window size

uint32 maximum packet size

channel type specific data follows

where uint32 means unsigned 32-bit integer. The channel type identifies the applica-
tion for this channel, as described subsequently. The sender channel is the local
channel number. The initial window size specifies how many bytes of channel data
can be sent to the sender of this message without adjusting the window. The maxi-
mum packet size specifies the maximum size of an individual data packet that can
be sent to the sender. For example, one might want to use smaller packets for inter-
active connections to get better interactive response on slow links.

If the remote side is able to open the channel, it returns a SSH_MSG_
CHANNEL_OPEN_CONFIRMATION message, which includes the sender channel
number, the recipient channel number, and window and packet size values for
incoming traffic. Otherwise, the remote side returns a SSH_MSG_CHANNEL_
OPEN_FAILURE message with a reason code indicating the reason for failure.

Once a channel is open, data transfer is performed using a SSH_MSG_
CHANNEL_DATA message, which includes the recipient channel number and a block
of data. These messages, in both directions, may continue as long as the channel
is open.

When either side wishes to close a channel, it sends a SSH_MSG_
CHANNEL_CLOSE message, which includes the recipient channel number.

Figure 5.11 provides an example of Connection Protocol Message Exchange.

CuaNNEL Tyres Four channel types are recognized in the SSH Connection
Protocol specification.

¢ session: The remote execution of a program. The program may be a shell, an
application such as file transfer or e-mail, a system command, or some built-in
subsystem. Once a session channel is opened, subsequent requests are used to
start the remote program.

170 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

Client

<
| |

| Establish Authenticated Transport Layer Connection |

Server

SSH_MSG_CHANNEL_OPEN

Y

Open a
channel _ SSH_MSG_CHANNEL_OPEN_CONFIRMATION

A

SSH_MSG_CHANNEL_DATA

ﬂ
Y

SSH_MSG_CHANNEL_DATA

A

Data °
transfer
°
SSH_MSG_CHANNEL_DATA
>
\ o SSH_MSG_CHANNEL_DATA
<t
Close a SSH_MSG_CHANNEL_CLOSE
channel -

Figure 5.11 Example SSH Connection Protocol Message
Exchange

e x11: This refers to the X Window System, a computer software system and net-
work protocol that provides a graphical user interface (GUI) for networked
computers. X allows applications to run on a network server but to be displayed
on a desktop machine.

¢ forwarded-tcpip: This is remote port forwarding, as explained in the next sub-
section.

e direct-tcpip: This is local port forwarding, as explained in the next subsection.

Port ForwarDING One of the most useful features of SSH is port forwarding. In
essence, port forwarding provides the ability to convert any insecure TCP connection
into a secure SSH connection. This is also referred to as SSH tunneling. We need to
know what a port is in this context. A port is an identifier of a user of TCP. So, any
application that runs on top of TCP has a port number. Incoming TCP traffic is
delivered to the appropriate application on the basis of the port number. An application
may employ multiple port numbers. For example, for the Simple Mail Transfer Protocol
(SMTP), the server side generally listens on port 25,so an incoming SMTP request uses
TCP and addresses the data to destination port 25. TCP recognizes that this is the SMTP
server address and routes the data to the SMTP server application.

5.5 / SECURE SHELL (SSH) 171

Figure 5.12 illustrates the basic concept behind port forwarding. We have a
client application that is identified by port number x and a server application identi-
fied by port number y. At some point, the client application invokes the local TCP
entity and requests a connection to the remote server on port y. The local TCP entity
negotiates a TCP connection with the remote TCP entity, such that the connection
links local port x to remote port y.

To secure this connection, SSH is configured so that the SSH Transport Layer
Protocol establishes a TCP connection between the SSH client and server entities
with TCP port numbers a and b, respectively. A secure SSH tunnel is established
over this TCP connection. Traffic from the client at port x is redirected to the local

Client
Server
Client Server
application application
¢ A
X y Y
TCP > Unsecure TCP connection g TCP
entity h 71 entity
(a) Connection via TCP
Client Server
application application
¢ A
X Secure SSH Tunnel VA 4
SSH __} SSH
entity entity

A
a by

TCP Unsecure TCP connection TCP

entity entity

(b) Connection via SSH tunnel

Figure 5.12 SSH Transport Layer Packet Exchanges

172 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

SSH entity and travels through the tunnel where the remote SSH entity delivers the
data to the server application on port y. Traffic in the other direction is similarly
redirected.

SSH supports two types of port forwarding: local forwarding and remote for-
warding. Local forwarding allows the client to set up a “hijacker” process. This will
intercept selected application-level traffic and redirect it from an unsecured TCP
connection to a secure SSH tunnel. SSH is configured to listen on selected ports.
SSH grabs all traffic using a selected port and sends it through an SSH tunnel. On
the other end, the SSH server sends the incoming traffic to the destination port dic-
tated by the client application.

The following example should help clarify local forwarding. Suppose you have
an e-mail client on your desktop and use it to get e-mail from your mail server via
the Post Office Protocol (POP). The assigned port number for POP3 is port 110. We
can secure this traffic in the following way:

1. The SSH client sets up a connection to the remote server.

2. Select an unused local port number, say 9999, and configure SSH to accept
traffic from this port destined for port 110 on the server.

3. The SSH client informs the SSH server to create a connection to the destina-
tion, in this case mailserver port 110.

4. The client takes any bits sent to local port 9999 and sends them to the server
inside the encrypted SSH session. The SSH server decrypts the incoming bits
and sends the plaintext to port 110.

5. In the other direction, the SSH server takes any bits received on port 110
and sends them inside the SSH session back to the client, who decrypts and
sends them to the process connected to port 9999.

With remote forwarding, the user’s SSH client acts on the server’s behalf.
The client receives traffic with a given destination port number, places the traffic
on the correct port and sends it to the destination the user chooses. A typical
example of remote forwarding is the following. You wish to access a server at
work from your home computer. Because the work server is behind a firewall, it
will not accept an SSH request from your home computer. However, from work
you can set up an SSH tunnel using remote forwarding. This involves the follow-
ing steps.

1. From the work computer, set up an SSH connection to your home
computer. The firewall will allow this, because it is a protected outgoing
connection.

2. Configure the SSH server to listen on a local port, say 22, and to deliver data
across the SSH connection addressed to remote port, say 2222.

3. You can now go to your home computer, and configure SSH to accept traffic
on port 2222.

4. You now have an SSH tunnel that can be used for remote logon to the work
server.

5.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 173

5.6 RECOMMENDED READING AND WEB SITES

[RESCO1] is a good detailed treatment of SSL and TLS. [BARRO5] provides a thorough
treatment of SSH. The original version (SSH-1) of SSH was introduced in [YLON96].

BARROS5 Barrett, D.; Silverman, R.; and Byrnes, R. SSH The Secure Shell: The Definitive
Guide. Sebastopol, CA: O’Reilly, 2005.

RESCO01 Rescorla, E. SSL and TLS: Designing and Building Secure Systems. Reading,
MA: Addison-Wesley, 2001.

YLONY96 Ylonen, T. “SSH - Secure Login Connections over the Internet.” Proceedings,
Sixth USENIX Security Symposium,July 1996.

Recommended Web Sites:

* Transport Layer Security Charter: Latest RFCs and Internet drafts for TLS.

* OpenSSL Project: Project to develop open-source SSL and TLS software. Site includes
documents and links.

5.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
Alert protocol HTTPS (HTTP over SSL) Secure Socket Layer (SSL)
Change Cipher Spec protocol | Master Secret Transport Layer Security
Handshake protocol Secure Shell (SSH) (TLS)

Review Questions

5.1 What are the advantages of each of the three approaches shown in Figure 5.1?
5.2 What protocols comprise SSL?
5.3 What is the difference between an SSL connection and an SSL session?
5.4 List and briefly define the parameters that define an SSL session state.
5.5 List and briefly define the parameters that define an SSL session connection.
5.6 What services are provided by the SSL Record Protocol?
5.7 What steps are involved in the SSL Record Protocol transmission?
5.8 What is the purpose of HTTPS?
5.9 For what applications is SSH useful?
5.10 List and briefly define the SSH protocols.

174 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

Problems

5.1 In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than
including a change_cipher_spec message in the Handshake Protocol?

5.2 What purpose does the MAC serve during the change cipher spec SSL exchange?

5.3 Consider the following threats to Web security and describe how each is countered by
a particular feature of SSL.

a. Brute-Force Cryptanalytic Attack: An exhaustive search of the key space for a
conventional encryption algorithm.

b. Known Plaintext Dictionary Attack: Many messages will contain predictable
plaintext, such as the HTTP GET command. An attacker constructs a dictionary
containing every possible encryption of the known-plaintext message. When an
encrypted message is intercepted, the attacker takes the portion containing the
encrypted known plaintext and looks up the ciphertext in the dictionary. The
ciphertext should match against an entry that was encrypted with the same secret
key. If there are several matches, each of these can be tried against the full cipher-
text to determine the right one. This attack is especially effective against small key
sizes (e.g., 40-bit keys).

c. Replay Attack: Earlier SSL handshake messages are replayed.

d. Man-in-the-Middle Attack: An attacker interposes during key exchange, acting as
the client to the server and as the server to the client.

e. Password Sniffing: Passwords in HTTP or other application traffic are eaves-
dropped.

f. IP Spoofing: Uses forged IP addresses to fool a host into accepting bogus data.

g. IP Hijacking: An active, authenticated connection between two hosts is disrupted
and the attacker takes the place of one of the hosts.

h. SYN Flooding: An attacker sends TCP SYN messages to request a connection but
does not respond to the final message to establish the connection fully. The
attacked TCP module typically leaves the “half-open connection” around for a
few minutes. Repeated SYN messages can clog the TCP module.

5.4 Based on what you have learned in this chapter, is it possible in SSL for the receiver
to reorder SSL record blocks that arrive out of order? If so, explain how it can be
done. If not, why not?

5.5 For SSH packets, what is the advantage, if any, of not including the MAC in the scope

of the packet encryption?

CHAPTER

WIRELESS NETWORK SECURITY

6.1

6.2

6.3

6.4

6.5
6.6
6.7

IEEE 802.11 Wireless LAN Overview

The Wi-Fi Alliance

IEEE 802 Protocol Architecture

IEEE 802.11 Network Components and Architectural Model
IEEE 802.11 Services

IEEE 802.11i Wireless LAN Security

IEEE 802.11i Services

IEEE 802.11i Phases of Operation
Discovery Phase

Authentication Phase

Key Management Phase

Protected Data Transfer Phase

The IEEE 802.11i Pseudorandom Function

Wireless Application Protocol Overview

Operational Overview

Wireless Markup Language

WAP Architecture

Wireless Application Environment
WAP Protocol Architecture

Wireless Transport Layer Security

WTLS Sessions and Connections
WTLS Protocol Architecture
Cryptographic Algorithms

WAP End-to-End Security
Recommended Reading and Web Sites

Key Terms, Review Questions, and Problems

175

176 CHAPTER 6 / WIRELESS NETWORK SECURITY

Investigators have published numerous reports of birds taking turns vocalizing;
the bird spoken to gave its full attention to the speaker and never vocalized at the
same time, as if the two were holding a conversation.

Researchers and scholars who have studied the data on avian communication
carefully write (a) the communication code of birds, such as crows, has not been
broken by any means; (b) probably all birds have wider vocabularies than any-
one realizes; and (c) greater complexity and depth are recognized in avian com-
munication as research progresses.

— The Human Nature of Birds, Theodore Barber

KEY POINTS

¢ IEEE 802.11 is a standard for wireless LANs. Interoperable standards-
compliant implementations are referred to as Wi-Fi.

¢ IEEE 802.11i specifies security standards for IEEE 802.11 LANSs, including
authentication, data integrity, data confidentiality, and key management.
Interoperable implementations are also referred to as Wi-Fi Protected
Access (WPA).

¢ The Wireless Application Protocol (WAP) is a standard to provide mobile
users of wireless phones and other wireless terminals access to telephony
and information services, including the Internet and the Web.

¢ WAP security is primarily provided by the Wireless Transport Layer Secu-
rity (WTLS), which provides security services between the mobile device
and the WAP gateway to the Internet.

& There are several approaches to WAP end-to-end security. One notable
approach assumes that the mobile device implements TLS over TCP/IP
and the wireless network supports transfer of IP packets.

This chapter looks at two important wireless network security schemes. First, we look
at the IEEE 802.11i standard for wireless LAN security. This standard is part of IEEE
802.11, also referred to as Wi-Fi. We begin the discussion with an overview of IEEE
802.11, and we then look in some detail at IEEE 802.111i.

The remainder of the chapter is devoted to security standards for Web access
from mobile wireless devices, such as cell phones. We begin this part of the chapter with
an overview of the Wireless Application Protocol (WAP), which is a set of standards
for communication between mobile devices attached to a cellular network and a Web
server. Then we examine the Wireless Transport Layer Security (WTLS) protocol,
which provides security between the mobile device and a gateway that operates
between the cellular network and the Internet. Finally, we cover end-to-end security
services between WAP devices and Web servers.

6.1 / IEEE 802.11 WIRELESS LAN OVERVIEW 177

6.1 IEEE 802.11 WIRELESS LAN OVERVIEW

IEEE 802 is a committee that has developed standards for a wide range of local area
networks (LANSs). In 1990, the IEEE 802 Committee formed a new working group,
IEEE 802.11, with a charter to develop a protocol and transmission specifications
for wireless LANs (WLANSs). Since that time, the demand for WLANS at different
frequencies and data rates has exploded. Keeping pace with this demand, the IEEE
802.11 working group has issued an ever-expanding list of standards. Table 6.1
briefly defines key terms used in the IEEE 802.11 standard.

The Wi-Fi Alliance

The first 802.11 standard to gain broad industry acceptance was 802.11b. Although
802.11b products are all based on the same standard, there is always a concern
whether products from different vendors will successfully interoperate. To meet this
concern, the Wireless Ethernet Compatibility Alliance (WECA), an industry con-
sortium, was formed in 1999. This organization, subsequently renamed the Wi-Fi
(Wireless Fidelity) Alliance, created a test suite to certify interoperability for
802.11b products. The term used for certified 802.11b products is Wi-Fi. Wi-Fi certi-
fication has been extended to 802.11g products. The Wi-Fi Alliance has also devel-
oped a certification process for 802.11a products, called Wi-Fi5. The Wi-Fi Alliance
is concerned with a range of market areas for WLAN:S, including enterprise, home,
and hot spots.

More recently, the Wi-Fi Alliance has developed certification procedures for
IEEE 802.11 security standards, referred to as Wi-Fi Protected Access (WPA). The
most recent version of WPA, known as WPA2, incorporates all of the features of the
IEEE 802.111 WLAN security specification.

Table 6.1 IEEE 802.11 Terminology

Access point (AP)

Basic service set (BSS)

Coordination function

Distribution system
(DS)

Extended service set
(ESS)

MAC protocol data unit
(MPDU)

MAC service data unit
(MSDU)

Station

Any entity that has station functionality and provides access to the distribution
system via the wireless medium for associated stations.

A set of stations controlled by a single coordination function.

The logical function that determines when a station operating within a BSS is per-
mitted to transmit and may be able to receive PDUs.

A system used to interconnect a set of BSSs and integrated LANSs to create an
ESS.

A set of one or more interconnected BSSs and integrated LANSs that appear as a
single BSS to the LLC layer at any station associated with one of these BSSs.

The unit of data exchanged between two peer MAC entities using the services of
the physical layer.

Information that is delivered as a unit between MAC users.

Any device that contains an IEEE 802.11 conformant MAC and physical layer.

178 CHAPTER 6 / WIRELESS NETWORK SECURITY

IEEE 802 Protocol Architecture

Before proceeding, we need to briefly preview the IEEE 802 protocol architecture.
IEEE 802.11 standards are defined within the structure of a layered set of protocols.
This structure, used for all IEEE 802 standards, is illustrated in Figure 6.1.

Puysicar Laver The lowest layer of the IEEE 802 reference model is the physical
layer, which includes such functions as encoding/decoding of signals and bit
transmission/reception. In addition, the physical layer includes a specification of the
transmission medium. In the case of IEEE 802.11, the physical layer also defines
frequency bands and antenna characteristics.

MEepia Access ConTroL All LANs consist of collections of devices that share the
network’s transmission capacity. Some means of controlling access to the
transmission medium is needed to provide an orderly and efficient use of that
capacity. This is the function of a media access control (MAC) layer. The MAC layer
receives data from a higher-layer protocol, typically the Logical Link Control (LLC)
layer, in the form of a block of data known as the MAC service data unit (MSDU).
In general, the MAC layer performs the following functions:

e On transmission, assemble data into a frame, known as a MAC protocol data
unit (MPDU) with address and error-detection fields.

e On reception, disassemble frame, and perform address recognition and error
detection.

e Govern access to the LAN transmission medium.

General IEEE 802 Specific IEEE 802.11
functions functions

~HA—A ~A

LOglcal Link Flow control

Control Error control

Assemble data into frame
Medium Access Addressing Reliable data delivery
Control Error detection Wireless access control protocols
ontro Medium access
Encoding/decoding of signals ... quency band definition
. Bit transmission/reception Wireless signal encoding
Physwal Transmission medium

Figure 6.1 IEEE 802.11 Protocol Stack

6.1 / IEEE 802.11 WIRELESS LAN OVERVIEW 179

MAC Destination Source . .
Control | MAC Address | MAC Address | MAC Service Data Unit (MSDU) CRC

— _J
V L/Y\J
MAC header MAC trailer
Figure 6.2 General IEEE 802 MPDU Format

The exact format of the MPDU differs somewhat for the various MAC proto-
cols in use. In general, all of the MPDUs have a format similar to that of Figure 6.2.
The fields of this frame are as follows.

e MAC Control: This field contains any protocol control information needed for
the functioning of the MAC protocol. For example, a priority level could be
indicated here.

* Destination MAC Address: The destination physical address on the LAN for
this MPDU.

e Source MAC Address: The source physical address on the LAN for this
MPDU.

e MAC Service Data Unit: The data from the next higher layer.

* CRC: The cyclic redundancy check field; also known as the Frame Check
Sequence (FCS) field. This is an error-detecting code, such as that which is
used in other data-link control protocols. The CRC is calculated based on the
bits in the entire MPDU. The sender calculates the CRC and adds it to the
frame. The receiver performs the same calculation on the incoming MPDU
and compares that calculation to the CRC field in that incoming MPDU. If the
two values don’t match, then one or more bits have been altered in transit.

The fields preceding the MSDU field are referred to as the MAC header, and
the field following the MSDU field is referred to as the MAC trailer. The header and
trailer contain control information that accompany the data field and that are used
by the MAC protocol.

LocIcAar LiInk ConTrOL In most data-link control protocols, the data-link protocol
entity is responsible not only for detecting errors using the CRC, but for recovering
from those errors by retransmitting damaged frames. In the LAN protocol
architecture, these two functions are split between the MAC and LLC layers. The
MAC layer is responsible for detecting errors and discarding any frames that
contain errors. The LLC layer optionally keeps track of which frames have been
successfully received and retransmits unsuccessful frames.

IEEE 802.11 Network Components and Architectural Model

Figure 6.3 illustrates the model developed by the 802.11 working group. The smallest
building block of a wireless LAN is a basic service set (BSS), which consists of wireless
stations executing the same MAC protocol and competing for access to the same
shared wireless medium. A BSS may be isolated, or it may connect to a backbone

180 CHAPTER 6 / WIRELESS NETWORK SECURITY

Distribution System

N / K

, N/ . .

, v Basic Service \
)/ ! \ Set (BSS)
/

! Basic Service | \ STA1

| Set (BSS) \

|

\

Figure 6.3 TEEE 802.11 Extended Service Set

distribution system (DS) through an access point (AP). The AP functions as a bridge
and a relay point. In a BSS, client stations do not communicate directly with one
another. Rather, if one station in the BSS wants to communicate with another station
in the same BSS, the MAC frame is first sent from the originating station to the AP
and then from the AP to the destination station. Similarly, a MAC frame from a sta-
tion in the BSS to a remote station is sent from the local station to the AP and then
relayed by the AP over the DS on its way to the destination station. The BSS generally
corresponds to what is referred to as a cell in the literature. The DS can be a switch, a
wired network, or a wireless network.

When all the stations in the BSS are mobile stations that communicate directly
with one another (not using an AP), the BSS is called an independent BSS (IBSS).
An IBSS is typically an ad hoc network. In an IBSS, the stations all communicate
directly, and no AP is involved.

A simple configuration is shown in Figure 6.3, in which each station belongs to
a single BSS; that is, each station is within wireless range only of other stations
within the same BSS. It is also possible for two BSSs to overlap geographically, so
that a single station could participate in more than one BSS. Furthermore, the asso-
ciation between a station and a BSS is dynamic. Stations may turn off, come within
range, and go out of range.

An extended service set (ESS) consists of two or more basic service sets
interconnected by a distribution system. The extended service set appears as a single
logical LAN to the logical link control (LLC) level.

6.1 / IEEE 802.11 WIRELESS LAN OVERVIEW 181

IEEE 802.11 Services

IEEE 802.11 defines nine services that need to be provided by the wireless LAN to
achieve functionality equivalent to that which is inherent to wired LANSs. Table 6.2
lists the services and indicates two ways of categorizing them.

1. The service provider can be either the station or the DS. Station services are
implemented in every 802.11 station, including AP stations. Distribution ser-
vices are provided between BSSs; these services may be implemented in an AP
or in another special-purpose device attached to the distribution system.

2. Three of the services are used to control IEEE 802.11 LAN access and confi-
dentiality. Six of the services are used to support delivery of MSDUs between
stations. If the MSDU is too large to be transmitted in a single MPDU, it may
be fragmented and transmitted in a series of MPDU.

Following the IEEE 802.11 document, we next discuss the services in an order
designed to clarify the operation of an IEEE 802.11 ESS network. MSDU delivery,
which is the basic service, already has been mentioned. Services related to security
are introduced in Section 6.2.

DISTRIBUTION OF MESSAGES WiTHIN A DS The two services involved with the
distribution of messages within a DS are distribution and integration. Distribution is
the primary service used by stations to exchange MPDUs when the MPDUs must
traverse the DS to get from a station in one BSS to a station in another BSS. For
example, suppose a frame is to be sent from station 2 (STA 2) to station 7 (STA 7) in
Figure 6.3. The frame is sent from STA 2 to AP 1, which is the AP for this BSS. The
AP gives the frame to the DS, which has the job of directing the frame to the AP
associated with STA 7 in the target BSS. AP 2 receives the frame and forwards it to
STA 7. How the message is transported through the DS is beyond the scope of the
IEEE 802.11 standard.

If the two stations that are communicating are within the same BSS, then the
distribution service logically goes through the single AP of that BSS.

Table 6.2 IEEE 802.11 Services

Service Provider Used to support
Association Distribution system MSDU delivery
Authentication Station LAN access and security
Deauthentication Station LAN access and security
Disassociation Distribution system MSDU delivery
Distribution Distribution system MSDU delivery
Integration Distribution system MSDU delivery
MSDU delivery Station MSDU delivery
Privacy Station LAN access and security
Reassociation Distribution system MSDU delivery

182 CHAPTER 6 / WIRELESS NETWORK SECURITY

The integration service enables transfer of data between a station on an IEEE
802.11 LAN and a station on an integrated IEEE 802.x LAN. The term integrated
refers to a wired LAN that is physically connected to the DS and whose stations
may be logically connected to an IEEE 802.11 LAN via the integration service. The
integration service takes care of any address translation and media conversion logic
required for the exchange of data.

AssocIATION-RELATED SErvIcEs The primary purpose of the MAC layer is to
transfer MSDUs between MAC entities; this purpose is fulfilled by the
distribution service. For that service to function, it requires information about
stations within the ESS that is provided by the association-related services. Before
the distribution service can deliver data to or accept data from a station, that
station must be associated. Before looking at the concept of association, we need
to describe the concept of mobility. The standard defines three transition types,
based on mobility:

* No transition: A station of this type is either stationary or moves only within
the direct communication range of the communicating stations of a single BSS.

e BSS transition: This is defined as a station movement from one BSS to
another BSS within the same ESS. In this case, delivery of data to the station
requires that the addressing capability be able to recognize the new location
of the station.

e ESS transition: This is defined as a station movement from a BSS in one ESS
to a BSS within another ESS. This case is supported only in the sense that the
station can move. Maintenance of upper-layer connections supported by
802.11 cannot be guaranteed. In fact, disruption of service is likely to occur.

To deliver a message within a DS, the distribution service needs to know
where the destination station is located. Specifically, the DS needs to know the
identity of the AP to which the message should be delivered in order for that mes-
sage to reach the destination station. To meet this requirement, a station must
maintain an association with the AP within its current BSS. Three services relate to
this requirement:

* Association: Establishes an initial association between a station and an AP.
Before a station can transmit or receive frames on a wireless LAN, its identity
and address must be known. For this purpose, a station must establish an asso-
ciation with an AP within a particular BSS. The AP can then communicate this
information to other APs within the ESS to facilitate routing and delivery of
addressed frames.

¢ Reassociation: Enables an established association to be transferred from one
AP to another, allowing a mobile station to move from one BSS to another.

¢ Disassociation: A notification from either a station or an AP that an existing
association is terminated. A station should give this notification before leaving
an ESS or shutting down. However, the MAC management facility protects
itself against stations that disappear without notification.

6.2 / IEEE 802.11i WIRELESS LAN SECURITY 183

6.2 IEEE 802.11i WIRELESS LAN SECURITY

There are two characteristics of a wired LAN that are not inherent in a wireless LAN.

1. In order to transmit over a wired LAN, a station must be physically connected
to the LAN. On the other hand, with a wireless LAN, any station within radio
range of the other devices on the LAN can transmit. In a sense, there is a form
of authentication with a wired LAN in that it requires some positive and
presumably observable action to connect a station to a wired LAN.

2. Similarly, in order to receive a transmission from a station that is part of a
wired LAN, the receiving station also must be attached to the wired LAN. On
the other hand, with a wireless LAN, any station within radio range can
receive. Thus, a wired LAN provides a degree of privacy, limiting reception of
data to stations connected to the LAN.

These differences between wired and wireless LANs suggest the increased
need for robust security services and mechanisms for wireless LANs. The original
802.11 specification included a set of security features for privacy and authentication
that were quite weak. For privacy, 802.11 defined the Wired Equivalent Privacy
(WEP) algorithm. The privacy portion of the 802.11 standard contained major weak-
nesses. Subsequent to the development of WEP, the 802.11i task group has developed
a set of capabilities to address the WLAN security issues. In order to accelerate the
introduction of strong security into WLANSs, the Wi-Fi Alliance promulgated Wi-Fi
Protected Access (WPA) as a Wi-Fi standard. WPA is a set of security mechanisms
that eliminates most 802.11 security issues and was based on the current state of the
802.111 standard. The final form of the 802.11i standard is referred to as Robust
Security Network (RSN). The Wi-Fi Alliance certifies vendors in compliance with the
full 802.11i specification under the WPA2 program.

IEEE 802.11i Services
The 802.11i RSN security specification defines the following services.

* Authentication: A protocol is used to define an exchange between a user and
an AS that provides mutual authentication and generates temporary keys to
be used between the client and the AP over the wireless link.

o Access control:! This function enforces the use of the authentication function,
routes the messages properly, and facilitates key exchange. It can work with a
variety of authentication protocols.

* Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are
encrypted along with a message integrity code that ensures that the data have
not been altered.

Figure 6.4a indicates the security protocols used to support these services,
while Figure 6.4b lists the cryptographic algorithms used for these services.

'In this context, we are discussing access control as a security function. This is a different function than
media access control (MAC) as described in Section 6.1. Unfortunately, the literature and the standards
use the term access control in both contexts.

184 CHAPTER 6 / WIRELESS NETWORK SECURITY

Robust Security Network (RSN)

4 Authentication Co.nf'ldentlallty., D 2}ta
= Access Control and Key Origin Authe‘ntlcatlon
5 CaEm o and Integrity a‘nd
» Replay Protection
172}
§ IEEE 802.1 Extensible
% Port-based Authentication TKIP CCMP
& Access Control Protocol (EAP)
(a) Services and protocols
Robust Security Network (RSN)
3 Integrity and
~§ Confidentiality Datga Oii in Key :
z rigl Generation
3 Authentication
g
CCM
;E TKIP &(]';1;[_ l\geST HMAC- | HMAC- (MTiljllll;el (AES- HMAC-| RFC
5 | RCe) v SHA-1 | MD5 CBC- SHA-1 1750
=1} CTR) Wrap MIC)
- MAC)
<
(b) Cryptographic algorithms
CBC-MAC = Cipher Block Block Chaining Message Authentication Code (MAC)
CCM = Counter Mode with Cipher Block Chaining Message Authentication Code
CCMP = Counter Mode with Cipher Block Chaining MAC Protocol
TKIP = Temporal Key Integrity Protocol

Figure 6.4 Elements of IEEE 802.11i

IEEE 802.11i Phases of Operation

The operation of an IEEE 802.11i RSN can be broken down into five distinct phases
of operation. The exact nature of the phases will depend on the configuration and
the end points of the communication. Possibilities include (see Figure 6.3):

1. Two wireless stations in the same BSS communicating via the access point
(AP) for that BSS.

2. Two wireless stations (STAs) in the same ad hoc IBSS communicating directly
with each other.

3. Two wireless stations in different BSSs communicating via their respective APs
across a distribution system.

4. A wireless station communicating with an end station on a wired network via
its AP and the distribution system.

6.2 / IEEE 802.11i WIRELESS LAN SECURITY 185

IEEE 802.11i security is concerned only with secure communication between
the STA and its AP. In case 1 in the preceding list, secure communication is assured
if each STA establishes secure communications with the AP. Case 2 is similar, with
the AP functionality residing in the STA. For case 3, security is not provided across
the distribution system at the level of IEEE 802.11, but only within each BSS. End-
to-end security (if required) must be provided at a higher layer. Similarly, in case 4,
security is only provided between the STA and its AP.

With these considerations in mind, Figure 6.5 depicts the five phases of opera-
tion for an RSN and maps them to the network components involved. One new
component is the authentication server (AS). The rectangles indicate the exchange
of sequences of MPDUs. The five phases are defined as follows.

¢ Discovery: An AP uses messages called Beacons and Probe Responses to
advertise its IEEE 802.11i security policy. The STA uses these to identify an
AP for a WLAN with which it wishes to communicate. The STA associates
with the AP, which it uses to select the cipher suite and authentication mecha-
nism when the Beacons and Probe Responses present a choice.

e Authentication: During this phase, the STA and AS prove their identities to
each other. The AP blocks non-authentication traffic between the STA and AS
until the authentication transaction is successful. The AP does not participate
in the authentication transaction other than forwarding traffic between the
STA and AS.

AP AS End Station

STA
A
& &

I Phase 1 - Discovery l

Phase 2 - Authentication l

I Phase 3 - Key Management l

Phase 4 - Protected Data Transfer

I Phase 5 - Connection Termination l
T T

Figure 6.5 IEEE 802.11i Phases of Operation

186 CHAPTER 6 / WIRELESS NETWORK SECURITY

* Key generation and distribution: The AP and the STA perform several opera-
tions that cause cryptographic keys to be generated and placed on the AP and
the STA. Frames are exchanged between the AP and STA only.

¢ Protected data transfer: Frames are exchanged between the STA and the end
station through the AP. As denoted by the shading and the encryption module
icon, secure data transfer occurs between the STA and the AP only; security is
not provided end-to-end.

¢ Connection termination: The AP and STA exchange frames. During this

phase, the secure connection is torn down and the connection is restored to the
original state.

Discovery Phase

We now look in more detail at the RSN phases of operation, beginning with the
discovery phase, which is illustrated in the upper portion of Figure 6.6. The purpose
of this phase is for an STA and an AP to recognize each other, agree on a set of secu-
rity capabilities, and establish an association for future communication using those
security capabilities.

SecurrTy CapaprLiTies During this phase, the STA and AP decide on specific
techniques in the following areas:

¢ Confidentiality and MPDU integrity protocols for protecting unicast traffic
(traffic only between this STA and AP)
e Authentication method
¢ Cryptography key management approach
Confidentiality and integrity protocols for protecting multicast/broadcast traf-
fic are dictated by the AP, since all STAs in a multicast group must use the same pro-
tocols and ciphers. The specification of a protocol, along with the chosen key length

(if variable) is known as a cipher suite. The options for the confidentiality and
integrity cipher suite are

e WEP, with either a 40-bit or 104-bit key, which allows backward compatibility
with older IEEE 802.11 implementations
e TKIP
e CCMP
* Vendor-specific methods
The other negotiable suite is the authentication and key management (AKM)
suite, which defines (1) the means by which the AP and STA perform mutual

authentication and (2) the means for deriving a root key from which other keys may
be generated. The possible AKM suites are

* JEEE 802.1X

* Pre-shared key (no explicit authentication takes place and mutual authentica-
tion is implied if the STA and AP share a unique secret key)

¢ Vendor-specific methods

6.2 / IEEE 802.11i WIRELESS LAN SECURITY 187

STA AP AS
Station sends a request Probe request
. . A -
to join network. 1 AP sends possible
Probe response security parameter
R (security capabilities set
er the security policy).
Station sends a Op‘e n s.y stem p y policy)
authentication request

request to perform >

null authentication. Open system

__authentication response AP performs

< null authentication.
Station sends a request to Association request
associate with AP with >
security parameters. __ Association response AP sends the associated
N security parameters.

Station sets selected
security parameters.
I 802.1X controlled port blocked l

802.1x EAP request

A

802.1x EAP response N
~ Access request
(EAP request)

| Extensible Authentication Protocol Exchange |

Accept/EAP-success
key material

<
<

802.1x EAP success

)

| 802.1X controlled port blocked |

Figure 6.6 TEEE 802.11i Phases of Operation: Capability Discovery,
Authentication, and Association

MPDU Excuance The discovery phase consists of three exchanges.

¢ Network and security capability discovery: During this exchange, STAs dis-
cover the existence of a network with which to communicate. The AP either
periodically broadcasts its security capabilities (not shown in figure), indicated
by RSN IE (Robust Security Network Information Element), in a specific
channel through the Beacon frame; or responds to a station’s Probe Request
through a Probe Response frame. A wireless station may discover available
access points and corresponding security capabilities by either passively mon-
itoring the Beacon frames or actively probing every channel.

e Open system authentication: The purpose of this frame sequence, which pro-
vides no security, is simply to maintain backward compatibility with the

188 CHAPTER 6 / WIRELESS NETWORK SECURITY

IEEE 802.11 state machine, as implemented in existing IEEE 802.11 hard-
ware. In essence, the two devices (STA and AP) simply exchange identifiers.

¢ Association: The purpose of this stage is to agree on a set of security capabili-
ties to be used. The STA then sends an Association Request frame to the AP.
In this frame, the STA specifies one set of matching capabilities (one authenti-
cation and key management suite, one pairwise cipher suite, and one group-
key cipher suite) from among those advertised by the AP. If there is no match
in capabilities between the AP and the STA, the AP refuses the Association
Request. The STA blocks it too, in case it has associated with a rogue AP or
someone is inserting frames illicitly on its channel. As shown in Figure 6.6, the
IEEE 802.1X controlled ports are blocked, and no user traffic goes beyond the
AP.The concept of blocked ports is explained subsequently.

Authentication Phase

As was mentioned, the authentication phase enables mutual authentication between
an STA and an authentication server (AS) located in the DS. Authentication is
designed to allow only authorized stations to use the network and to provide the
STA with assurance that it is communicating with a legitimate network.

IEEE 802.1X Access ConTrOL ArrroacH IEEE 802.11i makes use of another
standard that was designed to provide access control functions for LANs. The
standard is IEEE 802.1X, Port-Based Network Access Control. The authentication
protocol that is used, the Extensible Authentication Protocol (EAP), is defined in
the IEEE 802.1X standard. IEEE 802.1X uses the terms supplicant, authenticator,
and authentication server (AS). In the context of an 802.11 WLAN, the first two
terms correspond to the wireless station and the AP. The AS is typically a separate
device on the wired side of the network (i.e., accessible over the DS) but could also
reside directly on the authenticator.

Before a supplicant is authenticated by the AS using an authentication proto-
col, the authenticator only passes control or authentication messages between the
supplicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data
channel is blocked. Once a supplicant is authenticated and keys are provided, the
authenticator can forward data from the supplicant, subject to predefined access
control limitations for the supplicant to the network. Under these circumstances, the
data channel is unblocked.

As indicated in Figure 6.7, 802.1X uses the concepts of controlled and uncon-
trolled ports. Ports are logical entities defined within the authenticator and refer to
physical network connections. For a WLAN, the authenticator (the AP) may have
only two physical ports: one connecting to the DS and one for wireless communica-
tion within its BSS. Each logical port is mapped to one of these two physical ports.
An uncontrolled port allows the exchange of PDUs between the supplicant and the
other AS, regardless of the authentication state of the supplicant. A controlled port
allows the exchange of PDUs between a supplicant and other systems on the LAN
only if the current state of the supplicant authorizes such an exchange.

The 802.1X framework, with an upper-layer authentication protocol, fits nicely
with a BSS architecture that includes a number of wireless stations and an AP.

6.2 / IEEE 802.11i WIRELESS LAN SECURITY 189

Uncontrolled
port

A
%& 1 E Access point

A A

Controlled Controlled
port port

Authentication server

Station

To other
o — — o » ToDS

wireless stations <
on this BSS

Figure 6.7 802.1X Access Control

However, for an IBSS, there is no AP. For an IBSS, 802.11i provides a more complex
solution that, in essence, involves pairwise authentication between stations on the
IBSS.

MPDU ExcHANGE The lower part of Figure 6.6 shows the MPDU exchange
dictated by IEEE 802.11 for the authentication phase. We can think of
authentication phase as consisting of the following three phases.

e Connect to AS: The STA sends a request to its AP (the one with which it has
an association) for connection to the AS. The AP acknowledges this request
and sends an access request to the AS.

* EAP exchange: This exchange authenticates the STA and AS to each other.
A number of alternative exchanges are possible, as explained subsequently.

* Secure key delivery: Once authentication is established, the AS generates a
master session key (MSK), also known as the Authentication,
Authorization, and Accounting (AAA) key and sends it to the STA.
As explained subsequently, all the cryptographic keys needed by the STA
for secure communication with its AP are generated from this MSK. IEEE
802.111 does not prescribe a method for secure delivery of the MSK but
relies on EAP for this. Whatever method is used, it involves the transmis-
sion of an MPDU containing an encrypted MSK from the AS, via the AP, to
the AS.

EAP Excuance As mentioned, there are a number of possible EAP exchanges
that can be used during the authentication phase. Typically, the message flow

190 CHAPTER 6 / WIRELESS NETWORK SECURITY

between STA and AP employs the EAP over LAN (EAPOL) protocol, and the
message flow between the AP and AS uses the Remote Authentication Dial In User
Service (RADIUS) protocol, although other options are available for both STA-to-
AP and AP-to-AS exchanges. [FRANO07] provides the following summary of the
authentication exchange using EAPOL and RADIUS.

1. The EAP exchange begins with the AP issuing an EAP-Request/Identity
frame to the STA.

2. The STA replies with an EAP-Response/ldentity frame, which the
AP receives over the uncontrolled port. The packet is then encapsulated
in RADIUS over EAP and passed on to the RADIUS server as a
RADIUS-Access-Request packet.

3. The AAA server replies with a RADIUS-Access-Challenge packet, which is
passed on to the STA as an EAP-Request. This request is of the appropriate
authentication type and contains relevant challenge information.

4. The STA formulates an EAP-Response message and sends it to the AS.
The response is translated by the AP into a Radius-Access-Request with
the response to the challenge as a data field. Steps 3 and 4 may be
repeated multiple times, depending on the EAP method in use. For TLS
tunneling methods, it is common for authentication to require 10 to 20
round trips.

5. The AAA server grants access with a Radius-Access-Accept packet. The
AP issues an EAP-Success frame. (Some protocols require confirmation of
the EAP success inside the TLS tunnel for authenticity validation.) The
controlled port is authorized, and the user may begin to access the
network.

Note from Figure 6.6 that the AP controlled port is still blocked to general
user traffic. Although the authentication is successful, the ports remain blocked until
the temporal keys are installed in the STA and AP, which occurs during the 4-Way
Handshake.

Key Management Phase

During the key management phase, a variety of cryptographic keys are generated
and distributed to STAs. There are two types of keys: pairwise keys used for commu-
nication between an STA and an AP and group keys used for multicast communica-
tion. Figure 6.8, based on [FRANO07], shows the two key hierarchies, and Table 6.3
defines the individual keys.

Parrwise Keys Pairwise keys are used for communication between a pair of
devices, typically between an STA and an AP. These keys form a hierarchy
beginning with a master key from which other keys are derived dynamically and
used for a limited period of time.

At the top level of the hierarchy are two possibilities. A pre-shared key (PSK)
is a secret key shared by the AP and a STA and installed in some fashion outside
the scope of IEEE 802.11i. The other alternative is the master session key (MSK),
also known as the AAAK, which is generated using the IEEE 802.1X protocol

6.2 / IEEE 802.11i WIRELESS LAN SECURITY

™) Out-of-band path EAP method path)
1 ‘ PSK AAAK or MSK !‘
I Pre-shared key | I AAA key |
256 bits User-defined > 256 bits EAP
authentication
Legend . .
No modification I Pairwise master key Fm
e Possible truncation 256 bits Following EAP authentication
mmssmm PRF (pseudo-random or PSK
function) using
HMAC-SHA-1 PTK >
I Pairwise transient key Hm
384 bits (CCMP) During 4-way handshake

512 bits (TKIP

191

~
~

-
-

KCK KEK TK
EAPOL key confirmation ked I EAPOL key encryption key | Temporal key
128 bits OO~ 128bits @ .- 128 bits (CCMP) &
; .. ' - 256 bits (TKIP)
4 .. : .-
' .
1

SN 4
These keys are
components of the PTK

(a) Pairwise key hierarchy

GMEK (generated by AS)
UV
I Group master key | »

256 bits Changes periodically
or if compromised

GTK

I Group temporal key | K

40 bits, 104 bits (WEP) N
128 bits (CCMP) Changes based on
256 bits (TKIP) policy (dissaciation,

deauthentication)

(b) Group key hierarchy
Figure 6.8 IEEE 802.11i Key Hierarchies

during the authentication phase, as described previously. The actual method of key
generation depends on the details of the authentication protocol used. In either
case (PSK or MSK), there is a unique key shared by the AP with each STA with
which it communicates. All the other keys derived from this master key are also
unique between an AP and an STA. Thus, each STA, at any time, has one set of
keys, as depicted in the hierarchy of Figure 6.8a, while the AP has one set of such

keys for each of its STAs.

The pairwise master key (PMK) is derived from the master key. If a PSK is
used, then the PSK is used as the PMK; if a MSK is used, then the PMK is derived
from the MSK by truncation (if necessary). By the end of the authentication phase,

192 CHAPTER 6 / WIRELESS NETWORK SECURITY

Table 6.3 IEEE 802.11i Keys for Data Confidentiality and Integrity Protocols
Abbrev- Name Description / Purpose Size (bits) Type
iation
AAA Authentication, Used to derive the PMK. Used with = 256 Key generation
Key Accounting, and the IEEE 802.1X authentication and key, root key
Authorization Key key management approach. Same as
MMSK.
PSK Pre-shared Key Becomes the PMK in pre-shared 256 Key generation
key environments. key, root key
PMK Pairwise Master Key | Used with other inputs to derive the 256 Key generation
PTK. key
GMK Group Master Key Used with other inputs to derive the 128 Key generation
GTK. key
PTK Pair-wise Transient Derived from the PMK. Comprises 512 (TKIP) Composite key
Key the EAPOL-KCK, EAPOL-KEK, 384 (CCMP)
and TK and (for TKIP) the MIC
key.
TK Temporal Key Used with TKIP or CCMP to pro- 256 (TKIP) Traffic key
vide confidentiality and integrity 128 (CCMP)
protection for unicast user traffic.
GTK Group Temporal Derived from the GMK. Used to 256 (TKIP) Traffic key
Key provide confidentiality and integrity 128 (CCMP)
protection for multicast/broadcast 40,104 (WEP)
user traffic.
MIC Message Integrity Used by TKIP’s Michael MIC to 64 Message
Key Code Key provide integrity protection of integrity key
messages.
EAPOL- | EAPOL-Key Used to provide integrity protection 128 Message
KCK Confirmation Key for key material distributed during integrity key
the 4-Way Handshake.
EAPOL- | EAPOL-Key Used to ensure the confidentiality of 128 Traffic key /
KEK Encryption Key the GTK and other key material in key encryption
the 4-Way Handshake. key
WEP Wired Equivalent Used with WEP. 40,104 Traffic key
Key Privacy Key

marked by the 802.1x EAP Success message (Figure 6.6), both the AP and the STA
have a copy of their shared PMK.
The PMK is used to generate the pairwise transient key (PTK), which in fact
consists of three keys to be used for communication between an STA and AP after
they have been mutually authenticated. To derive the PTK, the HMAC-SHA-1
function is applied to the PMK, the MAC addresses of the STA and AP, and nonces
generated when needed. Using the STA and AP addresses in the generation of the
PTK provides protection against session hijacking and impersonation; using nonces
provides additional random keying material.

6.2 / IEEE 802.11i WIRELESS LAN SECURITY 193

The three parts of the PTK are as follows.

* EAP Over LAN (EAPOL) Key Confirmation Key (EAPOL-KCK): Supports
the integrity and data origin authenticity of STA-to-AP control frames during
operational setup of an RSN. It also performs an access control function:
proof-of-possession of the PMK. An entity that possesses the PMK is autho-
rized to use the link.

°* EAPOL Key Encryption Key (EAPOL-KEK): Protects the confidentiality of
keys and other data during some RSN association procedures.

* Temporal Key (TK): Provides the actual protection for user traffic.

Grour Keys Group keys are used for multicast communication in which one STA
sends MPDU’s to multiple STAs. At the top level of the group key hierarchy is the
group master key (GMK). The GMK is a key-generating key used with other inputs
to derive the group temporal key (GTK). Unlike the PTK, which is generated using
material from both AP and STA, the GTK is generated by the AP and transmitted
to its associated STAs. Exactly how this GTK is generated is undefined. IEEE
802.11i, however, requires that its value is computationally indistinguishable from
random. The GTK is distributed securely using the pairwise keys that are already
established. The GTK is changed every time a device leaves the network.

Parrwise Key Distrisution The upper part of Figure 6.9 shows the MPDU
exchange for distributing pairwise keys. This exchange is known as the 4-way
handshake. The STA and SP use this handshake to confirm the existence of the
PMK, verify the selection of the cipher suite, and derive a fresh PTK for the
following data session. The four parts of the exchange are as follows.

* AP — STA: Message includes the MAC address of the AP and a nonce
(Anonce)

* STA — AP: The STA generates its own nonce (Snonce) and uses both nonces
and both MAC addresses, plus the PMK, to generate a PTK. The STA then
sends a message containing its MAC address and Snonce, enabling the AP to
generate the same PTK. This message includes a message integrity code (MIC)?
using HMAC-MDS5 or HMAC-SHA-1-128. The key used with the MIC is KCK.

e AP — STA: The AP is now able to generate the PTK. The AP then sends a
message to the STA, containing the same information as in the first message,
but this time including a MIC.

e STA — AP: This is merely an acknowledgment message, again protected by a
MIC.

Grour Key DistriBuTIiON For group key distribution, the AP generates a GTK and
distributes it to each STA in a multicast group. The two-message exchange with each
STA consists of the following:

e AP — STA: This message includes the GTK, encrypted either with RC4 or
with AES. The key used for encryption is KEK. A MIC value is appended.

>While MAC is commonly used in cryptography to refer to a Message Authentication Code, the term
MIC is used instead in connection with 802.11i because MAC has another standard meaning, Media
Access Control, in networking.

194 CHAPTER 6 / WIRELESS NETWORK SECURITY

STA AP
| AP’s 802.1X controlled port blocked |
Message 1

(EAPOL-key (Anonce, Unicast) Message 1 delivers a nonce to the STA
Message 2 delivers another nonce to the M 2 so that it can generate the PTK.
AP so that it can also generate the essage
PTK. It demonstrates to the AP that EAPO.L-keyl\(/[SIIE)nce,
the STA is alive, ensures that the Unicast,) >
PTK is fresh (new) and that there is no
man-in-the-middle. Message 3

EAPOL-key (Install PTK,
Unicast, MIC) Message 3 demonstrates to the STA that

< the authenticator is alive, ensures that the
Message 4 serves as an acknowledgment to Message 4 PTK .is fresh (.new) and that there is no
Message 3. It serves no cryptographic EAPOL-key (Unicast, MIC) man-in-the-middle.

function. This message also ensures the
reliable start of the group key handshake.

AP’s 802.1X controlled port
unblocked for unicast traffic

Message 1 .
EAPOL-key (GTK, MIC) Message 1 delivers anew GTK to
The STA decrypts the GTK w the STA. The GTK is encrypted

and installs it for use. before it is sent and the entire
message is integrity protected.

Message 2

Message 2 is delivered to the EAPOL-key (MIC)

AP. This frame serves only as
an acknowledgment to the AP.

The AP installs the GTK.

Figure 6.9 IEEE 802.11i Phases of Operation: Four-Way Handshake and Group Key Handshake

e STA — AP: The STA acknowledges receipt of the GTK. This message
includes a MIC value.

Protected Data Transfer Phase

IEEE 802.11i defines two schemes for protecting data transmitted in 802.11
MPDU s: the Temporal Key Integrity Protocol (TKIP), and the Counter Mode-CBC
MAC Protocol (CCMP).

6.2 / IEEE 802.11i WIRELESS LAN SECURITY 195

TKIP TKIP is designed to require only software changes to devices that are
implemented with the older wireless LAN security approach called Wired
Equivalent Privacy (WEP). TKIP provides two services:

° Message integrity: TKIP adds a message integrity code (MIC) to the 802.11
MAC frame after the data field. The MIC is generated by an algorithm, called
Michael, that computes a 64-bit value using as input the source and destination
MAC address values and the Data field, plus key material.

° Data confidentiality: Data confidentiality is provided by encrypting the
MPDU plus MIC value using RC4.

The 256-bit TK (Figure 6.8) is employed as follows. Two 64-bit keys are used
with the Michael message digest algorithm to produce a message integrity code.
One key is used to protect STA-to-AP messages, and the other key is used to protect
AP-to-STA messages. The remaining 128 bits are truncated to generate the RC4 key
used to encrypt the transmitted data.

For additional protection, a monotonically increasing TKIP sequence counter
(TSC) is assigned to each frame. The TSC serves two purposes. First, the TSC is
included with each MPDU and is protected by the MIC to protect against replay
attacks. Second, the TSC is combined with the session TK to produce a dynamic
encryption key that changes with each transmitted MPDU, thus making cryptanaly-
sis more difficult.

CCMmP CCMP is intended for newer IEEE 802.11 devices that are equipped with
the hardware to support this scheme. As with TKIP, CCMP provides two services:

* Message integrity: CCMP uses the cipher-block-chaining message authentica-
tion code (CBC-MAC), described in Chapter 3.

* Data confidentiality: CCMP uses the CTR block cipher mode of operation
with AES for encryption. CTR is described in Chapter 2.

The same 128-bit AES key is used for both integrity and confidentiality. The
scheme uses a 48-bit packet number to construct a nonce to prevent replay
attacks.

The IEEE 802.11i Pseudorandom Function

At a number of places in the IEEE 802.11i scheme, a pseudorandom function
(PRF) is used. For example, it is used to generate nonces, to expand pairwise keys,
and to generate the GTK. Best security practice dictates that different pseudoran-
dom number streams be used for these different purposes. However, for implemen-
tation efficiency, we would like to rely on a single pseudorandom number
generator function.

The PRF is built on the use of HMAC-SHA-1 to generate a pseudorandom bit
stream. Recall that HMAC-SHA-1 takes a message (block of data) and a key of
length at least 160 bits and produces a 160-bit hash value. SHA-1 has the property
that the change of a single bit of the input produces a new hash value with no appar-
ent connection to the preceding hash value. This property is the basis for pseudoran-
dom number generation.

196 CHAPTER 6 / WIRELESS NETWORK SECURITY

The IEEE 802.11i PRF takes four parameters as input and produces the
desired number of random bits. The function is of the form PRF(K, A, B, Len), where

K =asecret key

A =a text string specific to the application (e.g., nonce generation or pair-
wise key expansion)
B =some data specific to each case

Len = desired number of pseudorandom bits

For example, for the pairwise transient key for CCMP:

PTK = PRF(PMK, "Pairwise key expansion", min (AP-
Addr, STA-Addr) || max (AP-Addr, STA-Addr) || min
(Anonce, Snonce) || max(Anonce, Snonce), 384)

So, in this case, the parameters are

K =PMK
A = the text string "Pairwise key expansion"
B =a sequence of bytes formed by concatenating the two MAC addresses

and the two nonces
Len = 384 bits

Similarly, a nonce is generated by
Nonce = PRF (Random Number, "Init Counter", MAC | Time, 256)

where Time is a measure of the network time known to the nonce generator.
The group temporal key is generated by

GTK = PRF(GMK, "Group key expansion", MAC | Gnonce, 256)

Figure 6.10 illustrates the function PRF(K, A, B, Len). The parameter K serves
as the key input to HMAC. The message input consists of four items concatenated
together: the parameter A, a byte with value 0, the parameter B, and a counter i. The
counter is initialized to 0. The HMAC algorithm is run once, producing a 160-bit hash
value. If more bits are required, HMAC is run again with the same inputs, except that
i is incremented each time until the necessary number of bits is generated. We can
express the logic as

PRF (K, A, B, Len)
R « null string
for i « 0 to ((Len + 159)/160 - 1) do
R < R| HMAC-SHA-1(K, A |0 ||B | 1)
Return Truncate-to-Len (R, Len)

6.3 / WIRELESS APPLICATION PROTOCOL OVERVIEW 197

K ——» HMAC-SHA-1

|

R = HMAC-SHA-1(K,A 101 B 11§)
Figure 6.10 IEEE 802.11i Pseudorandom Function

6.3 WIRELESS APPLICATION PROTOCOL OVERVIEW

The Wireless Application Protocol (WAP) is a universal, open standard developed
by the WAP Forum to provide mobile users of wireless phones and other wireless
terminals such as pagers and personal digital assistants (PDAs) access to telephony
and information services, including the Internet and the Web. WAP is designed to
work with all wireless network technologies (e.g., GSM, CDMA, and TDMA). WAP
is based on existing Internet standards, such as [P, XML, HTML, and HTTP, as much
as possible. It also includes security facilities. At the time of this writing, the current
release of the WAP specification is version 2.0.

Strongly affecting the use of mobile phones and terminals for data services are
the significant limitations of the devices and the networks that connect them. The
devices have limited processors, memory, and battery life. The user interface is also
limited, and the displays small. The wireless networks are characterized by relatively
low bandwidth, high latency, and unpredictable availability and stability compared to
wired connections. Moreover, all of these features vary widely from terminal device
to terminal device and from network to network. Finally, mobile, wireless users have
different expectations and needs from other information systems users. For instance,
mobile terminals must be extremely easy to use — much easier than workstations
and personal computers. WAP is designed to deal with these challenges. The WAP
specification includes:

* A programming model based on the WWW Programming Model
e A markup language, the Wireless Markup Language, adhering to XML
e A specification of a small browser suitable for a mobile, wireless terminal

A lightweight communications protocol stack

A framework for wireless telephony applications (WTAs)

198 CHAPTER 6 / WIRELESS NETWORK SECURITY

Operational Overview

The WAP Programming Model is based on three elements: the client, the gateway, and
the original server (Figure 6.11). HTTP is used between the gateway and the original
server to transfer content. The gateway acts as a proxy server for the wireless domain.
Its processor(s) provide services that offload the limited capabilities of the hand-held,
mobile, wireless terminals. For example, the gateway provides DNS services, converts
between WAP protocol stack and the WWW stack (HTTP and TCP/IP), encodes
information from the Web into a more compact form that minimizes wireless commu-
nication, and in the other direction, decodes the compacted form into standard Web
communication conventions. The gateway also caches frequently requested information.

Figure 6.12 illustrates key components in a WAP environment. Using WAP, a
mobile user can browse Web content on an ordinary Web server. The Web server
provides content in the form of HTML-coded pages that are transmitted using the
standard Web protocol stack (HTTP/TCP/IP). The HTML content must go through
an HTML filter, which either may be colocated with the WAP proxy or in a separate
physical module. The filter translates the HTML content into WML content. If the fil-
ter is separate from the proxy, HTTP/TCP/IP is used to deliver the WML to the proxy.
The proxy converts the WML to a more compact form known as binary WML and
delivers it to the mobile user over a wireless network using the WAP protocol stack.

If the Web server is capable of directly generating WML content, then the
WML is delivered using HTTP/TCP/IP to the proxy, which converts the WML to
binary WML and then delivers it to the mobile node using WAP protocols.

The WAP architecture is designed to cope with the two principal limitations of
wireless Web access: the limitations of the mobile node (small screen size, limited
input capability) and the low data rates of wireless digital networks. Even with the
introduction of 3G wireless networks, which provide broadband data rates, the small
hand-held mobile nodes continue to have limited input and display capabilities.
Thus, WAP or a similar capability will be needed for the indefinite future.

Wireless Markup Language

WML was designed to describe content and format for presenting data on devices with
limited bandwidth, limited screen size, and limited user input capability. It is designed to
work with telephone keypads, styluses, and other input devices common to mobile,
wireless communication. WML permits the scaling of displays for use on two-line
screens found in some small devices, as well as the larger screens found on smart phones.

Client | | Gateway | | Original Server
| |
I Encoded requests I Requests
J
WAE Encoders
User and
Agent Decoders

d d
Encoded response I Response (content) I
1 il =

Figure 6.11 The WAP Programming Model

6.3 / WIRELESS APPLICATION PROTOCOL OVERVIEW 199

/\/\ HTML over
. HTTP/TCP/IP
Ordinary <7
Web server ML
filter
Internet
WML over
WML-capable HTTP/TCP/IP
Web server <
WML over
HTTP/TCP/IP
Binary WML
over WAP
Mobile <
terminal WAP
reless proxy
twork
Wireless ||
palmtop : €
Binary WML
over WAP

Figure 6.12 WAP Infrastructure

For an ordinary PC, a Web browser provides content in the form of Web pages
coded with the Hypertext Markup Language (HTML). To translate an HTML-
coded Web page into WML with content and format suitable for wireless devices,
much of the information, especially graphics and animation, must be stripped away.
WML presents mainly text-based information that attempts to capture the essence
of the Web page and that is organized for easy access for users of mobile devices.

Important features of WML include:

e Text and image support: Formatting and layout commands are provided for
text and limited image capability.

* Deck/card organizational metaphor: WML documents are subdivided into
small, well-defined units of user interaction called cards. Users navigate by
moving back and forth between cards. A card specifies one or more units of
interaction (a menu, a screen of text, or a text-entry field). A WML deck is
similar to an HTML page in that it is identified by a Web address (URL) and
is the unit of content transmission.

200

CHAPTER 6 / WIRELESS NETWORK SECURITY

e Support for navigation among cards and decks: WML includes provisions for
event handling, which is used for navigation or executing scripts.

In an HTML-based Web browser, a user navigates by clicking on links. At a
WML-capable mobile device, a user interacts with cards, moving forward and back
through the deck.

WAP Architecture

Figure 6.13, from the WAP architecture document, illustrates the overall stack archi-
tecture implemented in a WAP client. In essence, this is a five-layer model. Each
layer provides a set of functions and/or services to other services and applications
through a set of well-defined interfaces. Each of the layers of the architecture is
accessible by the layers above, as well as by other services and applications. Many of
the services in the stack may be provided by more than one protocol. For example,
either HTTP or WSP may provide the Hypermedia Transfer service.

Common to all five layers are sets of services that are accessible by multiple
layers. These common services fall into two categories: security services and service
discovery.

Service Security
Discovery Multimedia messaging Content Formats
Application
Framework
EFI Crypto WEA/WTA user agent(s) Push
libraries
) .ro‘ Auth. Session Capability negotiation Synchronisation
visioning Services
Cookies Push-OTA
Navigation .
Discovery Identity
< Tl-an'sfer Hypermedia Srvating Message
Service S | Services transfer transfer
PKI =
lookup E
<
St
=
=
S
R § Transport Datagrams Connections
transport & | Services
Secure Bearer IPv4 SMS GHOST| | FLEX SOS
[Networks
IPv6 USSD GUTS | |ReFLEX| [MPAK

Figure 6.13 WAP Architecture

6.3 / WIRELESS APPLICATION PROTOCOL OVERVIEW 201

Security Services The WAP specification includes mechanisms to provide
confidentiality, integrity, authentication, and nonrepudiation. The security services
include the following.

* Cryptographic libraries: This application framework level library provides ser-
vices for signing of data for integrity and non-repudiation purposes.

e Authentication: WAP provides various mechanisms for client and server
authentication. At the Session Services layer, HTTP Client Authentication
(RFC2617) may be used to authenticate clients to proxies and application
servers. At the Transport Services layer, WTLS and TLS handshakes may be
used to authenticate clients and servers.

e Identity: The WAP Identity Module (WIM) provides the functions
that store and process information needed for user identification and
authentication.

e PKI: The set of security services that enable the use and management of
public-key cryptography and certificates.

e Secure transport: The Transport Services layer protocols are defined for
secure transport over datagrams and connections. WTLS is defined for secure
transport over datagrams and TLS is defined for secure transport over
connections (i.e., TCP).

e Secure bearer: Some bearer networks provide bearer-level security. For
example, IP networks (especially in the context of IPv6) provide bearer-level
security with IPsec.

Service Discovery There is a collection of service discovery services that enable
the WAP client and the Web server to determine capabilities and services. Examples
of service discovery services include the following.

e EFI: The External Functionality Interface (EFI) allows applications to
discover what external functions/services are available on the device.

¢ Provisioning: This service allows a device to be provisioned with the parame-
ters necessary to access network services.

e Navigation discovery: This service allows a device to discover new network
services (e.g., secure pull proxies) during the course of navigation such as
when downloading resources from a hypermedia server. The WAP Transport-
Level End-to-End Security specification, described in Section 6.5, defines one
navigation discovery protocol.

* Service lookup: This service provides for the discovery of a service’s parame-
ters through a directory lookup by name. One example of this is the Domain
Name System (DNS).

Wireless Application Environment

The WAE specifies an application framework for wireless devices such as mobile
telephones, pagers, and PDAs. In essence, the WAE consists of tools and formats

202 CHAPTER 6 / WIRELESS NETWORK SECURITY

that are intended to ease the task of developing applications and devices supported
by WAP. The major elements of the WAE model (Figure 6.13) are

WAE user agents: Software that executes in the user’s wireless device and that
provides specific functionality (e.g., display content) to the end user.

Wireless telephony applications (WTA): A collection of telephony-specific
extensions for call and feature control mechanisms that provide authors
advanced mobile network services. Using WTA, applications developers can
use the microbrowser to originate telephone calls and to respond to events
from the telephone network.

Standard content encoding: Defined to allow a WAE user agent (e.g., a
browser) to conveniently navigate Web content. On the server side are content
generators. These are applications (or services) on origin servers (e.g., CGI
scripts) that produce standard content formats in response to requests from
user agents in the mobile terminal. WAE does not specify any standard
content generators but expects that there will be a variety available running
on typical HTTP origin servers commonly used in WWW today.

Push: A service to receive push transmissions from the server, i.e., transmis-
sions that are not in response to a Web client request but are sent on the
initiative of the server. This service is supported by the Push-OTA (Push Over
The Air) session service.

Multimedia messaging: Provides for the transfer and processing of multimedia
messages, such as e-mail and instant messages, to WAP devices.

WAP Protocol Architecture

The WAP architecture illustrated in Figure 6.13 dictates a collection of services at
each level and provides interface specifications at the boundary between each pair
of layers. Because several of the services in the WAP stack can be provided using
different protocols based on the circumstances, there are more than one possible
stack configurations. Figure 6.14 depicts a common protocol stack configuration in
which a WAP client device connects to a Web server via a WAP gateway. This con-
figuration is common with devices that implement version 1 of the WAP specifica-
tion but is also used in version 2 devices (WAP2) if the bearer network does not

support TCP/IP.
WAP Device WAP Gateway Web Server
WAE WAE
WSP WSP
HTTP HTTP

WTP WTP
WTLS WTLS TLS TLS
WDP WDP TCP TCP
Bearer — Bearer 1P e— 1P

Figure 6.14 WTP 1.x Gateway

6.3 / WIRELESS APPLICATION PROTOCOL OVERVIEW 203

In the remainder of this subsection, we provide an overview of the WAP
protocols, with the exception of WTLS, which is treated in Section 6.4.

WiRELESS SEsston ProTocor WSP provides applications with an interface for two
session services. The connection-oriented session service operates above WTP, and the
connectionless session service operates above the unreliable transport protocol WDP.
In essence, WSP is based on HTTP with some additions and modifications to optimize
its use over wireless channels. The principal limitations addressed are low data rate
and susceptibility to loss of connection due to poor coverage or cell overloading.

WSP is a transaction-oriented protocol based on the concept of a request and
a reply. Each WSP protocol data unit (PDU) consists of a body, which may contain
WML, WMLScript, or images; and a header, which contains information about the
data in the body and about the transaction. WSP also defines a server push opera-
tion, in which the server sends unrequested content to a client device. This may be
used for broadcast messages or for services, such as news headlines or stock quotes,
that may be tailored to each client device.

WIRELESS TraNsAcTION Prorocor WTP manages transactions by conveying
requests and responses between a user agent (such as a WAP browser) and an
application server for such activities as browsing and e-commerce transactions.
WTP provides a reliable transport service but dispenses with much of the overhead
of TCP, resulting in a lightweight protocol that is suitable for implementation in
“thin” clients (e.g., mobile nodes) and suitable for use over low-bandwidth wireless
links. WTP includes the following features.

e Three classes of transaction service.

e Optional user-to-user reliability: WTP user triggers the confirmation of each
received message.

* Optional out-of-band data on acknowledgments.

e PDU concatenation and delayed acknowledgment to reduce the number of
messages sent.

e Asynchronous transactions.

WTP is transaction oriented rather than connection oriented. With WTP, there is
no explicit connection setup or teardown but rather a reliable connectionless service.

WTP provides three transaction classes that may be invoked by WSP or
another higher layer protocol:

e Class 0: Unreliable invoke message with no result message

¢ Class 1: Reliable invoke message with no result message
e Class 2: Unreliable invoke message with one reliable result message

Class 0 provides an unreliable datagram service, which can be used for an unre-
liable push operation. Data from a WTP user are encapsulated by WTP (the initiator,
or client) in an invoke PDU and transmitted to the target WTP (the responder, or
server) with no acknowledgment. The responder WTP delivers the data to the target
WTP user.

204 CHAPTER 6 / WIRELESS NETWORK SECURITY

Class 1 provides a reliable datagram service, which can be used for a reliable
push operation. Data from an initiator are encapsulated in an invoke PDU and
transmitted to the responder. The responder delivers the data to the target WTP
user and acknowledges receipt of the data by sending back an ACK PDU to the
WTP entity on the initiator side, which confirms the transaction to the source WTP
user. The responder WTP maintains state information for some time after the ACK
has been sent to handle possible retransmission of the ACK if it gets lost and/or the
initiator retransmits the invoke PDU.

Class 2 provides a request/response transaction service and supports the execu-
tion of multiple transactions during one WSP session. Data from an initiator are
encapsulated in an invoke PDU and transmitted to the responder, which delivers
the data to the target WTP user. The target WTP user prepares response data, which
are handed down to the local WTP entity. The responder WTP entity sends these data
back in a result PDU. If there is a delay in generating the response data beyond a timer
threshold, the responder may send an ACK PDU before sending the result PDU. This
prevents the initiator from unnecessarily retransmitting the invoke message.

WIRELESS DAtAGRAM ProTocor WDP is used to adapt a higher-layer WAP
protocol to the communication mechanism (called the bearer) used between the
mobile node and the WAP gateway. Adaptation may include partitioning data into
segments of appropriate size for the bearer and interfacing with the bearer network.
WDP hides details of the various bearer networks from the other layers of WAP. In
some instances, WAP is implemented on top of IP.

6.4 WIRELESS TRANSPORT LAYER SECURITY

WTLS provides security services between the mobile device (client) and the WAP
gateway. WTLS is based on the industry-standard Transport Layer Security (TLS)
Protocol,® which is a refinement of the Secure Sockets Layer (SSL) protocol. TLS is
the standard security protocol used between Web browsers and Web servers. WTLS
is more efficient that TLS, requiring fewer message exchanges. To provide end-to-
end security, WTLS is used between the client and the gateway, and TLS is used
between the gateway and the target server (Figure 6.14). WAP systems translate
between WTLS and TLS within the WAP gateway. Thus, the gateway is a point of
vulnerability and must be given a high level of security from external attacks.
WTLS provides the following features.

e Data integrity: Uses message authentication to ensure that data sent between
the client and the gateway are not modified.

e Privacy: Uses encryption to ensure that the data cannot be read by a third party.

* Authentication: Uses digital certificates to authenticate the two parties.

e Denial-of-service protection: Detects and rejects messages that are replayed
or not successfully verified.

3See Chapter 5 for a discussion of SSL/TLS. However, the discussion in this section is self-contained; you
do not need to read a description of TLS first.

6.4 / WIRELESS TRANSPORT LAYER SECURITY 205

WTLS Sessions and Connections

Two important WTLS concepts are the secure session and the secure connection,
which are defined in the specification as:

e Secure connection: A connection is a transport (in the OSI layering model def-
inition) that provides a suitable type of service. For SSL, such connections are
peer-to-peer relationships. The connections are transient. Every connection is
associated with one session.

e Secure session: An SSL session is an association between a client and a server.
Sessions are created by the Handshake Protocol. Sessions define a set of cryp-
tographic security parameters, which can be shared among multiple connec-
tions. Sessions are used to avoid the expensive negotiation of new security
parameters for each connection.

Between any pair of parties (applications such as HTTP on client and server),
there may be multiple secure connections. In theory, there may also be multiple
simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is
established, there is a current operating state for both read and write (i.e., receive
and send). In addition, during the Handshake Protocol, pending read and write
states are created. Upon successful conclusion of the Handshake Protocol, the
pending states become the current states.

A session state is defined by the following parameters:

* Session identifier: An arbitrary byte sequence chosen by the server to identify
an active or resumable session state.

e Protocol version: WTLS protocol version number.

¢ Peer certificate: Certificate of the peer. This element of the state may be null.

* Compression method: The algorithm used to compress data prior to
encryption.

* Cipher spec: Specifies the bulk data encryption algorithm (such as null,
RCS, DES, etc.) and a hash algorithm (such as MDS5 or SHA-1) used for
MAUC calculation. It also defines cryptographic attributes such as the
hash_size.

¢ Master secret: A 20-byte secret shared between the client and server.

° Sequence number: Which sequence numbering scheme (off, implicit, or
explicit) is used in this secure connection.

* Key refresh: Defines how often some connection state values (encryption key,
MAC secret, and V) calculations are performed.

e Is resumable: A flag indicating whether the session can be used to initiate new
connections.

The connection state is the operating environment of the record protocol. It
includes all parameters that are needed for the cryptographic operations (encryp-
tion/decryption and MAC calculation/verification). Each secure connection has a
connection state, which is defined by the following parameters.

206 CHAPTER 6 / WIRELESS NETWORK SECURITY

e Connection end: Whether this entity is considered a client or a server in this
secure session.

* Bulk cipher algorithm: Includes the key size of this algorithm, how much of
that key is secret, whether it is a block or stream cipher, and the block size of
the cipher (if appropriate).

* MAC algorithm: Includes the size of the key used for MAC calculation and
the size of the hash which is returned by the MAC algorithm.

* Compression algorithm: Includes all information the algorithm requires to do
compression.

¢ Master secret: A 20-byte secret shared between the client and server.
¢ Client random: A 16-byte value provided by the client.
e Server random: A 16-byte value provided by the server.

¢ Sequence number mode: Which scheme is used to communicate sequence
numbers in this secure connection.

e Key refresh: Defines how often some connection state parameters (encryption
key, MAC secret, and IV) are updated. New keys are calculated at every
n = pkev-refresh messages, that is, when the sequence number is 0, 2", 3", etc.

WTLS Protocol Architecture

WTLS is not a single protocol but rather two layers of protocols, as illustrated in
Figure 6.15. The WTLS Record Protocol provides basic security services to various
higher-layer protocols. In particular, the Hypertext Transfer Protocol (HTTP),
which provides the transfer service for Web client/server interaction, can operate on
top of WTLS. Three higher-layer protocols are defined as part of WTLS: the
Handshake Protocol, The Change Cipher Spec Protocol, and the Alert Protocol.
These WTLS-specific protocols are used in the management of WTLS exchanges
and are examined subsequently in this section.

WTLS Recorp Protocor. The WTLS Record Protocol takes user data from the
next higher layer (WTP, WTLS Handshake Protocol, WTLS Alert Protocol, and
WTLS Change Cipher Spec Protocol) and encapsulates these data in a PDU. The
following steps occur (Figure 6.16).

WTLS WTLS Change
Handshake Cipher Spec WTLS Alert WTP
Protocol Protocol Protocol
WTLS Record Protocol
WDP or UDP/IP

Figure 6.15 WTLS Protocol Stack

6.4 / WIRELESS TRANSPORT LAYER SECURITY 207

User Data

: N
Add MAC W 4 \\x

Encrypt

Append WTLS
Record Header

Figure 6.16 WTLS Record Protocol Operation

Step 1. The payload is compressed using a lossless compression algorithm.

Step 2. A message authentication code (MAC) is computed over the compressed
data, using HMAC. One of several hash algorithms can be used with HMAC,
including MD-5 and SHA-1. The length of the hash code is 0, 5, or 10 bytes.
The MAC is added after the compressed data.

Step 3. The compressed message plus the MAC code are encrypted using a symmetric
encryption algorithm. The allowable encryption algorithms are DES, triple
DES, RC5,and IDEA.

Step 4. The Record Protocol prepends a header to the encrypted payload.
The Record Protocol header consists of the following fields (Figure 6.17).

* Record type (8 bits): Consisting of the subfields:

—Record length field indicator (1 bit): Indicates whether a record length field
is present.

—Sequence number field indicator (1 bit): Indicates whether a sequence
number field is present.

—Cipher spec indicator (1 bit): If this bit is zero, it indicates that no compression,
MAC protection, or encryption is used.

—Content type (4 bits): The higher-layer protocol above the WTLS Record
Protocol.

* Sequence number (16 bits): A sequence number associated with this record.
This provides reliability over an unreliable transport service.

* Record length (16 bits): The length in bytes of the plaintext data (or compressed
data if compression is used).

CHANGE CIPHER SPECc Prorocor Associated with the current transaction is a
cipher spec, which specifies the encryption algorithm, the hash algorithm used as

208 CHAPTER 6 / WIRELESS NETWORK SECURITY

L] S|l c] | Content type

Sequence number

Record length

Plaintext
(optionally
compressed)

Scope of MAC

Encrypted

MAC (0, 16, or 20 bytes)

r = reserved

C = cipher spec indicator

S = sequence number field indicator
L = record length field indicator
MAC = message authentication code

Figure 6.17 WTLS Record Format

part of HMAC, and cryptographic attributes, such as MAC code size. There are
two states associated with each session. Once a session is established, there is a
current operating state for both read and write (i.e., receive and send). In addition,
during the Handshake Protocol, pending read and write states are created.

The Change Cipher Spec Protocol is one of the three WTLS-specific protocols
that use the WTLS Record Protocol, and it is the simplest. This protocol consists of
a single message, which consists of a single byte with the value 1. The sole purpose of
this message is to cause the pending state to be copied into the current state, which
updates the cipher suite to be used on this connection. Thus, when the Change
Cipher Spec message arrives, the sender of the message sets the current write state
to the pending state and the receiver sets the current read state to the pending state.

ArLerT ProTocoL The Alert Protocol is used to convey WTLS-related alerts to the
peer entity. As with other applications that use WTLS, alert messages are
compressed and encrypted, as specified by the current state.

6.4 / WIRELESS TRANSPORT LAYER SECURITY 209

Each message in this protocol consists of 2 bytes. The first byte takes the value
warning(1), critical(2), or fatal(3) to convey the severity of the message. The second
byte contains a code that indicates the specific alert. If the level is fatal, WTLS
immediately terminates the connection. Other connections on the same session may
continue, but no new connections on this session may be established. A critical alert
message results in termination of the current secure connection. Other connections
using the secure session may continue and the secure identifier may also be used for
establishing new secure connections.

The connection is closed using the alert messages. Either party may initiate the
exchange of the closing messages. If a closing message is received, then any data after
this message is ignored. It is also required that the notified party verifies termination
of the session by responding to the closing message.

Error handling in the WTLS is based on the alert messages. When an error is
detected, the detecting party sends an alert message containing the occurred error.
Further procedures depend on the level of the error that occurred.

Examples of fatal alerts:

* session_close_notify: notifies the recipient that the sender will
not send any more messages using this connection state or the secure
session.

° unexpected_message: An inappropriate message was received.
°* bad_record _mac: An incorrect MAC was received.

* decompression_ failure: The decompression function received
improper input (e.g., unable to decompress or decompress to greater than
maximum allowable length).

° handshake_failure: Sender was unable to negotiate an acceptable set of
security parameters given the options available.

* illegal_parameter: A field in a handshake message was out of range or
inconsistent with other fields.
Examples of nonfatal alerts:

* connection_close_notify: Notifies the recipient that the sender will
not send any more messages using this connection state.

° bad_certificate: A received certificate was corrupt (e.g., contained a sig-
nature that did not verify).

° unsupported_certificate: The type of the received certificate is not
supported.

* certificate_revoked: A certificate has been revoked by its signer.

* certificate_expired: A certificate has expired.

* certificate_unknown: Some other unspecified issue arose in processing
the certificate, rendering it unacceptable.

HanpsHAKE Protocor The most complex part of WTLS is the Handshake
Protocol. This protocol allows the server and client to authenticate each other and
to negotiate an encryption and MAC algorithms and cryptographic keys to be

210 CHAPTER 6 / WIRELESS NETWORK SECURITY

used to protect data sent in a WTLS record. The Handshake Protocol is used
before any application data are transmitted. An important function of the
Handshake Protocol is the generation of a pre-master secret, which in turn is used
to generate a master secret. The master secret is then used to generate various
cryptographic keys.

The Handshake Protocol consists of a series of messages exchanged by client
and server. Figure 6.18 shows the initial exchange needed to establish a logical

Client Server

client
JleIIO Establish security capabilities, including
protocol version, session ID, cipher suite,

compression method, and initial random
Server)\e“o numbers.

certificat®

rver_keY _exchangs
server_

equest Server may send certificate, key exchange,
‘ﬁcate,r . .
certll and request certificate. Server signals end
done of hello message phase.
he“o,
Se"vef,

D
= .
= Cel'tIﬂcat e
cIient ke Client sends certificate if requested. Client
- y\eXchange sends key exchange. Client may send
. certificate verification.
Certificata verif
ha
=8C_cipher Spec
ﬁnished
. 1er_Spec Change cipher suite and finish
chaﬂge/c‘ph handshake protocol.
f‘m'\s\\ed

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

Figure 6.18 WTLS Handshake Protocol Action

6.4 / WIRELESS TRANSPORT LAYER SECURITY 211

connection between client and server. The exchange can be viewed as having four
phases.

The first phase is used to initiate a logical connection and to establish the
security capabilities that will be associated with it. The exchange is initiated by the
client. The client sends a client_hello message that includes a session ID and a
list of cryptographic and compression algorithms supported by the client (in
decreasing order of preference for each algorithm type). After sending the
client_hello message, the client waits for the server_hello message. This
message indicates which cryptographic and compression algorithms will be used
for the exchange.

The second phase is used for server authentication and key exchange. The
server begins this phase by sending its public-key certificate if it needs to be
authenticated. Next, a server_key_exchange message may be sent if it is
required. This message is needed for certain public-key algorithms used for
symmetric key exchange. Next, the server can request a public-key certificate from
the client, using the certificate_request message. The final message in phase
2 (and one that is always required) is the server_hello_done message, which is
sent by the server to indicate the end of the server hello and associated messages.
After sending this message, the server will wait for a client response. This message
has no parameters.

The third phase is used for client authentication and key exchange. Upon
receipt of the server_hello_done message, the client should verify that the
server provided a valid certificate if required and check that the server_hello
parameters are acceptable. If all is satisfactory, the client sends one or more mes-
sages back to the server. If the server has requested a certificate, the client sends a
certificate message. Next is the client_key_ exchange message, which must be
sent in this phase. The content of the message depends on the type of key exchange.
Finally, in this phase, the client may send a certificate_verify message to pro-
vide explicit verification of a client certificate.

The fourth phase completes the setting up of a secure connection. The client
sends a change_cipher_spec message and copies the pending CipherSpec
into the current CipherSpec. Note that this message is not considered part of the
Handshake Protocol but is sent using the Change Cipher Spec Protocol. The
client then immediately sends the finished message under the new algorithms,
keys, and secrets. The finished message verifies that the key exchange and
authentication processes were successful. In response to these two messages, the
server sends its own change_cipher_spec message, transfers the pending to
the current CipherSpec, and sends its finished message. At this point, the hand-
shake is complete, and the client and server may begin to exchange application
layer data.

Cryptographic Algorithms

AvtHENTICATION Authentication in the WTLS is carried out with certificates.
Authentication can occur either between the client and the server or when the client
only authenticates the server. The latter procedure can happen only if the server
allows it to occur. The server can require the client to authenticate itself to the server.

212 CHAPTER 6 / WIRELESS NETWORK SECURITY

However, the WTLS specification defines that authentication is an optional
procedure. Currently, X.509v3, X9.68, and WTLS certificates are supported. The
WTLS certificate is optimized for size, and consists of the following elements
(compare with Figure 4.4).

e Certificate_version: Version of the certificate.

° Signature_algorithm: Algorithm used to sign the certificate.

e Issuer: Defines the party who has signed the certificate, usually some CA.
* Valid_not_before: The beginning of validity period of the certificate.

° Valid_not_after: The point of time after the certificate is no longer valid.
* subject: Owner of the key, associated with the public key being certified.
° Public_key type: Type (algorithm) of the public key.

* Parameter_specifier: Specifies parameter relevant for the public key.
e Public key: The public key being certified.

° Signature: Signed with the CA’s private key.

Key Excuance The purpose of the WTLS protocol is for the client and server to
generate a mutually shared pre-master key. This key is then used to generate as
master key, as explained subsequently. A number of key exchange protocols are
supported by WTLS. They can be grouped into those protocols that include
a server_key_ exchange message as part of the Handshake Protocol
(Figure 6.18) and those that don’t.

The server_key_ exchange message is sent by the server only when the
server certificate message (if sent) does not contain enough data to allow the client
to exchange a pre-master secret. The following three methods require the use of the
server_key_exchange message.

°* DH_anon: The conventional Diffie-Hellman computation is performed
anonymously (without authentication). The negotiated key (Z) is used as the
pre_master_secret.

° ECDH_anon: The elliptic curve Diffie-Hellman computation is performed.
The negotiated key (Z) is used as the pre_master_secret.

* RSA_anon: This is an RSA key exchange without authentication. The server
sends its RSA public key. In this method, a 20-byte secret value is generated
by the client, encrypted under the server’s public key, and sent to the
server. The server uses its private key to decrypt the secret value. The
pre_master_secret is the secret value appended with the server’s
public key.

The server key exchange message is not sent for the following key exchange
methods.

e ECDH_ECDSA: Elliptic curve Diffie-Hellman key exchange with ECDSA-
based certificates. The server sends a certificate that contains its ECDH
public key. The server certificate is signed with ECDSA by a third party

6.4 / WIRELESS TRANSPORT LAYER SECURITY 213

trusted by the client. Depending whether the client is to be authenticated or
not, it sends its certificate containing its ECDH public key signed with
ECDSA by a third party trusted by the server or just its (temporary) ECDH
public key. Each party calculates the pre-master secret based on one’s own
private key and counterpart’s public key received as such or contained in a
certificate.

° RSA: RSA key exchange with RSA-based certificates. The server sends a
certificate that contains its RSA public key. The server certificate is signed
with RSA by a third party trusted by the client. The client extracts the
server’s public key from the received certificate, generates a secret value,
encrypts it with the server’s public key, and sends it to the server. The pre-
master secret is the secret value appended with the server’s public key. If the
client is to be authenticated, it signs some data (messages sent during the
handshake) with its RSA private key and sends its certificate and the signed
data.

Pscuporanpom FuncTion(PRF) The PRF is used for a number of purposes in
WTLS. The PREF takes as input a secret value, a seed, and an identifying label and
produces an output of arbitrary length. In the TLS standard, two hash algorithms
were used in order to make the PRF as secure as possible. In order to save
resources, WT'LS can be implemented using only one hash algorithm. Which hash
algorithm is actually used is agreed on during the handshake as a part of the
cipher spec.
The PRF is based on the data expansion function

P_hash(secret, seed) = HMAC_ hash(secret, A(1) | seed) |
HMAC_hash (secret, A(2) | seed) ||
HMAC_hash (secret, A(3) | seed) | ...

where | indicates concatenation and A () is defined as

A(0) = seed
A(i) = HMAC_hash(secret, A(i - 1))
Then,
PRF (secret, label, seed) = P_hash(secret, label | seed)

Master Key GENERATION The shared master secret is a one-time 20-byte value
(160 bits) generated for this session by means of secure key exchange. The creation is in
two stages. First,apre_master_secret is exchanged. Second, the master_secret
is calculated by both parties, using the function

214 CHAPTER 6 / WIRELESS NETWORK SECURITY

master_secret = PRF (pre_master_secret, "master secret",
ClientHello.random | ServerHello.random)

where ClientHello.random and ServerHello.random are the random
numbers exchanged during the first phase of the handshake protocol.

The MAC and encryption keys are then derived from the master key. The
MAC calculation uses the HMAC algorithm (Chapter 3) and encompasses the
fields indicated in the expression

HMAC_hash (MAC_secret, seqg number | WTLSCompressed.
record_type| WILSCompressed.length | WILS
Compressed. fragment)

where WI'LSCompressed. fragment refers to the (optionally) compressed plain-
text data field.
Either MDS5 or SHA-1 may be used for the HMAC hash function.
Encryption is applied to all of the WTLS record, except the header. The
following encryption algorithms are permitted.

Algorithm Key Size (bits)
RCs 40, 56, 64,128
DES 192
3DES 40
IDEA 40,56

6.5 WAP END-TO-END SECURITY

The basic WAP transmission model involving a WAP client, a WAP gateway, and
a Web server results in a security gap, as illustrated in Figure 6.19. This figure corre-
sponds to the protocol architecture shown in Figure 6.14. The mobile device estab-
lishes a secure WTLS session with the WAP gateway. The WAP gateway, in turn,

Wired IP
network

Wireless

! network

. WTLS protection domain

"

WAP WAP Web
device gateway server

Figure 6.19 Security Zones Using Standard Security Services

6.5 / WAP END-TO-END SECURITY 215

establishes a secure SSL or TLS session with the Web server. Within the gateway,
data are not encrypted during the translation process. The gateway is thus a point at
which the data may be compromised.

There are a number of approaches to providing end-to-end security
between the mobile client and the Web server. In the WAP version 2 (known as
WAP?2) architecture document, the WAP forum defines several protocol arrange-
ments that allow for end-to-end security.

Version 1 of WAP assumed a simplified set of protocols over the wireless
network and assumed that the wireless network did not support IP. WAP2
provides the option for the mobile device to implement full TCP/IP-based
protocols and operate over an IP-capable wireless network. Figure 6.20 shows
two ways in which this IP capability can be exploited to provide end-to-end
security. In both approaches, the mobile client implements TCP/IP and HTTP.

The first approach (Figure 6.20a) is to make use of TLS between client and
server. A secure TLS session is set up between the endpoints. The WAP gateway
acts as a TCP-level gateway and splices together two TCP connections to carry the
traffic between the endpoints. However, the TCP user data field (TLS records)
remains encrypted as it passes through the gateway, so end-to-end security is
maintained.

WAP Device Web Server
WAE WAE
HTTP WAP Gateway HTTP

TLS TLS
TCP TCP TCP TCP
1P 1P 1P 1P
Wireless Wireless Wired Wired
(a) TLS-based security

WAP Device Web Server
WAE WAE
HTTP WAP Gateway HTTP

TCP TCP
1P 1P 1P 1P
Wireless Wireless Wired Wired

Figure 6.20

(b) IPSec-based security
WAP2 End-to-End Security Approaches

216 CHAPTER 6 / WIRELESS NETWORK SECURITY

Another possible approach is shown in Figure 6.20b. Here we assume that the
WAP gateway acts as a simple Internet router. In this case, end-to-end security can
be provided at the IP level using IPsec (discussed in Chapter 8).

Yet another, somewhat more complicated, approach has been defined in
more specific terms by the WAP forum in specification entitled “WAP Transport
Layer End-to-End Security.” This approach is illustrated in Figure 6.21, which is
based on a figure in [ASHLO1]. In this scenario, the WAP client connects to its
usual WAP gateway and attempts to send a request through the gateway to a
secure domain. The secure content server determines the need for security that
requires that the mobile client connect to its local WAP gateway rather than its
default WAP gateway. The Web server responds to the initial client request with an
HTTP redirect message that redirects the client to a WAP gateway that is part of
the enterprise network. This message passes back through the default gateway,
which validates the redirect and sends it to the client. The client caches the redirect
information and establishes a secure session with the enterprise WAP gateway
using WTLS. After the connection is terminated, the default gateway is reselected
and used for subsequent communication to other Web servers. Note that this
approach requires that the enterprise maintain a WAP gateway on the wireless net-
work that the client is using.

Figure 6.22, from the WAP specification, illustrates the dialogue.

WAP Service Provider

Subordinate

Application
server

Enterprise

Figure 6.21 WAP2 End-to-End Security Scheme

6.6 / RECOMMENDED READING AND WEB SITES 217

Trusted
Master/Default Secure Subordinate OS (Secure
User User-Agent Pull Proxy 0S Pull Proxy Domain)
Click: Bank
GET:
http://bank.com/...
GET:
http://bank.com/...}
< Error 300: Body= XML Navigation Documgnt

|:| Validation

Error 300: Body= XKML Navigation Document

]

[[| CACHE: URL set td secure proxy mapping

Establish Secyre WTLS session (if nqt present)

<

GET: http://bank.com/...

GET:
http://bank.com/...

secure.bank.com/xx.wipl

<€
Display wml deck

Figure 6.22 WAP Transport Layer End-to-End Security Example

6.6 RECOMMENDED READING AND WEB SITES

The IEEE 802.11 and WiFi specifications are covered in more detail in [STALO7]. A good
book-length treatment is [ROSHO04]. [FRANO7] is an excellent, detailed treatment of IEEE
802.11i. [CHENOS] provides an overview of IEEE 802.11i.

CHENOS Chen, J; Jiang, M.; and Liu, Y. “Wireless LAN Security and IEEE 802.11i.”
IEEE Wireless Communications, February 2005.

FRANO7 Frankel, S.; Eydt, B.; Owens, L.; and Scarfone, K. Establishing Wireless Robust
Security Networks: A Guide to IEEE 802.11i. NIST Special Publication SP 800-97,
February 2007.

ROSHO04 Roshan, P, and Leary, J. 802.11 Wireless LAN Fundamentals. Indianapolis:
Cisco Press, 2004.

STALO7 Stallings, W. Data and Computer Communications, Eighth Edition. Upper
Saddle River, NJ: Prentice Hall, 2007.

218 CHAPTER 6 / WIRELESS NETWORK SECURITY

NS

Recommended Web Sites:

* The IEEE 802.11 Wireless LAN Working Group: Contains working group documents
plus discussion archives.

* Wi-Fi Alliance: An industry group promoting the interoperability of 802.11 products
with each other and with Ethernet.

* Wireless LAN Association: Gives an introduction to the technology, including a discus-
sion of implementation considerations and case studies from users. Links to related sites.

* Extensible Authentication Protocol (EAP) Working Group: IETF working group
responsible for EAP and related issues. Site includes RFCs and Internet drafts.

* Open Mobile Alliance: Consolidation of the WAP Forum and the Open Mobile

Architecture Initiative. Provides WAP technical specifications and industry links.

6.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
4-way handshake media access control (MAC) Wireless Application Protocol
access point (AP) MAC protocol data unit (WAP)
Alert Protocol (MPDU) Wireless Datagram Protocol
basic service set (BSS) MAC service data unit (WDP)
Change Cipher Spec (MSDU) wireless LAN (WLAN)
Protocol message integrity code (MIC) Wireless Markup Language
Counter Mode-CBC MAC Michael (WML)
Protocol (CCMP) pairwise keys Wireless Session Protocol
distribution system (DS) pseudorandom function (WSP)
extended service set (ESS) Robust Security Network Wireless Transaction Protocol
group keys (RSN) (WTP)
Handshake Protocol Temporal Key Integrity Wireless Transport Layer
IEEE 802.1X Protocol (TKIP) Security (WTLS)
IEEE 802.11 Wired Equivalent Privacy Wi-Fi
IEEE 802.11i (WEP) Wi-Fi Protected Access
independent BSS (IBSS) Wireless Application (WPA)
logical link control (LLC) Environment (WAE) WTLS Record Protocol

Review Questions

6.1 What is the basic building block of an 802.11 WLAN?
6.2 Define an extended service set.

6.3 List and briefly define IEEE 802.11 services.
6.4 Is a distribution system a wireless network?

6.5 How is the concept of an association related to that of mobility?

6.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 219

6.6 What security areas are addressed by IEEE 802.11i?
6.7 Briefly describe the four IEEE 802.11i phases of operation.
6.8 What is the difference between TKIP and CCMP?
6.9 What is the difference between an HTML filter and a WAP proxy?
6.10 What services are provided by WSP?
6.11 When would each of the three WTP transaction classes be used?
6.12 List and briefly define the security services provided by WTLS.
6.13 Briefly describe the four protocol elements of WTLS.
6.14 List and briefly define all of the keys used in WTLS.
6.15 Describe three alternative approaches to providing WAP end-to-end security.
Problems
6.1 InIEEE 802.11, open system authentication simply consists of two commu-
nications. An authentication is requested by the client, which contains the
station ID (typically the MAC address). This is followed by an authentica-
tion response from the AP/router containing a success or failure message.
An example of when a failure may occur is if the client’s MAC address is
explicitly excluded in the AP/router configuration.
a. What are the benefits of this authentication scheme?
b. What are the security vulnerabilities of this authentication scheme?
6.2 Prior to the introduction of IEEE 802.11i, the security scheme for IEEE

802.11 was Wired Equivalent Privacy (WEP). WEP assumed all devices in
the network share a secret key. The purpose of the authentication scenario is
for the STA to prove that it possesses the secret key. Authentication pro-
ceeds as shown in Figure 6.23. The STA sends a message to the AP request-
ing authentication. The AP issues a challenge, which is a sequence of 128
random bytes sent as plaintext. The STA encrypts the challenge with the
shared key and returns it to the AP. The AP decrypts the incoming value and
compares it to the challenge that it sent. If there is a match, the AP confirms
that authentication has succeeded.

STA AP

Station sends a request Request
for authentication.

AP sends challenge message

< Challenge containing 128-bit random
number.
Station responds R
. . esponse
with encrypted version >
of challenge number.
Success AP decrypts challenge response.

If match, send authentication
success message.

A

Figure 6.23 WEP Authentication

220 CHAPTER 6 / WIRELESS NETWORK SECURITY

6.3

6.4

6.5

6.6

a. What are the benefits of this authentication scheme?

b. This authentication scheme is incomplete. What is missing and why is this impor-
tant? Hint: The addition of one or two messages would fix the problem.

c. What is a cryptographic weakness of this scheme?

For WEP, data integrity and data confidentiality are achieved using the RC4 stream
encryption algorithm. The transmitter of an MPDU performs the following steps,
referred to as encapsulation:

1. The transmitter selects an initial vector (IV) value.

2. The IV value is concatenated with the WEP key shared by transmitter and
receiver to form the seed, or key input, to RC4.

3. A 32-bit cyclic redundancy check (CRC) is computed over all the bits of the
MAC data field and appended to the data field. The CRC is a common
error-detection code used in data link control protocols. In this case, the
CRC serves as a integrity check value (ICV).

4. The result of step 3 is encrypted using RC4 to form the ciphertext block.

5. The plaintext IV is prepended to the ciphertext block to form the encapsu-
lated MPDU for transmission.
a. Draw a block diagram that illustrates the encapsulation process.
b. Describe the steps at the receiver end to recover the plaintext and per-
form the integrity check.
c. Draw a block diagram that illustrates part b.

A potential weakness of the CRC as an integrity check is that it is a linear function.
This means that you can predict which bits of the CRC are changed if a single bit of
the message is changed. Furthermore, it is possible to determine which combination
of bits could be flipped in the message so that the net result is no change in the CRC.
Thus, there are a number of combinations of bit flippings of the plaintext message
that leave the CRC unchanged, so message integrity is defeated. However, in WEP, if
an attacker does not know the encryption key, the attacker does not have access to
the plaintext, only to the ciphertext block. Does this mean that the ICV is protected
from the bit flipping attack? Explain.

One potential weakness in WTLS is the use of CBC mode cipher encryption. The
standard states that for CBC mode block ciphers, the IV (initialization vector) for
each record is calculated in the following way: record_IV = IV @ S, where IV is the
original IV and S is obtained by concatenating the 2-byte sequence number of the
record the needed number of times to obtain as many bytes as in I'V. Thus, if the IV is
8 bytes long, the sequence number of the record is concatenated with itself four times.
Now, in CBC mode, the first block of plaintext for a record with sequence number i
would be encrypted as (Figure 2.10)

Ci=EK [IVOS® Ps1l)

where Py, is the first block of plaintext of a record with sequence number s and § is
the concatenated version of s. Consider a terminal application (such as telnet), where
each keypress is sent as an individual record. Alice enters her password into this
application, and Eve captures these encrypted records. Note that the sequence
number is known to Eve, because this portion of the record is not encrypted
(Figure 6.17). Now somehow Eve gets hold of Alice’s channel, perhaps through an
echo feature in some application. This means that Eve can present unencrypted
records to the channel and view the encrypted result. Suggest a brute-force method
by which Eve can guess password letters in Alice’s password. Hint: Exploit these
properties of exclusive-OR:x ®x = 1;x® 1 = x.

An earlier version of WTLS supported a 40-bit XOR MAC and also supported RC4
stream encryption. The XOR MAC works by padding the message with zeros, divid-
ing it into 5-byte blocks and XORing these blocks together. Show that this scheme
does not provide message integrity protection.

ELECTRONIC MAIL SECURITY

7.1 Pretty Good Privacy

Notation
Operational Description
Cryptographic Keys and Key Rings
Public-Key Management

7.2 SIMIME

RFC 5322

Multipurpose Internet Mail Extensions
S/MIME Functionality

S/MIME Messages

S/MIME Certificate Processing
Enhanced Security Services

7.3 DomainKeys Identified Mail

Internet Mail Architecture
E-mail Threats

DKIM Strategy

DKIM Functional Flow

7.4 Recommended Reading and Web Sites
7.5 Key Terms, Review Questions, and Problems

Appendix 7A Radix-64 Conversion

221

222 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Despite the refusal of VADM Poindexter and LtCol North to appear, the Board’s
access to other sources of information filled much of this gap. The FBI provided
documents taken from the files of the National Security Advisor and relevant
NSC staff members, including messages from the PROF system between VADM
Poindexter and LtCol North. The PROF messages were conversations by com-
puter, written at the time events occurred and presumed by the writers to be pro-
tected from disclosure. In this sense, they provide a first-hand, contemporaneous
account of events.

—The Tower Commission Report to President Reagan on the
Iran-Contra Affair, 1987

KEY POINTS

¢ PGP is an open-source, freely available software package for e-mail secu-
rity. It provides authentication through the use of digital signature, confi-
dentiality through the use of symmetric block encryption, compression
using the ZIP algorithm, and e-mail compatibility using the radix-64
encoding scheme.

¢ PGP incorporates tools for developing a public-key trust model and
public-key certificate management.

¢ S/MIME is an Internet standard approach to e-mail security that incorporates
the same functionality as PGP.

¢ DKIM is a specification used by e-mail providers for cryptographically
signing e-mail messages on behalf of the source domain.

In virtually all distributed environments, electronic mail is the most heavily
used network-based application. Users expect to be able to, and do, send
e-mail to others who are connected directly or indirectly to the Internet,
regardless of host operating system or communications suite. With the explo-
sively growing reliance on e-mail, there grows a demand for authentication
and confidentiality services. Two schemes stand out as approaches that enjoy
widespread use: Pretty Good Privacy (PGP) and S/MIME. Both are examined
in this chapter. The chapter closes with a discussion of DomainKeys Identified
Mail.

7.1 PRETTY GOOD PRIVACY

PGP is a remarkable phenomenon. Largely the effort of a single person, Phil
Zimmermann, PGP provides a confidentiality and authentication service that can
be used for electronic mail and file storage applications. In essence, Zimmermann
has done the following:

7.1 / PRETTY GOOD PRIVACY 223

. Selected the best available cryptographic algorithms as building blocks.
. Integrated these algorithms into a general-purpose application that is inde-

pendent of operating system and processor and that is based on a small set of
easy-to-use commands.

. Made the package and its documentation, including the source code, freely

available via the Internet, bulletin boards, and commercial networks such as
AOL (America On Line).

. Entered into an agreement with a company (Viacrypt, now Network

Associates) to provide a fully compatible, low-cost commercial version of PGP.

PGP has grown explosively and is now widely used. A number of reasons can

be cited for this growth.

1.

It is available free worldwide in versions that run on a variety of platforms,
including Windows, UNIX, Macintosh, and many more. In addition, the commer-
cial version satisfies users who want a product that comes with vendor support.

. Itis based on algorithms that have survived extensive public review and are con-

sidered extremely secure. Specifically, the package includes RSA, DSS, and
Diffie-Hellman for public-key encryption; CAST-128, IDEA, and 3DES for sym-
metric encryption; and SHA-1 for hash coding.

. It has a wide range of applicability, from corporations that wish to select and

enforce a standardized scheme for encrypting files and messages to individuals
who wish to communicate securely with others worldwide over the Internet and
other networks.

. It was not developed by, nor is it controlled by, any governmental or standards

organization. For those with an instinctive distrust of “the establishment,” this
makes PGP attractive.

. PGP is now on an Internet standards track (RFC 3156; MIME Security with

OpenPGP). Nevertheless, PGP still has an aura of an antiestablishment
endeavor.

We begin with an overall look at the operation of PGP. Next, we examine

how cryptographic keys are created and stored. Then, we address the vital issue of
public-key management.

Notation

Most of the notation used in this chapter has been used before, but a few terms are new.
It is perhaps best to summarize those at the beginning. The following symbols are used.

K; = session key used in symmetric encryption scheme
PR, = private key of user A, used in public-key encryption scheme

PU, = public key of user A, used in public-key encryption scheme
EP = public-key encryption
DP = public-key decryption
EC = symmetric encryption

DC = symmetric decryption

224 CHAPTER 7 / ELECTRONIC MAIL SECURITY

H = hash function
|| = concatenation
Z = compression using ZIP algorithm

R64 = conversion to radix 64 ASCII format!

The PGP documentation often uses the term secret key to refer to a key paired
with a public key in a public-key encryption scheme. As was mentioned earlier, this
practice risks confusion with a secret key used for symmetric encryption. Hence, we
use the term private key instead.

Operational Description

The actual operation of PGP, as opposed to the management of keys, consists of four
services: authentication, confidentiality, compression, and e-mail compatibility
(Table 7.1). We examine each of these in turn.

AvtHENTICATION Figure 7.1a illustrates the digital signature service provided by
PGP. This is the digital signature scheme discussed in Chapter 3 and illustrated in
Figure 4.5. The sequence is as follows.

1. The sender creates a message.

2. SHA-1 is used to generate a 160-bit hash code of the message.

3. The hash code is encrypted with RSA using the sender’s private key, and the
result is prepended to the message.

4. The receiver uses RSA with the sender’s public key to decrypt and recover the
hash code.

5. The receiver generates a new hash code for the message and compares it with
the decrypted hash code. If the two match, the message is accepted as authentic.

Table 7.1 Summary of PGP Services

Function Algorithms Used Description

A hash code of a message is created using
Digital DSS/SHA or RSA/SHA SHA-1. This message digest is encrypted using
signature DSS or RSA with the sender’s private key and

included with the message.

A message is encrypted using CAST-128 or
CAST or IDEA or Three-key IDEA or 3DES with a one-time session key

Message . . g
encry pgti on Triple DES with Diffie-Hellman | generated by the sender. The session key is
or RSA encrypted using Diffie-Hellman or RSA with

the recipient’s public key and included with
the message.

CoiprsEen ZIp A message may be compressed for storage or
transmission using ZIP.

B To provide transparency for e-mail applica-

compatibility Radix-64 conversion tions, an encrypted message may be converted

to an ASCII string using radix-64 conversion.

! The American Standard Code for Information Interchange (ASCII) is described in Appendix I.

144

Source A
E[PR,, HM)]

~— Destination B — ™™™ >

- PU,
DP
N
Compare
(a) Authentication only E[PUI”\KS] H
~ ~ < -
PUs * PR,
K o
M
E—()
(b) Confidentiality only
py, EIPU»KI
E[PR,, H(M)]

(c) Confidentiality and authentication

Figure 7.1 PGP Cryptographic Functions

226 CHAPTER 7 / ELECTRONIC MAIL SECURITY

The combination of SHA-1 and RSA provides an effective digital signature
scheme. Because of the strength of RSA, the recipient is assured that only the pos-
sessor of the matching private key can generate the signature. Because of the
strength of SHA-1, the recipient is assured that no one else could generate a new
message that matches the hash code and, hence, the signature of the original
message.

As an alternative, signatures can be generated using DSS/SHA-1.

Although signatures normally are found attached to the message or file that
they sign, this is not always the case: Detached signatures are supported. A detached
signature may be stored and transmitted separately from the message it signs. This is
useful in several contexts. A user may wish to maintain a separate signature log of all
messages sent or received. A detached signature of an executable program can
detect subsequent virus infection. Finally, detached signatures can be used when
more than one party must sign a document, such as a legal contract. Each person’s
signature is independent and therefore is applied only to the document. Otherwise,
signatures would have to be nested, with the second signer signing both the docu-
ment and the first signature, and so on.

ConrIDENTIALITY Another basic service provided by PGP is confidentiality, which
is provided by encrypting messages to be transmitted or to be stored locally as files.
In both cases, the symmetric encryption algorithm CAST-128 may be used.
Alternatively, IDEA or 3DES may be used. The 64-bit cipher feedback (CFB) mode
is used.

As always, one must address the problem of key distribution. In PGP, each
symmetric key is used only once. That is, a new key is generated as a random 128-bit
number for each message. Thus, although this is referred to in the documentation as
a session key, it is in reality a one-time key. Because it is to be used only once, the
session key is bound to the message and transmitted with it. To protect the key, it is
encrypted with the receiver’s public key. Figure 7.1b illustrates the sequence, which
can be described as follows.

1. The sender generates a message and a random 128-bit number to be used as
a session key for this message only.

2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the ses-
sion key.

3. The session key is encrypted with RSA using the recipient’s public key and is
prepended to the message.

4. The receiver uses RSA with its private key to decrypt and recover the session
key.
5. The session key is used to decrypt the message.

As an alternative to the use of RSA for key encryption, PGP provides an
option referred to as Diffie-Hellman. As was explained in Chapter 3, Diffie-
Hellman is a key exchange algorithm. In fact, PGP uses a variant of Diffie-Hellman
that does provide encryption/decryption, known as ElGamal.

Several observations may be made. First, to reduce encryption time, the combi-
nation of symmetric and public-key encryption is used in preference to simply using

7.1 / PRETTY GOOD PRIVACY 227

RSA or ElGamal to encrypt the message directly: CAST-128 and the other symmet-
ric algorithms are substantially faster than RSA or ElGamal. Second, the use of the
public-key algorithm solves the session-key distribution problem, because only the
recipient is able to recover the session key that is bound to the message. Note that
we do not need a session-key exchange protocol of the type discussed in Chapter 14, because
we are not beginning an ongoing session. Rather, each message is a one-time inde-
pendent event with its own key. Furthermore, given the store-and-forward nature of
electronic mail, the use of handshaking to assure that both sides have the same
session key is not practical. Finally, the use of one-time symmetric keys strengthens
what is already a strong symmetric encryption approach. Only a small amount of
plaintext is encrypted with each key, and there is no relationship among the keys.
Thus, to the extent that the public-key algorithm is secure, the entire scheme is
secure. To this end, PGP provides the user with a range of key size options from 768
to 3072 bits (the DSS key for signatures is limited to 1024 bits).

CONFIDENTIALITY AND AUTHENTICATION As Figure 7.1c illustrates, both services
may be used for the same message. First, a signature is generated for the plaintext
message and prepended to the message. Then the plaintext message plus signature is
encrypted using CAST-128 (or IDEA or 3DES), and the session key is encrypted
using RSA (or ElGamal). This sequence is preferable to the opposite: encrypting
the message and then generating a signature for the encrypted message. It is
generally more convenient to store a signature with a plaintext version of a message.
Furthermore, for purposes of third-party verification, if the signature is performed
first, a third party need not be concerned with the symmetric key when verifying the
signature.

In summary, when both services are used, the sender first signs the message
with its own private key, then encrypts the message with a session key, and finally
encrypts the session key with the recipient’s public key.

Compression As a default, PGP compresses the message after applying the
signature but before encryption. This has the benefit of saving space both for e-mail
transmission and for file storage.

The placement of the compression algorithm, indicated by Z for compression
and Z™! for decompression in Figure 7.1, is critical.

1. The signature is generated before compression for two reasons:

a. It is preferable to sign an uncompressed message so that one can store only
the uncompressed message together with the signature for future verifica-
tion. If one signed a compressed document, then it would be necessary either
to store a compressed version of the message for later verification or to
recompress the message when verification is required.

b. Even if one were willing to generate dynamically a recompressed message
for verification, PGP’s compression algorithm presents a difficulty. The algo-
rithm is not deterministic; various implementations of the algorithm achieve
different tradeoffs in running speed versus compression ratio and, as a result,
produce different compressed forms. However, these different compression
algorithms are interoperable because any version of the algorithm can
correctly decompress the output of any other version. Applying the hash

228 CHAPTER 7 / ELECTRONIC MAIL SECURITY

function and signature after compression would constrain all PGP imple-
mentations to the same version of the compression algorithm.

2. Message encryption is applied after compression to strengthen cryptographic
security. Because the compressed message has less redundancy than the
original plaintext, cryptanalysis is more difficult.

The compression algorithm used is ZIP, which is described in Appendix G.

E-mar ComratisiniTy When PGP is used, at least part of the block to be transmitted
is encrypted. If only the signature service is used, then the message digest is
encrypted (with the sender’s private key). If the confidentiality service is used, the
message plus signature (if present) are encrypted (with a one-time symmetric key).
Thus, part or all of the resulting block consists of a stream of arbitrary 8-bit octets.
However, many electronic mail systems only permit the use of blocks consisting of
ASCII text. To accommodate this restriction, PGP provides the service of converting
the raw 8-bit binary stream to a stream of printable ASCII characters.

The scheme used for this purpose is radix-64 conversion. Each group of three
octets of binary data is mapped into four ASCII characters. This format also
appends a CRC to detect transmission errors. See Appendix 7A for a description.

The use of radix 64 expands a message by 33%. Fortunately, the session key
and signature portions of the message are relatively compact, and the plaintext mes-
sage has been compressed. In fact, the compression should be more than enough to
compensate for the radix-64 expansion. For example, [HELDY6] reports an average
compression ratio of about 2.0 using ZIP. If we ignore the relatively small signature
and key components, the typical overall effect of compression and expansion of a
file of length X would be 1.33 X 0.5 X X = 0.665 X X.Thus, there is still an overall
compression of about one-third.

One noteworthy aspect of the radix-64 algorithm is that it blindly converts the
input stream to radix-64 format regardless of content, even if the input happens to
be ASCII text. Thus, if a message is signed but not encrypted and the conversion is
applied to the entire block, the output will be unreadable to the casual observer,
which provides a certain level of confidentiality. As an option, PGP can be config-
ured to convert to radix-64 format only the signature portion of signed plaintext
messages. This enables the human recipient to read the message without using PGP.
PGP would still have to be used to verify the signature.

Figure 7.2 shows the relationship among the four services so far discussed. On
transmission (if it is required), a signature is generated using a hash code of the
uncompressed plaintext. Then the plaintext (plus signature if present) is com-
pressed. Next, if confidentiality is required, the block (compressed plaintext or com-
pressed signature plus plaintext) is encrypted and prepended with the public-key-
encrypted symmetric encryption key. Finally, the entire block is converted to
radix-64 format.

On reception, the incoming block is first converted back from radix-64 format
to binary. Then, if the message is encrypted, the recipient recovers the session key
and decrypts the message. The resulting block is then decompressed. If the message
is signed, the recipient recovers the transmitted hash code and compares it to its
own calculation of the hash code.

6¢CC

X « file Convert from radix 64
X < R647'[x]

Decrypt key, X

. Y 5 - Yes
Signature °s Generate signature < Coﬁfi??;glty K,< D(PR,, E(PU,, K,))
required? X « signature Il X q . X < D(K,, E(K,, X))

No No
@
Xogp;z}s{s) Decompress
X<z'x

Confidentiality _Y¢* Encrypt key, X _ Yes —
required? X< E(PU,, K,) | EK,, X) Slgnfiture Strip signature from X
required? verify signature

No
No

Convert to radix 64
X < R64[X]

(a) Generic transmission diagram (from A) (b) Generic reception diagram (to B)

Figure 7.2 Transmission and Reception of PGP Messages

230 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Cryptographic Keys and Key Rings

PGP makes use of four types of keys: one-time session symmetric keys, public keys,
private keys, and passphrase-based symmetric keys (explained subsequently). Three
separate requirements can be identified with respect to these keys.

1. A means of generating unpredictable session keys is needed.

2. We would like to allow a user to have multiple public-key/private-key pairs. One
reason is that the user may wish to change his or her key pair from time to time.
When this happens, any messages in the pipeline will be constructed with an
obsolete key. Furthermore, recipients will know only the old public key until an
update reaches them. In addition to the need to change keys over time, a user
may wish to have multiple key pairs at a given time to interact with different
groups of correspondents or simply to enhance security by limiting the amount of
material encrypted with any one key. The upshot of all this is that there is not a
one-to-one correspondence between users and their public keys. Thus, some
means is needed for identifying particular keys.

3. Each PGP entity must maintain a file of its own public/private key pairs as
well as a file of public keys of correspondents.

We examine each of these requirements in turn.

SesstoNn Key GENERATION Each session key is associated with a single message and
is used only for the purpose of encrypting and decrypting that message. Recall that
message encryption/decryption is done with a symmetric encryption algorithm.
CAST-128 and IDEA use 128-bit keys; 3DES uses a 168-bit key. For the following
discussion, we assume CAST-128.

Random 128-bit numbers are generated using CAST-128 itself. The input to
the random number generator consists of a 128-bit key and two 64-bit blocks that
are treated as plaintext to be encrypted. Using cipher feedback mode, the CAST-128
encrypter produces two 64-bit cipher text blocks, which are concatenated to form
the 128-bit session key. The algorithm that is used is based on the one specified in
ANSI X12.17.

The “plaintext” input to the random number generator, consisting of two
64-bit blocks, is itself derived from a stream of 128-bit randomized numbers. These
numbers are based on keystroke input from the user. Both the keystroke timing and
the actual keys struck are used to generate the randomized stream. Thus, if the user
hits arbitrary keys at his or her normal pace, a reasonably “random” input will
be generated. This random input is also combined with previous session key output
from CAST-128 to form the key input to the generator. The result, given the
effective scrambling of CAST-128, is to produce a sequence of session keys that is
effectively unpredictable.

Appendix H discusses PGP random number generation techniques in more
detail.

Key IDENTIFIERS As we have discussed, an encrypted message is accompanied by
an encrypted form of the session key that was used for message encryption. The

7.1 / PRETTY GOOD PRIVACY 231

session key itself is encrypted with the recipient’s public key. Hence, only the
recipient will be able to recover the session key and therefore recover the message.
If each user employed a single public/private key pair, then the recipient would
automatically know which key to use to decrypt the session key: the recipient’s
unique private key. However, we have stated a requirement that any given user may
have multiple public/private key pairs.

How, then, does the recipient know which of its public keys was used to
encrypt the session key? One simple solution would be to transmit the public key
with the message. The recipient could then verify that this is indeed one of its
public keys, and proceed. This scheme would work, but it is unnecessarily waste-
ful of space. An RSA public key may be hundreds of decimal digits in length.
Another solution would be to associate an identifier with each public key that is
unique at least within one user. That is, the combination of user ID and key
ID would be sufficient to identify a key uniquely. Then only the much shorter key
ID would need to be transmitted. This solution, however, raises a management
and overhead problem: Key IDs must be assigned and stored so that both sender
and recipient could map from key ID to public key. This seems unnecessarily
burdensome.

The solution adopted by PGP is to assign a key ID to each public key that is,
with very high probability, unique within a user ID. The key ID associated with each
public key consists of its least significant 64 bits. That is, the key ID of public key
PU,is (PU, mod 2%). This is a sufficient length that the probability of duplicate key
IDs is very small.

A key ID is also required for the PGP digital signature. Because a sender
may use one of a number of private keys to encrypt the message digest, the
recipient must know which public key is intended for use. Accordingly, the
digital signature component of a message includes the 64-bit key ID of the
required public key. When the message is received, the recipient verifies that
the key ID is for a public key that it knows for that sender and then proceeds to
verify the signature.

Now that the concept of key ID has been introduced, we can take a more
detailed look at the format of a transmitted message, which is shown in Figure 7.3.
A message consists of three components: the message component, a signature
(optional), and a session key component (optional).

The message component includes the actual data to be stored or transmitted,
as well as a filename and a timestamp that specifies the time of creation.

The signature component includes the following.

e Timestamp: The time at which the signature was made.

* Message digest: The 160-bit SHA-1 digest encrypted with the sender’s pri-
vate signature key. The digest is calculated over the signature timestamp
concatenated with the data portion of the message component. The inclu-
sion of the signature timestamp in the digest insures against replay types of
attacks. The exclusion of the filename and timestamp portions of the
message component ensures that detached signatures are exactly the same
as attached signatures prefixed to the message. Detached signatures are

232 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Content Operation

Key ID of recipient's
public key (PU,)

Session key (K) E(PU,, °)

Session key
component

Timestamp
Key ID of sender's
Signature public key (PU,)

Leading two octets
of message digest
Message Digest E(PR,, *)
R64

Filename

VAL E(K,,)

Message

Data

Notation:
E(PU,, *) = encryption with user b's public key
E(PR,,*) = encryption with user a's private key

E(K,,*) = encryption with session key
ZIP = Zip compression function
R64 = Radix-64 conversion function

Figure 7.3 General Format PGP Message (from A to B)

calculated on a separate file that has none of the message component
header fields.

¢ Leading two octets of message digest: Enables the recipient to determine if
the correct public key was used to decrypt the message digest for authentica-
tion by comparing this plaintext copy of the first two octets with the first two
octets of the decrypted digest. These octets also serve as a 16-bit frame check
sequence for the message.

¢ Key ID of sender’s public key: Identifies the public key that should be used to
decrypt the message digest and, hence, identifies the private key that was used
to encrypt the message digest.

The message component and optional signature component may be com-
pressed using ZIP and may be encrypted using a session key.

7.1 / PRETTY GOOD PRIVACY 233

The session key component includes the session key and the identifier of the
recipient’s public key that was used by the sender to encrypt the session key.
The entire block is usually encoded with radix-64 encoding.

Key RinGgs We have seen how key IDs are critical to the operation of PGP and that
two key IDs are included in any PGP message that provides both confidentiality
and authentication. These keys need to be stored and organized in a systematic way
for efficient and effective use by all parties. The scheme used in PGP is to provide a
pair of data structures at each node, one to store the public/private key pairs owned
by that node and one to store the public keys of other users known at this node.
These data structures are referred to, respectively, as the private-key ring and the
public-key ring.

Figure 7.4 shows the general structure of a private-key ring. We can view the
ring as a table in which each row represents one of the public/private key pairs
owned by this user. Each row contains the entries:

* Timestamp: The date/time when this key pair was generated.

e Key ID: The least significant 64 bits of the public key for this entry.

e Public key: The public-key portion of the pair.

 Private key: The private-key portion of the pair; this field is encrypted.

Private-Key Ring

Timestamp Key ID* Public Key Encrypted User ID*
Private Key
T, PU; mod 2% PU; E(H(P,), PR)) User i
Public-Key Ring
Timestamp | Key ID* Public Key |Owner Trust| User ID* Key Signature(s) Signature
Legitimacy Trust(s)
T; PU;mod 2% PU; trust_flag; User i trust_flag;

* = field used to index table

Figure 7.4 General Structure of Private- and Public-Key Rings

234 CHAPTER 7 / ELECTRONIC MAIL SECURITY

o User ID: Typically, this will be the user’s e-mail address (e.g., stallings@acm.org).
However, the user may choose to associate a different name with each pair
(e.g., Stallings, WStallings, WilliamStallings, etc.) or to reuse the same User ID
more than once.

The private-key ring can be indexed by either User ID or Key ID; later we will
see the need for both means of indexing.

Although it is intended that the private-key ring be stored only on the
machine of the user that created and owns the key pairs and that it be accessible
only to that user, it makes sense to make the value of the private key as secure as
possible. Accordingly, the private key itself is not stored in the key ring. Rather, this
key is encrypted using CAST-128 (or IDEA or 3DES). The procedure is as follows:

1. The user selects a passphrase to be used for encrypting private keys.

2. When the system generates a new public/private key pair using RSA, it asks
the user for the passphrase. Using SHA-1, a 160-bit hash code is generated
from the passphrase, and the passphrase is discarded.

3. The system encrypts the private key using CAST-128 with the 128 bits of
the hash code as the key. The hash code is then discarded, and the encrypted
private key is stored in the private-key ring.

Subsequently, when a user accesses the private-key ring to retrieve a pri-
vate key, he or she must supply the passphrase. PGP will retrieve the encrypted
private key, generate the hash code of the passphrase, and decrypt the encrypted
private key using CAST-128 with the hash code.

This is a very compact and effective scheme. As in any system based on pass-
words, the security of this system depends on the security of the password. To avoid
the temptation to write it down, the user should use a passphrase that is not easily
guessed but that is easily remembered.

Figure 7.4 also shows the general structure of a public-key ring. This data
structure is used to store public keys of other users that are known to this user. For
the moment, let us ignore some fields shown in the figure and describe the following
fields.

e Timestamp: The date/time when this entry was generated.
e Key ID: The least significant 64 bits of the public key for this entry.
¢ Public Key: The public key for this entry.

e User ID: Identifies the owner of this key. Multiple user IDs may be associated
with a single public key.

The public-key ring can be indexed by either User ID or Key ID; we will see
the need for both means of indexing later.

We are now in a position to show how these key rings are used in message
transmission and reception. For simplicity, we ignore compression and radix-64 con-
version in the following discussion. First consider message transmission (Figure 7.5)
and assume that the message is to be both signed and encrypted. The sending PGP
entity performs the following steps.

7.1 / PRETTY GOOD PRIVACY 235

Public-key ring

Passphra564>@ > Select | |
p —
Private-key ring | Key ID
Select Encrypted
D,] o
| private key (—
E
Key ID
Public key
Private key PU,
PR,
Message
~—\ digest
H ER GD Session key
Message Il(" (]; ;)\ (T I\ Output
M Signature \ J L _J
Message + message

Encrypted
—> signature

+ message

Figure 7.5 PGP Message Generation (from User A to User B: no compression or radix-64

conversion)

1. Signing the message:

a.

C.

PGP retrieves the sender’s private key from the private-key ring using
your_userid as an index. If your_userid was not provided in the
command, the first private key on the ring is retrieved.

PGP prompts the user for the passphrase to recover the unencrypted private
key.

The signature component of the message is constructed.

2. Encrypting the message:

a. PGP generates a session key and encrypts the message.

C.

PGP retrieves the recipient’s public key from the public-key ring using
her userid as an index.

The session key component of the message is constructed.

The receiving PGP entity performs the following steps (Figure 7.6).

1. Decrypting the message:

a.

PGP retrieves the receiver’s private key from the private-key ring using the
Key ID field in the session key component of the message as an index.

PGP prompts the user for the passphrase to recover the unencrypted
private key.

PGP then recovers the session key and decrypts the message.

236 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Passphrase —»@

Private-key ring

Select

| | Encrypted

—

Receiver's
KeyID [—

Encrypted

session key

Encrypted

private key @@

Private key
PR,

DP

Session key

Select

Public-key ring

Sender's J
Key ID

Encrypted

digest

message +
signature

K,
S

Message

Compare

Figure 7.6 PGP Message Reception (from User A to User B; no compression or radix-64

conversion)

2. Authenticating the message:

a.

PGP retrieves the sender’s public key from the public-key ring using the Key
ID field in the signature key component of the message as an index.

PGP recovers the transmitted message digest.

PGP computes the message digest for the received message and compares it
to the transmitted message digest to authenticate.

Public-Key Management

As can be seen from the discussion so far, PGP contains a clever, efficient, interlock-

ing set of functions and formats to provide an effective confidentiality and authenti-
cation service. To complete the system, one final area needs to be addressed, that
of public-key management. The PGP documentation captures the importance of
this area:

This whole business of protecting public keys from tampering is the
single most difficult problem in practical public key applications. It
is the “Achilles heel” of public key cryptography, and a lot of soft-
ware complexity is tied up in solving this one problem.

7.1 / PRETTY GOOD PRIVACY 237

PGP provides a structure for solving this problem with several suggested
options that may be used. Because PGP is intended for use in a variety of formal
and informal environments, no rigid public-key management scheme is set up, such
as we will see in our discussion of S/MIME later in this chapter.

APPROACHES TO PUBLIC-KEY MANAGEMENT The essence of the problem is this: User
A must build up a public-key ring containing the public keys of other users to
interoperate with them using PGP. Suppose that A’s key ring contains a public key
attributed to B, but in fact the key is owned by C. This could happen, for example, if
A got the key from a bulletin board system (BBS) that was used by B to post the
public key but that has been compromised by C. The result is that two threats now
exist. First, C can send messages to A and forge B’s signature so that A will accept
the message as coming from B. Second, any encrypted message from A to B can be
read by C.

A number of approaches are possible for minimizing the risk that a user’s
public-key ring contains false public keys. Suppose that A wishes to obtain a reliable
public key for B. The following are some approaches that could be used.

1. Physically get the key from B. B could store her public key (PU,) on a floppy
disk and hand it to A. A could then load the key into his system from the
floppy disk. This is a very secure method but has obvious practical limitations.

2. Verify a key by telephone. If A can recognize B on the phone, A could call B and
ask her to dictate the key, in radix-64 format, over the phone. As a more practical
alternative, B could transmit her key in an e-mail message to A. A could have
PGP generate a 160-bit SHA-1 digest of the key and display it in hexadecimal
format; this is referred to as the “fingerprint” of the key. A could then call B and
ask her to dictate the fingerprint over the phone. If the two fingerprints match,
the key is verified.

3. Obtain B’s public key from a mutual trusted individual D. For this purpose, the
introducer, D, creates a signed certificate. The certificate includes B’s public key,
the time of creation of the key, and a validity period for the key. D generates an
SHA-1 digest of this certificate, encrypts it with her private key, and attaches the
signature to the certificate. Because only D could have created the signature, no
one else can create a false public key and pretend that it is signed by D. The
signed certificate could be sent directly to A by B or D, or it could be posted on a
bulletin board.

4. Obtain B’s public key from a trusted certifying authority. Again, a public-key
certificate is created and signed by the authority. A could then access the
authority, providing a user name and receiving a signed certificate.

For cases 3 and 4, A already would have to have a copy of the introducer’s
public key and trust that this key is valid. Ultimately, it is up to A to assign a level of
trust to anyone who is to act as an introducer.

THE Use or TrusT Although PGP does not include any specification for establishing
certifying authorities or for establishing trust, it does provide a convenient means of
using trust, associating trust with public keys, and exploiting trust information.

238 CHAPTER 7 / ELECTRONIC MAIL SECURITY

The basic structure is as follows. Each entry in the public-key ring is a public-
key certificate, as described in the preceding subsection. Associated with each such
entry is a key legitimacy field that indicates the extent to which PGP will trust that
this is a valid public key for this user; the higher the level of trust, the stronger is the
binding of this user ID to this key. This field is computed by PGP. Also associated
with the entry are zero or more signatures that the key ring owner has collected that
sign this certificate. In turn, each signature has associated with it a signature trust
field that indicates the degree to which this PGP user trusts the signer to certify pub-
lic keys. The key legitimacy field is derived from the collection of signature trust
fields in the entry. Finally, each entry defines a public key associated with a particu-
lar owner, and an owner trust field is included that indicates the degree to which this
public key is trusted to sign other public-key certificates; this level of trust is
assigned by the user. We can think of the signature trust fields as cached copies of
the owner trust field from another entry.

The three fields mentioned in the previous paragraph are each contained in a
structure referred to as a trust flag byte. The content of this trust flag for each of
these three uses is shown in Table 7.2. Suppose that we are dealing with the public-
key ring of user A. We can describe the operation of the trust processing as follows.

1. When A inserts a new public key on the public-key ring, PGP must assign
a value to the trust flag that is associated with the owner of this public key. If
the owner is A, and therefore this public key also appears in the private-key
ring, then a value of ultimate trust is automatically assigned to the trust field.

Table 7.2 Contents of Trust Flag Byte

(a) Trust Assigned to
Public-Key Owner
(appears after key packet;
user defined)

(b) Trust Assigned to Public
Key/User ID Pair (appears after
User ID packet; computed

by PGP)

(c¢) Trust Assigned to Signature
(appears after signature packet;
cached copy of OWNERTRUST
for this signator)

OWNERTRUST Field
—undefined trust
—unknown user

—usually not trusted to sign
other keys

—usually trusted to sign
other keys

—always trusted to sign
other keys

—this key is present in
secret key ring
(ultimate trust)

KEYLEGIT Field
—unknown or undefined trust
—key ownership not trusted
—marginal trust in key ownership

—complete trust in key ownership

SIGTRUST Field
—undefined trust
—unknown user
—usually not trusted to sign other
keys
—usually trusted to sign other keys
—always trusted to sign other keys

—this key is present in secret key
ring (ultimate trust)

BUCKSTOP bit

—set if this key appears in
secret key ring

WARNONLY bit

—set if user wants only to be
warned when key that is not fully
validated is used for encryption

CONTIG bit

—set if signature leads up a
contiguous trusted certification
path back to the ultimately
trusted key ring owner

7.1 / PRETTY GOOD PRIVACY 239

Otherwise, PGP asks A for his assessment of the trust to be assigned to the
owner of this key, and A must enter the desired level. The user can specify
that this owner is unknown, untrusted, marginally trusted, or completely
trusted.

2. When the new public key is entered, one or more signatures may be attached to
it. More signatures may be added later. When a signature is inserted into the
entry, PGP searches the public-key ring to see if the author of this signature is
among the known public-key owners. If so, the OWNERTRUST value for this
owner is assigned to the SIGTRUST field for this signature. If not, an unknown
user value is assigned.

3. The value of the key legitimacy field is calculated on the basis of the signature
trust fields present in this entry. If at least one signature has a signature trust
value of ultimate, then the key legitimacy value is set to complete. Otherwise,
PGP computes a weighted sum of the trust values. A weight of 1/X is given to
signatures that are always trusted and 1/Y to signatures that are usually
trusted, where X and Y are user-configurable parameters. When the total of
weights of the introducers of a Key/UserID combination reaches 1, the bind-
ing is considered to be trustworthy, and the key legitimacy value is set to com-
plete. Thus, in the absence of ultimate trust, at least X signatures that are
always trusted, Y signatures that are usually trusted, or some combination is
needed.

Periodically, PGP processes the public-key ring to achieve consistency. In
essence, this is a top-down process. For each OWNERTRUST field, PGP scans the
ring for all signatures authored by that owner and updates the SIGTRUST field to
equal the OWNERTRUST field. This process starts with keys for which there is ulti-
mate trust. Then all KEYLEGIT fields are computed on the basis of the attached
signatures.

Figure 7.7 provides an example of the way in which signature trust and key
legitimacy are related.” The figure shows the structure of a public-key ring. The user
has acquired a number of public keys—some directly from their owners and some
from a third party such as a key server.

The node labeled “You” refers to the entry in the public-key ring correspond-
ing to this user. This key is legitimate, and the OWNERTRUST value is ultimate
trust. Each other node in the key ring has an OWNERTRUST value of undefined
unless some other value is assigned by the user. In this example, this user has speci-
fied that it always trusts the following users to sign other keys: D, E, F, L. This user
partially trusts users A and B to sign other keys.

So the shading, or lack thereof, of the nodes in Figure 7.7 indicates the level of
trust assigned by this user. The tree structure indicates which keys have been signed
by which other users. If a key is signed by a user whose key is also in this key ring,
the arrow joins the signed key to the signatory. If the key is signed by a user whose
key is not present in this key ring, the arrow joins the signed key to a question mark,
indicating that the signatory is unknown to this user.

%Figure provided to the author by Phil Zimmermann.

240 CHAPTER 7 / ELECTRONIC MAIL SECURITY

9 = unknown signatory

®—>® = X is signed by Y

”
: S ?
(O = key's owner is trusted by you to sign keys ‘\CD/

O = key's owner is partly trusted by you to sign keys

@ = key is deemed legitimate by you
Figure 7.7 PGP Trust Model Example

Several points are illustrated in Figure 7.7.

1. Note that all keys whose owners are fully or partially trusted by this user have
been signed by this user, with the exception of node L. Such a user signature is
not always necessary, as the presence of node L indicates, but in practice, most
users are likely to sign the keys for most owners that they trust. So, for exam-
ple, even though E’s key is already signed by trusted introducer F, the user
chose to sign E’s key directly.

2. We assume that two partially trusted signatures are sufficient to certify a key.
Hence, the key for user H is deemed legitimate by PGP because it is signed by A
and B, both of whom are partially trusted.

3. A key may be determined to be legitimate because it is signed by one fully
trusted or two partially trusted signatories, but its user may not be trusted to sign
other keys. For example, N’s key is legitimate because it is signed by E, whom this
user trusts, but N is not trusted to sign other keys because this user has not
assigned N that trust value. Therefore, although R’s key is signed by N, PGP does
not consider R’s key legitimate. This situation makes perfect sense. If you wish to
send a private message to some individual, it is not necessary that you trust that
individual in any respect. It is only necessary that you are sure that you have the
correct public key for that individual.

4. Figure 7.7 also shows an example of a detached “orphan” node S, with two
unknown signatures. Such a key may have been acquired from a key server.

7.2/ S/MIME 241

PGP cannot assume that this key is legitimate simply because it came from a
reputable server. The user must declare the key legitimate by signing it or by
telling PGP that it is willing to trust fully one of the key’s signatories.

A final point: Earlier it was mentioned that multiple user IDs may be associ-
ated with a single public key on the public-key ring. This could be because a person
has changed names or has been introduced via signature under multiple names, indi-
cating different e-mail addresses for the same person, for example. So we can think of
a public key as the root of a tree. A public key has a number of user IDs associating
with it, with a number of signatures below each user ID. The binding of a particular
user ID to a key depends on the signatures associated with that user ID and that key,
whereas the level of trust in this key (for use in signing other keys) is a function of all
the dependent signatures.

REVOKING PusLic KeEvs A user may wish to revoke his or her current public key
either because compromise is suspected or simply to avoid the use of the same key for
an extended period. Note that a compromise would require that an opponent
somehow had obtained a copy of your unencrypted private key or that the opponent
had obtained both the private key from your private-key ring and your passphrase.

The convention for revoking a public key is for the owner to issue a key revo-
cation certificate, signed by the owner. This certificate has the same form as a nor-
mal signature certificate but includes an indicator that the purpose of this certificate
is to revoke the use of this public key. Note that the corresponding private key must
be used to sign a certificate that revokes a public key. The owner should then
attempt to disseminate this certificate as widely and as quickly as possible to enable
potential correspondents to update their public-key rings.

Note that an opponent who has compromised the private key of an owner can
also issue such a certificate. However, this would deny the opponent as well as the
legitimate owner the use of the public key, and therefore, it seems a much less likely
threat than the malicious use of a stolen private key.

7.2 S/MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement
to the MIME Internet e-mail format standard based on technology from RSA Data
Security. Although both PGP and S/MIME are on an IETF standards track, it
appears likely that SMIME will emerge as the industry standard for commercial and
organizational use, while PGP will remain the choice for personal e-mail security for
many users. S/MIME is defined in a number of documents—most importantly RFCs
3370, 3850, 3851, and 3852.

To understand S/MIME, we need first to have a general understanding of the
underlying e-mail format that it uses, namely MIME. But to understand the signifi-
cance of MIME, we need to go back to the traditional e-mail format standard, RFC
822, which is still in common use. The most recent version of this format specifica-
tion is RFC 5322 (Internet Message Format). Accordingly, this section first provides
an introduction to these two earlier standards and then moves on to a discussion of
S/MIME.

242 CHAPTER 7 / ELECTRONIC MAIL SECURITY

RFC 5322

RFC 5322 defines a format for text messages that are sent using electronic mail. It has
been the standard for Internet-based text mail messages and remains in common use.
In the RFC 5322 context, messages are viewed as having an envelope and contents. The
envelope contains whatever information is needed to accomplish transmission and
delivery. The contents compose the object to be delivered to the recipient. The RFC
5322 standard applies only to the contents. However, the content standard includes a
set of header fields that may be used by the mail system to create the envelope, and the
standard is intended to facilitate the acquisition of such information by programs.

The overall structure of a message that conforms to RFC 5322 is very simple.
A message consists of some number of header lines (the header) followed by unre-
stricted text (the body). The header is separated from the body by a blank line. Put
differently, a message is ASCII text, and all lines up to the first blank line are
assumed to be header lines used by the user agent part of the mail system.

A header line usually consists of a keyword, followed by a colon, followed by
the keyword’s arguments; the format allows a long line to be broken up into several
lines. The most frequently used keywords are From, To, Subject,and Date. Here is an
example message:

Date: October 8, 2009 2:15:49 PM EDT
From: "William Stallings" <ws@shore.net>
Subject: The Syntax in RFC 5322

To: Smith@Other-host.com

Cc: Jones@Yet-Another-Host.com

Hello. This section begins the actual
message body, which is delimited from the
message heading by a blank line.

Another field that is commonly found in RFC 5322 headers is Message-ID.
This field contains a unique identifier associated with this message.

Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322
framework that is intended to address some of the problems and limitations of the
use of Simple Mail Transfer Protocol (SMTP), defined in RFC 821, or some other
mail transfer protocol and RFC 5322 for electronic mail. [PARZ06] lists the follow-
ing limitations of the SMTP/5322 scheme.

1. SMTP cannot transmit executable files or other binary objects. A number of
schemes are in use for converting binary files into a text form that can be used
by SMTP mail systems, including the popular UNIX UUencode/UUdecode
scheme. However, none of these is a standard or even a de facto standard.

2. SMTP cannot transmit text data that includes national language characters,
because these are represented by 8-bit codes with values of 128 decimal or
higher, and SMTP is limited to 7-bit ASCIL.

6.

7.2/ S/MIME 243

. SMTP servers may reject mail message over a certain size.
. SMTP gateways that translate between ASCII and the character code EBCDIC

do not use a consistent set of mappings, resulting in translation problems.

. SMTP gateways to X.400 electronic mail networks cannot handle nontextual

data included in X.400 messages.

Some SMTP implementations do not adhere completely to the SMTP standards
defined in RFC 821. Common problems include:

e Deletion, addition, or reordering of carriage return and linefeed
* Truncating or wrapping lines longer than 76 characters

* Removal of trailing white space (tab and space characters)

e Padding of lines in a message to the same length

e Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible

with existing RFC 5322 implementations. The specification is provided in RFCs
2045 through 2049.

Overview The MIME specification includes the following elements.

1.

2.

3.

Five new message header fields are defined, which may be included in an RFC
5322 header. These fields provide information about the body of the message.

A number of content formats are defined, thus standardizing representations
that support multimedia electronic mail.

Transfer encodings are defined that enable the conversion of any content for-
mat into a form that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two

subsections deal with content formats and transfer encodings.

The five header fields defined in MIME are

MIME-Version: Must have the parameter value 1.0. This field indicates that
the message conforms to RFCs 2045 and 2046.

Content-Type: Describes the data contained in the body with sufficient detail
that the receiving user agent can pick an appropriate agent or mechanism to
represent the data to the user or otherwise deal with the data in an appropri-
ate manner.

Content-Transfer-Encoding: Indicates the type of transformation that has
been used to represent the body of the message in a way that is acceptable for
mail transport.

Content-ID: Used to identify MIME entities uniquely in multiple contexts.

Content-Description: A text description of the object with the bodys; this is
useful when the object is not readable (e.g., audio data).

Any or all of these fields may appear in a normal RFC 5322 header. A compliant

implementation must support the MIME-Version, Content-Type, and Content-
Transfer-Encoding fields; the Content-ID and Content-Description fields are optional
and may be ignored by the recipient implementation.

244 CHAPTER 7 / ELECTRONIC MAIL SECURITY

MIME ConteNT Tyres The bulk of the MIME specification is concerned with the
definition of a variety of content types. This reflects the need to provide
standardized ways of dealing with a wide variety of information representations in a
multimedia environment.

Table 7.3 lists the content types specified in RFC 2046. There are seven different
major types of content and a total of 15 subtypes. In general, a content type declares the
general type of data, and the subtype specifies a particular format for that type of data.

For the text type of body, no special software is required to get the full meaning
of the text aside from support of the indicated character set. The primary subtype is
plain text, which is simply a string of ASCII characters or ISO 8859 characters. The
enriched subtype allows greater formatting flexibility.

The multipart type indicates that the body contains multiple, independent
parts. The Content-Type header field includes a parameter (called a boundary) that
defines the delimiter between body parts. This boundary should not appear in any
parts of the message. Each boundary starts on a new line and consists of two
hyphens followed by the boundary value. The final boundary, which indicates the
end of the last part, also has a suffix of two hyphens. Within each part, there may be
an optional ordinary MIME header.

Table 7.3 MIME Content Types

Type Subtype Description

Text Plain Unformatted text; may be ASCII or ISO 8859.

Enriched Provides greater format flexibility.

Multipart Mixed The different parts are independent but are to be transmitted together. They
should be presented to the receiver in the order that they appear in the mail
message.

Parallel Differs from Mixed only in that no order is defined for delivering the parts to
the receiver.

Alternative The different parts are alternative versions of the same information. They are
ordered in increasing faithfulness to the original, and the recipient’s mail
system should display the “best” version to the user.

Digest Similar to Mixed, but the default type/subtype of each part is message/rfc822.

Message rfc822 The body is itself an encapsulated message that conforms to RFC 822.

Partial Used to allow fragmentation of large mail items, in a way that is transparent
to the recipient.

External-body | Contains a pointer to an object that exists elsewhere.

Image jpeg The image is in JPEG format, JFIF encoding.

gif The image is in GIF format.

Video mpeg MPEG format.

Audio Basic Single-channel 8-bit ISDN mu-law encoding at a sample rate of 8 kHz.

Application | PostScript Adobe Postscript format.

octet-stream General binary data consisting of 8-bit bytes.

7.2/ S/MIME 245

Here is a simple example of a multipart message containing two parts—both
consisting of simple text (taken from RFC 2046).

From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>

Subject: Sample message

MIME-Version: 1.0

Content-type: multipart/mixed; boundary="simple
boundary"

This is the preamble. It is to be ignored, though it
is a handy place for mail composers to include an
explanatory note to non-MIME conformant readers.

—simple boundary

This 1s implicitly typed plain ASCII text. It does NOT
end with a linebreak.

—simple boundary

Content-type: text/plain; charset=us-ascii

This 1s explicitly typed plain ASCII text. It DOES end
with a linebreak.

—simple boundary—
This is the epilogue. It is also to be ignored.

There are four subtypes of the multipart type, all of which have the same over-
all syntax. The multipart/mixed subtype is used when there are multiple indepen-
dent body parts that need to be bundled in a particular order. For the
multipart/parallel subtype, the order of the parts is not significant. If the recipient’s
system is appropriate, the multiple parts can be presented in parallel. For example, a
picture or text part could be accompanied by a voice commentary that is played
while the picture or text is displayed.

For the multipart/alternative subtype, the various parts are different represen-
tations of the same information. The following is an example:

From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>

Subject: Formatted text mail

MIME-Version: 1.0

Content-Type: multipart/alternative;
boundary=boundary42

—boundary42
Content-Type: text/plain; charset=us-ascii

...plain text version of message goes here....

246 CHAPTER 7 / ELECTRONIC MAIL SECURITY

—boundary4?2
Content-Type: text/enriched

RFC 1896 text/enriched version of same message
goes here

—boundary42—

In this subtype, the body parts are ordered in terms of increasing preference.
For this example, if the recipient system is capable of displaying the message in the
text/enriched format, this is done; otherwise, the plain text format is used.

The multipart/digest subtype is used when each of the body parts is inter-
preted as an RFC 5322 message with headers. This subtype enables the construction
of a message whose parts are individual messages. For example, the moderator of a
group might collect e-mail messages from participants, bundle these messages, and
send them out in one encapsulating MIME message.

The message type provides a number of important capabilities in MIME. The
message/rfc822 subtype indicates that the body is an entire message, including
header and body. Despite the name of this subtype, the encapsulated message may
be not only a simple RFC 5322 message but also any MIME message.

The message/partial subtype enables fragmentation of a large message into a
number of parts, which must be reassembled at the destination. For this subtype,
three parameters are specified in the Content-Type: Message/Partial field: an id
common to all fragments of the same message, a sequence number unique to each
fragment, and the total number of fragments.

The message/external-body subtype indicates that the actual data to be con-
veyed in this message are not contained in the body. Instead, the body contains the
information needed to access the data. As with the other message types, the mes-
sage/external-body subtype has an outer header and an encapsulated message with
its own header. The only necessary field in the outer header is the Content-Type
field, which identifies this as a message/external-body subtype. The inner header is
the message header for the encapsulated message. The Content-Type field in the
outer header must include an access-type parameter, which indicates the method of
access, such as FTP (file transfer protocol).

The application type refers to other kinds of data, typically either uninter-
preted binary data or information to be processed by a mail-based application.

MIME TrANSFER ENncobpINGS The other major component of the MIME
specification, in addition to content type specification, is a definition of transfer
encodings for message bodies. The objective is to provide reliable delivery across
the largest range of environments.

The MIME standard defines two methods of encoding data. The Content-
Transfer-Encoding field can actually take on six values, as listed in Table 7.4.
However, three of these values (7bit, 8bit, and binary) indicate that no encoding has
been done but provide some information about the nature of the data. For SMTP
transfer, it is safe to use the 7bit form. The 8bit and binary forms may be usable in
other mail transport contexts. Another Content-Transfer-Encoding value is x-token,

7.2/ S/MIME 247

Table 7.4 MIME Transfer Encodings

7bit The data are all represented by short lines of ASCII characters.

8bit The lines are short, but there may be non-ASCII characters (octets with the
high-order bit set).

binary Not only may non-ASCII characters be present, but the lines are not necessar-
ily short enough for SMTP transport.

quoted-printable | Encodes the data in such a way that if the data being encoded are mostly
ASCII text, the encoded form of the data remains largely recognizable by
humans.

base64 Encodes data by mapping 6-bit blocks of input to 8-bit blocks of output, all of
which are printable ASCII characters.

x-token A named nonstandard encoding.

which indicates that some other encoding scheme is used for which a name is to be
supplied. This could be a vendor-specific or application-specific scheme. The two
actual encoding schemes defined are quoted-printable and base64. Two schemes are
defined to provide a choice between a transfer technique that is essentially human
readable and one that is safe for all types of data in a way that is reasonably compact.

The quoted-printable transfer encoding is useful when the data consists
largely of octets that correspond to printable ASCII characters. In essence, it
represents nonsafe characters by the hexadecimal representation of their code and
introduces reversible (soft) line breaks to limit message lines to 76 characters.

The base64 transfer encoding, also known as radix-64 encoding, is a common
one for encoding arbitrary binary data in such a way as to be invulnerable to the
processing by mail-transport programs. It is also used in PGP and is described in
Appendix 7A.

A Murtieart ExampLe Figure 7.8, taken from RFC 2045, is the outline of a
complex multipart message. The message has five parts to be displayed serially: two
introductory plain text parts, an embedded multipart message, a richtext part, and a
closing encapsulated text message in a non-ASCII character set. The embedded
multipart message has two parts to be displayed in parallel: a picture and an audio
fragment.

CanonicAL Form An important concept in MIME and S/MIME is that of
canonical form. Canonical form is a format, appropriate to the content type, that is
standardized for use between systems. This is in contrast to native form, which is a
format that may be peculiar to a particular system. Table 7.5, from RFC 2049, should
help clarify this matter.

S/MIME Functionality

In terms of general functionality, SSMIME is very similar to PGP. Both offer the
ability to sign and/or encrypt messages. In this subsection, we briefly summarize
S/MIME capability. We then look in more detail at this capability by examining mes-
sage formats and message preparation.

248 CHAPTER 7 / ELECTRONIC MAIL SECURITY

MIME-Version: 1.0

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned @innosoft.com>

Subject: A multipart example

Content-Type: multipart/mixed;
boundary=unique-boundary-1

This is the preamble area of a multipart message. Mail readers that understand multipart format should ignore
this preamble. If you are reading this text, you might want to consider changing to a mail reader that understands
how to properly display multipart messages.

--unique-boundary-1

...Some text appears here...
[Note that the preceding blank line means no header fields were given and this is text, with charset US ASCII.
It could have been done with explicit typing as in the next part.]

--unique-boundary-1
Content-type: text/plain; charset=US-ASCII

This could have been part of the previous part, but illustrates explicit versus implicit typing of body parts.

--unique-boundary-1
Content-Type: multipart/parallel; boundary=unique-boundary-2

--unique-boundary-2
Content-Type: audio/basic
Content-Transfer-Encoding: base64

... base64-encoded 8000 Hz single-channel mu-law-format audio data goes here....

--unique-boundary-2
Content-Type: image/jpeg
Content-Transfer-Encoding: base64

... base64-encoded image data goes here....
--unique-boundary-2--

--unique-boundary-1
Content-type: text/enriched

This is <bold><italic>richtext.</italic></bold> <smaller>as defined in RFC 1896</smaller>
Isn't it <bigger><bigger>cool ?</bigger></bigger>

--unique-boundary- 1
Content-Type: message/rfc822

From: (mailbox in US-ASCII)

To: (address in US-ASCII)

Subject: (subject in US-ASCII)

Content-Type: Text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: Quoted-printable

... Additional text in ISO-8859-1 goes here ...

--unique-boundary-1--

Figure 7.8 Example MIME Message Structure

7.2/ S/MIME 249

Table 7.5 Native and Canonical Form

Native The body to be transmitted is created in the system’s native format. The native char-
Form acter set is used and, where appropriate, local end-of-line conventions are used as
well. The body may be a UNIX-style text file, or a Sun raster image, or a VMS
indexed file, or audio data in a system-dependent format stored only in memory, or
anything else that corresponds to the local model for the representation of some
form of information. Fundamentally, the data is created in the “native” form that
corresponds to the type specified by the media type.

Canonical The entire body, including “out-of-band” information such as record lengths and pos-
Form sibly file attribute information, is converted to a universal canonical form. The spe-
cific media type of the body as well as its associated attributes dictate the nature of
the canonical form that is used. Conversion to the proper canonical form may
involve character set conversion, transformation of audio data, compression, or vari-
ous other operations specific to the various media types. If character set conversion
is involved, however, care must be taken to understand the semantics of the media
type, which may have strong implications for any character set conversion (e.g., with
regard to syntactically meaningful characters in a text subtype other than “plain”).

Functions S/IMIME provides the following functions.

¢ Enveloped data: This consists of encrypted content of any type and encrypted-
content encryption keys for one or more recipients.

* Signed data: A digital signature is formed by taking the message digest of the
content to be signed and then encrypting that with the private key of the signer.
The content plus signature are then encoded using base64 encoding. A signed
data message can only be viewed by a recipient with S/MIME capability.

* Clear-signed data: As with signed data, a digital signature of the content is
formed. However, in this case, only the digital signature is encoded using
base64. As a result, recipients without S/MIME capability can view the message
content, although they cannot verify the signature.

e Signed and enveloped data: Signed-only and encrypted-only entities may be
nested, so that encrypted data may be signed and signed data or clear-signed
data may be encrypted.

CryrTOGRAPHIC ALGORITHMS Table 7.6 summarizes the cryptographic algorithms used
in SMIME. S/MIME uses the following terminology taken from RFC 2119 (Key Words
for use in RFCs to Indicate Requirement Levels) to specify the requirement level:

e MUST: The definition is an absolute requirement of the specification. An
implementation must include this feature or function to be in conformance
with the specification.

° SHOULD: There may exist valid reasons in particular circumstances to ignore
this feature or function, but it is recommended that an implementation include
the feature or function.

S/MIME incorporates three public-key algorithms. The Digital Signature
Standard (DSS) described in Chapter 3 is the preferred algorithm for digital
signature. S/MIME lists Diffie-Hellman as the preferred algorithm for encrypting
session keys; in fact, SSMIME uses a variant of Diffie-Hellman that does provide

250 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Table 7.6 Cryptographic Algorithms Used in S/MIME

Function Requirement
Create a message digest to be used in MUST support SHA-1.
forming a digital signature. Receiver SHOULD support MD5 for backward compatibility.

Encrypt message digest to form a digital Sending and receiving agents MUST support DSS.
signature. Sending agents SHOULD support RSA encryption.

Receiving agents SHOULD support verification of RSA
signatures with key sizes 512 bits to 1024 bits.

Encrypt session key for transmission with | Sending and receiving agents SHOULD support Diffie-Hellman.

2 IR Sending and receiving agents MUST support RSA encryption
with key sizes 512 bits to 1024 bits.

Encrypt message for transmission with a Sending and receiving agents MUST support encryption with

one-time session key. tripleDES.

Sending agents SHOULD support encryption with AES.
Sending agents SHOULD support encryption with RC2/40.

Create a message authentication code. Receiving agents MUST support HMAC with SHA-1.
Sending agents SHOULD support HMAC with SHA-1.

encryption/decryption, known as ElGamal. As an alternative, RSA, described in
Chapter 3, can be used for both signatures and session key encryption. These are the
same algorithms used in PGP and provide a high level of security. For the hash
function used to create the digital signature, the specification requires the 160-bit
SHA-1 but recommends receiver support for the 128-bit MDS5 for backward com-
patibility with older versions of S/MIME. As we discussed in Chapter 3, there is
justifiable concern about the security of MDS, so SHA-1 is clearly the preferred
alternative.

For message encryption, three-key triple DES (tripleDES) is recommended,
but compliant implementations must support 40-bit RC2. The latter is a weak
encryption algorithm but allows compliance with U.S. export controls.

The S/MIME specification includes a discussion of the procedure for deciding
which content encryption algorithm to use. In essence, a sending agent has two deci-
sions to make. First, the sending agent must determine if the receiving agent is capa-
ble of decrypting using a given encryption algorithm. Second, if the receiving agent
is only capable of accepting weakly encrypted content, the sending agent must
decide if it is acceptable to send using weak encryption. To support this decision
process, a sending agent may announce its decrypting capabilities in order of prefer-
ence for any message that it sends out. A receiving agent may store that information
for future use.

The following rules, in the following order, should be followed by a sending
agent.

1. If the sending agent has a list of preferred decrypting capabilities from an
intended recipient, it SHOULD choose the first (highest preference) capabil-
ity on the list that it is capable of using.

7.2/ S/MIME 251

2. If the sending agent has no such list of capabilities from an intended recipient but
has received one or more messages from the recipient, then the outgoing mes-
sage SHOULD use the same encryption algorithm as was used on the last signed
and encrypted message received from that intended recipient.

3. If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is willing to risk that the recipient may not be able to
decrypt the message, then the sending agent SHOULD use triple DES.

4. If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is not willing to risk that the recipient may not be able
to decrypt the message, then the sending agent MUST use RC2/40.

If a message is to be sent to multiple recipients and a common encryption
algorithm cannot be selected for all, then the sending agent will need to send two
messages. However, in that case, it is important to note that the security of the mes-
sage is made vulnerable by the transmission of one copy with lower security.

S/MIME Messages

S/MIME makes use of a number of new MIME content types, which are shown in
Table 7.7. All of the new application types use the designation PKCS. This refers to
a set of public-key cryptography specifications issued by RSA Laboratories and
made available for the S/MIME effort.

We examine each of these in turn after first looking at the general procedures
for SSMIME message preparation.

SecurinGg 4 MIME Entrty SIMIME secures a MIME entity with a signature,
encryption, or both. A MIME entity may be an entire message (except for the
RFC 5322 headers), or if the MIME content type is multipart, then a MIME entity is
one or more of the subparts of the message. The MIME entity is prepared according
to the normal rules for MIME message preparation. Then the MIME entity plus
some security-related data, such as algorithm identifiers and certificates, are
processed by S/MIME to produce what is known as a PKCS object. A PKCS object
is then treated as message content and wrapped in MIME (provided with
appropriate MIME headers). This process should become clear as we look at
specific objects and provide examples.

In all cases, the message to be sent is converted to canonical form. In particu-
lar, for a given type and subtype, the appropriate canonical form is used for the mes-
sage content. For a multipart message, the appropriate canonical form is used for
each subpart.

The use of transfer encoding requires special attention. For most cases, the result
of applying the security algorithm will be to produce an object that is partially or totally
represented in arbitrary binary data. This will then be wrapped in an outer MIME
message, and transfer encoding can be applied at that point, typically base64. However,
in the case of a multipart signed message (described in more detail later), the message
content in one of the subparts is unchanged by the security process. Unless that content
is 7bit, it should be transfer encoded using base64 or quoted-printable so that there is
no danger of altering the content to which the signature was applied.

We now look at each of the SSMIME content types.

252 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Table 7.7 S/MIME Content Types

Type Subtype smime Parameter Description

Multipart Signed A clear-signed message in two parts: one is the
message and the other is the signature.

Application | pkcs7-mime signedData A signed S/MIME entity.

pkcs7-mime envelopedData An encrypted S/MIME entity.

pkcs7-mime degenerate An entity containing only public-key certificates.
signedData

pkcs7-mime CompressedData A compressed S/MIME entity.

pkes7- signedData The content type of the signature subpart of a
signature multipart/signed message.

ENVELOPEDDATA An application/pkcs7-mime subtype is used for one of four
categories of S/MIME processing, each with a unique smime-type parameter. In all
cases, the resulting entity (referred to as an object) is represented in a form known
as Basic Encoding Rules (BER), which is defined in ITU-T Recommendation
X.209. The BER format consists of arbitrary octet strings and is therefore binary
data. Such an object should be transfer encoded with base64 in the outer MIME
message. We first look at envelopedData.
The steps for preparing an envelopedData MIME entity are

1. Generate a pseudorandom session key for a particular symmetric encryp-
tion algorithm (RC2/40 or triple DES).

2. For each recipient, encrypt the session key with the recipient’s public RSA key.
3. For each recipient, prepare a block known as RecipientInfo that contains

an identifier of the recipient’s public-key certificate,? an identifier of the algo-
rithm used to encrypt the session key, and the encrypted session key.

4. Encrypt the message content with the session key.

The RecipientInfo blocks followed by the encrypted content constitute
the envelopedData. This information is then encoded into base64. A sample
message (excluding the RFC 5322 headers) is

Content-Type: application/pkcs7-mime; smime-type=enveloped-
data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhThjH7 7n8HHGTIHGAVQpEyF467GhIGEHEYT6
7n8HHGghyHhHUUjhTh4VOpfyF467GhIGEHEYGTr fvbnjT6jH7756tbBIH
f8HHGTrfvhIhjH776tbBIHGAVQObNn]7567CGhIGEHEYT6ghyHhHUujpfyF4
OGhIGEHEQbnj756YT64V

3This is an X.509 certificate, discussed later in this section.

7.2/ S/MIME 253

To recover the encrypted message, the recipient first strips off the base64
encoding. Then the recipient’s private key is used to recover the session key. Finally,
the message content is decrypted with the session key.

SienepDAat4 The signedData smime-type can be used with one or more signers.
For clarity, we confine our description to the case of a single digital signature. The
steps for preparing a signedData MIME entity are

1. Select a message digest algorithm (SHA or MDS5).

2. Compute the message digest (hash function) of the content to be signed.
3. Encrypt the message digest with the signer’s private key.
4

. Prepare a block known as SignerInfo that contains the signer’s public-
key certificate, an identifier of the message digest algorithm, an identifier of
the algorithm used to encrypt the message digest, and the encrypted mes-
sage digest.

The signedData entity consists of a series of blocks, including a message
digest algorithm identifier, the message being signed, and SignerInfo. The
signedData entity may also include a set of public-key certificates sufficient to
constitute a chain from a recognized root or top-level certification authority to the
signer. This information is then encoded into base64. A sample message (excluding
the RFC 5322 headers) is

Content-Type: application/pkcs7-mime; smime-type=signed-
data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGEHfYT6ghyHhHUujpfyF4£8HHGTr fvhdJhjH776tbBIHG4AVQbnj7
77n8HHGTIHG4AVQpfyF467CGhIGEfHEYT6rfvbnj756tbBghyHhHUujhJhjH
HUujhJhdvQpfyF467GhIGfHEYGTrfvbnjT6jH7756tbBO9H7n8HHGghyHh
6YT64VOGhIGEHfQbnj75

To recover the signed message and verify the signature, the recipient first
strips off the base64 encoding. Then the signer’s public key is used to decrypt the
message digest. The recipient independently computes the message digest and com-
pares it to the decrypted message digest to verify the signature.

Crear SicninG Clear signing is achieved using the multipart content type with a
signed subtype. As was mentioned, this signing process does not involve
transforming the message to be signed, so that the message is sent “in the clear.”
Thus, recipients with MIME capability but not S/MIME capability are able to read
the incoming message.

A multipart/signed message has two parts. The first part can be any MIME
type but must be prepared so that it will not be altered during transfer from source
to destination. This means that if the first part is not 7bit, then it needs to be encoded

254 CHAPTER 7 / ELECTRONIC MAIL SECURITY

using base64 or quoted-printable. Then this part is processed in the same manner as
signedData, but in this case an object with signedData format is created that
has an empty message content field. This object is a detached signature. It is then
transfer encoded using base64 to become the second part of the multipart/signed
message. This second part has a MIME content type of application and a subtype of
pkes7-signature. Here is a sample message:

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg=shal; boundary=boundary42

—boundary4?2
Content-Type: text/plain

This is a clear-signed message.

—boundary4?2

Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH7 7Tn8HHGTr fvbni 756 tbBOHGAVOpfyF467GhIGEHEYT6
4VQpfyF467GhIGEHEYT6iH7 7n8HHGghyHhHUUjhJh756 tbBOHGTr fvbnj
n8HHGTr fvhJThjH776tbBIHG4VQbnj7567GhIGfHEYT6ghyHhHUujpfyF4
TGhIGfHEYT64VQbnj756

—boundary42—

The protocol parameter indicates that this is a two-part clear-signed entity.
The micalg parameter indicates the type of message digest used. The receiver can
verify the signature by taking the message digest of the first part and comparing this
to the message digest recovered from the signature in the second part.

REecisTraTION REQUEST Typically, an application or user will apply to a certification
authority for a public-key certificate. The application/pkcs10 S/MIME entity is used to
transfer a certification request. The certification request includes certification
RequestInfo block, followed by an identifier of the public-key encryption
algorithm, followed by the signature of the certificationRequestInfo block
made using the sender’s private key. The certificationRequestInfo block
includes a name of the certificate subject (the entity whose public key is to be
certified) and a bit-string representation of the user’s public key.

CERTIFICATES-ONLY MESSAGE A message containing only certificates or a certificate
revocation list (CRL) can be sent in response to a registration request. The message
is an application/pkcs7-mime type/subtype with an smime-type parameter of
degenerate. The steps involved are the same as those for creating a signedData
message, except that there is no message content and the signerInfo field
is empty.

7.2/ S/MIME 255

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509
(see Chapter 4). The key-management scheme used by S/MIME is in some ways a
hybrid between a strict X.509 certification hierarchy and PGP’s web of trust.
As with the PGP model, SSMIME managers and/or users must configure each client
with a list of trusted keys and with certificate revocation lists. That is, the responsi-
bility is local for maintaining the certificates needed to verify incoming signatures
and to encrypt outgoing messages. On the other hand, the certificates are signed by
certification authorities.

User AGENT RoLE An S/MIME user has several key-management functions to
perform.

e Key generation: The user of some related administrative utility (e.g., one asso-
ciated with LAN management) MUST be capable of generating separate
Diffie-Hellman and DSS key pairs and SHOULD be capable of generating
RSA key pairs. Each key pair MUST be generated from a good source of non-
deterministic random input and be protected in a secure fashion. A user agent
SHOULD generate RSA key pairs with a length in the range of 768 to 1024 bits
and MUST NOT generate a length of less than 512 bits.

* Registration: A user’s public key must be registered with a certification
authority in order to receive an X.509 public-key certificate.

¢ Certificate storage and retrieval: A user requires access to a local list of certifi-
cates in order to verify incoming signatures and to encrypt outgoing messages.
Such a list could be maintained by the user or by some local administrative
entity on behalf of a number of users.

VEriSIGN CertiFicATEs There are several companies that provide certification authority
(CA) services. For example, Nortel has designed an enterprise CA solution and can
provide S/MIME support within an organization. There are a number of Internet-based
CAs, including VeriSign, GTE, and the U.S. Postal Service. Of these, the most widely
used is the VeriSign CA service, a brief description of which we now provide.

VeriSign provides a CA service that is intended to be compatible with S’'MIME
and a variety of other applications. VeriSign issues X.509 certificates with the product
name VeriSign Digital ID. As of early 1998, over 35,000 commercial Web sites were
using VeriSign Server Digital IDs, and over a million consumer Digital IDs had been
issued to users of Netscape and Microsoft browsers.

The information contained in a Digital ID depends on the type of Digital ID
and its use. At a minimum, each Digital ID contains

e Owner’s public key

* Owner’s name or alias

e Expiration date of the Digital ID
e Serial number of the Digital ID

Name of the certification authority that issued the Digital ID

Digital signature of the certification authority that issued the Digital ID

256 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Digital IDs can also contain other user-supplied information, including

e Address
e E-mail address

 Basic registration information (country, zip code, age, and gender)

VeriSign provides three levels, or classes, of security for public-key certificates,
as summarized in Table 7.8. A user requests a certificate online at VeriSign’s Web
site or other participating Web sites. Class 1 and Class 2 requests are processed
on line, and in most cases take only a few seconds to approve. Briefly, the following
procedures are used.

e For Class 1 Digital IDs, VeriSign confirms the user’s e-mail address by sending
a PIN and Digital ID pick-up information to the e-mail address provided in
the application.

e For Class 2 Digital IDs, VeriSign verifies the information in the application
through an automated comparison with a consumer database in addition to

Table 7.8 Verisign Public-Key Certificate Classes
Class 1 Class 2 Class 3

Summary of Automated unam- Same as Class 1, plus Same as Class 1, plus personal

Confirmation biguous name and automated enrollment infor- presence and ID documents

of Identity e-mail address search. | mation check and automated plus Class 2 automated ID

address check. check for individuals; business

records (or filings) for
organizations.

IA Private Key | PCA: trustworthy PCA and CA: trustworthy PCA and CA: trustworthy

Protection hardware; CA: trust- hardware. hardware.

worthy software or
trustworthy hardware.

Certificate Encryption software Encryption software (PIN Encryption software (PIN

Applicant and (PIN protected) protected) required. protected) required; hardware

Subscriber recommended but not token recommended but not

Private Key required. required.

Protection

Applications ‘Web-browsing and Individual and intra- and E-banking, corp. database

Implemented or | certain e-mail usage. inter-company e-mail, online access, personal banking,

Contemplated subscriptions, password membership-based online

by Users replacement, and software services, content integrity

validation. services, e-Commerce Server,
software validation; authenti-
cation of LRAAs; and strong
encryption for certain servers.
1A = Issuing Authority

CA = Certification Authority

PCA

PIN = Personal Identification Number
LRAA = Local Registration Authority Administrator

= VeriSign public primary certification authority

7.3 / DOMAINKEYS IDENTIFIED MAIL 257

performing all of the checking associated with a Class 1 Digital ID. Finally,
confirmation is sent to the specified postal address alerting the user that a
Digital ID has been issued in his or her name.

e For Class 3 Digital IDs, VeriSign requires a higher level of identity assurance.
An individual must prove his or her identity by providing notarized creden-
tials or applying in person.

Enhanced Security Services

As of this writing, three enhanced security services have been proposed in an
Internet draft. The details of these may change, and additional services may be
added. The three services are

* Signed receipts: A signed receipt may be requested in a SignedData object.
Returning a signed receipt provides proof of delivery to the originator of a
message and allows the originator to demonstrate to a third party that the
recipient received the message. In essence, the recipient signs the entire origi-
nal message plus the original (sender’s) signature and appends the new signa-
ture to form a new S/MIME message.

e Security labels: A security label may be included in the authenticated attrib-
utes of a SignedData object. A security label is a set of security information
regarding the sensitivity of the content that is protected by S/MIME encapsu-
lation. The labels may be used for access control, by indicating which users are
permitted access to an object. Other uses include priority (secret, confidential,
restricted, and so on) or role based, describing which kind of people can see
the information (e.g., patient’s health-care team, medical billing agents, etc.).

* Secure mailing lists: When a user sends a message to multiple recipients, a cer-
tain amount of per-recipient processing is required, including the use of each
recipient’s public key. The user can be relieved of this work by employing the
services of an S/MIME Mail List Agent (MLA). An MLA can take a single
incoming message, perform the recipient-specific encryption for each recipi-
ent, and forward the message. The originator of a message need only send the
message to the MLA with encryption performed using the MLA’s public key.

7.3 DOMAINKEYS IDENTIFIED MAIL

DomainKeys Identified Mail (DKIM) is a specification for cryptographically signing
e-mail messages, permitting a signing domain to claim responsibility for a message in
the mail stream. Message recipients (or agents acting in their behalf) can verify the
signature by querying the signer’s domain directly to retrieve the appropriate public
key and thereby can confirm that the message was attested to by a party in posses-
sion of the private key for the signing domain. DKIM is a proposed Internet
Standard (RFC 4871: DomainKeys Ildentified Mail (DKIM) Signatures). DKIM has
been widely adopted by a range of e-mail providers, including corporations, govern-
ment agencies, gmail, yahoo, and many Internet Service Providers (ISPs).

258 CHAPTER 7 / ELECTRONIC MAIL SECURITY

This section provides an overview of DKIM. Before beginning our discussion
of DKIM, we introduce the standard Internet mail architecture. Then we look at the
threat that DKIM is intended to address, and finally provide an overview of DKIM
operation.

Internet Mail Architecture

To understand the operation of DKIM, it is useful to have a basic grasp of the
Internet mail architecture, which is currently defined in [CROCO09]. This subsection
provides an overview of the basic concepts.

At its most fundamental level, the Internet mail architecture consists of a user
world in the form of Message User Agents (MUA), and the transfer world, in the
form of the Message Handling Service (MHS), which is composed of Message
Transfer Agents (MTA). The MHS accepts a message from one user and delivers it
to one or more other users, creating a virtual MUA-to-MUA exchange environ-
ment. This architecture involves three types of interoperability. One is directly
between users: messages must be formatted by the MUA on behalf of the message
author so that the message can be displayed to the message recipient by the destina-
tion MUA. There are also interoperability requirements between the MUA and the
MHS —first when a message is posted from an MUA to the MHS and later when it
is delivered from the MHS to the destination MUA. Interoperability is required
among the MTA components along the transfer path through the MHS.

Figure 7.9 illustrates the key components of the Internet mail architecture,
which include the following.

* Message User Agent (MUA): Works on behalf of user actors and user applica-
tions. It is their representative within the e-mail service. Typically, this function is
housed in the user’s computer and is referred to as a client e-mail program or a
local network e-mail server. The author MUA formats a message and performs
initial submission into the MHS via a MSA. The recipient MUA processes
received mail for storage and/or display to the recipient user.

* Mail Submission Agent (MSA): Accepts the message submitted by an MUA
and enforces the policies of the hosting domain and the requirements of
Internet standards. This function may be located together with the MUA or as
a separate functional model. In the latter case, the Simple Mail Transfer
Protocol (SMTP) is used between the MUA and the MSA.

* Message Transfer Agent (MTA): Relays mail for one application-level hop.
It is like a packet switch or IP router in that its job is to make routing assess-
ments and to move the message closer to the recipients. Relaying is performed
by a sequence of MTAs until the message reaches a destination MDA. An
MTA also adds trace information to the message header. SMTP is used
between MTAs and between an MTA and an MSA or MDA.

* Mail Delivery Agent (MDA): Responsible for transferring the message from
the MHS to the MS.

* Message Store (MS): An MUA can employ a long-term MS. An MS can be
located on a remote server or on the same machine as the MUA. Typically, an
MUA retrieves messages from a remote server using POP (Post Office
Protocol) or IMAP (Internet Message Access Protocol).

7.3 / DOMAINKEYS IDENTIFIED MAIL 259

Message Transfer Message Transfer Message Transfer

>0 0 0 —Pp| > ¢ ¢ 0 —Pp

1 1
! 1
! 1
1 1
! 1
' Agent (MTA) Agent (MTA) Agent (MTA) !
1
' SMTP SMTP ,
1 Y 1
! 1
. SMTP (SMTP, :
' local) \
1 A 1
! 1
: Mail Submission Mail Delivery '
1 Agent (MSA) Message handling Agent (MDA) \
: system (MHS) !
1 N 1
e -
(SMTP,
SMTP local)
Message User Message Message Store
Agent (MUA) author (MS)
(IMAP, POP,
local)
Message Message User
recipient Agent (MUA)

Figure 7.9 Function Modules and Standardized Protocols for the Internet

Two other concepts need to be defined. An administrative management
domain (ADMD) is an Internet e-mail provider. Examples include a department
that operates a local mail relay (MTA), an IT department that operates an enterprise
mail relay, and an ISP that operates a public shared e-mail service. Each ADMD can
have different operating policies and trust-based decision making. One obvious
example is the distinction between mail that is exchanged within an organization and
mail that is exchanged between independent organizations. The rules for handling
the two types of traffic tend to be quite different.

The Domain Name System (DNS) is a directory lookup service that provides
a mapping between the name of a host on the Internet and its numerical address.

E-mail Threats

RFC 4684 (Analysis of Threats Motivating DomainKeys Identified Mail) describes
the threats being addressed by DKIM in terms of the characteristics, capabilities,
and location of potential attackers.

Craaracteristics RFC characterizes the range of attackers on a spectrum of three
levels of threat.

1. At the low end are attackers who simply want to send e-mail that a recipient
does not want to receive. The attacker can use one of a number of commercially
available tools that allow the sender to falsify the origin address of messages.
This makes it difficult for the receiver to filter spam on the basis of originating
address or domain.

260 CHAPTER 7 / ELECTRONIC MAIL SECURITY

2.

At the next level are professional senders of bulk spam mail. These attackers
often operate as commercial enterprises and send messages on behalf of third
parties. They employ more comprehensive tools for attack, including Mail
Transfer Agents (MTAs) and registered domains and networks of compromised
computers (zombies) to send messages and (in some cases) to harvest addresses
to which to send.

. The most sophisticated and financially motivated senders of messages are those

who stand to receive substantial financial benefit, such as from an e-mail-based
fraud scheme. These attackers can be expected to employ all of the above
mechanisms and additionally may attack the Internet infrastructure itself,
including DNS cache-poisoning attacks and IP routing attacks.

Caraprrties RFC 4686 lists the following as capabilities that an attacker might

have.
1.

F N

BN B Y |

10.

11.

Submit messages to MTAs and Message Submission Agents (MSAs) at
multiple locations in the Internet.

. Construct arbitrary Message Header fields, including those claiming to be

mailing lists, resenders, and other mail agents.

. Sign messages on behalf of domains under their control.
. Generate substantial numbers of either unsigned or apparently signed messages

that might be used to attempt a denial-of-service attack.

. Resend messages that may have been previously signed by the domain.
. Transmit messages using any envelope information desired.
. Act as an authorized submitter for messages from a compromised computer.

. Manipulation of IP routing. This could be used to submit messages from specific

IP addresses or difficult-to-trace addresses, or to cause diversion of messages to a
specific domain.

. Limited influence over portions of DNS using mechanisms such as cache

poisoning. This might be used to influence message routing or to falsify adver-
tisements of DNS-based keys or signing practices.

Access to significant computing resources, for example, through the conscription of
worm-infected “zombie” computers. This could allow the “bad actor” to perform
various types of brute-force attacks.

Ability to eavesdrop on existing traffic, perhaps from a wireless network.

Locatron DKIM focuses primarily on attackers located outside of the administrative
units of the claimed originator and the recipient. These administrative units frequently
correspond to the protected portions of the network adjacent to the originator and
recipient. It is in this area that the trust relationships required for authenticated
message submission do not exist and do not scale adequately to be practical.
Conversely, within these administrative units, there are other mechanisms (such as
authenticated message submission) that are easier to deploy and more likely to be
used than DKIM. External “bad actors” are usually attempting to exploit the “any-
to-any” nature of e-mail that motivates most recipient MTAs to accept messages from
anywhere for delivery to their local domain. They may generate messages without

7.3 / DOMAINKEYS IDENTIFIED MAIL 261

signatures, with incorrect signatures, or with correct signatures from domains with
little traceability. They may also pose as mailing lists, greeting cards, or other agents
that legitimately send or resend messages on behalf of others.

DKIM Strategy

DKIM is designed to provide an e-mail authentication technique that is transparent
to the end user. In essence, a user’s e-mail message is signed by a private key of the
administrative domain from which the e-mail originates. The signature covers all of
the content of the message and some of the RFC 5322 message headers. At the
receiving end, the MDA can access the corresponding public key via a DNS and ver-
ify the signature, thus authenticating that the message comes from the claimed
administrative domain. Thus, mail that originates from somewhere else but claims to
come from a given domain will not pass the authentication test and can be rejected.
This approach differs from that of SSMIME and PGP, which use the originator’s pri-
vate key to sign the content of the message. The motivation for DKIM is based on
the following reasoning.*

1. S/MIME depends on both the sending and receiving users employing S'MIME.
For almost all users, the bulk of incoming mail does not use S'MIME, and the
bulk of the mail the user wants to send is to recipients not using S/MIME.

2. S/MIME signs only the message content. Thus, RFC 5322 header information
concerning origin can be compromised.

3. DKIM is not implemented in client programs (MUASs) and is therefore transpar-
ent to the user; the user need take no action.

4. DKIM applies to all mail from cooperating domains.

5. DKIM allows good senders to prove that they did send a particular message
and to prevent forgers from masquerading as good senders.

Figure 7.10 is a simple example of the operation of DKIM. We begin with a
message generated by a user and transmitted into the MHS to an MSA that is within
the users administrative domain. An e-mail message is generated by an e-mail client
program. The content of the message, plus selected RFC 5322 headers, is signed by
the e-mail provider using the provider’s private key. The signer is associated with a
domain, which could be a corporate local network, an ISP, or a public e-mail facility
such as gmail. The signed message then passes through the Internet via a sequence
of MTAs. At the destination, the MDA retrieves the public key for the incoming
signature and verifies the signature before passing the message on to the destination
e-mail client. The default signing algorithm is RSA with SHA-256. RSA with
SHA-1 also may be used.

DKIM Functional Flow

Figure 7.11 provides a more detailed look at the elements of DKIM operation. Basic
message processing is divided between a signing Administrative Management
Domain (ADMD) and a veritying ADMD. At its simplest, this is between the

“The reasoning is expressed in terms of the use of S/MIME. The same argument applies to PGP.

262 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Mail origination Mail delivery

network network

DNS = Domain Name System
MDA = Mail Delivery Agent
MSA = Mail Submission Agent
MTA = Message Transfer Agent
MUA = Message User Agent

Figure 7.10 Simple Example of DKIM Deployment

originating ADMD and the delivering ADMD, but it can involve other ADMDs in
the handling path.

Signing is performed by an authorized module within the signing ADMD and
uses private information from a Key Store. Within the originating ADMD, this might
be performed by the MUA, MSA, or an MTA. Verifying is performed by an autho-
rized module within the verifying ADMD. Within a delivering ADMD, verifying
might be performed by an MTA, MDA, or MUA. The module verifies the signature
or determines whether a particular signature was required. Verifying the signature
uses public information from the Key Store. If the signature passes, reputation infor-
mation is used to assess the signer and that information is passed to the message
filtering system. If the signature fails or there is no signature using the author’s
domain, information about signing practices related to the author can be retrieved
remotely and/or locally, and that information is passed to the message filtering
system. For example, if the sender (e.g., gmail) uses DKIM but no DKIM signature is
present, then the message may be considered fraudulent.

The signature is inserted into the RFC 5322 message as an additional header
entry, starting with the keyword Dkim-Signature. You can view examples from
your own incoming mail by using the View Long Headers (or similar wording)
option for an incoming message. Here is an example:

7.3 / DOMAINKEYS IDENTIFIED MAIL

RFC 5322 Message

Originating or Relaying ADMD:
Sign Message with SDID

Private
key

store

(paired)

=

Remote

Relaying or Delivering ADMD: sender
Message signed? practices
Yes No
Y
Veri
s1gnature
Pass Fail
Y

»| Assessments

Reputation/

accreditation
information

vV

Check
signing
practices

Y

Message Local info
> filtering on sender
engine practices

Figure 7.11 DKIM Functional Flow

Dkim-Signature:

v=1l; a=rsa-sha256; c=relaxed/relaxed;
d=gmail.com; s=gamma; h=domainkey-signa-
ture:mime-version:received:date:message-
id:subject :from:to:content-type:con-
tent-transfer-encoding;
bh=5mZvQDyCRuyLblY28K4zgS2MPOemFToDBgvhbJ
7G090s=;
b=PcUvPSDygb4yabDyjlrbzGp/VyRiScuaz7TTG
J5agW5s1M+k1zv6kcfYAGDHZEVIW+Z
FetuPfF1ETOVhELtwHOzjSccOyPkEiblOf6gILO
bm3DDRmM3Ysl/FVrbhVO1A+/jH9Ael
ulIw/5iFnRbSH6GPDVV/beDQgAWQfA/wF705k=

264 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Before a message is signed, a process known as canonicalization is per-
formed on both the header and body of the RFC 5322 message. Canonicalization
is necessary to deal with the possibility of minor changes in the message made en
route, including character encoding, treatment of trailing white space in message
lines, and the “folding” and “unfolding” of header lines. The intent of canonical-
ization is to make a minimal transformation of the message (for the purpose of
signing; the message itself is not changed, so the canonicalization must be per-
formed again by the verifier) that will give it its best chance of producing the
same canonical value at the receiving end. DKIM defines two header canonical-
ization algorithms (“simple” and “relaxed”) and two for the body (with the same
names). The simple algorithm tolerates almost no modification, while the relaxed
tolerates common modifications.

The signature includes a number of fields. Each field begins with a tag consist-
ing of a tag code followed by an equals sign and ends with a semicolon. The fields
include the following:

e v = DKIM version.

° a = Algorithm used to generate the signature; must be either rsa-shal or
rsa-sha256.

e ¢ = Canonicalization method used on the header and the body.

° d = A domain name used as an identifier to refer to the identity of a respon-
sible person or organization. In DKIM, this identifier is called the Signing
Domain IDentifier (SDID). In our example, this field indicates that the sender
is using a gmail address.

e s = In order that different keys may be used in different circumstances for
the same signing domain (allowing expiration of old keys, separate depart-
mental signing, or the like), DKIM defines a selector (a name associated with
a key), which is used by the verifier to retrieve the proper key during signature
verification.

* h = Signed Header fields. A colon-separated list of header field names that
identify the header fields presented to the signing algorithm. Note that in our
example above, the signature covers the domainkey-signature field. This refers
to an older algorithm (since replaced by DKIM) that is still in use.

e bh = The hash of the canonicalized body part of the message. This provides
additional information for diagnosing signature verification failures.

* b = The signature data in base64 format; this is the encrypted hash code.

7.4 RECOMMENDED READING AND WEB SITES

[LEIBO7] provides an overview of DKIM.

LEIB07 Leiba, B., and Fenton, J. “DomainKeys Identified Mail (DKIM): Using Digital
Signatures for Domain Verification.” Proceedings of Fourth Conference on E-mail
and Anti-Spam (CEAS 07),2007.

7.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 265

Recommended Web Sites:
° PGP Home Page: PGP Web site by PGP Corp., the leading PGP commercial vendor.

* International PGP Home Page: Designed to promote worldwide use of PGP. Contains
documents and links of interest.

¢ PGP Charter: Latest RFCs and Internet drafts for Open Specification PGP.
* S/MIME Charter: Latest RFCs and Internet drafts for SSMIME.

* DKIM: Website hosted by Mutual Internet Practices Association, this site contains a
wide range of documents and information related to DKIM.

¢ DKIM Charter: Latest RFCs and Internet drafts for DKIM.

7.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
detached signature Multipurpose Internet Mail session key
DomainKeys Identified Mail Extensions (MIME) S/MIME
(DKIM) Pretty Good Privacy (PGP) trust
electronic mail radix 64 ZIP

Review Questions

7.1 What are the five principal services provided by PGP?
7.2 What is the utility of a detached signature?
7.3 Why does PGP generate a signature before applying compression?
7.4 What is R64 conversion?
7.5 Why is R64 conversion useful for an e-mail application?
7.6 How does PGP use the concept of trust?
7.7 What is RFC 5322?
7.8 Whatis MIME?
7.9 Whatis SSMIME?
7.10 What is DKIM?

Problems

7.1 PGP makes use of the cipher feedback (CFB) mode of CAST-128, whereas most sym-
metric encryption applications (other than key encryption) use the cipher block
chaining (CBC) mode. We have

CBC:C; = E(K, [C-i®P)); Pi= (i @ D(K, C)
CFB: C; = P;® E(K, Ci-1); P, = GO EK, Ci-y)

266 CHAPTER 7 / ELECTRONIC MAIL SECURITY

7.2

7.4

7.5

7.6

7.7

7.8

7.9

These two appear to provide equal security. Suggest a reason why PGP uses the CFB
mode.

In the PGP scheme, what is the expected number of session keys generated before a

previously created key is produced?

In PGP, what is the probability that a user with N public keys will have at least one

duplicate key ID?

The first 16 bits of the message digest in a PGP signature are translated in the clear.

a. To what extent does this compromise the security of the hash algorithm?

b. To what extent does it in fact perform its intended function, namely, to help deter-
mine if the correct RSA key was used to decrypt the digest?

In Figure 7.4, each entry in the public-key ring contains an Owner Trust field that indi-

cates the degree of trust associated with this public-key owner. Why is that not

enough? That is, if this owner is trusted and this is supposed to be the owner’s public

key, why is that trust not enough to permit PGP to use this public key?

What is the basic difference between X.509 and PGP in terms of key hierarchies and

key trust?

Phil Zimmermann chose IDEA, three-key triple DES, and CAST-128 as symmetric

encryption algorithms for PGP. Give reasons why each of the following symmetric

encryption algorithms described in this book is suitable or unsuitable for PGP: DES,

two-key triple DES, and AES.

Consider radix-64 conversion as a form of encryption. In this case, there is no key. But

suppose that an opponent knew only that some form of substitution algorithm was

being used to encrypt English text and did not guess that it was R64. How effective

would this algorithm be against cryptanalysis?

Encode the text “plaintext” using the following techniques. Assume characters are

stored in 8-bit ASCII with zero parity.

a. Radix-64

b. Quoted-printable

APPENDIX 7A RADIX-64 CONVERSION

Both PGP and S/MIME make use of an encoding technique referred to as radix-64 conver-
sion. This technique maps arbitrary binary input into printable character output. The form of
encoding has the following relevant characteristics:

1.

. The hyphen character

The range of the function is a character set that is universally representable at
all sites, not a specific binary encoding of that character set. Thus, the characters
themselves can be encoded into whatever form is needed by a specific system.
For example, the character “E” is represented in an ASCII-based system as
hexadecimal 45 and in an EBCDIC-based system as hexadecimal CS5.

. The character set consists of 65 printable characters, one of which is used for

padding. With 2% = 64 available characters, each character can be used to rep-
resent 6 bits of input.

. No control characters are included in the set. Thus, a message encoded in radix 64

can traverse mail-handling systems that scan the data stream for control characters.

[T3R1]

is not used. This character has significance in the RFC 5322
format and should therefore be avoided.

APPENDIX 7A / RADIX-64 CONVERSION 267

Table 7.9 Radix-64 Encoding

6-bit Character 6-bit Character | 6-bit Character 6-bit Character
Value Encoding Value Encoding | Value Encoding Value Encoding
0 A 16 Q 32 g 48 W
1 B 17 R 33 h 49 X
2 © 18 S 34 i 50 y
3 D 19 T 35 j 51 z
4 I 20 U 36 k 52 0
5 17 21 \'% 37 1 53 1
6 G 22 w 38 m 54 2
7 H 23 X 39 n 55 3
8 I 24 Y 40 o 56 4
9 J 25 Z 41 p 57 5
10 K 26 a 42 q 58 6
11 IL 27 b 43 r 59 7
12 M 28 © 44 S 60 8
13 N 29 d 45 t 61 9
14 O 30 @ 46 u 62 e
15 P 31 f 47 v 63 /
(pad) =

Table 7.9 shows the mapping of 6-bit input values to characters. The character set con-
sists of the alphanumeric characters plus “+” and “/”. The “=" character is used as the
padding character.

Figure 7.12 illustrates the simple mapping scheme. Binary input is processed in blocks
of 3 octets (24 bits). Each set of 6 bits in the 24-bit block is mapped into a character. In the fig-
ure, the characters are shown encoded as 8-bit quantities. In this typical case, each 24-bit input
is expanded to 32 bits of output.

For example, consider the 24-bit raw text sequence 00100011 01011100 10010001, which
can be expressed in hexadecimal as 235C91. We arrange this input in blocks of 6 bits:

001000 110101 110010 010001

The extracted 6-bit decimal values are 8, 53, 50, and 17. Looking these up in Table 7.9
yields the radix-64 encoding as the following characters: I1yR. If these characters are stored
in 8-bit ASCII format with parity bit set to zero, we have

01001001 00110001 01111001 01010010

268 CHAPTER 7 / ELECTRONIC MAIL SECURITY

24 bits =

<
-

~ A ~ A ~ A ~ A -~
< »
< [

4 characters = 32 bits

Figure 7.12 Printable Encoding of Binary Data into
Radix-64 Format

In hexadecimal, this is 49317952. To summarize:

Input Data
Binary representation 00100011 01011100 10010001
Hexadecimal representation 235C91

Radix-64 Encoding of Input Data

Character representation I1yR
ASCII code (8 bit, zero parity) 01001001 00110001 01111001 01010010
Hexadecimal representation 49317952

CHAPTER

IP SECURITY

8.1 IP Security Overview

Applications of IPsec
Benefits of [Psec

Routing Applications

IPsec Documents

IPsec Services

Transport and Tunnel Modes

8.2 IP Security Policy

Security Associations

Security Association Database
Security Policy Database

IP Traffic Processing

8.3 Encapsulating Security Payload

ESP Format

Encryption and Authentication Algorithms
Padding

Anti-Replay Service

Transport and Tunnel Modes

8.4 Combining Security Associations

Authentication Plus Confidentiality
Basic Combinations of Security Associations

8.5 Internet Key Exchange

Key Determination Protocol
Header and Payload Formats

8.6 Cryptographic Suites
8.7 Recommended Reading and Web Sites

8.8 Key Terms, Review Questions, and Problems

269

270 CHAPTER 8 / IP SECURITY

If a secret piece of news is divulged by a spy before the time is ripe, he must be put
to death, together with the man to whom the secret was told.

—The Art of War, Sun Tzu

KEY POINTS

¢ IPsecurity (IPsec) is a capability that can be added to either current version
of the Internet Protocol (IPv4 or IPv6) by means of additional headers.

¢ [IPsec encompasses three functional areas: authentication, confidentiality,
and key management.

¢ Authentication makes use of the HMAC message authentication code.
Authentication can be applied to the entire original IP packet (tunnel
mode) or to all of the packet except for the TP header (transport mode).
¢ Confidentiality is provided by an encryption format known as encapsulating
security payload. Both tunnel and transport modes can be accommodated.

¢ IKE defines a number of techniques for key management.

There are application-specific security mechanisms for a number of application
areas, including electronic mail (S/MIME, PGP), client/server (Kerberos), Web
access (Secure Sockets Layer), and others. However, users have security concerns
that cut across protocol layers. For example, an enterprise can run a secure, private
IP network by disallowing links to untrusted sites, encrypting packets that leave the
premises, and authenticating packets that enter the premises. By implementing
security at the IP level, an organization can ensure secure networking not only for
applications that have security mechanisms but also for the many security-ignorant
applications.

IP-level security encompasses three functional areas: authentication, confiden-
tiality, and key management. The authentication mechanism assures that a received
packet was, in fact, transmitted by the party identified as the source in the packet
header. In addition, this mechanism assures that the packet has not been altered in
transit. The confidentiality facility enables communicating nodes to encrypt messages
to prevent eavesdropping by third parties. The key management facility is concerned
with the secure exchange of keys.

We begin this chapter with an overview of IP security (IPsec) and an introduction
to the IPsec architecture. We then look at each of the three functional areas in detail.
Appendix D reviews Internet protocols.

8.1 IP SECURITY OVERVIEW

In 1994, the Internet Architecture Board (IAB) issued a report titled “Security in
the Internet Architecture” (RFC 1636). The report identified key areas for
security mechanisms. Among these were the need to secure the network

8.1 / IP SECURITY OVERVIEW 271

infrastructure from unauthorized monitoring and control of network traffic
and the need to secure end-user-to-end-user traffic using authentication and
encryption mechanisms.

To provide security, the IAB included authentication and encryption as
necessary security features in the next-generation IP, which has been issued as
IPv6. Fortunately, these security capabilities were designed to be usable both
with the current IPv4 and the future IPv6. This means that vendors can begin
offering these features now, and many vendors now do have some IPsec capabil-
ity in their products. The IPsec specification now exists as a set of Internet
standards.

Applications of IPsec

IPsec provides the capability to secure communications across a LAN, across private
and public WANS, and across the Internet. Examples of its use include:

* Secure branch office connectivity over the Internet: A company can build a
secure virtual private network over the Internet or over a public WAN. This
enables a business to rely heavily on the Internet and reduce its need for
private networks, saving costs and network management overhead.

* Secure remote access over the Internet: An end user whose system is equipped
with IP security protocols can make a local call to an Internet Service Provider
(ISP) and gain secure access to a company network. This reduces the cost of toll
charges for traveling employees and telecommuters.

¢ Establishing extranet and intranet connectivity with partners: IPsec can be
used to secure communication with other organizations, ensuring authentica-
tion and confidentiality and providing a key exchange mechanism.

* Enhancing electronic commerce security: Even though some Web and electronic
commerce applications have built-in security protocols, the use of IPsec enhances
that security. IPsec guarantees that all traffic designated by the network adminis-
trator is both encrypted and authenticated, adding an additional layer of security
to whatever is provided at the application layer.

The principal feature of IPsec that enables it to support these varied applica-
tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all dis-
tributed applications (including remote logon, client/server, e-mail, file transfer, Web
access, and so on) can be secured.

Figure 8.1 is a typical scenario of IPsec usage. An organization maintains
LAN:Ss at dispersed locations. Nonsecure IP traffic is conducted on each LAN. For
traffic offsite, through some sort of private or public WAN, IPsec protocols are used.
These protocols operate in networking devices, such as a router or firewall, that con-
nect each LAN to the outside world. The IPsec networking device will typically
encrypt and compress all traffic going into the WAN and decrypt and decompress
traffic coming from the WAN; these operations are transparent to workstations and
servers on the LAN. Secure transmission is also possible with individual users who
dial into the WAN. Such user workstations must implement the IPsec protocols to
provide security.

LT

User system
with [Psec

1P IPsec

Secure IP
Header | Header

Payload

Public (Internet)
or Private
Network

Ethernet

Ethernet
switch

switch

1P IP

P
Header

1P
Payload

Networking device

Networking device
with [Psec

with IPsec

Figure 8.1

An IP Security Scenario

8.1 / IP SECURITY OVERVIEW 273

Benefits of IPsec

Some of the benefits of IPsec:

e When IPsec is implemented in a firewall or router, it provides strong security
that can be applied to all traffic crossing the perimeter. Traffic within a company
or workgroup does not incur the overhead of security-related processing.

e [Psec in a firewall is resistant to bypass if all traffic from the outside must use
IP and the firewall is the only means of entrance from the Internet into the
organization.

* IPsec is below the transport layer (TCP, UDP) and so is transparent to
applications. There is no need to change software on a user or server system
when [Psec is implemented in the firewall or router. Even if IPsec is
implemented in end systems, upper-layer software, including applications, is
not affected.

e IPsec can be transparent to end users. There is no need to train users on security
mechanisms, issue keying material on a per-user basis, or revoke keying material
when users leave the organization.

e IPsec can provide security for individual users if needed. This is useful for offsite
workers and for setting up a secure virtual subnetwork within an organization
for sensitive applications.

Routing Applications

In addition to supporting end users and protecting premises systems and networks,
IPsec can play a vital role in the routing architecture required for internetworking.
[HUIT9§] lists the following examples of the use of IPsec. IPsec can assure that

* A router advertisement (a new router advertises its presence) comes from an
authorized router.

* A neighbor advertisement (a router seeks to establish or maintain a neighbor
relationship with a router in another routing domain) comes from an autho-
rized router.

¢ A redirect message comes from the router to which the initial IP packet was sent.
e A routing update is not forged.

Without such security measures, an opponent can disrupt communications
or divert some traffic. Routing protocols such as Open Shortest Path First (OSPF)
should be run on top of security associations between routers that are defined
by IPsec.

IPsec Documents

IPsec encompasses three functional areas: authentication, confidentiality, and key
management. The totality of the IPsec specification is scattered across dozens of
RFCs and draft IETF documents, making this the most complex and difficult to grasp
of all IETF specifications. The best way to grasp the scope of IPsec is to consult the

274 CHAPTER 8 / IP SECURITY

latest version of the IPsec document roadmap, which as of this writing is [FRAN09].
The documents can be categorized into the following groups.

Architecture: Covers the general concepts, security requirements, definitions,
and mechanisms defining IPsec technology. The current specification is RFC
4301, Security Architecture for the Internet Protocol.

Authentication Header (AH): AH is an extension header to provide message
authentication. The current specification is RFC 4302, IP Authentication
Header. Because message authentication is provided by ESP, the use of AH is
deprecated. It is included in IPsecv3 for backward compatibility but should
not be used in new applications. We do not discuss AH in this chapter.

Encapsulating Security Payload (ESP): ESP consists of an encapsulating header
and trailer used to provide encryption or combined encryption/authentication.
The current specification is RFC 4303, /P Encapsulating Security Payload (ESP).

Internet Key Exchange (IKE): This is a collection of documents describing
the key management schemes for use with IPsec. The main specification is
RFC 4306, Internet Key Exchange (IKEv2) Protocol,but there are a number of
related RFCs.

Cryptographic algorithms: This category encompasses a large set of docu-
ments that define and describe cryptographic algorithms for encryption, mes-
sage authentication, pseudorandom functions (PRFs), and cryptographic key
exchange.

Other: There are a variety of other IPsec-related RFCs, including those deal-
ing with security policy and management information base (MIB) content.

IPsec Services

IPsec provides security services at the IP layer by enabling a system to select
required security protocols, determine the algorithm(s) to use for the service(s), and
put in place any cryptographic keys required to provide the requested services. Two
protocols are used to provide security: an authentication protocol designated by the
header of the protocol, Authentication Header (AH); and a combined encryption/
authentication protocol designated by the format of the packet for that protocol,
Encapsulating Security Payload (ESP). RFC 4301 lists the following services:

Access control

Connectionless integrity

Data origin authentication

Rejection of replayed packets (a form of partial sequence integrity)
Confidentiality (encryption)

Limited traffic flow confidentiality

Transport and Tunnel Modes

Both AH and ESP support two modes of use: transport and tunnel mode. The oper-
ation of these two modes is best understood in the context of a description of ESP,
which is covered in Section 8.3. Here we provide a brief overview.

8.1 / IP SECURITY OVERVIEW 275

TrANnsPORT MoDE Transport mode provides protection primarily for upper-layer
protocols. That is, transport mode protection extends to the payload of an IP
packet.! Examples include a TCP or UDP segment or an ICMP packet, all of which
operate directly above IP in a host protocol stack. Typically, transport mode is used
for end-to-end communication between two hosts (e.g., a client and a server, or two
workstations). When a host runs AH or ESP over IPv4, the payload is the data that
normally follow the IP header. For IPv6, the payload is the data that normally follow
both the IP header and any IPv6 extensions headers that are present, with the
possible exception of the destination options header, which may be included in
the protection.

ESP in transport mode encrypts and optionally authenticates the IP payload
but not the IP header. AH in transport mode authenticates the IP payload and
selected portions of the IP header.

TunNeEL Mope Tunnel mode provides protection to the entire IP packet. To
achieve this, after the AH or ESP fields are added to the IP packet, the entire
packet plus security fields is treated as the payload of new outer IP packet with a
new outer IP header. The entire original, inner, packet travels through a tunnel
from one point of an IP network to another; no routers along the way are able to
examine the inner IP header. Because the original packet is encapsulated, the new,
larger packet may have totally different source and destination addresses, adding
to the security. Tunnel mode is used when one or both ends of a security association
(SA) are a security gateway, such as a firewall or router that implements IPsec.
With tunnel mode, a number of hosts on networks behind firewalls may engage in
secure communications without implementing IPsec. The unprotected packets
generated by such hosts are tunneled through external networks by tunnel mode
SAs set up by the IPsec software in the firewall or secure router at the boundary of
the local network.

Here is an example of how tunnel mode IPsec operates. Host A on a network
generates an IP packet with the destination address of host B on another network.
This packet is routed from the originating host to a firewall or secure router at the
boundary of A’s network. The firewall filters all outgoing packets to determine the
need for IPsec processing. If this packet from A to B requires IPsec, the firewall
performs IPsec processing and encapsulates the packet with an outer IP header. The
source IP address of this outer IP packet is this firewall, and the destination address
may be a firewall that forms the boundary to B’s local network. This packet is now
routed to B’s firewall, with intermediate routers examining only the outer IP
header. At B’s firewall, the outer IP header is stripped off, and the inner packet is
delivered to B.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP
packet, including the inner IP header. AH in tunnel mode authenticates the entire
inner IP packet and selected portions of the outer IP header.

Table 8.1 summarizes transport and tunnel mode functionality.

!In this chapter, the term IP packet refers to either an IPv4 datagram or an IPv6 packet.

276 CHAPTER 8 / IP SECURITY

Table 8.1 Tunnel Mode and Transport Mode Functionality

Transport Mode SA Tunnel Mode SA
AH Authenticates IP payload and selected Authenticates entire inner IP packet (inner
portions of IP header and IPv6 header plus IP payload) plus selected portions
extension headers. of outer IP header and outer IPv6 extension
headers.
ESP Encrypts IP payload and any IPv6 exten- | Encrypts entire inner IP packet.
sion headers following the ESP header.
ESP with Encrypts IP payload and any IPv6 Encrypts entire inner IP packet. Authenticates
Authentication | extension headers following the ESP inner IP packet.
header. Authenticates IP payload but
not IP header.

8.2 IP SECURITY POLICY

Fundamental to the operation of IPsec is the concept of a security policy applied
to each IP packet that transits from a source to a destination. IPsec policy is
determined primarily by the interaction of two databases, the security association
database (SAD) and the security policy database (SPD). This section provides
an overview of these two databases and then summarizes their use during IPsec
operation. Figure 8.2 illustrates the relevant relationships.

Security Associations

A key concept that appears in both the authentication and confidentiality mecha-
nisms for IP is the security association (SA). An association is a one-way logical con-
nection between a sender and a receiver that affords security services to the traffic
carried on it. If a peer relationship is needed for two-way secure exchange, then two
security associations are required. Security services are afforded to an SA for the
use of AH or ESP, but not both.

(Key exchange)
IKEv2 IKEv2
| I <€------ T N > | I
Security Security
policy IPsecv3 IPsec SA Pair IPsecv3 policy
database | | =2 [T Tsememsmsssssssss database
B
A Security Security
@ association () association @
database ESP protects data database

Figure 8.2 IPsec Architecture

8.2 / IP SECURITY POLICY 277

A security association is uniquely identified by three parameters.

Security Parameters Index (SPI): A bit string assigned to this SA and having
local significance only. The SP1 is carried in AH and ESP headers to enable the
receiving system to select the SA under which a received packet will be
processed.

IP Destination Address: This is the address of the destination endpoint of the
SA, which may be an end-user system or a network system such as a firewall or
router.

Security Protocol Identifier: This field from the outer IP header indicates
whether the association is an AH or ESP security association.

Hence, in any IP packet, the security association is uniquely identified by the

Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed exten-
sion header (AH or ESP).

Security Association Database

In each IPsec implementation, there is a nominal® Security Association Database
that defines the parameters associated with each SA. A security association is nor-
mally defined by the following parameters in an SAD entry.

Security Parameter Index: A 32-bit value selected by the receiving end of an
SA to uniquely identify the SA. In an SAD entry for an outbound SA, the SPI
is used to construct the packet’s AH or ESP header. In an SAD entry for an
inbound SA, the SPI is used to map traffic to the appropriate SA.

Sequence Number Counter: A 32-bit value used to generate the Sequence
Number field in AH or ESP headers, described in Section 8.3 (required for all
implementations).

Sequence Counter Overflow: A flag indicating whether overflow of the
Sequence Number Counter should generate an auditable event and prevent
further transmission of packets on this SA (required for all implementations).

Anti-Replay Window: Used to determine whether an inbound AH or ESP
packet is a replay, described in Section 8.3 (required for all implementations).

AH Information: Authentication algorithm, keys, key lifetimes, and related
parameters being used with AH (required for AH implementations).

ESP Information: Encryption and authentication algorithm, keys, initializa-
tion values, key lifetimes, and related parameters being used with ESP
(required for ESP implementations).

Lifetime of this Security Association: A time interval or byte count after
which an SA must be replaced with a new SA (and new SPI) or terminated,
plus an indication of which of these actions should occur (required for all
implementations).

*Nominal in the sense that the functionality provided by a Security Association Database must be
present in any IPsec implementation, but the way in which that functionality is provided is up to the
implementer.

278 CHAPTER 8 / IP SECURITY

e IPsec Protocol Mode: Tunnel, transport, or wildcard.

e Path MTU: Any observed path maximum transmission unit (maximum size
of a packet that can be transmitted without fragmentation) and aging
variables (required for all implementations).

The key management mechanism that is used to distribute keys is coupled to
the authentication and privacy mechanisms only by way of the Security Parameters
Index (SPI). Hence, authentication and privacy have been specified independent of
any specific key management mechanism.

IPsec provides the user with considerable flexibility in the way in which IPsec
services are applied to IP traffic. As we will see later, SAs can be combined in a
number of ways to yield the desired user configuration. Furthermore, IPsec provides
a high degree of granularity in discriminating between traffic that is afforded IPsec
protection and traffic that is allowed to bypass IPsec, as in the former case relating
IP traffic to specific SAs.

Security Policy Database

The means by which IP traffic is related to specific SAs (or no SA in the case of traffic
allowed to bypass IPsec) is the nominal Security Policy Database (SPD). In its sim-
plest form, an SPD contains entries, each of which defines a subset of IP traffic and
points to an SA for that traffic. In more complex environments, there may be multiple
entries that potentially relate to a single SA or multiple SAs associated with a single
SPD entry. The reader is referred to the relevant IPsec documents for a full discussion.

Each SPD entry is defined by a set of IP and upper-layer protocol field values,
called selectors. In effect, these selectors are used to filter outgoing traffic in order to
map it into a particular SA. Outbound processing obeys the following general
sequence for each IP packet.

1. Compare the values of the appropriate fields in the packet (the selector fields)
against the SPD to find a matching SPD entry, which will point to zero or
more SAs.

2. Determine the SA if any for this packet and its associated SPI.
3. Do the required IPsec processing (i.e., AH or ESP processing).

The following selectors determine an SPD entry:

* Remote IP Address: This may be a single [P address, an enumerated list or range
of addresses, or a wildcard (mask) address. The latter two are required to support
more than one destination system sharing the same SA (e.g., behind a firewall).

* Local IP Address: This may be a single IP address, an enumerated list or range
of addresses, or a wildcard (mask) address. The latter two are required to sup-
port more than one source system sharing the same SA (e.g., behind a firewall).

e Next Layer Protocol: The IP protocol header (IPv4, IPv6, or IPv6 Extension)
includes a field (Protocol for IPv4, Next Header for IPv6 or IPv6 Extension)
that designates the protocol operating over IP. This is an individual protocol
number, ANY, or for IPv6 only, OPAQUE. If AH or ESP is used, then this IP
protocol header immediately precedes the AH or ESP header in the packet.

8.2 / IP SECURITY POLICY 279

Table 8.2 Host SPD Example

Protocol | Local IP | Port | Remote IP | Port Action Comment

UDP 1.2.3.101 500 < 500 BYPASS IKE

ICMP 1.2.3.101 & < & BYPASS Error messages

* 1.2.3.101 * 1.2.3.0/24 * PROTECT: ESP Encrypt intranet traffic
intransport-mode

TCP 1.2.3.101 * 1.2.4.10 80 PROTECT: ESP Encrypt to server
intransport-mode

TCP 1.2.3.101 * 1.2.4.10 443 BYPASS TLS: avoid double encryption

< 1.2.3.101 e 1.2.4.0/24 @ DISCARD Others in DMZ

e 1.2.3.101 ¥ & & BYPASS Internet

° Name: A user identifier from the operating system. This is not a field in the IP
or upper-layer headers but is available if IPsec is running on the same operat-
ing system as the user.

¢ Local and Remote Ports: These may be individual TCP or UDP port values,
an enumerated list of ports, or a wildcard port.

Table 8.2 provides an example of an SPD on a host system (as opposed to a
network system such as a firewall or router). This table reflects the following config-
uration: A local network configuration consists of two networks. The basic corporate
network configuration has the IP network number 1.2.3.0/24. The local configura-
tion also includes a secure LAN, often known as a DMZ, that is identified as
1.2.4.0/24. The DMZ is protected from both the outside world and the rest of the
corporate LAN by firewalls. The host in this example has the IP address 1.2.3.10,
and it is authorized to connect to the server 1.2.4.10 in the DMZ.

The entries in the SPD should be self-explanatory. For example, UDP port 500
is the designated port for IKE. Any traffic from the local host to a remote host for
purposes of an IKE exchange bypasses the IPsec processing.

IP Traffic Processing

IPsec is executed on a packet-by-packet basis. When IPsec is implemented, each
outbound IP packet is processed by the IPsec logic before transmission, and each
inbound packet is processed by the IPsec logic after reception and before passing
the packet contents on to the next higher layer (e.g., TCP or UDP). We look at the
logic of these two situations in turn.

OutsouND PAackeTs Figure 8.3 highlights the main elements of IPsec processing for
outbound traffic. A block of data from a higher layer, such as TCP, is passed down to
the IP layer and an IP packet is formed, consisting of an IP header and an IP body.
Then the following steps occur:

1. IPsec searches the SPD for a match to this packet.

2. If no match is found, then the packet is discarded and an error message is
generated.

280 CHAPTER 8 / IP SECURITY

Outbound IP packet
(e.g., from TCP or UDP)

No match
found S?arch .
security policy
database

Match found
Y Y

Discard DISCARD, Detening \. PROTECT
packet policy /

BYPASS Y _V __ Nomatch

database

Broces Internet
(AH/ESP) key
exchange
Y Y
Forward
packet via
P

Figure 8.3 Processing Model for Outbound Packets

3. If a match is found, further processing is determined by the first matching
entry in the SPD. If the policy for this packet is DISCARD, then the packet is
discarded. If the policy is BYPASS, then there is no further IPsec processing;
the packet is forwarded to the network for transmission.

4. If the policy is PROTECT, then a search is made of the SAD for a matching
entry. If no entry is found, then IKE is invoked to create an SA with the appro-
priate keys and an entry is made in the SA.

5. The matching entry in the SAD determines the processing for this packet.
Either encryption, authentication, or both can be performed, and either
transport or tunnel mode can be used. The packet is then forwarded to the
network for transmission.

InsounD Packets Figure 8.4 highlights the main elements of IPsec processing for
inbound traffic. An incoming IP packet triggers the IPsec processing. The following
steps occur:

1. IPsec determines whether this is an unsecured IP packet or one that has
ESP or AH headers/trailers, by examining the IP Protocol field (IPv4) or
Next Header field (IPv6).

8.3 / ENCAPSULATING SECURITY PAYLOAD 281

Deliver packet
»| to higher layer [«
(e.g. TCP, UDP)

Process
(AH/ESP)

A

Match

Not No match found

BYPASS[found
Discard

packet

BYPASS

Search
security association
database

Search
security policy
database

Inbound IP packet
(from Internet)

Figure 8.4 Processing Model for Inbound Packets

2. If the packet is unsecured, IPsec searches the SPD for a match to this packet.
If the first matching entry has a policy of BYPASS, the IP header is processed
and stripped off and the packet body is delivered to the next higher layer, such
as TCP If the first matching entry has a policy of PROTECT or DISCARD, or
if there is no matching entry, the packet is discarded.

3. For a secured packet, [Psec searches the SAD. If no match is found, the
packet is discarded. Otherwise, IPsec applies the appropriate ESP or AH
processing. Then, the IP header is processed and stripped off and the packet
body is delivered to the next higher layer, such as TCP.

8.3 ENCAPSULATING SECURITY PAYLOAD

ESP can be used to provide confidentiality, data origin authentication, connection-
less integrity, an anti-replay service (a form of partial sequence integrity), and (lim-
ited) traffic flow confidentiality. The set of services provided depends on options
selected at the time of Security Association (SA) establishment and on the location
of the implementation in a network topology.

ESP can work with a variety of encryption and authentication algorithms,
including authenticated encryption algorithms such as GCM.

282 CHAPTER 8 / IP SECURITY

ESP Format
Figure 8.5a shows the top-level format of an ESP packet. It contains the following fields.

e Security Parameters Index (32 bits): Identifies a security association.

* Sequence Number (32 bits): A monotonically increasing counter value; this
provides an anti-replay function, as discussed for AH.

* Payload Data (variable): This is a transport-level segment (transport mode)
or IP packet (tunnel mode) that is protected by encryption.

e Padding (0-255 bytes): The purpose of this field is discussed later.

* Pad Length (8 bits): Indicates the number of pad bytes immediately preceding
this field.

¢ Next Header (8 bits): Identifies the type of data contained in the payload data
field by identifying the first header in that payload (for example, an extension
header in IPv6, or an upper-layer protocol such as TCP).

32 bits

\ 4

A

0 Security parameters index (SPI)

Sequence number

Payload data (variable)

ICV coverage

Encrypted

| Padding (0 - 255 bytes)
I Pad length I Next header

<
<

Integrity check value - ICV (variable)

(a) Top-level format of an ESP Packet

A Security parameters index (SPI)

Sequence number

Initialization value - IV (optional)

>
>

Rest of payload data (variable)

ICV coverage
Payload

Encrypted

I TFC padding (optional, variable)
| Padding (0 - 255 bytes)
I Pad length I Next header

<«
<
<
<

Integrity check value - ICV (variable)

(b) Substructure of payload data
Figure 8.5 ESP Packet Format

8.3 / ENCAPSULATING SECURITY PAYLOAD 283

 Integrity Check Value (variable): A variable-length field (must be an integral
number of 32-bit words) that contains the Integrity Check Value computed
over the ESP packet minus the Authentication Data field.

When any combined mode algorithm is employed, the algorithm itself is
expected to return both decrypted plaintext and a pass/fail indication for the
integrity check. For combined mode algorithms, the ICV that would normally
appear at the end of the ESP packet (when integrity is selected) may be omitted.
When the ICV is omitted and integrity is selected, it is the responsibility of the com-
bined mode algorithm to encode within the Payload Data an ICV-equivalent means
of verifying the integrity of the packet.

Two additional fields may be present in the payload (Figure 8.5b). An
initialization value (IV), or nonce, is present if this is required by the encryption or
authenticated encryption algorithm used for ESP. If tunnel mode is being used, then
the IPsec implementation may add traffic flow confidentiality (TFC) padding after
the Payload Data and before the Padding field, as explained subsequently.

Encryption and Authentication Algorithms

The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by
the ESP service. If the algorithm used to encrypt the payload requires crypto-
graphic synchronization data, such as an initialization vector (IV), then these data
may be carried explicitly at the beginning of the Payload Data field. If included,
an IV is usually not encrypted, although it is often referred to as being part of
the ciphertext.

The ICV field is optional. It is present only if the integrity service is selected
and is provided by either a separate integrity algorithm or a combined mode algo-
rithm that uses an ICV.The ICV is computed after the encryption is performed. This
order of processing facilitates rapid detection and rejection of replayed or bogus
packets by the receiver prior to decrypting the packet, hence potentially reducing
the impact of denial of service (DoS) attacks. It also allows for the possibility of par-
allel processing of packets at the receiver, i.e., decryption can take place in parallel
with integrity checking. Note that because the ICV is not protected by encryption, a
keyed integrity algorithm must be employed to compute the ICV.

Padding

The Padding field serves several purposes:

e If an encryption algorithm requires the plaintext to be a multiple of some
number of bytes (e.g., the multiple of a single block for a block cipher), the
Padding field is used to expand the plaintext (consisting of the Payload Data,
Padding, Pad Length, and Next Header fields) to the required length.

e The ESP format requires that the Pad Length and Next Header fields be right
aligned within a 32-bit word. Equivalently, the ciphertext must be an integer
multiple of 32 bits. The Padding field is used to assure this alignment.

¢ Additional padding may be added to provide partial traffic-flow confidential-
ity by concealing the actual length of the payload.

284 CHAPTER 8 / IP SECURITY

Anti-Replay Service

A replay attack is one in which an attacker obtains a copy of an authenticated
packet and later transmits it to the intended destination. The receipt of duplicate,
authenticated IP packets may disrupt service in some way or may have some other
undesired consequence. The Sequence Number field is designed to thwart such
attacks. First, we discuss sequence number generation by the sender, and then we
look at how it is processed by the recipient.

When a new SA is established, the sender initializes a sequence number
counter to 0. Each time that a packet is sent on this SA, the sender increments the
counter and places the value in the Sequence Number field. Thus, the first value to
be used is 1. If anti-replay is enabled (the default), the sender must not allow the
sequence number to cycle past 2°2 — 1 back to zero. Otherwise, there would be
multiple valid packets with the same sequence number. If the limit of 232 — 1 is
reached, the sender should terminate this SA and negotiate a new SA with a new key.

Because IP is a connectionless, unreliable service, the protocol does not guar-
antee that packets will be delivered in order and does not guarantee that all packets
will be delivered. Therefore, the IPsec authentication document dictates that the
receiver should implement a window of size W, with a default of W = 64. The right
edge of the window represents the highest sequence number, N, so far received for
a valid packet. For any packet with a sequence number in the range from
N — W + 1 to N that has been correctly received (i.e., properly authenticated), the
corresponding slot in the window is marked (Figure 8.6). Inbound processing
proceeds as follows when a packet is received:

1. If the received packet falls within the window and is new, the MAC is checked.
If the packet is authenticated, the corresponding slot in the window is marked.

2. If the received packet is to the right of the window and is new, the MAC is
checked. If the packet is authenticated, the window is advanced so that this
sequence number is the right edge of the window, and the corresponding slot in
the window is marked.

3. If the received packet is to the left of the window or if authentication fails, the
packet is discarded; this is an auditable event.

Advance window if
valid packet to the
right is received

Fixed window size W

||||||/4 LT fad Joeee EEINT TN [T T T]
N—-W N+1
Marked if valid Unmarked if valid
packet received packet not yet received

Figure 8.6 Anti-replay Mechanism

8.3 / ENCAPSULATING SECURITY PAYLOAD 285

Transport and Tunnel Modes

Figure 8.7 shows two ways in which the IPsec ESP service can be used. In the upper
part of the figure, encryption (and optionally authentication) is provided directly
between two hosts. Figure 8.7b shows how tunnel mode operation can be used to set
up a virtual private network. In this example, an organization has four private
networks interconnected across the Internet. Hosts on the internal networks use the
Internet for transport of data but do not interact with other Internet-based hosts. By
terminating the tunnels at the security gateway to each internal network, the configu-
ration allows the hosts to avoid implementing the security capability. The former
technique is supported by a transport mode SA, while the latter technique uses a
tunnel mode SA.

In this section, we look at the scope of ESP for the two modes. The consid-
erations are somewhat different for IPv4 and IPv6. We use the packet formats of
Figure 8.8a as a starting point.

TrANSPORT MoDE ESP Transport mode ESP is used to encrypt and optionally
authenticate the data carried by IP (e.g., a TCP segment), as shown in Figure 8.8b.

Encrypted 7%
TCP session ” ﬁ
~ External
network

Internal
network

(a) Transport-level security

Corporate
network

Encrypted tunnel'

carrying IP traffic

Corporate
network

Corporate
network

network

(b) A virtual private network via tunnel mode

Figure 8.7 Transport-Mode versus Tunnel-Mode Encryption

286 CHAPTER 8 / IP SECURITY

Orig IP
1Pv4 ke TCP Data

Orig IP | Extension headers

IPv6 hdr (if present)

TCP Data

(a) Before Applying ESP

44— authenticated———p
4——encrypted————p

4——authenticated——p
4——encrypted———p

IPv6 Hop-by-hop, dest, |ESP

routing, fragment |hdr

(b) Transport Mode

44— authenticated——p
d

encrypted [>

4
A

IPv4

A

authenticated

|-
Ll
< encrypted p>

Ext |ESP| origrP, | “Ext -

Pve headers hdr headers -

(¢) Tunnel Mode
Figure 8.8 Scope of ESP Encryption and Authentication

For this mode using IPv4, the ESP header is inserted into the IP packet immediately
prior to the transport-layer header (e.g., TCP, UDP, ICMP), and an ESP trailer
(Padding, Pad Length, and Next Header fields) is placed after the IP packet. If
authentication is selected, the ESP Authentication Data field is added after the ESP
trailer. The entire transport-level segment plus the ESP trailer are encrypted.
Authentication covers all of the ciphertext plus the ESP header.

8.3 / ENCAPSULATING SECURITY PAYLOAD 287

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not
examined or processed by intermediate routers. Therefore, the ESP header appears
after the IPv6 base header and the hop-by-hop, routing, and fragment extension
headers. The destination options extension header could appear before or after the
ESP header, depending on the semantics desired. For IPv6, encryption covers
the entire transport-level segment plus the ESP trailer plus the destination options
extension header if it occurs after the ESP header. Again, authentication covers the
ciphertext plus the ESP header.

Transport mode operation may be summarized as follows.

1. At the source, the block of data consisting of the ESP trailer plus the entire
transport-layer segment is encrypted and the plaintext of this block is replaced
with its ciphertext to form the IP packet for transmission. Authentication is
added if this option is selected.

2. The packet is then routed to the destination. Each intermediate router needs to
examine and process the IP header plus any plaintext IP extension headers but
does not need to examine the ciphertext.

3. The destination node examines and processes the IP header plus any plaintext
IP extension headers. Then, on the basis of the SPI in the ESP header, the
destination node decrypts the remainder of the packet to recover the plaintext
transport-layer segment.

Transport mode operation provides confidentiality for any application that
uses it, thus avoiding the need to implement confidentiality in every individual
application. One drawback to this mode is that it is possible to do traffic analysis on
the transmitted packets.

TunNeL Mope ESP Tunnel mode ESP is used to encrypt an entire IP packet
(Figure 8.8c). For this mode, the ESP header is prefixed to the packet and then
the packet plus the ESP trailer is encrypted. This method can be used to counter
traffic analysis.

Because the IP header contains the destination address and possibly source
routing directives and hop-by-hop option information, it is not possible simply to
transmit the encrypted IP packet prefixed by the ESP header. Intermediate routers
would be unable to process such a packet. Therefore, it is necessary to encapsulate
the entire block (ESP header plus ciphertext plus Authentication Data, if present)
with a new IP header that will contain sufficient information for routing but not for
traffic analysis.

Whereas the transport mode is suitable for protecting connections between
hosts that support the ESP feature, the tunnel mode is useful in a configuration that
includes a firewall or other sort of security gateway that protects a trusted network
from external networks. In this latter case, encryption occurs only between an exter-
nal host and the security gateway or between two security gateways. This relieves
hosts on the internal network of the processing burden of encryption and simplifies
the key distribution task by reducing the number of needed keys. Further, it thwarts
traffic analysis based on ultimate destination.

Consider a case in which an external host wishes to communicate with a host
on an internal network protected by a firewall, and in which ESP is implemented in

288 CHAPTER 8 / IP SECURITY

the external host and the firewalls. The following steps occur for transfer of a trans-
port-layer segment from the external host to the internal host.

1.

The source prepares an inner IP packet with a destination address of the
target internal host. This packet is prefixed by an ESP header; then the
packet and ESP trailer are encrypted and Authentication Data may
be added. The resulting block is encapsulated with a new IP header (base
header plus optional extensions such as routing and hop-by-hop options for
IPv6) whose destination address is the firewall; this forms the outer IP
packet.

The outer packet is routed to the destination firewall. Each intermediate
router needs to examine and process the outer IP header plus any outer IP
extension headers but does not need to examine the ciphertext.

The destination firewall examines and processes the outer IP header plus
any outer IP extension headers. Then, on the basis of the SPI in the ESP
header, the destination node decrypts the remainder of the packet to
recover the plaintext inner IP packet. This packet is then transmitted in the
internal network.

The inner packet is routed through zero or more routers in the internal
network to the destination host.

Figure 8.9 shows the protocol architecture for the two modes.

8.4 COMBINING SECURITY ASSOCIATIONS

An individual SA can implement either the AH or ESP protocol but not both.
Sometimes a particular traffic flow will call for the services provided by both AH
and ESP. Further, a particular traffic flow may require IPsec services between hosts
and, for that same flow, separate services between security gateways, such as fire-
walls. In all of these cases, multiple SAs must be employed for the same traffic flow
to achieve the desired [Psec services. The term security association bundle refers to a
sequence of SAs through which traffic must be processed to provide a desired set of
IPsec services. The SAs in a bundle may terminate at different endpoints or at the
same endpoints.
Security associations may be combined into bundles in two ways:

e Transport adjacency: Refers to applying more than one security protocol to
the same IP packet without invoking tunneling. This approach to combining
AH and ESP allows for only one level of combination; further nesting yields
no added benefit since the processing is performed at one IPsec instance: the
(ultimate) destination.

e Iterated tunneling: Refers to the application of multiple layers of security
protocols effected through IP tunneling. This approach allows for multiple
levels of nesting, since each tunnel can originate or terminate at a different
IPsec site along the path.

8.4 / COMBINING SECURITY ASSOCIATIONS 289

Application Data

TCP
TCP hdr Data

Orig IP TCP
1P hdr hdr Data
Orig IP |ESP| TCP ESP|ESP
IPsec hdr | hdr| hdr Data trlr Jauth
(a) Transport mode
Application Data
TCP
TCP hdr Data
Orig IP TCP
P hdr hdr Data
ESP| Orig IP TCP ESP|ESP
IPsec hdr| hdr hdr Data trlr fauth
P New IP | ESP| Orig IP TCP Data ESP|ESP
hdr hdr hdr hdr trlr jJauth

(b) Tunnel mode

Figure 8.9 Protocol Operation for ESP

The two approaches can be combined, for example, by having a transport SA
between hosts travel part of the way through a tunnel SA between security gateways.

One interesting issue that arises when considering SA bundles is the order in
which authentication and encryption may be applied between a given pair of endpoints
and the ways of doing so. We examine that issue next. Then we look at combinations of
SAs that involve at least one tunnel.

290 CHAPTER 8 / IP SECURITY

Authentication Plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet
that has both confidentiality and authentication between hosts. We look at several
approaches.

ESP witH AutHENTICATION OPTiOoN This approach is illustrated in Figure 8.8. In
this approach, the user first applies ESP to the data to be protected and then
appends the authentication data field. There are actually two subcases:

e Transport mode ESP: Authentication and encryption apply to the IP payload
delivered to the host, but the IP header is not protected.

* Tunnel mode ESP: Authentication applies to the entire IP packet delivered
to the outer IP destination address (e.g., a firewall), and authentication is
performed at that destination. The entire inner IP packet is protected by the
privacy mechanism for delivery to the inner IP destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.

TrRANSPORT ADJACENCY Another way to apply authentication after encryption is to
use two bundled transport SAs, with the inner being an ESP SA and the outer being
an AH SA. In this case, ESP is used without its authentication option. Because the
inner SA is a transport SA, encryption is applied to the IP payload. The resulting
packet consists of an IP header (and possibly IPv6 header extensions) followed by an
ESP. AH is then applied in transport mode, so that authentication covers the ESP plus
the original IP header (and extensions) except for mutable fields. The advantage of
this approach over simply using a single ESP SA with the ESP authentication option
is that the authentication covers more fields, including the source and destination IP
addresses. The disadvantage is the overhead of two SAs versus one SA.

TransrorT-TUNNEL BunDLE The use of authentication prior to encryption might
be preferable for several reasons. First, because the authentication data are
protected by encryption, it is impossible for anyone to intercept the message and
alter the authentication data without detection. Second, it may be desirable to store
the authentication information with the message at the destination for later
reference. It is more convenient to do this if the authentication information applies
to the unencrypted message; otherwise the message would have to be reencrypted
to verify the authentication information.

One approach to applying authentication before encryption between two
hosts is to use a bundle consisting of an inner AH transport SA and an outer ESP
tunnel SA. In this case, authentication is applied to the IP payload plus the IP
header (and extensions) except for mutable fields. The resulting IP packet is then
processed in tunnel mode by ESP; the result is that the entire, authenticated inner
packet is encrypted and a new outer IP header (and extensions) is added.

Basic Combinations of Security Associations

The IPsec Architecture document lists four examples of combinations of SAs that
must be supported by compliant IPsec hosts (e.g., workstation, server) or security
gateways (e.g. firewall, router). These are illustrated in Figure 8.10. The lower part of

161

One or More SAs

Router

Intranet Intranet

(a) Case 1

Tunnel SA

Security
gateway*

Intranet

(b) Case 2

* = implements IPsec

Figure 8.10 Basic Combinations of Security Associations

Tunnel SA One or two SAs

Security

Intranet Intranet

(c) Case 3

Tunnel SA One or two SAs

(d) Case 4

292 CHAPTER 8 / IP SECURITY

each case in the figure represents the physical connectivity of the elements; the
upper part represents logical connectivity via one or more nested SAs. Each SA can
be either AH or ESP. For host-to-host SAs, the mode may be either transport or
tunnel; otherwise it must be tunnel mode.

Case 1. All security is provided between end systems that implement IPsec.

For any two end systems to communicate via an SA, they must share the appropri-
ate secret keys. Among the possible combinations are

a. AH in transport mode
b.

C.
d.

ESP in transport mode
ESP followed by AH in transport mode (an ESP SA inside an AH SA)

Any one of a, b, or c inside an AH or ESP in tunnel mode

We have already discussed how these various combinations can be used to

support authentication, encryption, authentication before encryption, and authenti-
cation after encryption.

Case 2. Security is provided only between gateways (routers, firewalls, etc.)

and no hosts implement IPsec. This case illustrates simple virtual private network
support. The security architecture document specifies that only a single tunnel SA is
needed for this case. The tunnel could support AH, ESP, or ESP with the authenti-
cation option. Nested tunnels are not required, because the IPsec services apply to
the entire inner packet.

Case 3. This builds on case 2 by adding end-to-end security. The same combi-

nations discussed for cases 1 and 2 are allowed here. The gateway-to-gateway tunnel
provides either authentication, confidentiality, or both for all traffic between end
systems. When the gateway-to-gateway tunnel is ESP, it also provides a limited form
of traffic confidentiality. Individual hosts can implement any additional IPsec ser-
vices required for given applications or given users by means of end-to-end SAs.

Case 4. This provides support for a remote host that uses the Internet to reach an

organization’s firewall and then to gain access to some server or workstation behind
the firewall. Only tunnel mode is required between the remote host and the firewall. As
in case 1, one or two SAs may be used between the remote host and the local host.

8.5 INTERNET KEY EXCHANGE

The key management portion of IPsec involves the determination and distribution of
secret keys. A typical requirement is four keys for communication between two
applications: transmit and receive pairs for both integrity and confidentiality. The
IPsec Architecture document mandates support for two types of key management:

e Manual: A system administrator manually configures each system with its

own keys and with the keys of other communicating systems. This is practical
for small, relatively static environments.

* Automated: An automated system enables the on-demand creation of keys

for SAs and facilitates the use of keys in a large distributed system with an
evolving configuration.

8.5 / INTERNET KEY EXCHANGE 293

The default automated key management protocol for IPsec is referred to as
ISAKMP/Oakley and consists of the following elements:

¢ QOakley Key Determination Protocol: Oakley is a key exchange protocol based
on the Diffie-Hellman algorithm but providing added security. Oakley is
generic in that it does not dictate specific formats.

* Internet Security Association and Key Management Protocol (ISAKMP):
ISAKMP provides a framework for Internet key management and provides the
specific protocol support, including formats, for negotiation of security attributes.

ISAKMP by itself does not dictate a specific key exchange algorithm; rather,
ISAKMP consists of a set of message types that enable the use of a variety of key
exchange algorithms. Oakley is the specific key exchange algorithm mandated for
use with the initial version of ISAKMP.

In IKEv2, the terms Oakley and ISAKMP are no longer used, and there are
significant differences from the use of Oakley and ISAKMP in IKEv1. Nevertheless,
the basic functionality is the same. In this section, we describe the IKEV2 specification.

Key Determination Protocol

IKE key determination is a refinement of the Diffie-Hellman key exchange algo-
rithm. Recall that Diffie-Hellman involves the following interaction between users
A and B.There is prior agreement on two global parameters: g, a large prime num-
ber; and «, a primitive root of g. A selects a random integer X4 as its private key and
transmits to B its public key Y, = a* mod g. Similarly, B selects a random integer
Xj as its private key and transmits to A its public key Yz = a# mod ¢. Each side
can now compute the secret session key:

K = (Yg) mod q = (Y,)** mod g = o*** mod ¢
The Diffie-Hellman algorithm has two attractive features:

* Secret keys are created only when needed. There is no need to store secret
keys for a long period of time, exposing them to increased vulnerability.

e The exchange requires no pre-existing infrastructure other than an agreement
on the global parameters.

However, there are a number of weaknesses to Diffie-Hellman, as pointed out in
[HUIT9S].

e It does not provide any information about the identities of the parties.

e Itis subject to a man-in-the-middle attack, in which a third party C imperson-
ates B while communicating with A and impersonates A while communicating
with B. Both A and B end up negotiating a key with C, which can then listen to
and pass on traffic. The man-in-the-middle attack proceeds as

1. B sends his public key Yp in a message addressed to A (see Figure 3.13).

2. The enemy (E) intercepts this message. E saves B’s public key and sends a
message to A that has B’s User ID but E’s public key Y. This message is

294 CHAPTER 8 / IP SECURITY

sent in such a way that it appears as though it was sent from B’s host system.
A receives E’s message and stores E’s public key with B’s User ID. Similarly,
E sends a message to B with E’s public key, purporting to come from A.

3. B computes a secret key K; based on B’s private key and Y. A computes a
secret key K, based on A’s private key and Y. E computes K; using E’s
secret key Xy and Y and computers K, using Xy and Y.

4. From now on, E is able to relay messages from A to B and from B to A,
appropriately changing their encipherment en route in such a way that
neither A nor B will know that they share their communication with E.

e Itis computationally intensive. As a result, it is vulnerable to a clogging attack,

in which an opponent requests a high number of keys. The victim spends
considerable computing resources doing useless modular exponentiation
rather than real work.

IKE key determination is designed to retain the advantages of Diffie-

Hellman, while countering its weaknesses.

Fearures or IKE kEy DETERMINATION The IKE key determination algorithm is
characterized by five important features:

1.
2.

A

It employs a mechanism known as cookies to thwart clogging attacks.

It enables the two parties to negotiate a group; this, in essence, specifies the global
parameters of the Diffie-Hellman key exchange.

It uses nonces to ensure against replay attacks.

It enables the exchange of Diffie-Hellman public key values.

It authenticates the Diffie-Hellman exchange to thwart man-in-the-middle
attacks.

We have already discussed Diffie-Hellman. Let us look at the remainder of

these elements in turn. First, consider the problem of clogging attacks. In this attack,
an opponent forges the source address of a legitimate user and sends a public Diffie-
Hellman key to the victim. The victim then performs a modular exponentiation to
compute the secret key. Repeated messages of this type can clog the victim’s system
with useless work. The cookie exchange requires that each side send a pseudoran-
dom number, the cookie, in the initial message, which the other side acknowledges.
This acknowledgment must be repeated in the first message of the Diffie-Hellman
key exchange. If the source address was forged, the opponent gets no answer. Thus,
an opponent can only force a user to generate acknowledgments and not to perform
the Diffie-Hellman calculation.

1.

IKE mandates that cookie generation satisfy three basic requirements:

The cookie must depend on the specific parties. This prevents an attacker from
obtaining a cookie using a real IP address and UDP port and then using it to
swamp the victim with requests from randomly chosen IP addresses or ports.

. It must not be possible for anyone other than the issuing entity to generate cook-

ies that will be accepted by that entity. This implies that the issuing entity will use
local secret information in the generation and subsequent verification of a

8.5 / INTERNET KEY EXCHANGE 295

cookie. It must not be possible to deduce this secret information from any partic-
ular cookie. The point of this requirement is that the issuing entity need not save
copies of its cookies, which are then more vulnerable to discovery, but can verify
an incoming cookie acknowledgment when it needs to.

3. The cookie generation and verification methods must be fast to thwart attacks
intended to sabotage processor resources.

The recommended method for creating the cookie is to perform a fast hash
(e.g., MDS5) over the IP Source and Destination addresses, the UDP Source and
Destination ports, and a locally generated secret value.

IKE key determination supports the use of different groups for the Diffie-
Hellman key exchange. Each group includes the definition of the two global parame-
ters and the identity of the algorithm. The current specification includes the following
groups.

* Modular exponentiation with a 768-bit modulus

g =2"% =27 — 1 + 2% X (|2 X 7| + 149686)
a=2

Modular exponentiation with a 1024-bit modulus

g = 2" =290 — 1 + 2% x ([2% X 7| + 129093)
a=2

Modular exponentiation with a 1536-bit modulus
e Parameters to be determined

Elliptic curve group over 2!

e Generator (hexadecimal): X = 7B, Y = 1C8

e Elliptic curve parameters (hexadecimal): A = 0, Y = 7338F
Elliptic curve group over 2'%

e Generator (hexadecimal): X = 18, Y = D

e Elliptic curve parameters (hexadecimal): A = 0, Y = 1EE9

The first three groups are the classic Diffie-Hellman algorithm using modular
exponentiation. The last two groups use the elliptic curve analog to Diffie-Hellman,
which was described in Chapter 3.

IKE key determination employs nonces to ensure against replay attacks. Each
nonce is a locally generated pseudorandom number. Nonces appear in responses
and are encrypted during certain portions of the exchange to secure their use.

Three different authentication methods can be used with IKE key determination:

e Digital signatures: The exchange is authenticated by signing a mutually
obtainable hash; each party encrypts the hash with its private key. The hash is
generated over important parameters, such as user IDs and nonces.

e Public-key encryption: The exchange is authenticated by encrypting parame-
ters such as IDs and nonces with the sender’s private key.

296 CHAPTER 8 / IP SECURITY

e Symmetric-key encryption: A key derived by some out-of-band mechanism
can be used to authenticate the exchange by symmetric encryption of exchange
parameters.

IKEv2 Excuances The IKEv2 protocol involves the exchange of messages in
pairs. The first two pairs of exchanges are referred to as the initial exchanges
(Figure 8.11a). In the first exchange, the two peers exchange information concerning
cryptographic algorithms and other security parameters they are willing to use along
with nonces and Diffie-Hellman (DH) values. The result of this exchange is to set up
a special SA called the IKE SA (see Figure 8.2). This SA defines parameters for a
secure channel between the peers over which subsequent message exchanges take
place. Thus, all subsequent IKE message exchanges are protected by encryption and
message authentication. In the second exchange, the two parties authenticate one
another and set up a first IPsec SA to be placed in the SADB and used for protecting
ordinary (i.e. non-IKE) communications between the peers. Thus, four messages are
needed to establish the first SA for general use.

Initiator Responder

HDR, SAil, KEi, Ni

>
>

HDR, SAr1, KEr, Nr, [CERTREQ]

A

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr}

\ 4

HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

A
Y
(a) Initial exchanges
HDR, SK {[N], SA, Ni, [KEi], [TSi, TSt} =
P HDR, SK {SA, Nr, [KEr], [TSi, TSr]}
<€
(b) CREATE_CHILD_SA exchange
HDR, SK {[N,] [D,] [CP,] ...} ‘
>
- HDR, SK {IN,] [D,] [CP], ...}
(c) Informational exchange
HDR = IKE header SK {...} = MAC and encrypt
SAx1 = offered and chosen algorithms, DH group AUTH = Authentication
KEx = Diffie-Hellman public key SAx2 = algorithms, parameters for IPsec SA
Nx= nonces TSx = traffic selectors for IPsec SA
CERTREQ = Certificate request N = Notify
IDx = identity D = Delete
CERT = certificate CP = Configuration

Figure 8.11 IKEv2 Exchanges

8.5 / INTERNET KEY EXCHANGE 297

The CREATE_CHILD_SA exchange can be used to establish further SAs for
protecting traffic. The informational exchange is used to exchange management
information, IKEv2 error messages, and other notifications.

Header and Payload Formats

IKE defines procedures and packet formats to establish, negotiate, modify, and
delete security associations. As part of SA establishment, IKE defines payloads for
exchanging key generation and authentication data. These payload formats provide
a consistent framework independent of the specific key exchange protocol, encryp-
tion algorithm, and authentication mechanism.

IKE HeApErR ForvAaT An IKE message consists of an IKE header followed by one or
more payloads. All of this is carried in a transport protocol. The specification dictates
that implementations must support the use of UDP for the transport protocol.

Figure 8.12a shows the header format for an IKE message. It consists of the
following fields.

e Initiator SPI (64 bits): A value chosen by the initiator to identify a unique
IKE security association (SA).

* Responder SPI (64 bits): A value chosen by the responder to identify a
unique IKE SA.

* Next Payload (8 bits): Indicates the type of the first payload in the message;
payloads are discussed in the next subsection.

* Major Version (4 bits): Indicates major version of IKE in use.
e Minor Version (4 bits): Indicates minor version in use.

Bit: 0 8 16 24 31

— Initiator’s Security Parameter Index (SPI)

— Responder’s Security Parameter Index (SPI)

Next Payload | MjVerl MnVerl Exchange Type Flags
Message ID
Length
(a) IKE header
Bit: 0 8 16 31

| Next Payload |C| RESERVED | Payload Length '

(b) Generic Payload header
Figure 8.12 IKE Formats

298 CHAPTER 8 / IP SECURITY

* Exchange Type (8 bits): Indicates the type of exchange; these are discussed
later in this section.

* Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits are
defined so far. The initiator bit indicates whether this packet is sent by the SA ini-
tiator. The version bit indicates whether the transmitter is capable of using a
higher major version number than the one currently indicated. The response bit
indicates whether this is a response to a message containing the same message ID.

* Message ID (32 bits): Used to control retransmission of lost packets and
matching of requests and responses.

e Length (32 bits): Length of total message (header plus all payloads) in octets.

IKE Pavroap Tyres All IKE payloads begin with the same generic payload header
shown in Figure 8.12b. The Next Payload field has a value of 0 if this is the last
payload in the message; otherwise its value is the type of the next payload. The
Payload Length field indicates the length in octets of this payload, including the
generic payload header.

The critical bit is 0 if the sender wants the recipient to skip this payload if it
does not understand the payload type code in the Next Payload field of the previous
payload. It is set to 1 if the sender wants the recipient to reject this entire message if
it does not understand the payload type.

Table 8.3 summarizes the payload types defined for IKE and lists the fields, or
parameters, that are part of each payload. The SA payload is used to begin

Table 8.3 IKE Payload Types

Type Parameters
Security Association Proposals
Key Exchange DH Group #, Key Exchange Data
Identification ID Type, ID Data
Certificate Cert Encoding, Certificate Data

Certificate Request

Cert Encoding, Certification Authority

Authentication Auth Method, Authentication Data

Nonce Nonce Data

Notify Protocol-ID, SPI Size, Notify Message Type, SPI, Notification Data
Delete Protocol-ID, SPI Size, # of SPIs, SPI (one or more)

Vendor ID Vendor ID

Traffic Selector

Number of TSs, Traffic Selectors

Encrypted

IV, Encrypted IKE payloads, Padding, Pad Length, ICV

Configuration

CFG Type, Configuration Attributes

Extensible Authentication
Protocol

EAP Message

8.5 / INTERNET KEY EXCHANGE 299

the establishment of an SA. The payload has a complex, hierarchical structure. The
payload may contain multiple proposals. Each proposal may contain multiple proto-
cols. Each protocol may contain multiple transforms. And each transform may
contain multiple attributes. These elements are formatted as substructures within
the payload as follows.

e Proposal: This substructure includes a proposal number, a protocol 1D
(AH, ESP, or IKE), an indicator of the number of transforms, and then a
transform substructure. If more than one protocol is to be included in a
proposal, then there is a subsequent proposal substructure with the same pro-
posal number.

e Transform: Different protocols support different transform types. The trans-
forms are used primarily to define cryptographic algorithms to be used with a
particular protocol.

e Attribute: Each transform may include attributes that modify or complete the
specification of the transform. An example is key length.

The Key Exchange payload can be used for a variety of key exchange tech-
niques, including Oakley, Diffie-Hellman, and the RSA-based key exchange used by
PGP. The Key Exchange data field contains the data required to generate a session
key and is dependent on the key exchange algorithm used.

The Identification payload is used to determine the identity of communicating
peers and may be used for determining authenticity of information. Typically the ID
Data field will contain an IPv4 or IPv6 address.

The Certificate payload transfers a public-key certificate. The Certificate
Encoding field indicates the type of certificate or certificate-related information,
which may include the following:

e PKCS #7 wrapped X.509 certificate
* PGP certificate

* DNS signed key

e X.500 certificate —signature

e X.509 certificate —key exchange

e Kerberos tokens

e Certificate Revocation List (CRL)
* Authority Revocation List (ARL)
e SPKI certificate

At any point in an IKE exchange, the sender may include a Certificate
Request payload to request the certificate of the other communicating entity. The
payload may list more than one certificate type that is acceptable and more than
one certificate authority that is acceptable.

The Authentication payload contains data used for message authentication
purposes. The authentication method types so far defined are RSA digital signature,
shared-key message integrity code, and DSS digital signature.

300 CHAPTER 8 / IP SECURITY

The Nonce payload contains random data used to guarantee liveness during
an exchange and to protect against replay attacks.

The Notify payload contains either error or status information associated
with this SA or this SA negotiation. The following table lists the IKE notify

messages.

Error Messages

Status Messages

Unsupported Critical
Payload

Invalid IKE SPI
Invalid Major Version
Invalid Syntax
Invalid Payload Type
Invalid Message ID
Invalid SPI

No Proposal Chosen
Invalid KE Payload
Authentication Failed

Single Pair Required

Initial Contact

Set Window Size

Additional TS Possible
IPCOMP Supported

NAT Detection Source [P
NAT Detection Destination P
Cookie

Use Transport Mode

HTTP Cert Lookup Supported
Rekey SA

ESP TFC Padding Not Supported
Non First Fragments Also

No Additional SAS
Internal Address Failure
Failed CP Required

TS Unacceptable

Invalid Selectors

The Delete payload indicates one or more SAs that the sender has deleted
from its database and that therefore are no longer valid.

The Vendor ID payload contains a vendor-defined constant. The constant is
used by vendors to identify and recognize remote instances of their implementa-
tions. This mechanism allows a vendor to experiment with new features while
maintaining backward compatibility.

The Traffic Selector payload allows peers to identify packet flows for process-
ing by IPsec services.

The Encrypted payload contains other payloads in encrypted form. The
encrypted payload format is similar to that of ESP. It may include an IV if the
encryption algorithm requires it and an ICV if authentication is selected.

The Configuration payload is used to exchange configuration information
between IKE peers.

The Extensible Authentication Protocol (EAP) payload allows IKE SAs to be
authenticated using EAP, which was discussed in Chapter 6.

8.6 / CRYPTOGRAPHIC SUITES 301

8.6 CRYPTOGRAPHIC SUITES

The IPsecv3 and IKEv3 protocols rely on a variety of types of cryptographic algo-
rithms. As we have seen in this book, there are many cryptographic algorithms of
each type, each with a variety of parameters, such as key size. To promote interoper-
ability, two RFCs define recommended suites of cryptographic algorithms and para-
meters for various applications.

RFC 4308 defines two cryptographic suites for establishing virtual private net-
works. Suite VPN-A matches the commonly used corporate VPN security used in
older IKEv1 implementations at the time of the issuance of IKEv2 in 2005. Suite
VPN-B provides stronger security and is recommended for new VPNs that imple-
ment IPsecv3 and IKEV2.

Table 8.4a lists the algorithms and parameters for the two suites. There are
several points to note about these two suites. Note that for symmetric

Table 8.4 Cryptographic Suites for IPsec

VPN-A VPN-B
ESP encryption 3DES-CBC AES-CBC (128-bit key)
ESP integrity HMAC-SHA1-96 AES-XCBC-MAC-96
IKE encryption 3DES-CBC AES-CBC (128-bit key)
IKE PRF HMAC-SHA1 AES-XCBC-PRF-128
IKE Integrity HMAC-SHA1-96 AES-XCBC-MAC-96
IKE DH group 1024-bit MODP 2048-bit MODP
(a) Virtual private networks (RFC 4308)
GCM-128 GCM-256 GMAC-128 GMAC-256
ESP AES-GCM (128- AES-GCM Null Null
encryption/Integrity | bit key) (256-bit key)
ESP integrity Null Null AES-GMAC AES-GMAC
(128-bit key) (256-bit key)

IKE encryption AES-CBC (128- AES-CBC (256- AES-CBC (128-bit AES-CBC

bit key) bit key) key) (256-bit key)
IKE PRF HMAC-SHA-256 HMAC-SHA-384 HMAC-SHA-256 HMAC-SHA-384
IKE Integrity HMAC-SHA-256- | HMAC-SHA-384- | HMAC-SHA-256- HMAC-SHA-

128 192 128 384-192
IKE DH group 256-bit random 384-bit random 256-bit random 384-bit random

ECP ECP ECP JECIP
IKE authentication | ECDSA-256 ECDSA-384 ECDSA-256 ECDSA-384

(b) NSA Suite B (RFC 4869)

302 CHAPTER 8 / IP SECURITY

cryptography, VPN-A relies on 3DES and HMAC, while VPN-B relies exclu-
sively on AES. Three types of secret-key algorithms are used:

* Encryption: For encryption, the cipher block chaining (CBC) mode is used.

e Message authentication: For message authentication, VPN-A relies on HMAC
with SHA-1 with the output truncated to 96 bits. VPN-B relies on a variant of
CMAC with the output truncated to 96 bits.

¢ Pseudorandom function: IKEv2 generates pseudorandom bits by repeated
use of the MAC used for message authentication.

RFC 4869 defines four optional cryptographic suites that are compatible with
the United States National Security Agency’s Suite B specifications. In 2005, the
NSA issued Suite B, which defined the algorithms and strengths needed to protect
both sensitive but unclassified (SBU) and classified information for use in its
Cryptographic Modernization program [LATT09]. The four suites defined in
RFC 4869 provide choices for ESP and IKE. The four suites are differentiated by
the choice of cryptographic algorithm strengths and a choice of whether ESP is to
provide both confidentiality and integrity or integrity only. All of the suites offer
greater protection than the two VPN suites defined in RFC 4308.

Table 8.4b lists the algorithms and parameters for the two suites. As with RFC
4308, three categories of secret key algorithms are listed:

¢ Encryption: For ESP, authenticated encryption is provided using the GCM
mode with either 128-bit or 256-bit AES keys. For IKE encryption, CBC is
used, as it was for the VPN suites.

* Message authentication: For ESP, if only authentication is required, then
GMAC is used. GMAC is a message authentication code algorithm based on
the CRT mode of operation discussed in Chapter 2. For IKE, message authen-
tication is provided using HMAC with one of the SHA-3 hash functions.

¢ Pseudorandom function: As with the VPN suites, IKEv2 in these suites gener-
ates pseudorandom bits by repeated use of the MAC used for message
authentication.

For the Diffie-Hellman algorithm, the use of elliptic curve groups modulo a
prime is specified. For authentication, elliptic curve digital signatures are listed. The
original IKEv2 documents used RSA-based digital signatures. Equivalent or greater
strength can be achieved using ECC with fewer key bits.

8.7 RECOMMENDED READING AND WEB SITES

IPv6 and IPv4 are covered in more detail in [STALO07]. [CHEN98] provides a good
discussion of an IPsec design. [FRANOS5] is a more comprehensive treatment of IPsec.
[PATEO06] is a useful overview of IPsecv3 and IKEv2 with an emphasis on cryptographic
aspects.

8.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 303

CHENY98 Cheng, P, et al. “A Security Architecture for the Internet Protocol.” /IBM
Systems Journal, Number 1, 1998.

FRANO5 Frankel, S., et al. Guide to IPsec VPNs. NIST SP 800-77,2005.

PATE06 Paterson, K. “A Cryptographic Tour of the IPsec Standards.” “ Cryptology
ePrint Archive: Report 2006/097, April 2006.

STALO7 Stallings, W. Data and Computer Communications, Eighth Edition. Upper
Saddle River, NJ: Prentice Hall, 2007.

Recommended Web Sites:

* NIST IPsec Project: Contains papers, presentations, and reference implemen-
tations.

e IPsec Maintenance and Extensions Charter: Latest RFCs and internet drafts
for IPsec.

8.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
anti-replay service Internet Key Exchange (IKE) | replay attack
Authentication Header (AH) | IP Security (IPsec) security association (SA)
Encapsulating Security IPv4 transport mode
Payload (ESP) IPv6 tunnel mode
Internet Security Association Oakley key determination
and Key Management protocol
Protocol (ISAKMP)

Review Questions

8.1 Give examples of applications of IPsec.
8.2 What services are provided by [Psec?

8.3 What parameters identify an SA and what parameters characterize the nature of a
particular SA?

8.4 What is the difference between transport mode and tunnel mode?
8.5 Whatis a replay attack?

8.6 Why does ESP include a padding field?

8.7 What are the basic approaches to bundling SAs?

8.8 What are the roles of the Oakley key determination protocol and ISAKMP
in IPsec?

304 CHAPTER 8 / IP SECURITY

Problems

8.1 Describe and explain each of the entries in Table 8.2.

8.2 Draw a figure similar to Figure 8.8 for AH.

8.3 List the major security services provided by AH and ESP, respectively.

8.4 Indiscussing AH processing, it was mentioned that not all of the fields in an IP header
are included in MAC calculation.

a. For each of the fields in the IPv4 header, indicate whether the field is immutable,
mutable but predictable, or mutable (zeroed prior to ICV calculation).

b. Do the same for the IPv6 header.

c. Do the same for the IPv6 extension headers.

In each case, justify your decision for each field.

8.5 Suppose that the current replay window spans from 120 to 530.

a. If the next incoming authenticated packet has sequence number 105, what will the
receiver do with the packet, and what will be the parameters of the window after
that?

b. If instead the next incoming authenticated packet has sequence number 440, what
will the receiver do with the packet, and what will be the parameters of the
window after that?

c. Ifinstead the next incoming authenticated packet has sequence number 540, what
will the receiver do with the packet, and what will be the parameters of the
window after that?

8.6 When tunnel mode is used, a new outer IP header is constructed. For both IPv4 and
IPv6, indicate the relationship of each outer IP header field and each extension
header in the outer packet to the corresponding field or extension header of the inner
IP packet. That is, indicate which outer values are derived from inner values and
which are constructed independently of the inner values.

8.7 End-to-end authentication and encryption are desired between two hosts. Draw
figures similar to Figure 8.8 that show each of the following.

a. Transport adjacency with encryption applied before authentication.

b. A transport SA bundled inside a tunnel SA with encryption applied before
authentication.

c. A transport SA bundled inside a tunnel SA with authentication applied before
encryption.

8.8 The IPsec architecture document states that when two transport mode SAs are bun-
dled to allow both AH and ESP protocols on the same end-to-end flow, only one
ordering of security protocols seems appropriate: performing the ESP protocol
before performing the AH protocol. Why is this approach recommended rather than
authentication before encryption?

8.9 For the IKE key exchange, indicate which parameters in each message go in which
ISAKMP payload types.

8.10 Where does IPsec reside in a protocol stack?

PART 3: SYSTEM SECURITY

CHAPTER

INTRUDERS

9.1 Intruders

Intruder Behavior Patterns
Intrusion Techniques

9.2 Intrusion Detection

Audit Records

Statistical Anomaly Detection
Rule-Based Intrusion Detection

The Base-Rate Fallacy

Distributed Intrusion Detection
Honeypots

Intrusion Detection Exchange Format

9.3 Password Management

Password Protection
Password Selection Strategies

9.4 Recommended Reading and Web Sites
9.5 Key Terms, Review Questions, and Problems

Appendix 9A The Base-Rate Fallacy

305

306 CHAPTER 9 / INTRUDERS

They agreed that Graham should set the test for Charles Mabledene. It was nei-
ther more nor less than that Dragon should get Stern’s code. If he had the ‘in’ at
Utting which he claimed to have this should be possible, only loyalty to Moscow
Centre would prevent it. If he got the key to the code he would prove his loyalty
to London Central beyond a doubt.

— Talking to Strange Men, Ruth Rendell

KEY POINTS

¢ Unauthorized intrusion into a computer system or network is one of the
most serious threats to computer security.

¢ Intrusion detection systems have been developed to provide early warning
of an intrusion so that defensive action can be taken to prevent or mini-
mize damage.

¢ Intrusion detection involves detecting unusual patterns of activity or
patterns of activity that are known to correlate with intrusions.

¢ One important element of intrusion prevention is password management,
with the goal of preventing unauthorized users from having access to the
passwords of others.

A significant security problem for networked systems is hostile, or at least
unwanted, trespass by users or software. User trespass can take the form of unau-
thorized logon to a machine or, in the case of an authorized user, acquisition of priv-
ileges or performance of actions beyond those that have been authorized. Software
trespass can take the form of a virus, worm, or Trojan horse.

All these attacks relate to network security because system entry can be
achieved by means of a network. However, these attacks are not confined to net-
work-based attacks. A user with access to a local terminal may attempt trespass
without using an intermediate network. A virus or Trojan horse may be introduced
into a system by means of an optical disc. Only the worm is a uniquely network phe-
nomenon. Thus, system trespass is an area in which the concerns of network security
and computer security overlap.

Because the focus of this book is network security, we do not attempt a com-
prehensive analysis of either the attacks or the security countermeasures related
to system trespass. Instead, in this Part we present a broad overview of these
concerns.

This chapter covers the subject of intruders. First, we examine the nature of
the attack and then look at strategies intended for prevention and, failing that,
detection. Next we examine the related topic of password management.

9.1 / INTRUDERS 307

9.1 INTRUDERS

One of the two most publicized threats to security is the intruder (the other is
viruses), often referred to as a hacker or cracker. In an important early study of
intrusion, Anderson [ANDES0] identified three classes of intruders:

* Masquerader: An individual who is not authorized to use the computer and
who penetrates a system’s access controls to exploit a legitimate user’s account

e Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges

¢ Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

The masquerader is likely to be an outsider; the misfeasor generally is an insider;
and the clandestine user can be either an outsider or an insider.

Intruder attacks range from the benign to the serious. At the benign end of the
scale, there are many people who simply wish to explore internets and see what is
out there. At the serious end are individuals who are attempting to read privileged
data, perform unauthorized modifications to data, or disrupt the system.

[GRANO4] lists the following examples of intrusion:

e Performing a remote root compromise of an e-mail server
e Defacing a Web server

* Guessing and cracking passwords

¢ Copying a database containing credit card numbers

* Viewing sensitive data, including payroll records and medical information,
without authorization

* Running a packet sniffer on a workstation to capture usernames and pass-
words

e Using a permission error on an anonymous FTP server to distribute pirated
software and music files

e Dialing into an unsecured modem and gaining internal network access

e Posing as an executive, calling the help desk, resetting the executive’s e-mail
password, and learning the new password

e Using an unattended, logged-in workstation without permission

Intruder Behavior Patterns

The techniques and behavior patterns of intruders are constantly shifting, to exploit
newly discovered weaknesses and to evade detection and countermeasures. Even
so, intruders typically follow one of a number of recognizable behavior patterns, and
these patterns typically differ from those of ordinary users. In the following, we look

308 CHAPTER 9 / INTRUDERS

at three broad examples of intruder behavior patterns, to give the reader some feel
for the challenge facing the security administrator. Table 9.1, based on [RADC04],
summarizes the behavior.

Hackers Traditionally, those who hack into computers do so for the thrill of it or
for status. The hacking community is a strong meritocracy in which status is
determined by level of competence. Thus, attackers often look for targets of
opportunity and then share the information with others. A typical example is a
break-in at a large financial institution reported in [RADCO04]. The intruder took
advantage of the fact that the corporate network was running unprotected services,
some of which were not even needed. In this case, the key to the break-in was the
pcAnywhere application. The manufacturer, Symantec, advertises this program as a
remote control solution that enables secure connection to remote devices. But the
attacker had an easy time gaining access to pcAnywhere; the administrator used the
same three-letter username and password for the program. In this case, there was no
intrusion detection system on the 700-node corporate network. The intruder was
only discovered when a vice president walked into her office and saw the cursor
moving files around on her Windows workstation.

Table 9.1 Some Examples of Intruder Patterns of Behavior
(a) Hacker

. Select the target using IP lookup tools such as NSLookup, Dig, and others.
. Map network for accessible services using tools such as NMAP.

. Identify potentially vulnerable services (in this case, pcAnywhere).

. Brute force (guess) pcAnywhere password.

. Install remote administration tool called DameWare.

. Wait for administrator to log on and capture his password.

N S A W -

. Use that password to access remainder of network.

(b) Criminal Enterprise

. Act quickly and precisely to make their activities harder to detect.

. Exploit perimeter through vulnerable ports.

W N -

. Use Trojan horses (hidden software) to leave back doors for reentry.

. Use sniffers to capture passwords.

(7 N

. Do not stick around until noticed.

=)

. Make few or no mistakes.

(c¢) Internal Threat

. Create network accounts for themselves and their friends.

. Access accounts and applications they wouldn’t normally use for their daily jobs.

W N =

. E-mail former and prospective employers.

. Conduct furtive instant-messaging chats.

7 I -

. Visit Web sites that cater to disgruntled employees, such as f’'dcompany.com.

=)

. Perform large downloads and file copying.

=

. Access the network during off hours.

9.1 / INTRUDERS 309

Benign intruders might be tolerable, although they do consume resources and
may slow performance for legitimate users. However, there is no way in advance to
know whether an intruder will be benign or malign. Consequently, even for systems
with no particularly sensitive resources, there is a motivation to control this problem.

Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs)
are designed to counter this type of hacker threat. In addition to using such systems,
organizations can consider restricting remote logons to specific IP addresses and/or
use virtual private network technology.

One of the results of the growing awareness of the intruder problem has been
the establishment of a number of computer emergency response teams (CERTS).
These cooperative ventures collect information about system vulnerabilities and
disseminate it to systems managers. Hackers also routinely read CERT reports.
Thus, it is important for system administrators to quickly insert all software patches
to discovered vulnerabilities. Unfortunately, given the complexity of many IT
systems, and the rate at which patches are released, this is increasingly difficult to
achieve without automated updating. Even then, there are problems caused by
incompatibilities resulting from the updated software. Hence the need for multiple
layers of defense in managing security threats to IT systems.

Crivinars Organized groups of hackers have become a widespread and common
threat to Internet-based systems. These groups can be in the employ of a corpo-
ration or government but often are loosely affiliated gangs of hackers. Typically,
these gangs are young, often Eastern European, Russian, or southeast Asian
hackers who do business on the Web [ANTEO06]. They meet in underground forums
with names like DarkMarket.org and theftservices.com to trade tips and data and
coordinate attacks. A common target is a credit card file at an e-commerce server.
Attackers attempt to gain root access. The card numbers are used by organized
crime gangs to purchase expensive items and are then posted to carder sites, where
others can access and use the account numbers; this obscures usage patterns and
complicates investigation.

Whereas traditional hackers look for targets of opportunity, criminal hackers
usually have specific targets, or at least classes of targets in mind. Once a site is pene-
trated, the attacker acts quickly, scooping up as much valuable information as possi-
ble and exiting.

IDSs and IPSs can also be used for these types of attackers, but may be less
effective because of the quick in-and-out nature of the attack. For e-commerce
sites, database encryption should be used for sensitive customer information, espe-
cially credit cards. For hosted e-commerce sites (provided by an outsider service),
the e-commerce organization should make use of a dedicated server (not used to
support multiple customers) and closely monitor the provider’s security services.

InstDER ATTACKS Insider attacks are among the most difficult to detect and prevent.
Employees already have access and knowledge about the structure and content of
corporate databases. Insider attacks can be motivated by revenge or simply a feeling
of entitlement. An example of the former is the case of Kenneth Patterson, fired
from his position as data communications manager for American Eagle Outfitters.
Patterson disabled the company’s ability to process credit card purchases during
five days of the holiday season of 2002. As for a sense of entitlement, there have

310 CHAPTER 9 / INTRUDERS

always been many employees who felt entitled to take extra office supplies for
home use, but this now extends to corporate data. An example is that of a vice
president of sales for a stock analysis firm who quit to go to a competitor. Before she
left, she copied the customer database to take with her. The offender reported
feeling no animus toward her former employee; she simply wanted the data because
it would be useful to her.

Although IDS and IPS facilities can be useful in countering insider attacks,
other more direct approaches are of higher priority. Examples include the following:

e Enforce least privilege, only allowing access to the resources employees need
to do their job.

e Set logs to see what users access and what commands they are entering.
e Protect sensitive resources with strong authentication.
e Upon termination, delete employee’s computer and network access.

e Upon termination, make a mirror image of employee’s hard drive before reis-
suing it. That evidence might be needed if your company information turns up
at a competitor.

In this section, we look at the techniques used for intrusion. Then we examine
ways to detect intrusion.

Intrusion Techniques

The objective of the intruder is to gain access to a system or to increase the range of
privileges accessible on a system. Most initial attacks use system or software vulner-
abilities that allow a user to execute code that opens a back door into the system.
Alternatively, the intruder attempts to acquire information that should have been
protected. In some cases, this information is in the form of a user password. With
knowledge of some other user’s password, an intruder can log in to a system and
exercise all the privileges accorded to the legitimate user.

Typically, a system must maintain a file that associates a password with each
authorized user. If such a file is stored with no protection, then it is an easy matter to
gain access to it and learn passwords. The password file can be protected in one of
two ways:

¢ One-way function: The system stores only the value of a function based on the
user’s password. When the user presents a password, the system transforms
that password and compares it with the stored value. In practice, the system
usually performs a one-way transformation (not reversible) in which the
password is used to generate a key for the one-way function and in which a
fixed-length output is produced.

* Access control: Access to the password file is limited to one or a very few
accounts.

If one or both of these countermeasures are in place, some effort is needed for
a potential intruder to learn passwords. On the basis of a survey of the literature and

9.1 / INTRUDERS 311

interviews with a number of password crackers, [ALVA90] reports the following
techniques for learning passwords:

1. Try default passwords used with standard accounts that are shipped with the
system. Many administrators do not bother to change these defaults.

2. Exhaustively try all short passwords (those of one to three characters).

3. Try words in the system’s online dictionary or a list of likely passwords. Examples
of the latter are readily available on hacker bulletin boards.

4. Collect information about users, such as their full names, the names of their
spouse and children, pictures in their office, and books in their office that are
related to hobbies.

5. Try users’ phone numbers, Social Security numbers, and room numbers.

6. Try all legitimate license plate numbers for this state.

7. Use a Trojan horse (described in Chapter 10) to bypass restrictions on access.
8. Tap the line between a remote user and the host system.

The first six methods are various ways of guessing a password. If an intruder has
to verify the guess by attempting to log in, it is a tedious and easily countered means of
attack. For example, a system can simply reject any login after three password attempts,
thus requiring the intruder to reconnect to the host to try again. Under these circum-
stances, it is not practical to try more than a handful of passwords. However, the
intruder is unlikely to try such crude methods. For example, if an intruder can gain
access with a low level of privileges to an encrypted password file, then the strategy
would be to capture that file and then use the encryption mechanism of that particular
system at leisure until a valid password that provided greater privileges was discovered.

Guessing attacks are feasible, and indeed highly effective, when a large num-
ber of guesses can be attempted automatically and each guess verified, without the
guessing process being detectable. Later in this chapter, we have much to say about
thwarting guessing attacks.

The seventh method of attack listed earlier, the Trojan horse, can be particularly
difficult to counter. An example of a program that bypasses access controls was cited
in [ALVA90]. A low-privilege user produced a game program and invited the system
operator to use it in his or her spare time. The program did indeed play a game, but in
the background it also contained code to copy the password file, which was unen-
crypted but access protected, into the user’s file. Because the game was running under
the operator’s high-privilege mode, it was able to gain access to the password file.

The eighth attack listed, line tapping, is a matter of physical security.

Other intrusion techniques do not require learning a password. Intruders can
get access to a system by exploiting attacks such as buffer overflows on a program
that runs with certain privileges. Privilege escalation can be done this way as well.

We turn now to a discussion of the two principal countermeasures: detection
and prevention. Detection is concerned with learning of an attack, either before or
after its success. Prevention is a challenging security goal and an uphill battle at all
times. The difficulty stems from the fact that the defender must attempt to thwart all
possible attacks, whereas the attacker is free to try to find the weakest link in the
defense chain and attack at that point.

312 CHAPTER 9 / INTRUDERS

9.2 INTRUSION DETECTION

Inevitably, the best intrusion prevention system will fail. A system’s second line of
defense is intrusion detection, and this has been the focus of much research in
recent years. This interest is motivated by a number of considerations, including the
following:

1. If an intrusion is detected quickly enough, the intruder can be identified and
ejected from the system before any damage is done or any data are compro-
mised. Even if the detection is not sufficiently timely to preempt the intruder,
the sooner that the intrusion is detected, the less the amount of damage and
the more quickly that recovery can be achieved.

2. An effective intrusion detection system can serve as a deterrent, so acting to pre-
vent intrusions.

3. Intrusion detection enables the collection of information about intrusion tech-
niques that can be used to strengthen the intrusion prevention facility.

Intrusion detection is based on the assumption that the behavior of the
intruder differs from that of a legitimate user in ways that can be quantified. Of
course, we cannot expect that there will be a crisp, exact distinction between an
attack by an intruder and the normal use of resources by an authorized user. Rather,
we must expect that there will be some overlap.

Figure 9.1 suggests, in very abstract terms, the nature of the task confronting
the designer of an intrusion detection system. Although the typical behavior of an

Prpbabilit}{ Profile of
density function Profile of authorized user
behavior

intruder behavior

N

Overlap in observed
or expected behavior

I I
Average behavior Average behavior Measurable behavior
of intruder of authorized user parameter

Figure 9.1 Profiles of Behavior of Intruders and Authorized Users

9.2 / INTRUSION DETECTION 313

intruder differs from the typical behavior of an authorized user, there is an overlap
in these behaviors. Thus, a loose interpretation of intruder behavior, which will catch
more intruders, will also lead to a number of “false positives,” or authorized users
identified as intruders. On the other hand, an attempt to limit false positives by a
tight interpretation of intruder behavior will lead to an increase in false negatives, or
intruders not identified as intruders. Thus, there is an element of compromise and
art in the practice of intrusion detection.

In Anderson’s study [ANDES0], it was postulated that one could, with reason-
able confidence, distinguish between a masquerader and a legitimate user. Patterns
of legitimate user behavior can be established by observing past history, and signifi-
cant deviation from such patterns can be detected. Anderson suggests that the task
of detecting a misfeasor (legitimate user performing in an unauthorized fashion) is
more difficult, in that the distinction between abnormal and normal behavior may
be small. Anderson concluded that such violations would be undetectable solely
through the search for anomalous behavior. However, misfeasor behavior might
nevertheless be detectable by intelligent definition of the class of conditions that
suggest unauthorized use. Finally, the detection of the clandestine user was felt to be
beyond the scope of purely automated techniques. These observations, which were
made in 1980, remain true today.

[PORR92] identifies the following approaches to intrusion detection:

1. Statistical anomaly detection: Involves the collection of data relating to the
behavior of legitimate users over a period of time. Then statistical tests
are applied to observed behavior to determine with a high level of confidence
whether that behavior is not legitimate user behavior.

a. Threshold detection: This approach involves defining thresholds, inde-
pendent of user, for the frequency of occurrence of various events.

b. Profile based: A profile of the activity of each user is developed and used
to detect changes in the behavior of individual accounts.

2. Rule-based detection: Involves an attempt to define a set of rules that can be
used to decide that a given behavior is that of an intruder.

a. Anomaly detection: Rules are developed to detect deviation from previ-
ous usage patterns.

b. Penetration identification: An expert system approach that searches for
suspicious behavior.

In a nutshell, statistical approaches attempt to define normal, or expected, behavior,
whereas rule-based approaches attempt to define proper behavior.

In terms of the types of attackers listed earlier, statistical anomaly detection is
effective against masqueraders, who are unlikely to mimic the behavior patterns of
the accounts they appropriate. On the other hand, such techniques may be unable to
deal with misfeasors. For such attacks, rule-based approaches may be able to recog-
nize events and sequences that, in context, reveal penetration. In practice, a system
may exhibit a combination of both approaches to be effective against a broad range
of attacks.

314 CHAPTER 9 / INTRUDERS

Audit Records

A fundamental tool for intrusion detection is the audit record. Some record of
ongoing activity by users must be maintained as input to an intrusion detection
system. Basically, two plans are used:

Native audit records: Virtually all multiuser operating systems include
accounting software that collects information on user activity. The advantage
of using this information is that no additional collection software is needed.
The disadvantage is that the native audit records may not contain the needed
information or may not contain it in a convenient form.

Detection-specific audit records: A collection facility can be implemented that
generates audit records containing only that information required by the
intrusion detection system. One advantage of such an approach is that it could
be made vendor independent and ported to a variety of systems. The disad-
vantage is the extra overhead involved in having, in effect, two accounting
packages running on a machine.

A good example of detection-specific audit records is one developed by

Dorothy Denning [DENNS87]. Each audit record contains the following fields:

Subject: Initiators of actions. A subject is typically a terminal user but might
also be a process acting on behalf of users or groups of users. All activity arises
through commands issued by subjects. Subjects may be grouped into different
access classes, and these classes may overlap.

Action: Operation performed by the subject on or with an object; for example,
login, read, perform 1/O, execute.

Object: Receptors of actions. Examples include files, programs, messages,
records, terminals, printers, and user- or program-created structures. When a
subject is the recipient of an action, such as electronic mail, then that subject is
considered an object. Objects may be grouped by type. Object granularity may
vary by object type and by environment. For example, database actions may be
audited for the database as a whole or at the record level.
Exception-Condition: Denotes which, if any, exception condition is raised on
return.

Resource-Usage: A list of quantitative elements in which each element gives
the amount used of some resource (e.g., number of lines printed or displayed,
number of records read or written, processor time, I/O units used, session
elapsed time).

Time-Stamp: Unique time-and-date stamp identifying when the action took
place.

Most user operations are made up of a number of elementary actions. For

example, a file copy involves the execution of the user command, which includes
doing access validation and setting up the copy, plus the read from one file, plus the
write to another file. Consider the command

COPY GAME.EXE TO <Libray>GAME.EXE

9.2 / INTRUSION DETECTION 315

issued by Smith to copy an executable file GAME from the current directory to the
<Library> directory. The following audit records may be generated:

| Smith |execute| <Library>COPY.EXE [0 | CPU =00002 | 11058721678 |

| Smith | read | <Smith>GAME.EXE | 0 | RECORDS =0 | 11058721679 |

| Smith |execute| <Library>COPY.EXE | write-viol | RECORDS = 0 | 11058721680 |

In this case, the copy is aborted because Smith does not have write permission to
<Library>.

The decomposition of a user operation into elementary actions has three
advantages:

1. Because objects are the protectable entities in a system, the use of elementary
actions enables an audit of all behavior affecting an object. Thus, the system
can detect attempted subversions of access controls (by noting an abnormal-
ity in the number of exception conditions returned) and can detect successful
subversions by noting an abnormality in the set of objects accessible to the
subject.

2. Single-object, single-action audit records simplify the model and the implemen-
tation.

3. Because of the simple, uniform structure of the detection-specific audit
records, it may be relatively easy to obtain this information or at least part of
it by a straightforward mapping from existing native audit records to the
detection-specific audit records.

Statistical Anomaly Detection

As was mentioned, statistical anomaly detection techniques fall into two broad
categories: threshold detection and profile-based systems. Threshold detection
involves counting the number of occurrences of a specific event type over an inter-
val of time. If the count surpasses what is considered a reasonable number that one
might expect to occur, then intrusion is assumed.

Threshold analysis, by itself, is a crude and ineffective detector of even moder-
ately sophisticated attacks. Both the threshold and the time interval must be deter-
mined. Because of the variability across users, such thresholds are likely to generate
either a lot of false positives or a lot of false negatives. However, simple threshold
detectors may be useful in conjunction with more sophisticated techniques.

Profile-based anomaly detection focuses on characterizing the past behavior
of individual users or related groups of users and then detecting significant devia-
tions. A profile may consist of a set of parameters, so that deviation on just a single
parameter may not be sufficient in itself to signal an alert.

The foundation of this approach is an analysis of audit records. The audit
records provide input to the intrusion detection function in two ways. First, the
designer must decide on a number of quantitative metrics that can be used to mea-
sure user behavior. An analysis of audit records over a period of time can be used to

316 CHAPTER 9 / INTRUDERS

determine the activity profile of the average user. Thus, the audit records serve to
define typical behavior. Second, current audit records are the input used to detect
intrusion. That is, the intrusion detection model analyzes incoming audit records to
determine deviation from average behavior.

Examples of metrics that are useful for profile-based intrusion detection are
the following:

* Counter: A nonnegative integer that may be incremented but not decre-
mented until it is reset by management action. Typically, a count of certain
event types is kept over a particular period of time. Examples include the
number of logins by a single user during an hour, the number of times a given
command is executed during a single user session, and the number of pass-
word failures during a minute.

* Gauge: A nonnegative integer that may be incremented or decremented.
Typically, a gauge is used to measure the current value of some entity.
Examples include the number of logical connections assigned to a user appli-
cation and the number of outgoing messages queued for a user process.

e Interval timer: The length of time between two related events. An example is
the length of time between successive logins to an account.

* Resource utilization: Quantity of resources consumed during a specified
period. Examples include the number of pages printed during a user session
and total time consumed by a program execution.

Given these general metrics, various tests can be performed to determine
whether current activity fits within acceptable limits. [DENNS87] lists the following
approaches that may be taken:

e Mean and standard deviation
e Multivariate

e Markov process

e Time series

e Operational

The simplest statistical test is to measure the mean and standard deviation of a
parameter over some historical period. This gives a reflection of the average behav-
ior and its variability. The use of mean and standard deviation is applicable to a wide
variety of counters, timers, and resource measures. But these measures, by them-
selves, are typically too crude for intrusion detection purposes.

A multivariate model is based on correlations between two or more variables.
Intruder behavior may be characterized with greater confidence by considering
such correlations (for example, processor time and resource usage, or login fre-
quency and session elapsed time).

A Markov process model is used to establish transition probabilities among
various states. As an example, this model might be used to look at transitions
between certain commands.

9.2 / INTRUSION DETECTION 317

A time series model focuses on time intervals, looking for sequences of events
that happen too rapidly or too slowly. A variety of statistical tests can be applied to
characterize abnormal timing.

Finally, an operational model is based on a judgment of what is considered
abnormal, rather than an automated analysis of past audit records. Typically, fixed
limits are defined and intrusion is suspected for an observation that is outside the
limits. This type of approach works best where intruder behavior can be deduced
from certain types of activities. For example, a large number of login attempts over
a short period suggests an attempted intrusion.

As an example of the use of these various metrics and models, Table 9.2 shows
various measures considered or tested for the Stanford Research Institute (SRI)
intrusion detection system (IDES) [DENN87,JAVI91, LUNTSS].

The main advantage of the use of statistical profiles is that a prior knowledge of
security flaws is not required. The detector program learns what is “normal” behavior
and then looks for deviations. The approach is not based on system-dependent
characteristics and vulnerabilities. Thus, it should be readily portable among a variety
of systems.

Rule-Based Intrusion Detection

Rule-based techniques detect intrusion by observing events in the system and
applying a set of rules that lead to a decision regarding whether a given pattern of
activity is or is not suspicious. In very general terms, we can characterize all
approaches as focusing on either anomaly detection or penetration identification,
although there is some overlap in these approaches.

Rule-based anomaly detection is similar in terms of its approach and strengths
to statistical anomaly detection. With the rule-based approach, historical audit
records are analyzed to identify usage patterns and to generate automatically rules
that describe those patterns. Rules may represent past behavior patterns of users,
programs, privileges, time slots, terminals, and so on. Current behavior is then
observed, and each transaction is matched against the set of rules to determine if it
conforms to any historically observed pattern of behavior.

As with statistical anomaly detection, rule-based anomaly detection does not
require knowledge of security vulnerabilities within the system. Rather, the scheme
is based on observing past behavior and, in effect, assuming that the future will be
like the past. In order for this approach to be effective, a rather large database of
rules will be needed. For example, a scheme described in [VACC89] contains any-
where from 10* to 10° rules.

Rule-based penetration identification takes a very different approach to intru-
sion detection. The key feature of such systems is the use of rules for identifying
known penetrations or penetrations that would exploit known weaknesses. Rules
can also be defined that identify suspicious behavior, even when the behavior is
within the bounds of established patterns of usage. Typically, the rules used in these
systems are specific to the machine and operating system. The most fruitful
approach to developing such rules is to analyze attack tools and scripts collected on
the Internet. These rules can be supplemented with rules generated by knowledge-
able security personnel. In this latter case, the normal procedure is to interview

318 CHAPTER 9 / INTRUDERS

Table 9.2 Measures That May Be Used for Intrusion Detection

Measure

Model

Type of Intrusion Detected

Login and Session A ctivity

Login frequency by day and
time

Frequency of login at different
locations

Time since last login

Elapsed time per session

Quantity of output to location

Session resource utilization

Password failures at login

Failures to login from specified
terminals

Mean and standard
deviation

Mean and standard
deviation

Operational

Mean and standard
deviation

Mean and standard
deviation

Mean and standard
deviation

Operational

Operational

Intruders may be likely to log in during off-hours.

Intruders may log in from a location that a particu-
lar user rarely or never uses.

Break-in on a “dead” account.

Significant deviations might indicate masquerader.

Excessive amounts of data transmitted to remote
locations could signify leakage of sensitive data.

Unusual processor or I/O levels could signal an
intruder.

Attempted break-in by password guessing.

Attempted break-in.

Command or Program Execution Activity

Execution frequency

Program resource utilization

Execution denials

Mean and standard
deviation

Mean and standard
deviation

Operational model

May detect intruders, who are likely to use different
commands, or a successful penetration by a legiti-
mate user, who has gained access to privileged
commands.

An abnormal value might suggest injection of a
virus or Trojan horse, which performs side-effects
that increase I/O or processor utilization.

May detect penetration attempt by individual user
who seeks higher privileges.

File Access Activity

Read, write, create, delete
frequency

Records read, written

Failure count for read, write,
create, delete

Mean and standard
deviation

Mean and standard
deviation

Operational

Abnormalities for read and write access for individ-
ual users may signify masquerading or browsing.

Abnormality could signify an attempt to obtain sen-
sitive data by inference and aggregation.

May detect users who persistently attempt to access
unauthorized files.

system administrators and security analysts to collect a suite of known penetration
scenarios and key events that threaten the security of the target system.

A simple example of the type of rules that can be used is found in NIDX, an
early system that used heuristic rules that can be used to assign degrees of suspicion
to activities [BAUESS]. Example heuristics are the following:

1. Users should not read files in other users’ personal directories.

2. Users must not write other users’ files.

9.2 / INTRUSION DETECTION 319

3. Users who log in after hours often access the same files they used earlier.

4. Users do not generally open disk devices directly but rely on higher-level operat-
ing system utilities.

5. Users should not be logged in more than once to the same system.
6. Users do not make copies of system programs.

The penetration identification scheme used in IDES is representative of the
strategy followed. Audit records are examined as they are generated, and they are
matched against the rule base. If a match is found, then the user’s suspicion rating is
increased. If enough rules are matched, then the rating will pass a threshold that
results in the reporting of an anomaly.

The IDES approach is based on an examination of audit records. A weak-
ness of this plan is its lack of flexibility. For a given penetration scenario, there
may be a number of alternative audit record sequences that could be produced,
each varying from the others slightly or in subtle ways. It may be difficult to pin
down all these variations in explicit rules. Another method is to develop a higher-
level model independent of specific audit records. An example of this is a state
transition model known as USTAT [ILGU93]. USTAT deals in general actions
rather than the detailed specific actions recorded by the UNIX auditing mecha-
nism. USTAT is implemented on a SunOS system that provides audit records on
239 events. Of these, only 28 are used by a preprocessor, which maps these onto
10 general actions (Table 9.3). Using just these actions and the parameters that are
invoked with each action, a state transition diagram is developed that character-
izes suspicious activity. Because a number of different auditable events map into a
smaller number of actions, the rule-creation process is simpler. Furthermore, the
state transition diagram model is easily modified to accommodate newly learned
intrusion behaviors.

Table 9.3 USTAT Actions versus SunOS Event Types

USTAT Action SunOS Event Type

Read open_r, open_rc, open_rtc, open_rwc, open_rwtc, open_rt, open_rw,
open_rwt

Write truncate, ftruncate, creat, open_rtc, open_rwc, open_rwtc, open_rt,
open_rw, open_rwt, open_w, open_wt, open_wc, open_wct

Create mkdir, creat, open_rc, open_rtc, open_rwc, open_rwtc, open_wc,
open_wtc, mknod

Delete rmdir, unlink

Execute exec, execve

Exit exit

Modify_Owner chown, fchown

Modify_Perm chmod, fchmod

Rename rename

Hardlink link

320 CHAPTER 9 / INTRUDERS

The Base-Rate Fallacy

To be of practical use, an intrusion detection system should detect a substantial
percentage of intrusions while keeping the false alarm rate at an acceptable level.
If only a modest percentage of actual intrusions are detected, the system provides
a false sense of security. On the other hand, if the system frequently triggers an
alert when there is no intrusion (a false alarm), then either system managers will
begin to ignore the alarms, or much time will be wasted analyzing the false
alarms.

Unfortunately, because of the nature of the probabilities involved, it is very
difficult to meet the standard of high rate of detections with a low rate of false
alarms. In general, if the actual numbers of intrusions is low compared to the
number of legitimate uses of a system, then the false alarm rate will be high unless
the test is extremely discriminating. A study of existing intrusion detection systems,
reported in [AXELO00], indicated that current systems have not overcome the prob-
lem of the base-rate fallacy. See Appendix 9A for a brief background on the math-
ematics of this problem.

Distributed Intrusion Detection

Until recently, work on intrusion detection systems focused on single-system stand-
alone facilities. The typical organization, however, needs to defend a distributed
collection of hosts supported by a LAN or internetwork. Although it is possible to
mount a defense by using stand-alone intrusion detection systems on each host, a
more effective defense can be achieved by coordination and cooperation among
intrusion detection systems across the network.

Porras points out the following major issues in the design of a distributed
intrusion detection system [PORR92]:

e A distributed intrusion detection system may need to deal with different audit
record formats. In a heterogeneous environment, different systems will
employ different native audit collection systems and, if using intrusion detec-
tion, may employ different formats for security-related audit records.

¢ One or more nodes in the network will serve as collection and analysis points
for the data from the systems on the network. Thus, either raw audit data or
summary data must be transmitted across the network. Therefore, there is a
requirement to assure the integrity and confidentiality of these data. Integrity
is required to prevent an intruder from masking his or her activities by altering
the transmitted audit information. Confidentiality is required because the
transmitted audit information could be valuable.

¢ Either a centralized or decentralized architecture can be used. With a central-
ized architecture, there is a single central point of collection and analysis of all
audit data. This eases the task of correlating incoming reports but creates a
potential bottleneck and single point of failure. With a decentralized architec-
ture, there are more than one analysis centers, but these must coordinate their
activities and exchange information.

9.2 / INTRUSION DETECTION 321

LAN monitor

Host Host
Agent
D D D module
Router
] O]]
Central manager
Manager
D module

Figure 9.2 Architecture for Distributed Intrusion Detection

A good example of a distributed intrusion detection system is one developed
at the University of California at Davis [HEBE92, SNAP91]. Figure 9.2 shows the
overall architecture, which consists of three main components:

* Host agent module: An audit collection module operating as a background
process on a monitored system. Its purpose is to collect data on security-
related events on the host and transmit these to the central manager.

°* LAN monitor agent module: Operates in the same fashion as a host
agent module except that it analyzes LAN traffic and reports the results to the
central manager.

¢ Central manager module: Receives reports from LAN monitor and host
agents and processes and correlates these reports to detect intrusion.

The scheme is designed to be independent of any operating system or system
auditing implementation. Figure 9.3 [SNAP91] shows the general approach that is
taken. The agent captures each audit record produced by the native audit collection
system. A filter is applied that retains only those records that are of security interest.
These records are then reformatted into a standardized format referred to as the
host audit record (HAR). Next, a template-driven logic module analyzes the
records for suspicious activity. At the lowest level, the agent scans for notable events
that are of interest independent of any past events. Examples include failed file
accesses, accessing system files, and changing a file’s access control. At the next
higher level, the agent looks for sequences of events, such as known attack patterns
(signatures). Finally, the agent looks for anomalous behavior of an individual user
based on a historical profile of that user, such as number of programs executed,
number of files accessed, and the like.

322 CHAPTER 9 / INTRUDERS

OS audit
information
A
I I
I I
I I
Filter \ Central |
| manager !
I
I I
. I I
Host audit ! !
record fmmmmm - '
Logic
Alerts Query/
response
Notable activity Agent
Signatures —>| protocol
Templates Noteworthy sessions machine

Modifications

Figure 9.3 Agent Architecture

When suspicious activity is detected, an alert is sent to the central manager.
The central manager includes an expert system that can draw inferences from
received data. The manager may also query individual systems for copies of HARSs
to correlate with those from other agents.

The LAN monitor agent also supplies information to the central manager. The
LAN monitor agent audits host-host connections, services used, and volume of traf-
fic. It searches for significant events, such as sudden changes in network load, the use
of security-related services, and network activities such as rlogin.

The architecture depicted in Figures 9.2 and 9.3 is quite general and flexible. It
offers a foundation for a machine-independent approach that can expand from
stand-alone intrusion detection to a system that is able to correlate activity from a
number of sites and networks to detect suspicious activity that would otherwise
remain undetected.

Honeypots

A relatively recent innovation in intrusion detection technology is the honeypot.
Honeypots are decoy systems that are designed to lure a potential attacker away
from critical systems. Honeypots are designed to

e divert an attacker from accessing critical systems

¢ collect information about the attacker’s activity

e encourage the attacker to stay on the system long enough for administrators
to respond

9.3 / PASSWORD MANAGEMENT 323

These systems are filled with fabricated information designed to appear valu-
able but that a legitimate user of the system wouldn’t access. Thus, any access to the
honeypot is suspect. The system is instrumented with sensitive monitors and event
loggers that detect these accesses and collect information about the attacker’s activ-
ities. Because any attack against the honeypot is made to seem successful, adminis-
trators have time to mobilize and log and track the attacker without ever exposing
productive systems.

Initial efforts involved a single honeypot computer with IP addresses designed
to attract hackers. More recent research has focused on building entire honeypot
networks that emulate an enterprise, possibly with actual or simulated traffic and
data. Once hackers are within the network, administrators can observe their behav-
ior in detail and figure out defenses.

Intrusion Detection Exchange Format

To facilitate the development of distributed intrusion detection systems that can
function across a wide range of platforms and environments, standards are needed
to support interoperability. Such standards are the focus of the IETF Intrusion
Detection Working Group. The purpose of the working group is to define data for-
mats and exchange procedures for sharing information of interest to intrusion
detection and response systems and to management systems that may need to inter-
act with them. The outputs of this working group include:

1. A requirements document, which describes the high-level functional require-
ments for communication between intrusion detection systems and requirements
for communication between intrusion detection systems and with management
systems, including the rationale for those requirements. Scenarios will be used to
illustrate the requirements.

2. A common intrusion language specification, which describes data formats that
satisfy the requirements.

3. A framework document, which identifies existing protocols best used for com-
munication between intrusion detection systems, and describes how the
devised data formats relate to them.

As of this writing, all of these documents are in an Internet-draft document stage.

9.3 PASSWORD MANAGEMENT

Password Protection

The front line of defense against intruders is the password system. Virtually all
multiuser systems require that a user provide not only a name or identifier (ID) but
also a password. The password serves to authenticate the ID of the individual log-
ging on to the system. In turn, the ID provides security in the following ways:

e The ID determines whether the user is authorized to gain access to a system.
In some systems, only those who already have an ID filed on the system are
allowed to gain access.

324 CHAPTER 9 / INTRUDERS

e The ID determines the privileges accorded to the user. A few users may have
supervisory or “superuser” status that enables them to read files and perform
functions that are especially protected by the operating system. Some systems
have guest or anonymous accounts, and users of these accounts have more
limited privileges than others.

e The ID is used in what is referred to as discretionary access control. For exam-
ple, by listing the IDs of the other users, a user may grant permission to them
to read files owned by that user.

THE VULNERABILITY OF Passworps To understand the nature of the threat to
password-based systems, let us consider a scheme that is widely used on UNIX, in
which passwords are never stored in the clear. Rather, the following procedure is
employed (Figure 9.4a). Each user selects a password of up to eight printable
characters in length. This is converted into a 56-bit value (using 7-bit ASCII) that
serves as the key input to an encryption routine. The encryption routine, known as
crypt(3),is based on DES. The DES algorithm is modified using a 12-bit “salt” value.
Typically, this value is related to the time at which the password is assigned to the
user. The modified DES algorithm is exercised with a data input consisting of a
64-bit block of zeros. The output of the algorithm then serves as input for a second
encryption. This process is repeated for a total of 25 encryptions. The resulting 64-bit
output is then translated into an 11-character sequence. The hashed password is
then stored, together with a plaintext copy of the salt, in the password file for the
corresponding user ID. This method has been shown to be secure against a variety
of cryptanalytic attacks [WAGNOO].

The salt serves three purposes:

e It prevents duplicate passwords from being visible in the password file. Even if
two users choose the same password, those passwords will be assigned at dif-
ferent times. Hence, the “extended” passwords of the two users will differ.

e It effectively increases the length of the password without requiring the user
to remember two additional characters. Hence, the number of possible pass-
words is increased by a factor of 4096, increasing the difficulty of guessing a
password.

e It prevents the use of a hardware implementation of DES, which would ease
the difficulty of a brute-force guessing attack.

When a user attempts to log on to a UNIX system, the user provides an ID and
a password. The operating system uses the ID to index into the password file and
retrieve the plaintext salt and the encrypted password. The salt and user-supplied
password are used as input to the encryption routine. If the result matches the
stored value, the password is accepted.

The encryption routine is designed to discourage guessing attacks. Software
implementations of DES are slow compared to hardware versions, and the use of
25 iterations multiplies the time required by 25. However, since the original design
of this algorithm, two changes have occurred. First, newer implementations of the
algorithm itself have resulted in speedups. For example, the Morris worm described
in Chapter 10 was able to do online password guessing of a few hundred passwords

9.3 / PASSWORD MANAGEMENT 325

salt password
Password File

Userid salt E(pwd, [salt, 0])

'y .

Crypt (3) Load > °

11 characters

12 bits 56 bits

(a) Loading a new password

Password File

Userid Userid salt E(pwd, [salt, 0])

salt

Select I~ password

crypt (3)

!

) compare

hashed password

(b) Verifying a password
Figure 9.4 UNIX Password Scheme

in a reasonably short time by using a more efficient encryption algorithm than the
standard one stored on the UNIX systems that it attacked. Second, hardware per-
formance continues to increase, so that any software algorithm executes more
quickly.

Thus, there are two threats to the UNIX password scheme. First, a user can
gain access on a machine using a guest account or by some other means and then
run a password guessing program, called a password cracker, on that machine. The
attacker should be able to check hundreds and perhaps thousands of possible pass-
words with little resource consumption. In addition, if an opponent is able to obtain
a copy of the password file, then a cracker program can be run on another machine

326 CHAPTER 9 / INTRUDERS

at leisure. This enables the opponent to run through many thousands of possible
passwords in a reasonable period.

As an example, a password cracker was reported on the Internet in August
1993 [MADS93]. Using a Thinking Machines Corporation parallel computer, a
performance of 1560 encryptions per second per vector unit was achieved. With four
vector units per processing node (a standard configuration), this works out to
800,000 encryptions per second on a 128-node machine (which is a modest size) and
6.4 million encryptions per second on a 1024-node machine.

Even these stupendous guessing rates do not yet make it feasible for an
attacker to use a dumb brute-force technique of trying all possible combinations of
characters to discover a password. Instead, password crackers rely on the fact that
some people choose easily guessable passwords.

Some users, when permitted to choose their own password, pick one that is
absurdly short. The results of one study at Purdue University are shown in Table 9.4.
The study observed password change choices on 54 machines, representing approxi-
mately 7000 user accounts. Almost 3% of the passwords were three characters or
fewer in length. An attacker could begin the attack by exhaustively testing all possi-
ble passwords of length 3 or fewer. A simple remedy is for the system to reject any
password choice of fewer than, say, six characters or even to require that all pass-
words be exactly eight characters in length. Most users would not complain about
such a restriction.

Password length is only part of the problem. Many people, when permitted to
choose their own password, pick a password that is guessable, such as their own
name, their street name, a common dictionary word, and so forth. This makes the job
of password cracking straightforward. The cracker simply has to test the password
file against lists of likely passwords. Because many people use guessable passwords,
such a strategy should succeed on virtually all systems.

One demonstration of the effectiveness of guessing is reported in [KLEI90].
From a variety of sources, the author collected UNIX password files, containing
nearly 14,000 encrypted passwords. The result, which the author rightly characterizes

Table 9.4 Observed Password Lengths [SPAF92a]

Length Number Fraction of Total
1 55 .004
2 87 .006
3 212 .02
4 449 .03
5 1260 .09
6 3035 22
7 2917 21
8 5772 42
Total 13787 1.0

9.3 / PASSWORD MANAGEMENT 327

as frightening, is shown in Table 9.5. In all, nearly one-fourth of the passwords were
guessed. The following strategy was used:

1. Try the user’s name, initials, account name, and other relevant personal infor-
mation. In all, 130 different permutations for each user were tried.

2. Try words from various dictionaries. The author compiled a dictionary of over
60,000 words, including the online dictionary on the system itself, and various
other lists as shown.

Table 9.5 Passwords Cracked from a Sample Set of 13,797 Accounts [KLEI90]

Type of Password Search Size Number of Percentage of Passwords Cost/Benefit
Matches Matched Ratio®
User/account name 130 368 2.7% 2.830
Character sequences 866 22 0.2% 0.025
Numbers 427 9 0.1% 0.021
Chinese 392 56 0.4% 0.143
Place names 628 82 0.6% 0.131
Common names 2239 548 4.0% 0.245
Female names 4280 161 1.2% 0.038
Male names 2866 140 1.0% 0.049
Uncommon names 4955 130 0.9% 0.026
Myths & legends 1246 66 0.5% 0.053
Shakespearean 473 11 0.1% 0.023
Sports terms 238 32 0.2% 0.134
Science fiction 691 59 0.4% 0.085
Movies and actors 99 12 0.1% 0.121
Cartoons 92 9 0.1% 0.098
Famous people 290 55 0.4% 0.190
Phrases and patterns 933 253 1.8% 0.271
Surnames 33 9 0.1% 0.273
Biology 58 1 0.0% 0.017
System dictionary 19683 1027 7.4% 0.052
Machine names 9018 132 1.0% 0.015
Mnemonics 14 2 0.0% 0.143
King James bible 7525 83 0.6% 0.011
Miscellaneous words 3212 54 0.4% 0.017
Yiddish words 56 0 0.0% 0.000
Asteroids 2407 19 0.1% 0.007
TOTAL 62727 3340 24.2% 0.053

4Computed as the number of matches divided by the search size. The more words that needed to be tested for
a match, the lower the cost/benefit ratio.

328 CHAPTER 9 / INTRUDERS

3. Try various permutations on the words from step 2. This included making the
first letter uppercase or a control character, making the entire word uppercase,
reversing the word, changing the letter “0” to the digit “zero,” and so on. These
permutations added another 1 million words to the list.

4. Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.

Thus, the test involved in the neighborhood of 3 million words. Using the fastest
Thinking Machines implementation listed earlier, the time to encrypt all these
words for all possible salt values is under an hour. Keep in mind that such a thor-
ough search could produce a success rate of about 25%, whereas even a single hit
may be enough to gain a wide range of privileges on a system.

Access ControL One way to thwart a password attack is to deny the opponent
access to the password file. If the encrypted password portion of the file is accessible
only by a privileged user, then the opponent cannot read it without already knowing
the password of a privileged user. [SPAF92a] points out several flaws in this strategy:

e Many systems, including most UNIX systems, are susceptible to unanticipated
break-ins. Once an attacker has gained access by some means, he or she may
wish to obtain a collection of passwords in order to use different accounts for
different logon sessions to decrease the risk of detection. Or a user with
an account may desire another user’s account to access privileged data or to
sabotage the system.

e An accident of protection might render the password file readable, thus com-
promising all the accounts.

* Some of the users have accounts on other machines in other protection domains,
and they use the same password. Thus, if the passwords could be read by anyone
on one machine, a machine in another location might be compromised.

Thus, a more effective strategy would be to force users to select passwords that are
difficult to guess.

Password Selection Strategies

The lesson from the two experiments just described (Tables 9.4 and 9.5) is that, left
to their own devices, many users choose a password that is too short or too easy to
guess. At the other extreme, if users are assigned passwords consisting of eight ran-
domly selected printable characters, password cracking is effectively impossible. But
it would be almost as impossible for most users to remember their passwords.
Fortunately, even if we limit the password universe to strings of characters that are
reasonably memorable, the size of the universe is still too large to permit practical
cracking. Our goal, then, is to eliminate guessable passwords while allowing the user
to select a password that is memorable. Four basic techniques are in use:

e User education
¢ Computer-generated passwords

9.3 / PASSWORD MANAGEMENT 329

* Reactive password checking
¢ Proactive password checking

Users can be told the importance of using hard-to-guess passwords and can be
provided with guidelines for selecting strong passwords. This user education strat-
egy is unlikely to succeed at most installations, particularly where there is a large
user population or a lot of turnover. Many users will simply ignore the guidelines.
Others may not be good judges of what is a strong password. For example, many
users (mistakenly) believe that reversing a word or capitalizing the last letter makes
a password unguessable.

Computer-generated passwords also have problems. If the passwords are quite
random in nature, users will not be able to remember them. Even if the password is
pronounceable, the user may have difficulty remembering it and so be tempted to
write it down. In general, computer-generated password schemes have a history of
poor acceptance by users. FIPS PUB 181 defines one of the best-designed auto-
mated password generators. The standard includes not only a description of the
approach but also a complete listing of the C source code of the algorithm. The algo-
rithm generates words by forming pronounceable syllables and concatenating them
to form a word. A random number generator produces a random stream of charac-
ters used to construct the syllables and words.

A reactive password checking strategy is one in which the system periodically
runs its own password cracker to find guessable passwords. The system cancels any
passwords that are guessed and notifies the user. This tactic has a number of draw-
backs. First, it is resource intensive if the job is done right. Because a determined
opponent who is able to steal a password file can devote full CPU time to the task
for hours or even days, an effective reactive password checker is at a distinct disad-
vantage. Furthermore, any existing passwords remain vulnerable until the reactive
password checker finds them.

The most promising approach to improved password security is a proactive
password checker. In this scheme, a user is allowed to select his or her own pass-
word. However, at the time of selection, the system checks to see if the password is
allowable and, if not, rejects it. Such checkers are based on the philosophy that,
with sufficient guidance from the system, users can select memorable passwords
from a fairly large password space that are not likely to be guessed in a dictionary
attack.

The trick with a proactive password checker is to strike a balance between
user acceptability and strength. If the system rejects too many passwords, users will
complain that it is too hard to select a password. If the system uses some simple
algorithm to define what is acceptable, this provides guidance to password crackers
to refine their guessing technique. In the remainder of this subsection, we look at
possible approaches to proactive password checking.

The first approach is a simple system for rule enforcement. For example, the
following rules could be enforced:

e All passwords must be at least eight characters long.

* In the first eight characters, the passwords must include at least one each of
uppercase, lowercase, numeric digits, and punctuation marks.

330 CHAPTER 9 / INTRUDERS

These rules could be coupled with advice to the user. Although this approach is
superior to simply educating users, it may not be sufficient to thwart password
crackers. This scheme alerts crackers as to which passwords not to try but may still
make it possible to do password cracking.

Another possible procedure is simply to compile a large dictionary of possible
“bad” passwords. When a user selects a password, the system checks to make sure
that it is not on the disapproved list. There are two problems with this approach:

* Space: The dictionary must be very large to be effective. For example, the dic-
tionary used in the Purdue study [SPAF92a] occupies more than 30 megabytes
of storage.

e Time: The time required to search a large dictionary may itself be large. In
addition, to check for likely permutations of dictionary words, either those
words most be included in the dictionary, making it truly huge, or each search
must also involve considerable processing.

Two techniques for developing an effective and efficient proactive password
checker that is based on rejecting words on a list show promise. One of these develops
a Markov model for the generation of guessable passwords [DAVI93]. Figure 9.5
shows a simplified version of such a model. This model shows a language consisting of
an alphabet of three characters. The state of the system at any time is the identity of
the most recent letter. The value on the transition from one state to another repre-
sents the probability that one letter follows another. Thus, the probability that the next
letter is b, given that the current letter is a, is 0.5.

M= {3,{a,b,c}, T,1} where
00 05 05
T= 02 04 04
1.0 0.0 0.0
e.g., string probably from this language: abbcacaba
e.g., string probably not from this language: aacccbaaa

Figure 9.5 An Example Markov Model

9.3 / PASSWORD MANAGEMENT 331

In general, a Markov model is a quadruple [m, A, T, k], where m is the number
of states in the model, A is the state space, T is the matrix of transition probabilities,
and k is the order of the model. For a kth-order model, the probability of making a
transition to a particular letter depends on the previous k& letters that have been gen-
erated. Figure 9.5 shows a simple first-order model.

The authors report on the development and use of a second-order model. To
begin, a dictionary of guessable passwords is constructed. Then the transition matrix
is calculated as follows:

1. Determine the frequency matrix f, where (i, j, k) is the number of occurrences
of the trigram consisting of the ith, jth, and kth character. For example, the
password parsnips yields the trigrams par, ars, rsn, sni, nip, and ips.

2. For each bigram ij, calculate f(i, j, co) as the total number of trigrams beginning
with ij. For example, f(a, b, oo) would be the total number of trigrams of the form
aba, abb, abc, and so on.

3. Compute the entries of T as follows:

- f(i,], k)
T o)

The result is a model that reflects the structure of the words in the dictionary.
With this model, the question “Is this a bad password?” is transformed into the
question “Was this string (password) generated by this Markov model?” For a given
password, the transition probabilities of all its trigrams can be looked up. Some stan-
dard statistical tests can then be used to determine if the password is likely or
unlikely for that model. Passwords that are likely to be generated by the model are
rejected. The authors report good results for a second-order model. Their system
catches virtually all the passwords in their dictionary and does not exclude so many
potentially good passwords as to be user unfriendly.

A quite different approach has been reported by Spafford [SPAF92a,
SPAF92b]. It is based on the use of a Bloom filter [BLOO70]. To begin, we explain
the operation of the Bloom filter. A Bloom filter of order k consists of a set of k
independent hash functions H;(x), H,(x), ..., Hi(x), where each function maps a
password into a hash value in the range 0 to N — 1. That is,

H{(X;) =y 1=i=k 1=j=D; 0=y=N-1
where

X; = jth word in password dictionary
D = number of words in password dictionary

The following procedure is then applied to the dictionary:

1. A hash table of N bits is defined, with all bits initially set to 0.

2. For each password, its k hash values are calculated, and the corresponding bits
in the hash table are set to 1. Thus, if H(X;) = 67 for some (i, j), then the sixty-
seventh bit of the hash table is set to 1; if the bit already has the value 1, it
remains at 1.

332 CHAPTER 9 / INTRUDERS

When a new password is presented to the checker, its k hash values are calcu-
lated. If all the corresponding bits of the hash table are equal to 1, then the password
is rejected. All passwords in the dictionary will be rejected. But there will also be
some “false positives” (that is, passwords that are not in the dictionary but that pro-
duce a match in the hash table). To see this, consider a scheme with two hash func-
tions. Suppose that the passwords undertaker and hulkhogan are in the dictionary,
but xG %#jj98 is not. Further suppose that

H,(undertaker) = 25 Hi(hulkhogan) = 83 H{(xG%#jj98) = 665
H,(undertaker) = 998 H,(hulkhogan) = 665 H,(xG%#j98) = 998

If the password xG %#jj98 is presented to the system, it will be rejected even
though it is not in the dictionary. If there are too many such false positives, it will be
difficult for users to select passwords. Therefore, we would like to design the hash
scheme to minimize false positives. It can be shown that the probability of a false
positive can be approximated by:

k k
P~ (1 _ ekD/N) — <1 _ e](/R)

_ —k
In(1 — PYk)

or, equivalently,

~
~

where

k = number of hash functions

N = number of bits in hash table

D = number of words in dictionary

R = N/D,ratio of hash table size (bits) to dictionary size (words)

Figure 9.6 plots P as a function of R for various values of k. Suppose we have
a dictionary of 1 million words and we wish to have a 0.01 probability of rejecting a
password not in the dictionary. If we choose six hash functions, the required ratio is
R = 9.6. Therefore, we need a hash table of 9.6 X 10°bits or about 1.2 MBytes of
storage. In contrast, storage of the entire dictionary would require on the order of
8 MBytes. Thus, we achieve a compression of almost a factor of 7. Furthermore,
password checking involves the straightforward calculation of six hash functions
and is independent of the size of the dictionary, whereas with the use of the full
dictionary, there is substantial searching.'

'Both the Markov model and the Bloom filter involve the use of probabilistic techniques. In the case
of the Markov model, there is a small probability that some passwords in the dictionary will not be
caught and a small probability that some passwords not in the dictionary will be rejected. In the case
of the Bloom filter, there is a small probability that some passwords not in the dictionary will be
rejected.

9.4 / RECOMMENDED READING AND WEB SITES 333

0.1 =
o 2 hash functions
E i /
2
2
£ 001 <
) o / 4 hash functions
: 6 hash functions
0.001
L | | |
0 5 10 15 20

Ratio of hash table size (bits) to dictionary size (words)

Figure 9.6 Performance of Bloom Filter

9.4 RECOMMENDED READING AND WEB SITES

Two thorough treatments of intrusion detection are [BACE00] and [PROCO01]. A more
concise but very worthwhile treatment is [SCARO7]. Two short but useful survey articles on
the subject are [KENT00] and [MCHUOO]. [NINGO4] surveys recent advances in intrusion
detection techniques. [HONEO1] is the definitive account on honeypots and provides a
detailed analysis of the tools and methods of hackers.

BACEO0 Bace, R. Intrusion Detection. Indianapolis, IN: Macmillan Technical
Publishing, 2000.
HONEO1 The Honeynet Project. Know Your Enemy: Revealing the Security Tools, Tactics,
and Motives of the Blackhat Community. Reading, MA: Addison-Wesley, 2001.
KENTO00 Kent, S. “On the Trail of Intrusions into Information Systems.” IEEE
Spectrum, December 2000.

MCHUO00 McHugh, J.; Christie, A.; and Allen, J. “The Role of Intrusion Detection
Systems.” IEEE Software, September/October 2000.

NINGO04 Ning, P, et al. “Techniques and Tools for Analyzing Intrusion Alerts.” ACM
Transactions on Information and System Security, May 2004.

PROCO1 Proctor, P, The Practical Intrusion Detection Handbook. Upper Saddle River,
NJ: Prentice Hall, 2001.

SCARO07 Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention Systems.
NIST Special Publication SP 800-94, February 2007.

334 CHAPTER 9 / INTRUDERS

NS

Recommended Web Sites:

CERT Coordination Center: The organization that grew from the computer
emergency response team formed by the Defense Advanced Research Projects
Agency. Site provides good information on Internet security threats, vulnerabilities,
and attack statistics.

Packet Storm: Resource of up-to-date and historical security tools, exploits, and
advisories.

Honeynet Project: A research project studying the techniques of predatory hackers
and developing honeypot products.

Honeypots: A good collection of research papers and technical articles.

Intrusion Detection Working Group: IETF group developing standards for exchange

formats and exchange procedures for intrusion detection systems. Includes RFCs and
Internet drafts.

STAT Project: A research and open-source project at the University of California,
Santa Barbara that focuses on signature-based intrusion detection tools for hosts,
applications, and networks.

Password Usage and Generation: NIST documents on this topic.

9.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
audit record intruder password
Bayes’ Theorem intrusion detection rule-based intrusion detection
base-rate fallacy intrusion detection exchange salt
honeypot format statistical anomaly detection

Review Questions

9.1
9.2
9.3
94

9.5
9.6

9.7
9.8
9.9

List and briefly define three classes of intruders.
What are two common techniques used to protect a password file?
What are three benefits that can be provided by an intrusion detection system?

What is the difference between statistical anomaly detection and rule-based intrusion
detection?

What metrics are useful for profile-based intrusion detection?

What is the difference between rule-based anomaly detection and rule-based pene-
tration identification?

What is a honeypot?
What is a salt in the context of UNIX password management?
List and briefly define four techniques used to avoid guessable passwords.

9.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 335

Problems

9.1

9.4

9.5

In the context of an IDS, we define a false positive to be an alarm generated by an
IDS in which the IDS alerts to a condition that is actually benign. A false negative
occurs when an IDS fails to generate an alarm when an alert-worthy condition is in
effect. Using the following diagram, depict two curves that roughly indicate false
positives and false negatives, respectively.

Frequency
of alerts
A
A .
»
Less specific Conservativeness More specific
or looser of signatures or stricter

The overlapping area of the two probability density functions of Figure 9.1 represents

the region in which there is the potential for false positives and false negatives.

Further, Figure 9.1 is an idealized and not necessarily representative depiction of the

relative shapes of the two density functions. Suppose there is 1 actual intrusion for

every 1000 authorized users, and the overlapping area covers 1% of the authorized

users and 50% of the intruders.

a. Sketch such a set of density functions and argue that this is not an unreasonable
depiction.

b. What is the probability that an event that occurs in this region is that of an autho-
rized user? Keep in mind that 50% of all intrusions fall in this region.

An example of a host-based intrusion detection tool is the tripwire program. This is a
file integrity checking tool that scans files and directories on the system on a regular
basis and notifies the administrator of any changes. It uses a protected database of
cryptographic checksums for each file checked and compares this value with that
recomputed on each file as it is scanned. It must be configured with a list of files and
directories to check, and what changes, if any, are permissible to each. It can allow, for
example, log files to have new entries appended, but not for existing entries to be
changed. What are the advantages and disadvantages of using such a tool? Consider
the problem of determining which files should only change rarely, which files may
change more often and how, and which change frequently and hence cannot be
checked. Hence consider the amount of work in both the configuration of the pro-
gram and on the system administrator monitoring the responses generated.

A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies,
the Green and the Blue, operate in the city. You are told that:

* 85% of the cabs in the city are Green and 15% are Blue.
e A witness identified the cab as Blue.

The court tested the reliability of the witness under the same circumstances that
existed on the night of the accident and concluded that the witness was correct in
identifying the color of the cab 80% of the time. What is the probability that the cab
involved in the incident was Blue rather than Green?
Explain the suitability or unsuitability of the following passwords:

a. YK 334 b. mfmitm (for “my favorite c. Nataliel d. Washington

movie is tender mercies)
e. Aristotle f. tv9stove g. 12345678 h. dribgib

336 CHAPTER 9 / INTRUDERS

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

An early attempt to force users to use less predictable passwords involved computer-
supplied passwords. The passwords were eight characters long and were taken from
the character set consisting of lowercase letters and digits. They were generated by a
pseudorandom number generator with 2'° possible starting values. Using the technol-
ogy of the time, the time required to search through all character strings of length 8
from a 36-character alphabet was 112 years. Unfortunately, this is not a true reflection
of the actual security of the system. Explain the problem.

Assume that passwords are selected from four-character combinations of 26 alpha-
betic characters. Assume that an adversary is able to attempt passwords at a rate of
one per second.
a. Assuming no feedback to the adversary until each attempt has been completed,
what is the expected time to discover the correct password?
b. Assuming feedback to the adversary flagging an error as each incorrect character
is entered, what is the expected time to discover the correct password?
Assume that source elements of length k are mapped in some uniform fashion into a
target elements of length p. If each digit can take on one of r values, then the number
of source elements is 7* and the number of target elements is the smaller number r*.
A particular source element x; is mapped to a particular target element y;.
a. What is the probability that the correct source element can be
selected by an adversary on one try?
b. What is the probability that a different source element x;(x; # x;) that results in
the same target element, y;, could be produced by an adversary?
c. What is the probability that the correct target element can be produced by an
adversary on one try?
A phonetic password generator picks two segments randomly for each six-letter pass-
word. The form of each segment is CVC (consonant, vowel, consonant), where
V = <a,e,i,o,u>and C = V.
a. What is the total password population?
b. What is the probability of an adversary guessing a password correctly?
Assume that passwords are limited to the use of the 95 printable ASCII characters
and that all passwords are 10 characters in length. Assume a password cracker with an
encryption rate of 6.4 million encryptions per second. How long will it take to test
exhaustively all possible passwords on a UNIX system?
Because of the known risks of the UNIX password system, the SunOS-4.0 documen-
tation recommends that the password file be removed and replaced with a publicly
readable file called /etc/publickey. An entry in the file for user A consists of a user’s
identifier /D 4, the user’s public key, PU,, and the corresponding private key PR,. This
private key is encrypted using DES with a key derived from the user’s login password
P,.When A logs in, the system decrypts E(P,, PR,) to obtain PR,.
a. The system then verifies that P, was correctly supplied. How?
b. How can an opponent attack this system?
The encryption scheme used for UNIX passwords is one ways; it is not possible to
reverse it. Therefore, would it be accurate to say that this is, in fact, a hash code rather
than an encryption of the password?

It was stated that the inclusion of the salt in the UNIX password scheme increases the
difficulty of guessing by a factor of 4096. But the salt is stored in plaintext in the same
entry as the corresponding ciphertext password. Therefore, those two characters are
known to the attacker and need not be guessed. Why is it asserted that the salt
increases security?

Assuming that you have successfully answered the preceding problem and under-
stand the significance of the salt, here is another question. Wouldn’t it be possible to
thwart completely all password crackers by dramatically increasing the salt size to,
say, 24 or 48 bits?

Consider the Bloom filter discussed in Section 9.3. Define k = number of hash func-
tions; N = number of bits in hash table; and D = number of words in dictionary.

APPENDIX 9A / THE BASE-RATE FALLACY 337

a. Show that the expected number of bits in the hash table that are equal to zero is

expressed as
k D
=(1- =
o= (1 %)

b. Show that the probability that an input word, not in the dictionary, will be falsely
accepted as being in the dictionary is

P=(1-¢)

c. Show that the preceding expression can be approximated as

k
P~ (1 _ e*kD/N)

9.16 Design a file access system to allow certain users read and write access to a file,
depending on authorization set up by the system. The instructions should be of the
format:

READ (F, User A): attempt by User A to read file F
READ (F, User A): attempt by User A to store a possibly modified copy of F

Each file has a header record, which contains authorization privileges; that is, a list of
users who can read and write. The file is to be encrypted by a key that is not shared by
the users but known only to the system.

APPENDIX 9A THE BASE-RATE FALLACY

We begin with a review of important results from probability theory, then demon-
strate the base-rate fallacy.

Conditional Probability and Independence

We often want to know a probability that is conditional on some event. The effect of the
condition is to remove some of the outcomes from the sample space. For example, what
is the probability of getting a sum of 8 on the roll of two dice, if we know that the face of
at least one die is an even number? We can reason as follows. Because one die is even
and the sum is even, the second die must show an even number. Thus, there are three
equally likely successful outcomes: (2,6), (4,4) and (6,2), out of a total set of possibilities
of [36—(number of events with both faces odd)] = 36—(3 X 3) = 27. The resulting
probability is 3/27 = 1/9.

Formally, the conditional probability of an event A assuming the event B has

occurred, denoted by Pr[A| B], is defined as the ratio
Pr[A | B] = PriAB]
Pr[B]
where we assume Pr[B] is not zero.

In our example, A = {sum of 8} and B = {at least one die even}. The quantity
Pr[AB] encompasses all of those outcomes in which the sum is 8 and at least one
die is even. As we have seen, there are three such outcomes. Thus,
Pr[AB] = 3/36 = 1/12. A moment’s thought should convince you that Pr[B] = 3/4.
We can now calculate

338 CHAPTER 9 / INTRUDERS

1/12 1
PrlA|B]l = — = —
HATBI = 30 = %
This agrees with our previous reasoning.
Two events A and B are called independent if Pr[AB] = Pr[A]Pr[B]. It can eas-
ily be seen that if A and B are independent, Pr[A|B] = Pr[A] and Pr[B|A]| = Pr[B].

Bayes’ Theorem

One of the most important results from probability theory is known as Bayes’ theo-
rem. First we need to state the total probability formula. Given a set of mutually
exclusive events Eq, E,, ..., E,, such that the union of these events covers all possi-
ble outcomes, and given an arbitrary event A, then it can be shown that

Pr[A] = iPr[A |E;|Pr[E;] ©9.1)
=1

Bayes’ theorem may be stated as follows:

Pr{E}A] = Pr[A|E;]P[E]] _ Pr[A|E]P[E]] ©.2)

Pr[A] i Pr[A|E|Pr[E}]
=

Figure 9.7a illustrates the concepts of total probability and Bayes’ theorem.

Bayes’ theorem is used to calculate “posterior odds,” that is, the probability
that something really is the case, given evidence in favor of it. For example, suppose
we are transmitting a sequence of zeroes and ones over a noisy transmission line.
Let SO and S1 be the events a zero is sent at a given time and a one is sent, respec-
tively, and RO and R1 be the events that a zero is received and a one is received.
Suppose we know the probabilities of the source, namely Pr[S1] = p and
Pr[SO] = 1 — p. Now the line is observed to determine how frequently an error
occurs when a one is sent and when a zero is sent, and the following probabilities are
calculated: Pr[RO|SO] = p, and Pr[R1|SO] = p,. If a zero is received, we can then

= S0; 0sent [_]= RO; 0 received
=S1; Isent [I]=RI; I received
(a) Diagram to illustrate concepts (b) Example

Figure 9.7 Illustration of Total Probability and Bayes’ Theorem

APPENDIX 9A / THE BASE-RATE FALLACY 339

calculate the conditional probability of an error, namely the conditional probability
that a one was sent given that a zero was received, using Bayes’ theorem:
Pr[RO | S1]Pr[S1] Dol

Pr[S1[RO] = Pr[RO | S1Pr[S1] + Pr[RO| SOJPI[SO] pop + (1 — pp)(1 — p)

Figure 9.7b illustrates the preceding equation. In the figure, the sample space is rep-
resented by a unit square. Half of the square corresponds to SO and half to S1, so
Pr[SO] = Pr[S1] = 0.5.Similarly, half of the square corresponds to R0 and half to R1, so
Pr[R0O] = Pr[R1] = 0.5.Within the area representing S0, 1/4 of that area corresponds to
R1,s0 Pr[R1/S0] = 0.25. Other conditional probabilities are similarly evident.

The Base-Rate Fallacy Demonstrated

Consider the following situation. A patient has a test for some disease that comes
back positive (indicating he has the disease). You are told that

e The accuracy of the test is 87% (i.e., if a patient has the disease, 87% of the
time, the test yields the correct result, and if the patient does not have the dis-
ease, 87 % of the time, the test yields the correct result).

e The incidence of the disease in the population is 1%.

Given that the test is positive, how probable is it that the patient does not have
the disease? That is, what is the probability that this is a false alarm? We need Bayes’
theorem to get the correct answer:

Pr[positive/well|Pr[well]

P 1l/positi =
rwell/positive] Pr[positive/disease]Pr[disease] + Pr[positive/well|Pr[well]

B (0.13)(0.99)
~(0.87)(0.01) + (0.13)(0.99)

= 0.937

Thus, in the vast majority of cases, when a disease condition is detected, it is a
false alarm.

This problem, used in a study [PIAT91], was presented to a number of people.
Most subjects gave the answer 13%. The vast majority, including many physicians,
gave a number below 50%. Many physicians who guessed wrong lamented, “If you
are right, there is no point in making clinical tests!” The reason most people get it
wrong is that they do not take into account the basic rate of incidence (the base rate)
when intuitively solving the problem. This error is known as the base-rate fallacy.

How could this problem be fixed? Suppose we could drive both of the correct
result rates to 99.9%. That is, suppose we have Pr[positive/disease] = 0.999 and
Pr[negative/well] = 0.999. Plugging these numbers into the Equation (9.2), we get
Pr[well/positive] = 0.09. Thus, if we can accurately detect disease and accurately
detect lack of disease at a level of 99.9%, then the rate of false alarms will be 9%.
This is much better, but still not ideal. Moreover, again assume 99.9% accuracy, but
now suppose that the incidence of the disease in the population is only
1/10000 = 0.0001. We then end up with a rate of false alarms of 91%. In actual situ-
ations, [AXELO00] found that the probabilities associated with intrusion detection
systems were such that the false alarm rate was unsatisfactory.

CHAPTER

MALICIOUS SOFTWARE

10.1 Types Of Malicious Software

Backdoor

Logic Bomb

Trojan Horses

Mobile Code
Multiple-Threat Malware

10.2 Viruses

The Nature of Viruses
Viruses Classification
Virus Kits

Macro Viruses

E-Mail Viruses

10.3 Virus Countermeasures

Antivirus Approaches
Advanced Antivirus Techniques

10.4 Worms

The Morris Worm

Worm Propagation Model
Recent Worm Attacks
State of Worm Technology
Mobile Phone Worms
Worm Countermeasures

10.5 Distributed Denial Of Service Attacks
DDoS Attack Description

Constructing the Attack Network
DDoS Countermeasures

10.6 Recommended Reading And Web Sites
10.7 Key Terms, Review Questions, And Problems

340

10.1 / TYPES OF MALICIOUS SOFTWARE 341

What is the concept of defense: The parrying of a blow. What is its characteristic
feature: Awaiting the blow.

— On War, Carl Von Clausewitz

KEY POINTS

¢ Malicious software is software that is intentionally included or inserted in
a system for a harmful purpose.

@ A virus is a piece of software that can “infect” other programs by modify-
ing them; the modification includes a copy of the virus program, which can
then go on to infect other programs.

¢ A worm is a program that can replicate itself and send copies from com-
puter to computer across network connections. Upon arrival, the worm
may be activated to replicate and propagate again. In addition to propaga-
tion, the worm usually performs some unwanted function.

¢ A denial of service (DoS) attack is an attempt to prevent legitimate users
of a service from using that service.

¢ A distributed denial of service attack is launched from multiple coordinated
sources.

Perhaps the most sophisticated types of threats to computer systems are presented by
programs that exploit vulnerabilities in computing systems. Such threats are referred to
as malicious software, or malware. In this context, we are concerned with threats to
application programs as well as utility programs, such as editors and compilers, and
kernel-level programs.

This chapter examines malicious software, with a special emphasis on viruses
and worms. The chapter begins with a survey of various types of malware, with a
more detailed look at the nature of viruses and worms. We then turn to distributed
denial-of-service attacks. Throughout, the discussion presents both threats and
countermeasures.

10.1 TYPES OF MALICIOUS SOFTWARE

The terminology in this area presents problems because of a lack of universal agree-
ment on all of the terms and because some of the categories overlap. Table 10.1 is a
useful guide.

Malicious software can be divided into two categories: those that need a host
program, and those that are independent. The former, referred to as parasitic, are
essentially fragments of programs that cannot exist independently of some
actual application program, utility, or system program. Viruses, logic bombs,

342 CHAPTER 10 / MALICIOUS SOFTWARE

Table 10.1 Terminology of Malicious Programs

Name Description
Virus Malware that, when executed, tries to replicate itself into other executable code; when it
succeeds the code is said to be infected. When the infected code is executed, the virus also
executes.
Worm A computer program that can run independently and can propagate a complete working

version of itself onto other hosts on a network.

Logic bomb A program inserted into software by an intruder. A logic bomb lies dormant until a prede-
fined condition is met; the program then triggers an unauthorized act.

Trojan horse A computer program that appears to have a useful function, but also has a hidden and
potentially malicious function that evades security mechanisms, sometimes by exploiting
legitimate authorizations of a system entity that invokes the Trojan horse program.

Backdoor Any mechanism that bypasses a normal security check; it may allow unauthorized access
(trapdoor) to functionality.
Mobile code Software (e.g., script, macro, or other portable instruction) that can be shipped unchanged

to a heterogeneous collection of platforms and execute with identical semantics.

Exploits Code specific to a single vulnerability or set of vulnerabilities.

Downloaders Program that installs other items on a machine that is under attack. Usually, a downloader
is sent in an e-mail.

Auto-rooter Malicious hacker tools used to break into new machines remotely.

Kit (virus Set of tools for generating new viruses automatically.

generator)

Spammer Used to send large volumes of unwanted e-mail.

programs

Flooders Used to attack networked computer systems with a large volume of traffic to carry out a

denial-of-service (DoS) attack.

Keyloggers Captures keystrokes on a compromised system.

Rootkit Set of hacker tools used after attacker has broken into a computer system and gained
root-level access.

Zombie, bot Program activated on an infected machine that is activated to launch attacks on other
machines.

Spyware Software that collects information from a computer and transmits it to another system.

Adware Advertising that is integrated into software. It can result in pop-up ads or redirection of a

browser to a commercial site.

and backdoors are examples. Independent malware is a self-contained program
that can be scheduled and run by the operating system. Worms and bot programs
are examples.

We can also differentiate between those software threats that do not repli-
cate and those that do. The former are programs or fragments of programs that
are activated by a trigger. Examples are logic bombs, backdoors, and bot pro-
grams. The latter consist of either a program fragment or an independent
program that, when executed, may produce one or more copies of itself to be

10.1 / TYPES OF MALICIOUS SOFTWARE 343

activated later on the same system or some other system. Viruses and worms are
examples.

In the remainder of this section, we briefly survey some of the key categories
of malicious software, deferring discussion on the key topics of viruses and worms
until the following sections.

Backdoor

A backdoor, also known as a trapdoor, is a secret entry point into a program that
allows someone who is aware of the backdoor to gain access without going through
the usual security access procedures. Programmers have used backdoors legiti-
mately for many years to debug and test programs; such a backdoor is called a
maintenance hook. This usually is done when the programmer is developing an
application that has an authentication procedure, or a long setup, requiring the user
to enter many different values to run the application. To debug the program, the
developer may wish to gain special privileges or to avoid all the necessary setup and
authentication. The programmer may also want to ensure that there is a method of
activating the program should something be wrong with the authentication proce-
dure that is being built into the application. The backdoor is code that recognizes
some special sequence of input or is triggered by being run from a certain user ID or
by an unlikely sequence of events.

Backdoors become threats when unscrupulous programmers use them to
gain unauthorized access. The backdoor was the basic idea for the vulnerability
portrayed in the movie War Games. Another example is that during the develop-
ment of Multics, penetration tests were conducted by an Air Force “tiger team”
(simulating adversaries). One tactic employed was to send a bogus operating
system update to a site running Multics. The update contained a Trojan horse
(described later) that could be activated by a backdoor and that allowed the
tiger team to gain access. The threat was so well implemented that the Multics
developers could not find it, even after they were informed of its presence
[ENGESO0].

It is difficult to implement operating system controls for backdoors.
Security measures must focus on the program development and software update
activities.

Logic Bomb

One of the oldest types of program threat, predating viruses and worms, is the
logic bomb. The logic bomb is code embedded in some legitimate program that is
set to “explode” when certain conditions are met. Examples of conditions that
can be used as triggers for a logic bomb are the presence or absence of certain
files, a particular day of the week or date, or a particular user running the appli-
cation. Once triggered, a bomb may alter or delete data or entire files, cause a
machine halt, or do some other damage. A striking example of how logic bombs
can be employed was the case of Tim Lloyd, who was convicted of setting a logic
bomb that cost his employer, Omega Engineering, more than $10 million,
derailed its corporate growth strategy, and eventually led to the layoff of 80

344 CHAPTER 10 / MALICIOUS SOFTWARE

workers [GAUDOO]. Ultimately, Lloyd was sentenced to 41 months in prison and
ordered to pay $2 million in restitution.

Trojan Horses

A Trojan horse! is a useful, or apparently useful, program or command procedure
containing hidden code that, when invoked, performs some unwanted or harmful
function.

Trojan horse programs can be used to accomplish functions indirectly that an
unauthorized user could not accomplish directly. For example, to gain access to the
files of another user on a shared system, a user could create a Trojan horse program
that, when executed, changes the invoking user’s file permissions so that the files are
readable by any user. The author could then induce users to run the program by
placing it in a common directory and naming it such that it appears to be a useful
utility program or application. An example is a program that ostensibly produces a
listing of the user’s files in a desirable format. After another user has run the
program, the author of the program can then access the information in the user’s
files. An example of a Trojan horse program that would be difficult to detect is a
compiler that has been modified to insert additional code into certain programs as
they are compiled, such as a system login program [THOMS84]. The code creates a
backdoor in the login program that permits the author to log on to the system using
a special password. This Trojan horse can never be discovered by reading the source
code of the login program.

Another common motivation for the Trojan horse is data destruction. The
program appears to be performing a useful function (e.g., a calculator program), but
it may also be quietly deleting the user’s files. For example, a CBS executive was
victimized by a Trojan horse that destroyed all information contained in his com-
puter’s memory [TIME90]. The Trojan horse was implanted in a graphics routine
offered on an electronic bulletin board system.

Trojan horses fit into one of three models:

e Continuing to perform the function of the original program and additionally
performing a separate malicious activity

¢ Continuing to perform the function of the original program but modifying the
function to perform malicious activity (e.g., a Trojan horse version of a login
program that collects passwords) or to disguise other malicious activity (e.g., a
Trojan horse version of a process listing program that does not display certain
processes that are malicious)

e Performing a malicious function that completely replaces the function of the
original program

'In Greek mythology, the Trojan horse was used by the Greeks during their siege of Troy. Epeios
constructed a giant hollow wooden horse in which thirty of the most valiant Greek heroes concealed
themselves. The rest of the Greeks burned their encampment and pretended to sail away but actually hid
nearby. The Trojans, convinced the horse was a gift and the siege over, dragged the horse into the city.
That night, the Greeks emerged from the horse and opened the city gates to the Greek army. A blood-
bath ensued, resulting in the destruction of Troy and the death or enslavement of all its citizens.

10.1 / TYPES OF MALICIOUS SOFTWARE 345

Mobile Code

Mobile code refers to programs (e.g., script, macro, or other portable instruction)
that can be shipped unchanged to a heterogeneous collection of platforms and
execute with identical semantics [JANSO1]. The term also applies to situations
involving a large homogeneous collection of platforms (e.g., Microsoft Windows).
Mobile code is transmitted from a remote system to a local system and then
executed on the local system without the user’s explicit instruction. Mobile code
often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted to the
user’s workstation. In other cases, mobile code takes advantage of vulnerabilities to
perform its own exploits, such as unauthorized data access or root compromise.
Popular vehicles for mobile code include Java applets, ActiveX, JavaScript, and
VBScript. The most common ways of using mobile code for malicious operations on
local system are cross-site scripting, interactive and dynamic Web sites, e-mail
attachments, and downloads from untrusted sites or of untrusted software.

Multiple-Threat Malware

Viruses and other malware may operate in multiple ways. The terminology is far
from uniform; this subsection gives a brief introduction to several related concepts
that could be considered multiple-threat malware.

A multipartite virus infects in multiple ways. Typically, the multipartite virus is
capable of infecting multiple types of files, so that virus eradication must deal with
all of the possible sites of infection.

A blended attack uses multiple methods of infection or transmission, to maxi-
mize the speed of contagion and the severity of the attack. Some writers characterize
a blended attack as a package that includes multiple types of malware. An example of
a blended attack is the Nimda attack, erroneously referred to as simply a worm.
Nimda uses four distribution methods:

¢ E-mail: A user on a vulnerable host opens an infected e-mail attachment;
Nimda looks for e-mail addresses on the host and then sends copies of itself to
those addresses.

* Windows shares: Nimda scans hosts for unsecured Windows file shares; it can
then use NetBIOS86 as a transport mechanism to infect files on that host in
the hopes that a user will run an infected file, which will activate Nimda on
that host.

* Web servers: Nimda scans Web servers, looking for known vulnerabilities in
Microsoft IIS. If it finds a vulnerable server, it attempts to transfer a copy of
itself to the server and infect it and its files.

e Web clients: If a vulnerable Web client visits a Web server that has been
infected by Nimda, the client’s workstation will become infected.

Thus, Nimda has worm, virus, and mobile code characteristics. Blended attacks
may also spread through other services, such as instant messaging and peer-to-peer
file sharing.

346 CHAPTER 10 / MALICIOUS SOFTWARE

10.2 VIRUSES

The Nature of Viruses

A computer virus is a piece of software that can “infect” other programs by modifying
them; the modification includes injecting the original program with a routine to make
copies of the virus program, which can then go on to infect other programs. Computer
viruses first appeared in the early 1980s, and the term itself is attributed to Fred Cohen
in 1983. Cohen is the author of a groundbreaking book on the subject [COHEY4].

Biological viruses are tiny scraps of genetic code—DNA or RNA —that can
take over the machinery of a living cell and trick it into making thousands of flaw-
less replicas of the original virus. Like its biological counterpart, a computer virus
carries in its instructional code the recipe for making perfect copies of itself. The
typical virus becomes embedded in a program on a computer. Then, whenever the
infected computer comes into contact with an uninfected piece of software, a fresh
copy of the virus passes into the new program. Thus, the infection can be spread
from computer to computer by unsuspecting users who either swap disks or send
programs to one another over a network. In a network environment, the ability to
access applications and system services on other computers provides a perfect cul-
ture for the spread of a virus.

A virus can do anything that other programs do. The difference is that a virus
attaches itself to another program and executes secretly when the host program is
run. Once a virus is executing, it can perform any function, such as erasing files and
programs that is allowed by the privileges of the current user.

A computer virus has three parts [AYCOO06]:

¢ Infection mechanism: The means by which a virus spreads, enabling it to repli-
cate. The mechanism is also referred to as the infection vector.

e Trigger: The event or condition that determines when the payload is activated
or delivered.

e Payload: What the virus does, besides spreading. The payload may involve
damage or may involve benign but noticeable activity.

During its lifetime, a typical virus goes through the following four phases:

* Dormant phase: The virus is idle. The virus will eventually be activated by
some event, such as a date, the presence of another program or file, or the
capacity of the disk exceeding some limit. Not all viruses have this stage.

* Propagation phase: The virus places a copy of itself into other programs or into
certain system areas on the disk. The copy may not be identical to the propa-
gating version; viruses often morph to evade detection. Each infected program
will now contain a clone of the virus, which will itself enter a propagation phase.

e Triggering phase: The virus is activated to perform the function for which it
was intended. As with the dormant phase, the triggering phase can be caused
by a variety of system events, including a count of the number of times that
this copy of the virus has made copies of itself.

10.2 / VIRUSES 347

* Execution phase: The function is performed. The function may be harmless,
such as a message on the screen, or damaging, such as the destruction of
programs and data files.

Most viruses carry out their work in a manner that is specific to a particular oper-
ating system and, in some cases, specific to a particular hardware platform. Thus, they
are designed to take advantage of the details and weaknesses of particular systems.

Virus STrRUCTURE A virus can be prepended or postpended to an executable
program, or it can be embedded in some other fashion. The key to its operation is
that the infected program, when invoked, will first execute the virus code and then
execute the original code of the program.

A very general depiction of virus structure is shown in Figure 10.1 (based on
[COHEY4)). In this case, the virus code, V, is prepended to infected programs, and it
is assumed that the entry point to the program, when invoked, is the first line of the
program.

The infected program begins with the virus code and works as follows. The first
line of code is a jump to the main virus program. The second line is a special marker
that is used by the virus to determine whether or not a potential victim program has
already been infected with this virus. When the program is invoked, control is imme-
diately transferred to the main virus program. The virus program may first seek out
uninfected executable files and infect them. Next, the virus may perform some
action, usually detrimental to the system. This action could be performed every time
the program is invoked, or it could be a logic bomb that triggers only under certain
conditions. Finally, the virus transfers control to the original program. If the infection

program V :=

{goto main;
1234567,

subroutine infect-executable : =
{loop:
file := get-random-executable-file;
if (first-line-of-file = 1234567)
then goto loop
else prepend V to file; }

subroutine do-damage :=
{whatever damage is to be done}

subroutine trigger-pulled :=
{return true if some condition holds}

main: main-program :=
{infect-executable;
if trigger-pulled then do-damage;
goto next; }

next:

}

Figure 10.1 A Simple Virus

348 CHAPTER 10 / MALICIOUS SOFTWARE

program CV :=

{ goto main;
01234567,

subroutine infect-executable :=
{loop:
file := get-random-executable-file;
if (first-line-of-file = 01234567) then goto loop;
(1) compress file;
(2) prepend CV to file;
}

main: main-program :=
{if ask-permission then infect-executable;
(3) uncompress rest-of-file;
(4) run uncompressed file; }

}

Figure 10.2 Logic for a Compression Virus

phase of the program is reasonably rapid, a user is unlikely to notice any difference
between the execution of an infected and an uninfected program.

A virus such as the one just described is easily detected because an infected
version of a program is longer than the corresponding uninfected one. A way to
thwart such a simple means of detecting a virus is to compress the executable file so
that both the infected and uninfected versions are of identical length. Figure 10.2
[COHEY4] shows in general terms the logic required. The key lines in this virus are
numbered, and Figure 10.3 [COHE94] illustrates the operation. We assume that
program P1 is infected with the virus CV. When this program is invoked, control
passes to its virus, which performs the following steps:

1. For each uninfected file P, that is found, the virus first compresses that file to
produce P5 , which is shorter than the original program by the size of the virus.

2. A copy of the virus is prepended to the compressed program.

3. The compressed version of the original infected program, P{, is uncompressed.

4. The uncompressed original program is executed.

2.
/”” ‘N\\\
Lo | (o /e [
1 1 1
”M @ 1 : DN
71 1 1 LN
/| 1 1 1Y
1 1 1 1
1 1 1 1
1 ! 1 !
Py’ P, | 2 1Py : 1 P, : | 2%
i Lo -
1 ! 1 !
1 ! 1 !
1 ! 1 !
1 1o 1
ty t

Figure 10.3 A Compression Virus

10.2 / VIRUSES 349

In this example, the virus does nothing other than propagate. As previously
mentioned, the virus may include a logic bomb.

Inrrrar INFEcTION Once a virus has gained entry to a system by infecting a single
program, it is in a position to potentially infect some or all other executable files on
that system when the infected program executes. Thus, viral infection can be
completely prevented by preventing the virus from gaining entry in the first place.
Unfortunately, prevention is extraordinarily difficult because a virus can be part of
any program outside a system. Thus, unless one is content to take an absolutely bare
piece of iron and write all one’s own system and application programs, one is
vulnerable. Many forms of infection can also be blocked by denying normal users
the right to modify programs on the system.

The lack of access controls on early PCs is a key reason why traditional
machine code based viruses spread rapidly on these systems. In contrast, while it is
easy enough to write a machine code virus for UNIX systems, they were almost
never seen in practice because the existence of access controls on these systems pre-
vented effective propagation of the virus. Traditional machine code based viruses
are now less prevalent, because modern PC OSs do have more effective access con-
trols. However, virus creators have found other avenues, such as macro and e-mail
viruses, as discussed subsequently.

Viruses Classification

There has been a continuous arms race between virus writers and writers of
antivirus software since viruses first appeared. As effective countermeasures are
developed for existing types of viruses, newer types are developed. There is no
simple or universally agreed upon classification scheme for viruses, In this section,
we follow [AYCOO06] and classify viruses along two orthogonal axes: the type of
target the virus tries to infect and the method the virus uses to conceal itself from
detection by users and antivirus software.
A virus classification by target includes the following categories:

* Boot sector infector: Infects a master boot record or boot record and spreads
when a system is booted from the disk containing the virus.

¢ File infector: Infects files that the operating system or shell consider to be
executable.

e Macro virus: Infects files with macro code that is interpreted by an applica-
tion.

A virus classification by concealment strategy includes the following categories:

* Encrypted virus: A typical approach is as follows. A portion of the virus cre-
ates a random encryption key and encrypts the remainder of the virus. The key
is stored with the virus. When an infected program is invoked, the virus uses
the stored random key to decrypt the virus. When the virus replicates, a differ-
ent random key is selected. Because the bulk of the virus is encrypted with a
different key for each instance, there is no constant bit pattern to observe.

350 CHAPTER 10 / MALICIOUS SOFTWARE

e Stealth virus: A form of virus explicitly designed to hide itself from detection
by antivirus software. Thus, the entire virus, not just a payload is hidden.

* Polymorphic virus: A virus that mutates with every infection, making detec-
tion by the “signature” of the virus impossible.

* Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites itself
completely at each iteration, increasing the difficulty of detection.
Metamorphic viruses may change their behavior as well as their appearance.

One example of a stealth virus was discussed earlier: a virus that uses com-
pression so that the infected program is exactly the same length as an uninfected
version. Far more sophisticated techniques are possible. For example, a virus can
place intercept logic in disk I/O routines, so that when there is an attempt to read
suspected portions of the disk using these routines, the virus will present back the
original, uninfected program. Thus, stealth is not a term that applies to a virus as such
but, rather, refers to a technique used by a virus to evade detection.

A polymorphic virus creates copies during replication that are functionally
equivalent but have distinctly different bit patterns. As with a stealth virus, the pur-
pose is to defeat programs that scan for viruses. In this case, the “signature” of the
virus will vary with each copy. To achieve this variation, the virus may randomly
insert superfluous instructions or interchange the order of independent instructions.
A more effective approach is to use encryption. The strategy of the encryption virus
is followed. The portion of the virus that is responsible for generating keys and
performing encryption/decryption is referred to as the mutation engine. The muta-
tion engine itself is altered with each use.

Virus Kits

Another weapon in the virus writers’ armory is the virus-creation toolkit. Such a
toolkit enables a relative novice to quickly create a number of different viruses.
Although viruses created with toolkits tend to be less sophisticated than viruses
designed from scratch, the sheer number of new viruses that can be generated using
a toolkit creates a problem for antivirus schemes.

Macro Viruses

In the mid-1990s, macro viruses became by far the most prevalent type of virus.
Macro viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Many macro viruses infect Microsoft
Word documents or other Microsoft Office documents. Any hardware plat-
form and operating system that supports these applications can be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of a document
rather than a program.

3. Macro viruses are easily spread. A very common method is by electronic mail.

4. Because macro viruses infect user documents rather than system programs, tra-
ditional file system access controls are of limited use in preventing their spread.

10.3 / VIRUS COUNTERMEASURES 351

Macro viruses take advantage of a feature found in Word and other office
applications such as Microsoft Excel, namely the macro. In essence, a macro is an
executable program embedded in a word processing document or other type of file.
Typically, users employ macros to automate repetitive tasks and thereby save
keystrokes. The macro language is usually some form of the Basic programming
language. A user might define a sequence of keystrokes in a macro and set it up so
that the macro is invoked when a function key or special short combination of keys
is input.

Successive releases of MS Office products provide increased protection
against macro viruses. For example, Microsoft offers an optional Macro Virus
Protection tool that detects suspicious Word files and alerts the customer to the
potential risk of opening a file with macros. Various antivirus product vendors have
also developed tools to detect and correct macro viruses. As in other types of
viruses, the arms race continues in the field of macro viruses, but they no longer are
the predominant virus threat.

E-Mail Viruses

A more recent development in malicious software is the e-mail virus. The first
rapidly spreading e-mail viruses, such as Melissa, made use of a Microsoft Word
macro embedded in an attachment. If the recipient opens the e-mail attachment, the
Word macro is activated. Then

1. The e-mail virus sends itself to everyone on the mailing list in the user’s e-mail
package.

2. The virus does local damage on the user’s system.

In 1999, a more powerful version of the e-mail virus appeared. This newer
version can be activated merely by opening an e-mail that contains the virus rather
than opening an attachment. The virus uses the Visual Basic scripting language
supported by the e-mail package.

Thus we see a new generation of malware that arrives via e-mail and uses e-mail
software features to replicate itself across the Internet. The virus propagates itself as
soon as it is activated (either by opening an e-mail attachment or by opening the
e-mail) to all of the e-mail addresses known to the infected host. As a result, whereas
viruses used to take months or years to propagate, they now do so in hours. This makes
it very difficult for antivirus software to respond before much damage is done.
Ultimately, a greater degree of security must be built into Internet utility and applica-
tion software on PCs to counter the growing threat.

10.3 VIRUS COUNTERMEASURES

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get
into the system in the first place, or block the ability of a virus to modify any files
containing executable code or macros. This goal is, in general, impossible to achieve,

352 CHAPTER 10 / MALICIOUS SOFTWARE

although prevention can reduce the number of successful viral attacks. The next best
approach is to be able to do the following:

e Detection: Once the infection has occurred, determine that it has occurred
and locate the virus.

¢ Identification: Once detection has been achieved, identify the specific virus
that has infected a program.

* Removal: Once the specific virus has been identified, remove all traces of the
virus from the infected program and restore it to its original state. Remove the
virus from all infected systems so that the virus cannot spread further.

If detection succeeds but either identification or removal is not possible, then the
alternative is to discard the infected file and reload a clean backup version.

Advances in virus and antivirus technology go hand in hand. Early viruses
were relatively simple code fragments and could be identified and purged with
relatively simple antivirus software packages. As the virus arms race has evolved,
both viruses and, necessarily, antivirus software have grown more complex and
sophisticated.

[STEP93] identifies four generations of antivirus software:

e First generation: simple scanners

e Second generation: heuristic scanners

e Third generation: activity traps

e Fourth generation: full-featured protection

A first-generation scanner requires a virus signature to identify a virus. The
virus may contain “wildcards” but has essentially the same structure and bit pattern
in all copies. Such signature-specific scanners are limited to the detection of known
viruses. Another type of first-generation scanner maintains a record of the length of
programs and looks for changes in length.

A second-generation scanner does not rely on a specific signature. Rather, the
scanner uses heuristic rules to search for probable virus infection. One class of such
scanners looks for fragments of code that are often associated with viruses. For
example, a scanner may look for the beginning of an encryption loop used in a poly-
morphic virus and discover the encryption key. Once the key is discovered, the
scanner can decrypt the virus to identify it, then remove the infection and return
the program to service.

Another second-generation approach is integrity checking. A checksum can
be appended to each program. If a virus infects the program without changing the
checksum, then an integrity check will catch the change. To counter a virus that is
sophisticated enough to change the checksum when it infects a program, an
encrypted hash function can be used. The encryption key is stored separately from
the program so that the virus cannot generate a new hash code and encrypt that. By
using a hash function rather than a simpler checksum, the virus is prevented from
adjusting the program to produce the same hash code as before.

Third-generation programs are memory-resident programs that identify a
virus by its actions rather than its structure in an infected program. Such programs

10.3 / VIRUS COUNTERMEASURES 353

have the advantage that it is not necessary to develop signatures and heuristics for a
wide array of viruses. Rather, it is necessary only to identify the small set of actions
that indicate an infection is being attempted and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus
techniques used in conjunction. These include scanning and activity trap compo-
nents. In addition, such a package includes access control capability, which limits the
ability of viruses to penetrate a system and then limits the ability of a virus to update
files in order to pass on the infection.

The arms race continues. With fourth-generation packages, a more compre-
hensive defense strategy is employed, broadening the scope of defense to more
general-purpose computer security measures.

Advanced Antivirus Techniques

More sophisticated antivirus approaches and products continue to appear. In this
subsection, we highlight some of the most important.

GeNEeric DecryrTioN Generic decryption (GD) technology enables the antivirus
program to easily detect even the most complex polymorphic viruses while
maintaining fast scanning speeds [NACH97]. Recall that when a file containing a
polymorphic virus is executed, the virus must decrypt itself to activate. In order to
detect such a structure, executable files are run through a GD scanner, which
contains the following elements:

° CPU emulator: A software-based virtual computer. Instructions in an exe-
cutable file are interpreted by the emulator rather than executed on the
underlying processor. The emulator includes software versions of all registers
and other processor hardware, so that the underlying processor is unaffected
by programs interpreted on the emulator.

* Virus signature scanner: A module that scans the target code looking for
known virus signatures.

¢ Emulation control module: Controls the execution of the target code.

At the start of each simulation, the emulator begins interpreting instructions
in the target code, one at a time. Thus, if the code includes a decryption routine that
decrypts and hence exposes the virus, that code is interpreted. In effect, the virus
does the work for the antivirus program by exposing the virus. Periodically, the con-
trol module interrupts interpretation to scan the target code for virus signatures.

During interpretation, the target code can cause no damage to the actual per-
sonal computer environment, because it is being interpreted in a completely con-
trolled environment.

The most difficult design issue with a GD scanner is to determine how long to
run each interpretation. Typically, virus elements are activated soon after a program
begins executing, but this need not be the case. The longer the scanner emulates a
particular program, the more likely it is to catch any hidden viruses. However, the
antivirus program can take up only a limited amount of time and resources before
users complain of degraded system performance.

354 CHAPTER 10 / MALICIOUS SOFTWARE

Dircrrar Imvune System The digital immune system is a comprehensive approach
to virus protection developed by IBM [KEPH97a, KEPH97b, WHIT99] and
subsequently refined by Symantec [SYMAO1]. The motivation for this development
has been the rising threat of Internet-based virus propagation. We first say a few
words about this threat and then summarize IBM’s approach.

Traditionally, the virus threat was characterized by the relatively slow spread of
new viruses and new mutations. Antivirus software was typically updated on a
monthly basis, and this was sufficient to control the problem. Also traditionally, the
Internet played a comparatively small role in the spread of viruses. But as [CHES97]
points out, two major trends in Internet technology have had an increasing impact on
the rate of virus propagation in recent years:

¢ Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook
make it very simple to send anything to anyone and to work with objects that
are received.

* Mobile-program systems: Capabilities such as Java and ActiveX allow
programs to move on their own from one system to another.

In response to the threat posed by these Internet-based capabilities, IBM has
developed a prototype digital immune system. This system expands on the use of
program emulation discussed in the preceding subsection and provides a general-
purpose emulation and virus-detection system. The objective of this system is to
provide rapid response time so that viruses can be stamped out almost as soon as
they are introduced. When a new virus enters an organization, the immune system
automatically captures it, analyzes it, adds detection and shielding for it, removes it,
and passes information about that virus to systems running IBM AntiVirus so that it
can be detected before it is allowed to run elsewhere.

Figure 10.4 illustrates the typical steps in digital immune system operation:

1. A monitoring program on each PC uses a variety of heuristics based on system
behavior, suspicious changes to programs, or family signature to infer that a
virus may be present. The monitoring program forwards a copy of any program
thought to be infected to an administrative machine within the organization.

2. The administrative machine encrypts the sample and sends it to a central virus
analysis machine.

3. This machine creates an environment in which the infected program can be
safely run for analysis. Techniques used for this purpose include emulation, or the
creation of a protected environment within which the suspect program can be
executed and monitored. The virus analysis machine then produces a prescrip-
tion for identifying and removing the virus.

4. The resulting prescription is sent back to the administrative machine.
5. The administrative machine forwards the prescription to the infected client.
6. The prescription is also forwarded to other clients in the organization.

7. Subscribers around the world receive regular antivirus updates that protect
them from the new virus.

10.3 / VIRUS COUNTERMEASURES 355

1 Virus-
/ infected

. client .
P Virus 9 N Es hine | | Chient
- R Administrative 5 TS machine
Analyze virus | analysis machine
behavior and | machine
structure
l . Client
Private i
rE— Client machine
signature i network machine
Derive
prescription W\}

Administrative Client
machine

Other
Client | private
network

Client

Individual
user

Figure 10.4 Digital Immune System

The success of the digital immune system depends on the ability of the virus
analysis machine to detect new and innovative virus strains. By constantly analyzing
and monitoring the viruses found in the wild, it should be possible to continually
update the digital immune software to keep up with the threat.

Beravior-BrockinGg SorTwAre Unlike heuristics or fingerprint-based scanners,
behavior-blocking software integrates with the operating system of a host computer
and monitors program behavior in real-time for malicious actions [CONRO2,
NACHO02]. The behavior blocking software then blocks potentially malicious actions
before they have a chance to affect the system. Monitored behaviors can include

e Attempts to open, view, delete, and/or modify files;

e Attempts to format disk drives and other unrecoverable disk operations;

e Modifications to the logic of executable files or macros;

e Modification of critical system settings, such as start-up settings;

* Scripting of e-mail and instant messaging clients to send executable content; and

e Initiation of network communications.

Figure 10.5 illustrates the operation of a behavior blocker. Behavior-blocking
software runs on server and desktop computers and is instructed through policies
set by the network administrator to let benign actions take place but to intercede
when unauthorized or suspicious actions occur. The module blocks any suspicious
software from executing. A blocker isolates the code in a sandbox, which restricts
the code’s access to various OS resources and applications. The blocker then sends
an alert.

Because a behavior blocker can block suspicious software in real-time, it has an
advantage over such established antivirus detection techniques as fingerprinting or

356 CHAPTER 10 / MALICIOUS SOFTWARE

1. Administrator sets
acceptable software behavior
policies and uploads them to
a server. Policies can also be
uploaded to desktops.

3. Behavior-blocking
software at server flags
suspicious code. The
blocker "sandboxes" the
suspicious software to
prevent it from proceeding

Administrator @

\

A

-
2. Malicious software
manages to make it \

through the firewall. Firewall
Server running
4. Server alerts administrator behavior-blocking
that suspicious code has been software
identified and sandboxed,
awaiting administrator's Internet

decision on whether the code
should be removed or allowed
to run.

Figure 10.5 Behavior-Blocking Software Operation

heuristics. While there are literally trillions of different ways to obfuscate and
rearrange the instructions of a virus or worm, many of which will evade detection by a
fingerprint scanner or heuristic, eventually malicious code must make a well-defined
request to the operating system. Given that the behavior blocker can intercept all such
requests, it can identify and block malicious actions regardless of how obfuscated the
program logic appears to be.

Behavior blocking alone has limitations. Because the malicious code must run
on the target machine before all its behaviors can be identified, it can cause harm
before it has been detected and blocked. For example, a new virus might shuffle a
number of seemingly unimportant files around the hard drive before infecting a sin-
gle file and being blocked. Even though the actual infection was blocked, the user
may be unable to locate his or her files, causing a loss to productivity or possibly
worse.

10.4 WORMS

A worm is a program that can replicate itself and send copies from computer to
computer across network connections. Upon arrival, the worm may be activated to
replicate and propagate again. In addition to propagation, the worm usually
performs some unwanted function. An e-mail virus has some of the characteristics
of a worm because it propagates itself from system to system. However, we can still

10.4 / WORMS 357

classify it as a virus because it uses a document modified to contain viral macro
content and requires human action. A worm actively seeks out more machines to
infect and each machine that is infected serves as an automated launching pad for
attacks on other machines.

The concept of a computer worm was introduced in John Brunner’s 1975 SF
novel The Shockwave Rider. The first known worm implementation was done in
Xerox Palo Alto Labs in the early 1980s. It was nonmalicious, searching for idle
systems to use to run a computationally intensive task.

Network worm programs use network connections to spread from system to
system. Once active within a system, a network worm can behave as a computer
virus or bacteria, or it could implant Trojan horse programs or perform any number
of disruptive or destructive actions.

To replicate itself, a network worm uses some sort of network vehicle.
Examples include the following:

¢ Electronic mail facility: A worm mails a copy of itself to other systems, so that
its code is run when the e-mail or an attachment is received or viewed.

* Remote execution capability: A worm executes a copy of itself on another
system, either using an explicit remote execution facility or by exploiting a
program flaw in a network service to subvert its operations.

* Remote login capability: A worm logs onto a remote system as a user and then
uses commands to copy itself from one system to the other, where it then
executes.

The new copy of the worm program is then run on the remote system where, in
addition to any functions that it performs at that system, it continues to spread in the
same fashion.

A network worm exhibits the same characteristics as a computer virus: a
dormant phase, a propagation phase, a triggering phase, and an execution phase. The
propagation phase generally performs the following functions:

1. Search for other systems to infect by examining host tables or similar reposi-
tories of remote system addresses.

2. Establish a connection with a remote system.

w

. Copy itself to the remote system and cause the copy to be run.

The network worm may also attempt to determine whether a system has
previously been infected before copying itself to the system. In a multiprogramming
system, it may also disguise its presence by naming itself as a system process or using
some other name that may not be noticed by a system operator.

As with viruses, network worms are difficult to counter.

The Morris Worm

Until the current generation of worms, the best known was the worm released onto
the Internet by Robert Morris in 1988 [ORMAO03]. The Morris worm was designed to
spread on UNIX systems and used a number of different techniques for propagation.

358 CHAPTER 10 / MALICIOUS SOFTWARE

When a copy began execution, its first task was to discover other hosts known to this
host that would allow entry from this host. The worm performed this task by examin-
ing a variety of lists and tables, including system tables that declared which other
machines were trusted by this host, users’ mail forwarding files, tables by which users
gave themselves permission for access to remote accounts, and from a program that
reported the status of network connections. For each discovered host, the worm tried
a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the
worm first attempted to crack the local password file and then used the
discovered passwords and corresponding user IDs. The assumption was that
many users would use the same password on different systems. To obtain the
passwords, the worm ran a password-cracking program that tried

a. Each user’s account name and simple permutations of it

b. A list of 432 built-in passwords that Morris thought to be likely
candidates’

c. All the words in the local system dictionary

2. It exploited a bug in the UNIX finger protocol, which reports the whereabouts of
a remote user.

3. It exploited a trapdoor in the debug option of the remote process that receives
and sends mail.

If any of these attacks succeeded, the worm achieved communication with the
operating system command interpreter. It then sent this interpreter a short boot-
strap program, issued a command to execute that program, and then logged off. The
bootstrap program then called back the parent program and downloaded the
remainder of the worm. The new worm was then executed.

Worm Propagation Model

[ZOUO05] describes a model for worm propagation based on an analysis of recent
worm attacks. The speed of propagation and the total number of hosts infected
depend on a number of factors, including the mode of propagation, the vulnerability
or vulnerabilities exploited, and the degree of similarity to preceding attacks. For
the latter factor, an attack that is a variation of a recent previous attack may be
countered more effectively than a more novel attack. Figure 10.6 shows the dynam-
ics for one typical set of parameters. Propagation proceeds through three phases. In
the initial phase, the number of hosts increases exponentially. To see that this is so,
consider a simplified case in which a worm is launched from a single host and infects
two nearby hosts. Each of these hosts infects two more hosts, and so on. This results
in exponential growth. After a time, infecting hosts waste some time attacking
already infected hosts, which reduces the rate of infection. During this middle phase,
growth is approximately linear, but the rate of infection is rapid. When most vulner-
able computers have been infected, the attack enters a slow finish phase as the
worm seeks out those remaining hosts that are difficult to identify.

>The complete list is provided at this book’s Web site.

10.4 / WORMS 359

x 103

ol ' /

Slow finish
phase

25
Fast spread
phase

Number of infected hosts

L5 Slow start

1 phase

Y

0.5
] 4.!/ 1 1 1
100 200 300 400 500 600

Time ¢ (minutes)

Figure 10.6 'Worm Propagation Model

Clearly, the objective in countering a worm is to catch the worm in its slow
start phase, at a time when few hosts have been infected.

Recent Worm Attacks

The contemporary era of worm threats began with the release of the Code Red
worm in July of 2001. Code Red exploits a security hole in the Microsoft Internet
Information Server (IIS) to penetrate and spread. It also disables the system file
checker in Windows. The worm probes random IP addresses to spread to other hosts.
During a certain period of time, it only spreads. It then initiates a denial-of-service
attack against a government Web site by flooding the site with packets from numer-
ous hosts. The worm then suspends activities and reactivates periodically. In the
second wave of attack, Code Red infected nearly 360,000 servers in 14 hours. In addi-
tion to the havoc it caused at the targeted server, Code Red consumed enormous
amounts of Internet capacity, disrupting service.

Code Red II is a variant that targets Microsoft IISs. In addition, this newer
worm installs a backdoor, allowing a hacker to remotely execute commands on
victim computers.

In early 2003, the SQL Slammer worm appeared. This worm exploited a buffer
overflow vulnerability in Microsoft SQL server. The Slammer was extremely com-
pact and spread rapidly, infecting 90% of vulnerable hosts within 10 minutes. Late
2003 saw the arrival of the Sobig.f worm, which exploited open proxy servers to turn
infected machines into spam engines. At its peak, Sobig.f reportedly accounted for
one in every 17 messages and produced more than one million copies of itself within
the first 24 hours.

360 CHAPTER 10 / MALICIOUS SOFTWARE

Mydoom is a mass-mailing e-mail worm that appeared in 2004. It followed a
growing trend of installing a backdoor in infected computers, thereby enabling
hackers to gain remote access to data such as passwords and credit card numbers.
Mydoom replicated up to 1000 times per minute and reportedly flooded the
Internet with 100 million infected messages in 36 hours.

A recent worm that rapidly became prevalent in a variety of versions is the
Warezov family of worms [KIRKO06]. When the worm is launched, it creates several
executable in system directories and sets itself to run every time Windows starts, by
creating a registry entry. Warezov scans several types of files for e-mail addresses
and sends itself as an e-mail attachment. Some variants are capable of downloading
other malware, such as Trojan horses and adware. Many variants disable security-
related products and/or disable their updating capability.

State of Worm Technology
The state of the art in worm technology includes the following:

* Multiplatform: Newer worms are not limited to Windows machines but can
attack a variety of platforms, especially the popular varieties of UNIX.

° Multi-exploit: New worms penetrate systems in a variety of ways, using
exploits against Web servers, browsers, e-mail, file sharing, and other network-
based applications.

e Ultrafast spreading: One technique to accelerate the spread of a worm is to
conduct a prior Internet scan to accumulate Internet addresses of vulnerable
machines.

e Polymorphic: To evade detection, skip past filters, and foil real-time analysis,
worms adopt the virus polymorphic technique. Each copy of the worm has
new code generated on the fly using functionally equivalent instructions and
encryption techniques.

° Metamorphic: In addition to changing their appearance, metamorphic worms
have a repertoire of behavior patterns that are unleashed at different stages of
propagation.

e Transport vehicles: Because worms can rapidly compromise a large number of
systems, they are ideal for spreading other distributed attack tools, such as
distributed denial of service bots.

e Zero-day exploit: To achieve maximum surprise and distribution, a worm
should exploit an unknown vulnerability that is only discovered by the general
network community when the worm is launched.

Mobile Phone Worms

Worms first appeared on mobile phones in 2004. These worms communicate
through Bluetooth wireless connections or via the multimedia messaging service
(MMS). The target is the smartphone, which is a mobile phone that permits users to
install software applications from sources other than the cellular network operator.
Mobile phone malware can completely disable the phone, delete data on the phone,
or force the device to send costly messages to premium-priced numbers.

10.4 / WORMS 361

An example of a mobile phone worm is CommWarrior, which was launched in
2005. This worm replicates by means of Bluetooth to other phones in the receiving
area. It also sends itself as an MMS file to numbers in the phone’s address book and
in automatic replies to incoming text messages and MMS messages. In addition, it
copies itself to the removable memory card and inserts itself into the program
installation files on the phone.

Worm Countermeasures

There is considerable overlap in techniques for dealing with viruses and worms.
Once a worm is resident on a machine, antivirus software can be used to detect it. In
addition, because worm propagation generates considerable network activity, net-
work activity and usage monitoring can form the basis of a worm defense.

To begin, let us consider the requirements for an effective worm countermea-
sure scheme:

* Generality: The approach taken should be able to handle a wide variety of
worm attacks, including polymorphic worms.

e Timeliness: The approach should respond quickly so as to limit the number of
infected systems and the number of generated transmissions from infected
systems.

¢ Resiliency: The approach should be resistant to evasion techniques employed
by attackers to evade worm countermeasures.

¢ Minimal denial-of-service costs: The approach should result in minimal reduc-
tion in capacity or service due to the actions of the countermeasure software.
That is, in an attempt to contain worm propagation, the countermeasure
should not significantly disrupt normal operation.

e Transparency: The countermeasure software and devices should not require
modification to existing (legacy) OSs, application software, and hardware.

e Global and local coverage: The approach should be able to deal with attack
sources both from outside and inside the enterprise network.

No existing worm countermeasure scheme appears to satisfy all these require-
ments. Thus, administrators typically need to use multiple approaches in defending
against worm attacks.

CoUNTERMEASURE ArproAcHES Following [JHIO7], we list six classes of worm
defense:

A. Signature-based worm scan filtering: This type of approach generates a worm
signature, which is then used to prevent worm scans from entering/leaving a
network/host. Typically, this approach involves identifying suspicious flows
and generating a worm signature. This approach is vulnerable to the use of
polymorphic worms: Either the detection software misses the worm or, if it is
sufficiently sophisticated to deal with polymorphic worms, the scheme may
take a long time to react. [INEWSO05] is an example of this approach.

B. Filter-based worm containment: This approach is similar to class A but focuses
on worm content rather than a scan signature. The filter checks a message to

362 CHAPTER 10 / MALICIOUS SOFTWARE

determine if it contains worm code. An example is Vigilante [COSTO5], which
relies on collaborative worm detection at end hosts. This approach can be quite
effective but requires efficient detection algorithms and rapid alert dissemination.

C. Payload-classification-based worm containment: These network-based tech-
niques examine packets to see if they contain a worm. Various anomaly detection
techniques can be used, but care is needed to avoid high levels of false positives
or negatives. An example of this approach is reported in [CHINOS5], which looks
for exploit code in network flows. This approach does not generate signatures
based on byte patterns but rather looks for control and data flow structures that
suggest an exploit.

D. Threshold random walk (TRW) scan detection: TRW exploits randomness
in picking destinations to connect to as a way of detecting if a scanner is in
operation [JUNGO04]. TRW is suitable for deployment in high-speed, low-cost
network devices. It is effective against the common behavior seen in worm
scans.

E. Rate limiting: This class limits the rate of scanlike traffic from an infected host.
Various strategies can be used, including limiting the number of new machines a
host can connect to in a window of time, detecting a high connection failure rate,
and limiting the number of unique IP addresses a host can scan in a window of
time. [CHENO4] is an example. This class of countermeasures may introduce
longer delays for normal traffic. This class is also not suited for slow, stealthy
worms that spread slowly to avoid detection based on activity level.

F. Rate halting: This approach immediately blocks outgoing traffic when a
threshold is exceeded either in outgoing connection rate or diversity of con-
nection attempts [JHIO7]. The approach must include measures to quickly
unblock mistakenly blocked hosts in a transparent way. Rate halting can inte-
grate with a signature- or filter-based approach so that once a signature or fil-
ter is generated, every blocked host can be unblocked. Rate halting appears to
offer a very effective countermeasure. As with rate limiting, rate halting tech-
niques are not suitable for slow, stealthy worms.

We look now at two approaches in more detail.

Proactive Worm ConTAINMENT The PWC scheme [JHIO7] is host based rather
than being based on network devices such as honeypots, firewalls, and network
IDSs. PWC is designed to address the threat of worms that spread rapidly. The
software on a host looks for surges in the rate of frequency of outgoing connection
attempts and the diversity of connections to remote hosts. When such a surge is
detected, the software immediately blocks its host from further connection
attempts. The developers estimate that only a few dozen infected packets may be
sent out to other systems before PWC quarantines that attack. In contrast, the
Slammer worm on average sent out 4000 infected packets per second.

A deployed PWC system consists of a PWC manager and PWC agents in
hosts. Figure 10.7 is an example of an architecture that includes PWC. In this exam-
ple, the security manager, signature extractor, and PWC manager are implemented
in a single network device. In practice, these three modules could be implemented as
two or three separate devices.

hosts

hosts

10.4 / WORMS 363

<
7

router c%

S 5‘;‘ f 7’;’;;/’

|

external
firewall

‘Worm management center
—Security manager
—Signature extractor

s —PWC manager

Figure 10.7 Example PWC Deployment

The operation of the PWC architecture can be described as follows:

. A PWC agent monitors outgoing traffic for scan activity, determined by a

surge in UDP or TCP connection attempts to remote hosts. If a surge is
detected, the agent performs the following actions: (1) issues an alert to local
system; (2) blocks all outgoing connection attempts; (3) transmits the alert to
the PWC manager; and (4) starts a relaxation analysis, described in D.

. A PWC manager receives an alert. The PWC propagates the alert to all other

agents (beside the originating agent).

The host receives an alert. The agent must decide whether to ignore the alert, in
the following way. If the time since the last incoming packet has been sufficiently
long so that the agent would have detected a worm if infected, then the alert is
ignored. Otherwise, the agent assumes that it might be infected and performs the
following actions: (1) blocks all outgoing connection attempts from the specific
alerting port; and (2) starts a relaxation analysis, described in D.

. Relaxation analysis is performed as follows. An agent monitors outgoing activ-

ity for a fixed window of time to see if outgoing connections exceed a thresh-
old. If so, blockage is continued and relaxation analysis is performed for
another window of time. This process continues until the outgoing connection
rate drops below the threshold, at which time the agent removes the block. If
the threshold continues to be exceeded over a sufficient number of relaxation
windows, the agent isolates the host and reports to the PWC manager.

364 CHAPTER 10 / MALICIOUS SOFTWARE

Meanwhile, a separate aspect of the worm defense system is in operation. The
signature extractor functions as a passive sensor that monitors all traffic and
attempts to detect worms by signature analysis. When a new worm is detected, its
signature is sent by the security manager to the firewall to filter out any more copies
of the worm. In addition, the PWC manager sends the signature to PWC agents,
enabling them to immediately recognize infection and disable the worm.

NETwORK-Basep Worm DEFENSE The key element of a network-based worm
defense is worm monitoring software. Consider an enterprise network at a site,
consisting of one or an interconnected set of LANs. Two types of monitoring
software are needed:

* Ingress monitors: These are located at the border between the enterprise net-
work and the Internet. They can be part of the ingress filtering software of a bor-
der router or external firewall or a separate passive monitor. A honeypot can
also capture incoming worm traffic. An example of a detection technique for an
ingress monitor is to look for incoming traffic to unused local IP addresses.

* Egress monitors: These can be located at the egress point of individual LANs
on the enterprise network as well as at the border between the enterprise net-
work and the Internet. In the former case, the egress monitor can be part of
the egress filtering software of a LAN router or switch. As with ingress moni-
tors, the external firewall or a honeypot can house the monitoring software.
Indeed, the two types of monitors can be collocated. The egress monitor is
designed to catch the source of a worm attack by monitoring outgoing traffic
for signs of scanning or other suspicious behavior.

Worm monitors can act in the manner of intrusion detection systems and gen-
erate alerts to a central administrative system. It is also possible to implement a sys-
tem that attempts to react in real time to a worm attack, so as to counter zero-day
exploits effectively. This is similar to the approach taken with the digital immune
system (Figure 10.4).

Figure 10.8 shows an example of a worm countermeasure architecture [SIDI05].
The system works as follows (numbers in figure refer to numbers in the following list):

1. Sensors deployed at various network locations detect a potential worm. The
sensor logic can also be incorporated in IDS sensors.

2. The sensors send alerts to a central server that correlates and analyzes the incom-
ing alerts. The correlation server determines the likelihood that a worm attack is
being observed and the key characteristics of the attack.

3. The server forwards its information to a protected environment, where the
potential worm may be sandboxed for analysis and testing.

4. The protected system tests the suspicious software against an appropriately
instrumented version of the targeted application to identify the vulnerability.

5. The protected system generates one or more software patches and tests these.

6. If the patch is not susceptible to the infection and does not compromise the
application’s functionality, the system sends the patch to the application host
to update the targeted application.

10.5 / DISTRIBUTED DENIAL OF SERVICE ATTACKS 365

Internet

Enterprise network Firewall
sensor,

1. Worm scans or —

infection attempts

Correlation
server

sensor

Honeypot

€ Remote sensor
Application

server

6. Application update

3. Forward
features

Sandboxed |Hypothesis testing 5. Possible fix generation

environment and analysis
\ Patch
4. Vulnerability generation
testing and

identification

Instrumented applications

Figure 10.8 Placement of Worm Monitors

The success of such an automated patching system depends on maintaining a
current list of potential attacks and developing general tools for patching software
to counter such attacks. Examples of approaches are as follows:

e Increasing the size of buffers

e Using minor code-randomization techniques [BHATO03] so that the infection
no longer works because the code to be attacked is no longer in the same form
and location

e Adding filters to the application that enable it to recognize and ignore an attack

10.5 DISTRIBUTED DENIAL OF SERVICE ATTACKS

Distributed denial of service (DDoS) attacks present a significant security threat to
corporations, and the threat appears to be growing [VIJA02]. In one study, covering
a three-week period in 2001, investigators observed more than 12,000 attacks
against more than 5000 distinct targets, ranging from well-known ecommerce com-
panies such as Amazon and Hotmail to small foreign ISPs and dial-up connections
[MOORO1]. DDoS attacks make computer systems inaccessible by flooding servers,
networks, or even end user systems with useless traffic so that legitimate users can
no longer gain access to those resources. In a typical DDoS attack, a large number of

366 CHAPTER 10 / MALICIOUS SOFTWARE

compromised hosts are amassed to send useless packets. In recent years, the attack
methods and tools have become more sophisticated, effective, and more difficult to
trace to the real attackers, while defense technologies have been unable to with-
stand large-scale attacks [CHANO2].

A denial of service (DoS) attack is an attempt to prevent legitimate users of a
service from using that service. When this attack comes from a single host or net-
work node, then it is simply referred to as a DoS attack. A more serious threat is
posed by a DDoS attack. In a DDoS attack, an attacker is able to recruit a number
of hosts throughout the Internet to simultaneously or in a coordinated fashion
launch an attack upon the target. This section is concerned with DDoS attacks. First,
we look at the nature and types of attacks. Next, we examine means by which an
attacker is able to recruit a network of hosts for attack launch. Finally, this section
looks at countermeasures.

DDoS Attack Description

A DDoS attack attempts to consume the target’s resources so that it cannot provide
service. One way to classify DDoS attacks is in terms of the type of resource that is
consumed. Broadly speaking, the resource consumed is either an internal host
resource on the target system or data transmission capacity in the local network to
which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack.
Figure 10.9a shows the steps involved:

1. The attacker takes control of multiple hosts over the Internet, instructing
them to contact the target Web server.

2. The slave hosts begin sending TCP/IP SYN (synchronize/initialization) packets,
with erroneous return IP address information, to the target.

3. Each SYN packet is a request to open a TCP connection. For each such
packet, the Web server responds with a SYN/ACK (synchronize/acknowl-
edge) packet, trying to establish a TCP connection with a TCP entity at a spu-
rious IP address. The Web server maintains a data structure for each SYN
request waiting for a response back and becomes bogged down as more traffic
floods in. The result is that legitimate connections are denied while the victim
machine is waiting to complete bogus “half-open” connections.

The TCP state data structure is a popular internal resource target but by no
means the only one. [CERTO1] gives the following examples:

1. In many systems, a limited number of data structures are available to hold
process information (process identifiers, process table entries, process slots, etc.).
An intruder may be able to consume these data structures by writing a simple
program or script that does nothing but repeatedly create copies of itself.

2. An intruder may also attempt to consume disk space in other ways, including
* generating excessive numbers of mail messages
* intentionally generating errors that must be logged

* placing files in anonymous ftp areas or network-shared areas

L9¢

Attack
machine

Attack
machine

=4
®

?DDD

Slave
Servers

(a) Distributed SYN flood attack

¢ J

—

N

SYN

packets
—_—

| s o i |

i | o
B]

SYN/ACK
ackets
P Target Web

@ server

!
L @

e

ey

TEEY

(a) Distributed ICMP attack

Figure 10.9 Examples of Simple DDoS Attacks

— N
) Target
@ router
Reflector
machines

368 CHAPTER 10 / MALICIOUS SOFTWARE

Figure 10.9b illustrates an example of an attack that consumes data transmis-
sion resources. The following steps are involved:

1. The attacker takes control of multiple hosts over the Internet, instructing
them to send ICMP ECHO packets3 with the target’s spoofed IP address to a
group of hosts that act as reflectors, as described subsequently.

2. Nodes at the bounce site receive multiple spoofed requests and respond by send-
ing echo reply packets to the target site.

3. The target’s router is flooded with packets from the bounce site, leaving no
data transmission capacity for legitimate traffic.

Another way to classify DDoS attacks is as either direct or reflector DDoS
attacks. In a direct DDoS attack (Figure 10.10a), the attacker is able to implant zom-
bie software on a number of sites distributed throughout the Internet. Often, the
DDoS attack involves two levels of zombie machines: master zombies and slave zom-
bies. The hosts of both machines have been infected with malicious code. The attacker
coordinates and triggers the master zombies, which in turn coordinate and trigger
the slave zombies. The use of two levels of zombies makes it more difficult to trace the
attack back to its source and provides for a more resilient network of attackers.

A reflector DDoS attack adds another layer of machines (Figure 10.10b). In
this type of attack, the slave zombies construct packets requiring a response that
contains the target’s IP address as the source IP address in the packet’s IP header.
These packets are sent to uninfected machines known as reflectors. The uninfected
machines respond with packets directed at the target machine. A reflector DDoS
attack can easily involve more machines and more traffic than a direct DDoS attack
and hence be more damaging. Further, tracing back the attack or filtering out the
attack packets is more difficult because the attack comes from widely dispersed
uninfected machines.

Constructing the Attack Network

The first step in a DDoS attack is for the attacker to infect a number of machines
with zombie software that will ultimately be used to carry out the attack. The essen-
tial ingredients in this phase of the attack are the following:

1. Software that can carry out the DDoS attack. The software must be able to run
on a large number of machines, must be able to conceal its existence, must be
able to communicate with the attacker or have some sort of time-triggered
mechanism, and must be able to launch the intended attack toward the target.

2. A vulnerability in a large number of systems. The attacker must become aware of
a vulnerability that many system administrators and individual users have failed
to patch and that enables the attacker to install the zombie software.

3. A strategy for locating vulnerable machines, a process known as scanning.

3The Internet Control Message Protocol (ICMP) is an IP-level protocol for the exchange of control pack-
ets between a router and a host or between hosts. The ECHO packet requires the recipient to respond
with an echo reply to check that communication is possible between entities.

10.5 / DISTRIBUTED DENIAL OF SERVICE ATTACKS 369

Attacker

Master
zombies

@ Victim

(a) Direct DDoS Attack

Z Attacker

Master
2 zombies

@ Victim

(b) Reflector DDoS Attack
Figure 10.10 Types of Flooding-Based DDoS Attacks

In the scanning process, the attacker first seeks out a number of vulnerable

machines and infects them. Then, typically, the zombie software that is installed in
the infected machines repeats the same scanning process, until a large distributed
network of infected machines is created. [MIRKO04] lists the following types of scan-
ning strategies:

¢ Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of

370 CHAPTER 10 / MALICIOUS SOFTWARE

Internet traffic, which may cause generalized disruption even before the actual
attack is launched.

e Hit-List: The attacker first compiles a long list of potential vulnerable
machines. This can be a slow process done over a long period to avoid detec-
tion that an attack is underway. Once the list is compiled, the attacker begins
infecting machines on the list. Each infected machine is provided with a
portion of the list to scan. This strategy results in a very short scanning period,
which may make it difficult to detect that infection is taking place.

* Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

¢ Local subnet: If a host can be infected behind a firewall, that host then looks
for targets in its own local network. The host uses the subnet address structure
to find other hosts that would otherwise be protected by the firewall.

DDoS Countermeasures

In general, there are three lines of defense against DDoS attacks [CHANO2]:

e Attack prevention and preemption (before the attack): These mechanisms
enable the victim to endure attack attempts without denying service to legiti-
mate clients. Techniques include enforcing policies for resource consumption
and providing backup resources available on demand. In addition, prevention
mechanisms modify systems and protocols on the Internet to reduce the possi-
bility of DDoS attacks.

o Attack detection and filtering (during the attack): These mechanisms attempt to
detect the attack as it begins and respond immediately. This minimizes the impact
of the attack on the target. Detection involves looking for suspicious patterns of
behavior. Response involves filtering out packets likely to be part of the attack.

e Attack source traceback and identification (during and after the attack): This
is an attempt to identify the source of the attack as a first step in preventing
future attacks. However, this method typically does not yield results fast
enough, if at all, to mitigate an ongoing attack.

The challenge in coping with DDoS attacks is the sheer number of ways in
which they can operate. Thus DDoS countermeasures must evolve with the threat.

10.6 RECOMMENDED READING AND WEB SITES

For a thorough understanding of viruses, the book to read is [SZORO05]. Another excellent
treatment is [AYCOO06]. Good overview articles on viruses and worms are [CASSO01],
[FORRY97], [KEPH97a], and [NACH97]. [MEINO1] provides a good treatment of the Code
Red worm. [WEAVO03] is a comprehensive survey of worm characteristics. [HYPPO6] dis-
cusses worm attacks on mobile phones.

[PATRO4] is a worthwhile survey of DDoS attacks. [MIRKO04] is a thorough description
of the variety of DDoS attacks and countermeasures. [CHANO2] is a good examination of
DDoS defense strategies.

10.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 371

AYCO06 Aycock,J. Computer Viruses and Malware. New York: Springer, 2006.
CASS01 Cass, S. “Anatomy of Malice.” [EEE Spectrum, November 2001.

CHANO02 Chang,R.“Defending Against Flooding-Based Distributed Denial-of-Service
Attacks: A Tutorial.” IEEE Communications Magazine, October 2002.

FORRY7 Forrest, S.; Hofmeyr, S.; and Somayaji, A. “Computer Immunology.”
Communications of the ACM, October 1997.

HYPP06 Hypponen, M. “Malware Goes Mobile.” Scientific American, November 2006.

KEPHY97a Kephart, J.; Sorkin, G.; Chess, D.; and White, S. “Fighting Computer Viruses.”
Scientific American, November 1997.

MEINO1 Meinel, C. “Code Red for the Web.” Scientific American, October 2001.

MIRKO04 Mirkovic, J., and Relher, P. “A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms.” ACM SIGCOMM Computer Communications Review, April 2004.

NACHY97 Nachenberg, C. “Computer Virus-Antivirus Coevolution.” Communications
of the ACM, January 1997.

PATRO04 Patrikakis, C.; Masikos, M.; and Zouraraki, O. “Distributed Denial of Service
Attacks.” The Internet Protocol Journal, December 2004.

SZORO05 Szor, P., The Art of Computer Virus Research and Defense. Reading, MA:
Addison-Wesley, 2005.

WEAV03 Weaver, N, et al. “A Taxonomy of Computer Worms.” The First ACM
Workshop on Rapid Malcode (WORM),2003.

Recommended Web Sites:

e AntiVirus Online: IBM’s site on virus information.

* Vmyths: Dedicated to exposing virus hoaxes and dispelling misconceptions about real
viruses.

* VirusList: Site maintained by commercial antivirus software provider. Good collection
of useful information.

* DDoS Attacks/Tools: Extensive list of links and documents.

10.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
backdoor distributed denial of service macro virus
behavior-blocking software (DDoS) malicious software
blended attack downloaders malware
boot-sector virus e-mail virus metamorphic virus
digital immune system flooder mobile code
direct DDoS attack logic bomb parasitic virus

372 CHAPTER 10 / MALICIOUS SOFTWARE

polymorphic virus stealth virus virus
reflector DDoS attack trapdoor worm
scanning Trojan horse zero-day exploit

Review Questions

10.1 What is the role of compression in the operation of a virus?

10.2 What is the role of encryption in the operation of a virus?

10.3 What are typical phases of operation of a virus or worm?

10.4 What is a digital immune system?

10.5 How does behavior-blocking software work?

10.6 In general terms, how does a worm propagate?

10.7 Describe some worm countermeasures.

10.8 Whatis a DDoS?

Problems

10.1 There is a flaw in the virus program of Figure 10.1. What is it?

10.2 The question arises as to whether it is possible to develop a program that can analyze
a piece of software to determine if it is a virus. Consider that we have a program D
that is supposed to be able to do that. That is, for any program P, if we run D(P), the
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the
following program:

Program CV :=
{
main-program :=
{if D(CV) then goto next:
else infect-executable;
next:}
}

In the preceding program, infect-executable is a module that scans memory for exe-
cutable programs and replicates itself in those programs. Determine if D can correctly
decide whether CV is a virus.

10.3 The point of this problem is to demonstrate the type of puzzles that must be solved in

the design of malicious code and therefore, the type of mindset that one wishing to
counter such attacks must adopt.
a. Consider the following C program:

begin

print (*begin print (); end.*);
end
What do you think the program was intended to do? Does it work?

b. Answer the same questions for the following program:

char [] :('O'/ o, |)|, s, 'm', 'a', 'i'/ 'n',
l(l, l)l, ‘{‘,andsoon... 't', l)l, |O|}I.
main ()
{
int I;

printf (*char t[] = (*);

10.4

10.5

10.6

10.7

10.8

10.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 373

for (i=0; t[i]!=0; di=1i+1)
printf("%d, ", tl[il);
printf("%s", t);
}

c. What is the specific relevance of this problem to this chapter?
Consider the following fragment:

legitimate code

if data is Friday the 13th;
crash_computer () ;

legitimate code

What type of malicious software is this?
Consider the following fragment in an authentication program:

username = read_username () ;

password = read_password() ;

if username is "133t h4ckOr"
return ALLOW_LOGIN;

if username and password are valid
return ALLOW_LOGIN

else return DENY_LOGIN

What type of malicious software is this?

The following code fragments show a sequence of virus instructions and a metamor-
phic version of the virus. Describe the effect produced by the metamorphic code.

Original Code Metamorphic Code

mov eax, 5 mov eax, 5

add eax, ebx push ecx

call [eax] pop ecx
add eax, ebx
swap eax, ebx
swap ebx, eax
call [eax]
nop

The list of passwords used by the Morris worm is provided at this book’s Web site.

a. The assumption has been expressed by many people that this list represents words
commonly used as passwords. Does this seem likely? Justify your answer.

b. If the list does not reflect commonly used passwords, suggest some approaches
that Morris may have used to construct the list.

Suggest some methods of attacking the PWC worm defense that could be used by

worm creators and suggest countermeasures to these methods.

FIREWALLS

111

374

11.2

11.3

114

11.5

11.6
11.7

The Need for Firewalls
Firewall Characteristics

Types of Firewalls

Packet Filtering Firewall
Stateful Inspection Firewalls
Application-Level Gateway
Circuit-Level Gateway

Firewall Basing

Bastion Host
Host-Based Firewalls
Personal Firewall

Firewall Location and Configurations

DMZ Networks

Virtual Private Networks

Distributed Firewalls

Summary of Firewall Locations and Topologies

Recommended Reading and Web Site

Key Terms, Review Questions, and Problems

11.1 / THE NEED FOR FIREWALLS 375

The function of a strong position is to make the forces holding it practically
unassailable.

— On War, Carl Von Clausewitz

On the day that you take up your command, block the frontier passes, destroy the
official tallies, and stop the passage of all emissaries.

— The Art of War, Sun Tzu

*

KEY POINTS

A firewall forms a barrier through which the traffic going in each direction
must pass. A firewall security policy dictates which traffic is authorized to
pass in each direction.

A firewall may be designed to operate as a filter at the level of IP packets,
or may operate at a higher protocol layer.

Firewalls can be an effective means of protecting a local system or network of systems
from network-based security threats while at the same time affording access to the out-
side world via wide area networks and the Internet.

11.1 THE NEED FOR FIREWALLS

Information systems in corporations, government agencies, and other organizations
have undergone a steady evolution. The following are notable developments:

Centralized data processing system, with a central mainframe supporting a
number of directly connected terminals

Local area networks (LANSs) interconnecting PCs and terminals to each other
and the mainframe

Premises network, consisting of a number of LANS, interconnecting PCs,
servers, and perhaps a mainframe or two

Enterprise-wide network, consisting of multiple, geographically distributed
premises networks interconnected by a private wide area network (WAN)

Internet connectivity, in which the various premises networks all hook into the
Internet and may or may not also be connected by a private WAN

Internet connectivity is no longer optional for organizations. The information

and services available are essential to the organization. Moreover, individual users
within the organization want and need Internet access, and if this is not provided via
their LAN, they will use dial-up capability from their PC to an Internet service
provider (ISP). However, while Internet access provides benefits to the organization,

376 CHAPTER 11 / FIREWALLS

it enables the outside world to reach and interact with local network assets. This
creates a threat to the organization. While it is possible to equip each workstation
and server on the premises network with strong security features, such as intrusion
protection, this may not be sufficient and in some cases is not cost-effective. Consider
a network with hundreds or even thousands of systems, running various operating
systems, such as different versions of UNIX and Windows. When a security flaw is
discovered, each potentially affected system must be upgraded to fix that flaw. This
requires scaleable configuration management and aggressive patching to function
effectively. While difficult, this is possible and is necessary if only host-based security
is used. A widely accepted alternative or at least complement to host-based security
services is the firewall. The firewall is inserted between the premises network and the
Internet to establish a controlled link and to erect an outer security wall or perime-
ter. The aim of this perimeter is to protect the premises network from Internet-based
attacks and to provide a single choke point where security and auditing can be
imposed. The firewall may be a single computer system or a set of two or more
systems that cooperate to perform the firewall function.

The firewall, then, provides an additional layer of defense, insulating the inter-
nal systems from external networks. This follows the classic military doctrine of
“defense in depth,” which is just as applicable to IT security.

11.2 FIREWALL CHARACTERISTICS

[BELL94b] lists the following design goals for a firewall:

1. All traffic from inside to outside, and vice versa, must pass through the firewall.
This is achieved by physically blocking all access to the local network except
via the firewall. Various configurations are possible, as explained later in this
chapter.

2. Only authorized traffic, as defined by the local security policy, will be allowed to
pass. Various types of firewalls are used, which implement various types of secu-
rity policies, as explained later in this chapter.

3. The firewall itself is immune to penetration. This implies the use of a hardened
system with a secured operating system. Trusted computer systems are suitable
for hosting a firewall and often required in government applications.

[SMIT97] lists four general techniques that firewalls use to control access and
enforce the site’s security policy. Originally, firewalls focused primarily on service
control, but they have since evolved to provide all four:

* Service control: Determines the types of Internet services that can be
accessed, inbound or outbound. The firewall may filter traffic on the basis of
IP address, protocol, or port number; may provide proxy software that receives
and interprets each service request before passing it on; or may host the server
software itself, such as a Web or mail service.

e Direction control: Determines the direction in which particular service
requests may be initiated and allowed to flow through the firewall.

11.2 / FIREWALL CHARACTERISTICS 377

e User control: Controls access to a service according to which user is attempt-
ing to access it. This feature is typically applied to users inside the firewall
perimeter (local users). It may also be applied to incoming traffic from exter-
nal users; the latter requires some form of secure authentication technology,
such as is provided in IPsec (Chapter 8).

* Behavior control: Controls how particular services are used. For example, the
firewall may filter e-mail to eliminate spam, or it may enable external access to
only a portion of the information on a local Web server.

Before proceeding to the details of firewall types and configurations, it is best
to summarize what one can expect from a firewall. The following capabilities are
within the scope of a firewall:

1. A firewall defines a single choke point that keeps unauthorized users out of
the protected network, prohibits potentially vulnerable services from entering
or leaving the network, and provides protection from various kinds of IP
spoofing and routing attacks. The use of a single choke point simplifies security
management because security capabilities are consolidated on a single system
or set of systems.

2. A firewall provides a location for monitoring security-related events. Audits and
alarms can be implemented on the firewall system.

3. A firewall is a convenient platform for several Internet functions that are not
security related. These include a network address translator, which maps local
addresses to Internet addresses, and a network management function that audits
or logs Internet usage.

4. A firewall can serve as the platform for IPsec. Using the tunnel mode capabil-
ity described in Chapter 8, the firewall can be used to implement virtual
private networks.

Firewalls have their limitations, including the following:

1. The firewall cannot protect against attacks that bypass the firewall. Internal
systems may have dial-out capability to connect to an ISP. An internal LAN
may support a modem pool that provides dial-in capability for traveling
employees and telecommuters.

2. The firewall may not protect fully against internal threats, such as a disgruntled
employee or an employee who unwittingly cooperates with an external
attacker.

3. An improperly secured wireless LAN may be accessed from outside the organi-
zation. An internal firewall that separates portions of an enterprise network
cannot guard against wireless communications between local systems on differ-
ent sides of the internal firewall.

4. A laptop, PDA, or portable storage device may be used and infected outside
the corporate network, and then attached and used internally.

378 CHAPTER 11 / FIREWALLS

11.3 TYPES OF FIREWALLS

A firewall may act as a packet filter. It can operate as a positive filter, allowing to
pass only packets that meet specific criteria, or as a negative filter, rejecting any
packet that meets certain criteria. Depending on the type of firewall, it may examine
one or more protocol headers in each packet, the payload of each packet, or the pat-
tern generated by a sequence of packets. In this section, we look at the principal
types of firewalls.

Packet Filtering Firewall

A packet filtering firewall applies a set of rules to each incoming and outgoing IP
packet and then forwards or discards the packet (Figure 11.1b). The firewall is typi-
cally configured to filter packets going in both directions (from and to the internal
network). Filtering rules are based on information contained in a network packet:

* Source IP address: The IP address of the system that originated the IP packet
(e.g.,192.178.1.1)

e Destination IP address: The IP address of the system the IP packet is trying to
reach (e.g.,192.168.1.2)

e Source and destination transport-level address: The transport-level (e.g., TCP
or UDP) port number, which defines applications such as SNMP or TELNET

e IP protocol field: Defines the transport protocol

e Interface: For a firewall with three or more ports, which interface of the fire-
wall the packet came from or which interface of the firewall the packet is des-
tined for

The packet filter is typically set up as a list of rules based on matches to fields
in the IP or TCP header. If there is a match to one of the rules, that rule is invoked
to determine whether to forward or discard the packet. If there is no match to any
rule, then a default action is taken. Two default policies are possible:

e Default = discard: That which is not expressly permitted is prohibited.
e Default = forward: That which is not expressly prohibited is permitted.

The default discard policy is more conservative. Initially, everything is
blocked, and services must be added on a case-by-case basis. This policy is more
visible to users, who are more likely to see the firewall as a hindrance. However,
this is the policy likely to be preferred by businesses and government organiza-
tions. Further, visibility to users diminishes as rules are created. The default for-
ward policy increases ease of use for end users but provides reduced security; the
security administrator must, in essence, react to each new security threat as it
becomes known. This policy may be used by generally more open organizations,
such as universities.

Table 11.1, from [BELL94b], gives some examples of packet filtering rulesets.
In each set, the rules are applied top to bottom. The “*” in a field is a wildcard

11.3 / TYPES OF FIREWALLS 379

External (untrusted) network

Internal (protected) network
(e.g., enterprise network) Firewall (e.g., Internet)

(a) General model

End-to-end Application End-to-end End-to-end Application End-to-end
transport transport transport transport
connection connection connection connection

< Transport £ < Transport >
Internet Internet
Network Network
access access
—
Physical S.tate Physical
info
(b) Packet filtering firewall (c) Stateful inspection firewall
Application proxy Circuit-level proxy
Internal | |Application |€——|Application| | External Internal | |5pplication Application| | External
transport transport transport transport
connection connection connection connection
< | Transport Transport | > <t | Transport |« »| Transport | =
Internet Internet Internet Internet
Network Network Network Network
access access access access
Physical Physical Physical Physical

(e) Circuit-level proxy firewall

(d) Application proxy firewall
Types of Firewalls

Figure 11.1

380 CHAPTER 11 / FIREWALLS

Table 11.1 Packet-Filtering Examples

Rule Set A
action ourhost port | theirhost | port comment
block * & SPIGOT & we don’t trust these people
allow OUR-GW 25 & 3 connection to our SMTP port
Rule Set B
action ourhost port | theirhost port comment
block & & & o default
Rule Set C
action ourhost port theirhost port comment
allow < < < 25 connection to their SMTP port
Rule Set D
action sre port dest port flags comment
allow {our hosts} & & 25 our packets to their SMTP port
allow & 25 & o ACK | their replies
Rule Set E
action sre port dest port flags comment
allow {our hosts} & i & our outgoing calls
allow & & & e ACK | replies to our calls
allow & & & >1024 traffic to nonservers

designator that matches everything. We assume that the default = discard policy is
in force.

A.

B.

C.

D.

Inbound mail is allowed (port 25 is for SMTP incoming), but only to a gateway
host. However, packets from a particular external host, SPIGOT, are blocked
because that host has a history of sending massive files in e-mail messages.

This is an explicit statement of the default policy. All rulesets include this rule
implicitly as the last rule.

This ruleset is intended to specify that any inside host can send mail to the out-
side. A TCP packet with a destination port of 25 is routed to the SMTP server on
the destination machine. The problem with this rule is that the use of port 25 for
SMTP receipt is only a default; an outside machine could be configured to have
some other application linked to port 25. As this rule is written, an attacker could
gain access to internal machines by sending packets with a TCP source port num-
ber of 25.

This ruleset achieves the intended result that was not achieved in C. The rules
take advantage of a feature of TCP connections. Once a connection is set up, the
ACK flag of a TCP segment is set to acknowledge segments sent from the other
side. Thus, this ruleset states that it allows IP packets where the source IP address

11.3 / TYPES OF FIREWALLS 381

is one of a list of designated internal hosts and the destination TCP port number
is 25. It also allows incoming packets with a source port number of 25 that include
the ACK flag in the TCP segment. Note that we explicitly designate source and
destination systems to define these rules explicitly.

. This ruleset is one approach to handling FTP connections. With FTP, two TCP

connections are used: a control connection to set up the file transfer and a data
connection for the actual file transfer. The data connection uses a different port
number that is dynamically assigned for the transfer. Most servers, and hence
most attack targets, use low-numbered ports; most outgoing calls tend to use a
higher-numbered port, typically above 1023. Thus, this ruleset allows

— Packets that originate internally
— Reply packets to a connection initiated by an internal machine
— Packets destined for a high-numbered port on an internal machine

This scheme requires that the systems be configured so that only the appropriate
port numbers are in use.

Rule set E points out the difficulty in dealing with applications at the packet-

filtering level. Another way to deal with FTP and similar applications is either state-
ful packet filters or an application-level gateway, both described subsequently in this
section.

One advantage of a packet filtering firewall is its simplicity. Also, packet filters

typically are transparent to users and are very fast. [WACKO2] lists the following
weaknesses of packet filter firewalls:

Because packet filter firewalls do not examine upper-layer data, they cannot
prevent attacks that employ application-specific vulnerabilities or functions.
For example, a packet filter firewall cannot block specific application
commands; if a packet filter firewall allows a given application, all functions
available within that application will be permitted.

Because of the limited information available to the firewall, the logging func-
tionality present in packet filter firewalls is limited. Packet filter logs normally
contain the same information used to make access control decisions (source
address, destination address, and traffic type).

Most packet filter firewalls do not support advanced user authentication
schemes. Once again, this limitation is mostly due to the lack of upper-layer
functionality by the firewall.

Packet filter firewalls are generally vulnerable to attacks and exploits that
take advantage of problems within the TCP/IP specification and protocol
stack, such as network layer address spoofing. Many packet filter firewalls
cannot detect a network packet in which the OSI Layer 3 addressing informa-
tion has been altered. Spoofing attacks are generally employed by intruders to
bypass the security controls implemented in a firewall platform.

Finally, due to the small number of variables used in access control decisions,
packet filter firewalls are susceptible to security breaches caused by improper
configurations. In other words, it is easy to accidentally configure a packet

382 CHAPTER 11 / FIREWALLS

filter firewall to allow traffic types, sources, and destinations that should be
denied based on an organization’s information security policy.

Some of the attacks that can be made on packet filtering firewalls and the
appropriate countermeasures are the following:

e IP address spoofing: The intruder transmits packets from the outside with a
source IP address field containing an address of an internal host. The attacker
hopes that the use of a spoofed address will allow penetration of systems that
employ simple source address security, in which packets from specific trusted
internal hosts are accepted. The countermeasure is to discard packets with an
inside source address if the packet arrives on an external interface. In fact, this
countermeasure is often implemented at the router external to the firewall.

e Source routing attacks: The source station specifies the route that a packet
should take as it crosses the Internet, in the hopes that this will bypass security
measures that do not analyze the source routing information. The counter-
measure is to discard all packets that use this option.

e Tiny fragment attacks: The intruder uses the IP fragmentation option to create
extremely small fragments and force the TCP header information into a sepa-
rate packet fragment. This attack is designed to circumvent filtering rules that
depend on TCP header information. Typically, a packet filter will make a fil-
tering decision on the first fragment of a packet. All subsequent fragments of
that packet are filtered out solely on the basis that they are part of the packet
whose first fragment was rejected. The attacker hopes that the filtering firewall
examines only the first fragment and that the remaining fragments are passed
through. A tiny fragment attack can be defeated by enforcing a rule that the
first fragment of a packet must contain a predefined minimum amount of
the transport header. If the first fragment is rejected, the filter can remember
the packet and discard all subsequent fragments.

Stateful Inspection Firewalls

A traditional packet filter makes filtering decisions on an individual packet basis
and does not take into consideration any higher layer context. To understand what is
meant by context and why a traditional packet filter is limited with regard to con-
text, a little background is needed. Most standardized applications that run on top of
TCP follow a client/server model. For example, for the Simple Mail Transfer
Protocol (SMTP), e-mail is transmitted from a client system to a server system. The
client system generates new e-mail messages, typically from user input. The server
system accepts incoming e-mail messages and places them in the appropriate user
mailboxes. SMTP operates by setting up a TCP connection between client and
server, in which the TCP server port number, which identifies the SMTP server
application, is 25. The TCP port number for the SMTP client is a number between
1024 and 65535 that is generated by the SMTP client.

In general, when an application that uses TCP creates a session with a remote
host, it creates a TCP connection in which the TCP port number for the remote
(server) application is a number less than 1024 and the TCP port number for the local

11.3 / TYPES OF FIREWALLS 383

(client) application is a number between 1024 and 65535. The numbers less than 1024
are the “well-known” port numbers and are assigned permanently to particular
applications (e.g., 25 for server SMTP). The numbers between 1024 and 65535 are
generated dynamically and have temporary significance only for the lifetime of a
TCP connection.

A simple packet filtering firewall must permit inbound network traffic on all
these high-numbered ports for TCP-based traffic to occur. This creates a vulnerabil-
ity that can be exploited by unauthorized users.

A stateful inspection packet firewall tightens up the rules for TCP traffic by
creating a directory of outbound TCP connections, as shown in Table 11.2. There is
an entry for each currently established connection. The packet filter will now allow
incoming traffic to high-numbered ports only for those packets that fit the profile of
one of the entries in this directory.

A stateful packet inspection firewall reviews the same packet information as a
packet filtering firewall, but also records information about TCP connections
(Figure 11.1c). Some stateful firewalls also keep track of TCP sequence numbers to
prevent attacks that depend on the sequence number, such as session hijacking. Some
even inspect limited amounts of application data for some well-known protocols like
FTP, IM and SIPS commands, in order to identify and track related connections.

Application-Level Gateway

An application-level gateway, also called an application proxy, acts as a relay of
application-level traffic (Figure 11.1d). The user contacts the gateway using a
TCP/IP application, such as Telnet or FTP, and the gateway asks the user for the
name of the remote host to be accessed. When the user responds and provides a
valid user ID and authentication information, the gateway contacts the application
on the remote host and relays TCP segments containing the application data
between the two endpoints. If the gateway does not implement the proxy code for a
specific application, the service is not supported and cannot be forwarded across the
firewall. Further, the gateway can be configured to support only specific features of

Table 11.2 Example Stateful Firewall Connection State Table [WACKO02]

Source Address | Source Port Destination Destination Port Connection
Address State
192.168.1.100 1030 210.22.88.29 80 Established
192.168.1.102 1031 216.32.42.123 80 Established
192.168.1.101 1033 173.66.32.122 25 Established
192.168.1.106 1035 177.231.32.12 79 Established
223.43.21.231 1990 192.168.1.6 80 Established
2122.22.123.32 2112 192.168.1.6 80 Established
210.922.212.18 3321 192.168.1.6 80 Established
24.102.32.23 1025 192.168.1.6 80 Established
223.21.22.12 1046 192.168.1.6 80 Established

384 CHAPTER 11 / FIREWALLS

an application that the network administrator considers acceptable while denying
all other features.

Application-level gateways tend to be more secure than packet filters. Rather
than trying to deal with the numerous possible combinations that are to be allowed
and forbidden at the TCP and IP level, the application-level gateway need only
scrutinize a few allowable applications. In addition, it is easy to log and audit all
incoming traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing
overhead on each connection. In effect, there are two spliced connections between
the end users, with the gateway at the splice point, and the gateway must examine
and forward all traffic in both directions.

Circuit-Level Gateway

A fourth type of firewall is the circuit-level gateway or circuit-level proxy
(Figure 11.1e). This can be a stand-alone system or it can be a specialized func-
tion performed by an application-level gateway for certain applications. As with
an application gateway, a circuit-level gateway does not permit an end-to-end
TCP connection; rather, the gateway sets up two TCP connections, one between
itself and a TCP user on an inner host and one between itself and a TCP user on
an outside host. Once the two connections are established, the gateway typically
relays TCP segments from one connection to the other without examining the
contents. The security function consists of determining which connections will be
allowed.

A typical use of circuit-level gateways is a situation in which the system admin-
istrator trusts the internal users. The gateway can be configured to support applica-
tion-level or proxy service on inbound connections and circuit-level functions for
outbound connections. In this configuration, the gateway can incur the processing
overhead of examining incoming application data for forbidden functions but does
not incur that overhead on outgoing data.

An example of a circuit-level gateway implementation is the SOCKS package
[KOBL92]; version 5 of SOCKS is specified in RFC 1928. The RFC defines SOCKS
in the following fashion:

The protocol described here is designed to provide a framework for
client-server applications in both the TCP and UDP domains to
conveniently and securely use the services of a network firewall.
The protocol is conceptually a “shim-layer” between the application
layer and the transport layer, and as such does not provide network-
layer gateway services, such as forwarding of ICMP messages.

SOCKS consists of the following components:

e The SOCKS server, which often runs on a UNIX-based firewall. SOCKS is
also implemented on Windows systems.

e The SOCKS client library, which runs on internal hosts protected by the
firewall.

11.4 / FIREWALL BASING 385

* SOCKS-ified versions of several standard client programs such as FTP and
TELNET. The implementation of the SOCKS protocol typically involves
either the recompilation or relinking of TCP-based client applications, or the
use of alternate dynamically loaded libraries, to use the appropriate encapsu-
lation routines in the SOCKS library.

When a TCP-based client wishes to establish a connection to an object that is
reachable only via a firewall (such determination is left up to the implementa-
tion), it must open a TCP connection to the appropriate SOCKS port on the
SOCKS server system. The SOCKS service is located on TCP port 1080. If the con-
nection request succeeds, the client enters a negotiation for the authentication
method to be used, authenticates with the chosen method, and then sends a relay
request. The SOCKS server evaluates the request and either establishes the
appropriate connection or denies it. UDP exchanges are handled in a similar fash-
ion. In essence, a TCP connection is opened to authenticate a user to send and
receive UDP segments, and the UDP segments are forwarded as long as the TCP
connection is open.

11.4 FIREWALL BASING

It is common to base a firewall on a stand-alone machine running a common oper-
ating system, such as UNIX or Linux. Firewall functionality can also be imple-
mented as a software module in a router or LAN switch. In this section, we look at
some additional firewall basing considerations.

Bastion Host

A bastion host is a system identified by the firewall administrator as a critical strong
point in the network’s security. Typically, the bastion host serves as a platform for an
application-level or circuit-level gateway. Common characteristics of a bastion host
are as follows:

e The bastion host hardware platform executes a secure version of its operating
system, making it a hardened system.

* Only the services that the network administrator considers essential are
installed on the bastion host. These could include proxy applications for DNS,
FTP,HTTP, and SMTP.

* The bastion host may require additional authentication before a user is
allowed access to the proxy services. In addition, each proxy service may
require its own authentication before granting user access.

e Each proxy is configured to support only a subset of the standard application’s
command set.

e Each proxy is configured to allow access only to specific host systems. This
means that the limited command/feature set may be applied only to a subset of
systems on the protected network.

386 CHAPTER 11 / FIREWALLS

e Each proxy maintains detailed audit information by logging all traffic, each
connection, and the duration of each connection. The audit log is an essential
tool for discovering and terminating intruder attacks.

e Each proxy module is a very small software package specifically designed for
network security. Because of its relative simplicity, it is easier to check such
modules for security flaws. For example, a typical UNIX mail application may
contain over 20,000 lines of code, while a mail proxy may contain fewer
than 1000.

e Each proxy is independent of other proxies on the bastion host. If there is a
problem with the operation of any proxy, or if a future vulnerability is discov-
ered, it can be uninstalled without affecting the operation of the other proxy
applications. Also, if the user population requires support for a new service,
the network administrator can easily install the required proxy on the
bastion host.

e A proxy generally performs no disk access other than to read its initial config-
uration file. Hence, the portions of the file system containing executable code
can be made read only. This makes it difficult for an intruder to install Trojan
horse sniffers or other dangerous files on the bastion host.

e Each proxy runs as a nonprivileged user in a private and secured directory on
the bastion host.

Host-Based Firewalls

A host-based firewall is a software module used to secure an individual host.
Such modules are available in many operating systems or can be provided as an
add-on package. Like conventional stand-alone firewalls, host-resident firewalls
filter and restrict the flow of packets. A common location for such firewalls is a
server. There are several advantages to the use of a server-based or workstation-
based firewall:

e Filtering rules can be tailored to the host environment. Specific corporate
security policies for servers can be implemented, with different filters for
servers used for different application.

e Protection is provided independent of topology. Thus both internal and exter-
nal attacks must pass through the firewall.

* Used in conjunction with stand-alone firewalls, the host-based firewall pro-
vides an additional layer of protection. A new type of server can be added to
the network, with its own firewall, without the necessity of altering the net-
work firewall configuration.

Personal Firewall

A personal firewall controls the traffic between a personal computer or workstation
on one side and the Internet or enterprise network on the other side. Personal fire-
wall functionality can be used in the home environment and on corporate intranets.
Typically, the personal firewall is a software module on the personal computer. In a

11.4 / FIREWALL BASING 387

home environment with multiple computers connected to the Internet, firewall
functionality can also be housed in a router that connects all of the home computers
to a DSL, cable modem, or other Internet interface.

Personal firewalls are typically much less complex than either server-based
firewalls or stand-alone firewalls. The primary role of the personal firewall is to deny
unauthorized remote access to the computer. The firewall can also monitor outgoing
activity in an attempt to detect and block worms and other malware.

An example of a personal firewall is the capability built in to the Mac OS X
operating system. When the user enables the personal firewall in Mac OS X,
all inbound connections are denied except for those the user explicitly permits.
Figure 11.2 shows this simple interface. The list of inbound services that can be
selectively reenabled, with their port numbers, includes the following:

* Personal file sharing (548,427)

* Windows sharing (139)

e Personal Web sharing (80, 427)

* Remote login - SSH (22)

e FTP access (20-21, 1024-64535 from 20-21)
* Remote Apple events (3031)

e Printer sharing (631, 515)

e IChat Rendezvous (5297, 5298)

* ITunes Music Sharing (3869)

o CVS (2401)

Figure 11.2 Example Personal Firewall Interface

388 CHAPTER 11 / FIREWALLS

* Gnutella/Limewire (6346)

* ICQ (4000)

* IRC (194)

* MSN Messenger (6891-6900)

e Network Time (123)

* Retrospect (497)

* SMB (without netbios-445)

e Timbuktu (407)

* VNC (5900-5902)

* WebSTAR Admin (1080, 1443)

When FTP access is enabled, ports 20 and 21 on the local machine are opened
for FTP; if others connect to this computer from ports 20 or 21, the ports 1024
through 64535 are open.

For increased protection, advanced firewall features are available through
easy-to-configure checkboxes. Stealth mode hides the Mac on the Internet by drop-
ping unsolicited communication packets, making it appear as though no Mac is
present. UDP packets can be blocked, restricting network traffic to TCP packets
only for open ports. The firewall also supports logging, an important tool for check-
ing on unwanted activity.

11.5 FIREWALL LOCATION AND CONFIGURATIONS

As Figure 11.1a indicates, a firewall is positioned to provide a protective barrier
between an external, potentially untrusted source of traffic and an internal network.
With that general principle in mind, a security administrator must decide on the
location and on the number of firewalls needed. In this section, we look at some
common options.

DMZ Networks

Figure 11.3 suggests the most common distinction, that between an internal and an
external firewall. An external firewall is placed at the edge of a local or enterprise
network, just inside the boundary router that connects to the Internet or some wide
area network (WAN). One or more internal firewalls protect the bulk of the enter-
prise network. Between these two types of firewalls are one or more networked
devices in a region referred to as a DMZ (demilitarized zone) network. Systems
that are externally accessible but need some protections are usually located on
DMZ networks. Typically, the systems in the DMZ require or foster external con-
nectivity, such as a corporate Web site, an e-mail server, or a DNS (domain name
system) server.

The external firewall provides a measure of access control and protection for
the DMZ systems consistent with their need for external connectivity. The external

11.5 / FIREWALL LOCATION AND CONFIGURATIONS 389

Boundary
router

Internal DMZ network

Z
77

External e

firewall

LAN
switch

Web Email DNS
server(s) server server

Z
z

Internal 222

firewall

switch

Figure 11.3 Example Firewall Configuration

firewall also provides a basic level of protection for the remainder of the enterprise
network. In this type of configuration, internal firewalls serve three purposes:

1. The internal firewall adds more stringent filtering capability, compared to the
external firewall, in order to protect enterprise servers and workstations from
external attack.

2. The internal firewall provides two-way protection with respect to the DMZ. First,
the internal firewall protects the remainder of the network from attacks launched
from DMZ systems. Such attacks might originate from worms, rootkits, bots, or
other malware lodged in a DMZ system. Second, an internal firewall can protect
the DMZ systems from attack from the internal protected network.

390 CHAPTER 11 / FIREWALLS

3. Multiple internal firewalls can be used to protect portions of the internal
network from each other. For example, firewalls can be configured so that
internal servers are protected from internal workstations and vice versa.
A common practice is to place the DMZ on a different network interface on
the external firewall from that used to access the internal networks.

Virtual Private Networks

In today’s distributed computing environment, the virtual private network (VPN)
offers an attractive solution to network managers. In essence, a VPN consists of a set
of computers that interconnect by means of a relatively unsecure network and that
make use of encryption and special protocols to provide security. At each corporate
site, workstations, servers, and databases are linked by one or more local area net-
works (LANSs). The Internet or some other public network can be used to intercon-
nect sites, providing a cost savings over the use of a private network and offloading
the wide area network management task to the public network provider. That same
public network provides an access path for telecommuters and other mobile
employees to log on to corporate systems from remote sites.

But the manager faces a fundamental requirement: security. Use of a public
network exposes corporate traffic to eavesdropping and provides an entry point for
unauthorized users. To counter this problem, a VPN is needed. In essence, a VPN
uses encryption and authentication in the lower protocol layers to provide a secure
connection through an otherwise insecure network, typically the Internet. VPNs are
generally cheaper than real private networks using private lines but rely on having
the same encryption and authentication system at both ends. The encryption may be
performed by firewall software or possibly by routers. The most common protocol
mechanism used for this purpose is at the IP level and is known as IPsec.

An organization maintains LANs at dispersed locations. A logical means of
implementing an IPsec is in a firewall, as shown in Figure 11.4, which essentially
repeats Figure 8.1. If IPsec is implemented in a separate box behind (internal to) the
firewall, then VPN traffic passing through the firewall in both directions is
encrypted. In this case, the firewall is unable to perform its filtering function or
other security functions, such as access control, logging, or scanning for viruses.
IPsec could be implemented in the boundary router, outside the firewall. However,
this device is likely to be less secure than the firewall and thus less desirable as an
IPsec platform.

Distributed Firewalls

A distributed firewall configuration involves stand-alone firewall devices plus host-
based firewalls working together under a central administrative control. Figure 11.5
suggests a distributed firewall configuration. Administrators can configure host-
resident firewalls on hundreds of servers and workstations as well as configure
personal firewalls on local and remote user systems. Tools let the network adminis-
trator set policies and monitor security across the entire network. These firewalls
protect against internal attacks and provide protection tailored to specific machines
and applications. Stand-alone firewalls provide global protection, including internal
firewalls and an external firewall, as discussed previously.

Ethernet
switch

11.5 / FIREWALL LOCATION AND CONFIGURATIONS 391

User system
with IPsec

IP IPsec Secure IP
Header | Header Payload Pllbli c (I nt ern et)
or Private

Network

Ethernet
switch

1P P
Header Payload

1P P
Header Payload

Firewall
with IPsec

Figure 11.4 A VPN Security Scenario

With distributed firewalls, it may make sense to establish both an internal and
an external DMZ. Web servers that need less protection because they have less
critical information on them could be placed in an external DMZ, outside the exter-
nal firewall. What protection is needed is provided by host-based firewalls on these
servers.

An important aspect of a distributed firewall configuration is security moni-
toring. Such monitoring typically includes log aggregation and analysis, firewall
statistics, and fine-grained remote monitoring of individual hosts if needed.

Summary of Firewall Locations and Topologies

We can now summarize the discussion from Sections 11.4 and 11.5 to define a
spectrum of firewall locations and topologies. The following alternatives can be
identified:

e Host-resident firewall: This category includes personal firewall software and
firewall software on servers. Such firewalls can be used alone or as part of an
in-depth firewall deployment.

* Screening router: A single router between internal and external networks with
stateless or full packet filtering. This arrangement is typical for small
office/home office (SOHO) applications.

392 CHAPTER 11 / FIREWALLS

Remote
users

Boundary

router
External

DMZ network

z
External Pz Z
firewall

LAN
switch

server(s) server server

Web Email DNS

77
Z
Internal 25

N
firewall

host-resident
firewall

>

Workstations

Figure 11.5 Example Distributed Firewall Configuration

e Single bastion inline: A single firewall device between an internal and external
router (e.g., Figure 11.1a). The firewall may implement stateful filters and/or
application proxies. This is the typical firewall appliance configuration for
small to medium-sized organizations.

11.6 / RECOMMENDED READING AND WEB SITE 393

e Single bastion T: Similar to single bastion inline but has a third network
interface on bastion to a DMZ where externally visible servers are placed.
Again, this is a common appliance configuration for medium to large
organizations.

* Double bastion inline: Figure 11.3 illustrates this configuration, where the
DMZ is sandwiched between bastion firewalls. This configuration is common
for large businesses and government organizations.

* Double bastion T: The DMZ is on a separate network interface on the bastion
firewall. This configuration is also common for large businesses and govern-
ment organizations and may be required. For example, this configuration is
required for Australian government use (Australian Government Information
Technology Security Manual - ACSI33).

* Distributed firewall configuration: Illustrated in Figure 11.5. This configura-
tion is used by some large businesses and government organizations.

11.6 RECOMMENDED READING AND WEB SITE

A classic treatment of firewalls is [CHESO03]. [LODI98], [OPPL97], and [BELL94b] are good
overview articles on the subject. [WACKO02] is an excellent overview of firewall technology
and firewall policies. [AUDI04] and [WILSO05] provide useful discussions of firewalls.

AUDIO4 Audin, G. “Next-Gen Firewalls: What to Expect.” Business Communications
Review, June 2004.

BELL94b Bellovin, S., and Cheswick, W. “Network Firewalls.” I[EEE Communications
Magazine, September 1994.

CHAPO0 Chapman, D., and Zwicky, E. Building Internet Firewalls. Sebastopol, CA:
O’Reilly, 2000.

CHES03 Cheswick, W., and Bellovin, S. Firewalls and Internet Security: Repelling the
Wily Hacker. Reading, MA: Addison-Wesley, 2003.

LODI98 Lodin, S., and Schuba, C. “Firewalls Fend Off Invasions from the Net.” I[EEE
Spectrum, February 1998.

OPPL97 Oppliger, R. “Internet Security: Firewalls and Beyond.” Communications of
the ACM, May 1997.

WACKO02 Wack, J.; Cutler, K.; and Pole, J. Guidelines on Firewalls and Firewall Policy.
NIST Special Publication SP 800-41, January 2002.

WILS05 Wilson, J. “The Future of the Firewall.” Business Communications Review, May
2005.

Recommended Web Site:

¢ Firewall.com: Numerous links to firewall references and software resources.

394 CHAPTER 11 / FIREWALLS

11.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

application-level gateway
bastion host

circuit-level gateway
distributed firewalls
DMZ

firewall

host-based firewall

IP address spoofing

IP security (IPsec)
packet filtering firewall

personal firewall

proxy

stateful inspection firewall
tiny fragment attack

virtual private network (VPN)

Review Questions

11.1 List three design goals for a firewall.

11.2 List four techniques used by firewalls to control access and enforce a security policy.
11.3 What information is used by a typical packet filtering firewall?

11.4 What are some weaknesses of a packet filtering firewall?

11.5 What is the difference between a packet filtering firewall and a stateful inspection
firewall?

11.6 What is an application-level gateway?

11.7 What is a circuit-level gateway?

11.8 What are the differences among the firewalls of Figure 11.1?

11.9 What are the common characteristics of a bastion host?
11.10 Why is it useful to have host-based firewalls?

11.11 What is a DMZ network and what types of systems would you expect to find on such
networks?

11.12 What is the difference between an internal and an external firewall?

Problems

11.1 As was mentioned in Section 11.3, one approach to defeating the tiny fragment attack
is to enforce a minimum length of the transport header that must be contained in the
first fragment of an IP packet. If the first fragment is rejected, all subsequent frag-
ments can be rejected. However, the nature of IP is such that fragments may arrive
out of order. Thus, an intermediate fragment may pass through the filter before the
initial fragment is rejected. How can this situation be handled?

11.2 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to
Total Length — (4 x THL). If this value is less than the required minimum (8 octets for
TCP), then this fragment and the entire packet are rejected. Suggest an alternative
method of achieving the same result using only the Fragment Offset field.

11.3 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that
results in new fragments overwriting any overlapped portions of previously received
fragments. Given such a reassembly implementation, an attacker could construct a
series of packets in which the lowest (zero-offset) fragment would contain innocuous
data (and thereby be passed by administrative packet filters), and in which some sub-
sequent packet having a non-zero offset would overlap TCP header information (des-
tination port, for instance) and cause it to be modified. The second packet would be
passed through most filter implementations because it does not have a zero fragment
offset. Suggest a method that could be used by a packet filter to counter this attack.

11.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 395

Table 11.3 Sample Packet Filter Firewall Ruleset

Source Address Source Port Dest Address Dest Port Action
1 Any Any 192.168.1.0 > 1023 Allow
2 192.168.1.1 Any Any Any Deny
3 Any Any 192.168.1.1 Any Deny
4 192.168.1.0 Any Any Any Allow
5 Any Any 192.168.1.2 SMTP Allow
6 Any Any 192.168.1.3 HTTP Allow
7 Any Any Any Any Deny
11.4 Table 11.3 shows a sample of a packet filter firewall ruleset for an imaginary network
?LfﬂIeP address that range from 192.168.1.0 to 192.168.1.254. Describe the effect of each
11.5 SMTP (Simple Mail Transfer Protocol) is the standard protocol for transferring mail

between hosts over TCP. A TCP connection is set up between a user agent and a
server program. The server listens on TCP port 25 for incoming connection requests.
The user end of the connection is on a TCP port number above 1023. Suppose you
wish to build a packet filter rule set allowing inbound and outbound SMTP traffic.
You generate the following ruleset:

Rule | Direction | Src Addr | Dest Addr | Protocol | Dest Port | Action
A In External Internal TCP 25 Permit
B Out Internal External TCP >1023 Permit
C Out Internal External TCP 25 Permit
D In External Internal TCP >1023 Permit
E Either Any Any Any Any Deny

a. Describe the effect of each rule.

b. Your host in this example has IP address 172.16.1.1. Someone tries to send e-mail
from a remote host with IP address 192.168.3.4. If successful, this generates an
SMTP dialogue between the remote user and the SMTP server on your host con-
sisting of SMTP commands and mail. Additionally, assume that a user on your
host tries to send e-mail to the SMTP server on the remote system. Four typical
packets for this scenario are as shown:

Packet| Direction Src Addr Dest Addr | Protocol | Dest Port | Action
1 In 192.168.3.4 172.16.1.1 TCP 25 ?
2 Out 172.16.1.1 192.168.3.4 TCP 1234 ?
3 Out 172.16.1.1 192.168.3.4 TCP 25 ?
4 In 192.168.3.4 172.16.1.1 TCP 1357 ?

Indicate which packets are permitted or denied and which rule is used in each
case.

396 CHAPTER 11 / FIREWALLS

c. Someone from the outside world (10.1.2.3) attempts to open a connection from
port 5150 on a remote host to the Web proxy server on port 8080 on one of your
local hosts (172.16.3.4), in order to carry out an attack. Typical packets are as

follows:

Packet | Direction Src Addr Dest Addr | Protocol | Dest Port | Action
5 In 10.1.2.3 172.16.3.4 TCP 8080 ?
6 Out 172.16.3.4 10.1.2.3 TCP 5150 ?

11.6

Will the attack succeed? Give details.
To provide more protection, the ruleset from the preceding problem is modified as

follows:

Rule | Direction | Src Addr | Dest Addr | Protocol | Src Port | Dest Port | Action
A In External | Internal TCP >1023 25 Permit
B Out Internal | External TCP 25 >1023 | Permit
C Out Internal | External TCP >1023 25 Permit
D In External | Internal TCP 25 >1023 | Permit
E Either Any Any Any Any Any Deny

a. Describe the change.
b. Apply this new ruleset to the same six packets of the preceding problem. Indicate
which packets are permitted or denied and which rule is used in each case.
11.7 A hacker uses port 25 as the client port on his or her end to attempt to open a con-
nection to your Web proxy server.
a. The following packets might be generated:

Packet | Direction | Src Addr | Dest Addr | Protocol | Src Port | Dest Port | Action
7 In 10.1.2.3 172.16.3.4 TCP 25 8080 ?
8 Out 172.16.3.4 10.1.2.3 TCP 8080 25 ?

Explain why this attack will succeed, using the ruleset of the preceding problem.

b. When a TCP connection is initiated, the ACK bit in the TCP header is not set.
Subsequently, all TCP headers sent over the TCP connection have the ACK bit
set. Use this information to modify the ruleset of the preceding problem to
prevent the attack just described.

11.8 A common management requirement is that “all external Web traffic must flow via
the organization’s Web proxy.” However, that requirement is easier stated than imple-
mented. Discuss the various problems and issues, possible solutions, and limitations
with supporting this requirement. In particular consider issues such as identifying
exactly what constitutes “Web traffic” and how it may be monitored, given the large
range of ports and various protocols used by Web browsers and servers.

11.9 Consider the threat of “theft/breach of proprietary or confidential information held in

key data files on the system.” One method by which such a breach might occur is

the accidental/deliberate e-mailing of information to a user outside to the organiza-

tion. A possible countermeasure to this is to require all external e-mail to be given a

11.10

11.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 397

sensitivity tag (classification if you like) in its subject and for external e-mail to have
the lowest sensitivity tag. Discuss how this measure could be implemented in a firewall
and what components and architecture would be needed to do this.

You are given the following “informal firewall policy” details to be implemented
using a firewall like that in Figure 11.3:

1.

E-mail may be sent using SMTP in both directions through the firewall, but it
must be relayed via the DMZ mail gateway that provides header sanitization and
content filtering. External e-mail must be destined for the DMZ mail server.
Users inside may retrieve their e-mail from the DMZ mail gateway, using either
POP3 or POP3S, and authenticate themselves.

Users outside may retrieve their e-mail from the DMZ mail gateway, but only if
they use the secure POP3 protocol, and authenticate themselves

Web requests (both insecure and secure) are allowed from any internal user out
through the firewall but must be relayed via the DMZ Web proxy, which provides
content filtering (noting this is not possible for secure requests), and users must
authenticate with the proxy for logging.

Web requests (both insecure and secure) are allowed from anywhere on the
Internet to the DMZ Web server

DNS lookup requests by internal users allowed via the DMZ DNS server, which
queries to the Internet.

External DNS requests are provided by the DMZ DNS server.

Management and update of information on the DMZ servers is allowed using
secure shell connections from relevant authorized internal users (may have differ-
ent sets of users on each system as appropriate).

SNMP management requests are permitted from the internal management hosts
to the firewalls, with the firewalls also allowed to send management traps (i.e.,
notification of some event occurring) to the management hosts

Design suitable packet filter rulesets (similar to those shown in Table 11.1) to be
implemented on the “External Firewall” and the “Internal Firewall” to satisfy the
aforementioned policy requirements.

APPENDIX A

SoME ASPECTS OF NUMBER THEORY

A.1 Prime and Relatively Prime Numbers

Divisors
Prime Numbers
Relatively Prime Numbers

A.2 Modular Arithmetic

398

A.1 / PRIME AND RELATIVELY PRIME NUMBERS 399

The Devil said to Daniel Webster: “Set me a task I can’t carry out, and I’ll give you anything in
the world you ask for.”

Daniel Webster: “Fair enough. Prove that for n greater than 2, the equation a" + b" = "
has no non-trivial solution in the integers.”

They agreed on a three-day period for the labor, and the Devil disappeared.

At the end of three days, the Devil presented himself, haggard, jumpy, biting his lip. Daniel
Webster said to him, “Well, how did you do at my task? Did you prove the theorem?”’

“Eh? No . . . no, I haven’t proved it.”

“Then I can have whatever I ask for? Money? The Presidency?”’

“What? Oh, that—of course. But listen! If we could just prove the following two lemmas—"’

—The Mathematical Magpie, Clifton Fadiman

In this appendix, we provide some background on two concepts referenced in this
book: prime numbers and modular arithmetic.

A.1 PRIME AND RELATIVELY PRIME NUMBERS

In this section, unless otherwise noted, we deal only with nonnegative integers. The
use of negative integers would introduce no essential differences.

Divisors

We say that b # 0divides aif a = mb for some m, where a, b, and m are integers. That
is, b divides a if there is no remainder on division. The notation b|a is commonly used
to mean b divides a. Also, if b|a, we say that b is a divisor of a. For example, the
positive divisors of 24 are 1,2,3,4,6, 8,12, and 24.

The following relations hold:

If a1, thena = +1.

If a|lb and b|a, then a = +b.

e Any b # 0divides 0.

If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n.

To see this last point, note that

If b|g, then g is of the form g = b x g; for some integer g;.
If b|h, then A is of the form & = b x h; for some integer A;.

So
mg +nh =mbg, +nbhy = b x (mgy + nhy)

and therefore b divides mg + nh.

Prime Numbers

An integer p > 1 is a prime number if its only divisors are +1 and +p. Prime
numbers play a critical role in number theory and in the techniques discussed in
Chapter 3.

400 APPENDIX A / SOME ASPECTS OF NUMBER THEORY

Any integer a > 1 can be factored in a unique way as
a=piXpeXxX ... XpH

where p; < p, <...<p, are prime numbers and where each g; is a positive integer.
For example, 91 =7 x 13 and 11011 =7 x 112 x 13.

It is useful to cast this another way. If P is the set of all prime numbers, then
any positive integer can be written uniquely in the following form:

a= []p* where eacha, = 0

pEP

The right-hand side is the product over all possible prime numbers p; for any particular
value of a, most of the exponents a,, will be 0.

The value of any given positive integer can be specified by simply listing all the
nonzero exponents in the foregoing formulation. Thus, the integer 12 is represented
by {a, =2, a3 =1}, and the integer 18 is represented by {a, = 1, a3 = 2}. Multiplication
of two numbers is equivalent to adding the corresponding exponents:

k=mn — k,=m,+n, forallp

What does it mean, in terms of these prime factors, to say that a|b? Any integer
of the form p* can be divided only by an integer that is of a lesser or equal power of
the same prime number, p/ with j < k. Thus, we can say

alb — a,=0b, forallp

Relatively Prime Numbers

We will use the notation gcd (a, b) to mean the greatest common divisor of @ and b.
The positive integer c is said to be the greatest common divisor of a and b if

1. cis adivisor of a and of b.
2. Any divisor of a and b is a divisor of c.

An equivalent definition is the following:
ged(a, b) = max[k, such that k|a and k|b]

Because we require that the greatest common divisor be positive, gcd(a, b) =
ged(a,—b) = ged(—a, b) = ged(—a,—b). In general, gcd(a, b) = ged(|al,|b|). For example,
gcd(60, 24) = gcd(60, —24) = 12. Also, because all nonzero integers divide 0, we have
ged(a, 0) = |al.

It is easy to determine the greatest common divisor of two positive integers if
we express each integer as the product of primes. For example,

300=22x3'x5?
18=2"x3?
ged(18,300) =2 x 3! x59=6
In general,

k= gcd(a, b) — k,=min(a,,b,) forallp

A.2 / MODULAR ARITHMETIC 401

Determining the prime factors of a large number is no easy task, so the
preceding relationship does not directly lead to a way of calculating the greatest
common divisor.

The integers a and b are relatively prime if they have no prime factors in com-
mon, that is, if their only common factor is 1. This is equivalent to saying that a and
b are relatively prime if gcd(a, b) = 1. For example, 8 and 15 are relatively prime
because the divisors of 8 are 1,2,4, and 8, and the divisors of 15 are 1, 3,5, and 15, so
1 is the only number on both lists.

A.2 MODULAR ARITHMETIC

Given any positive integer n and any nonnegative integer a, if we divide a by n,
we get an integer quotient g and an integer remainder r that obey the following
relationship:

a=qn-+r 0=r<n;q=|aln|

where | x | is the largest integer less than or equal to x.

Figure A.la demonstrates that, given a and positive n, it is always possible
to find ¢ and r that satisfy the preceding relationship. Represent the integers on
the number line; a will fall somewhere on that line (positive a is shown, a similar
demonstration can be made for negative a). Starting at 0, proceed to n, 2n, up to
gn such that gn = a and (g + 1)n> a. The distance from gn to a is r, and we have
found the unique values of ¢ and r. The remainder r is often referred to as a
residue.

If a is an integer and 7 is a positive integer, we define @ mod 7 to be the remainder
when a is divided by n. Thus, for any integer a, we can always write:

a=|aln|xn+(amodn)

1

(a) General relationship r
r\li/\
| | | | | | |
| | | | | | |
0 15 30 45 60 70 75
=2x15 =3x15 =4x15 =5x15
(b) Example: 70 = (4x15) + 10 10

Figure A.1 The Relationshipa=gqn + ;0= r<n

402 APPENDIX A / SOME ASPECTS OF NUMBER THEORY

Two integers a and b are said to be congruent modulo #, if (¢ mod n) = (b mod n).
This is written a = b mod n. For example, 73 = 4 mod 23 and 21 = —9 mod 10. Note
thatif a = 0 mod n, then nla.

The modulo operator has the following properties:

a = bmod nif n|(a—b).

(a mod n) = (b mod n) implies a = b mod n.

a = b mod n implies b = a mod n.
a=bmodnandb = cmod nimply a = ¢ mod n.

=

To demonstrate the first point, if n|(a — b), then (a — b) = kn for some k. So we can
write a = b + kn. Therefore, (¢ mod n) = (remainder when b + kn is divided by n) =
(remainder when b is divided by n) = (b mod n). The remaining points are as easily
proved.

The (mod n) operator maps all integers into the set of integers {0, 1,...,
(n — 1)}. This suggests the question: Can we perform arithmetic operations within
the confines of this set? It turns out that we can; the technique is known as modular
arithmetic.

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n= (a+b) mod n
2. [(a mod n) — (b mod n)] mod n=(a—b) mod n
3. [(ea mod n) x (b mod n)] mod n = (a x b) mod n

We demonstrate the first property. Define (¢ mod n) = r, and (b mod n) = ry,.
Then we can write a = r, + jn for some integer j and b = r, + kn for some integer k.
Then

(a+b)modn=(r,+jn+ry,+kn)modn
=(ra+rp+(k+j)n) modn
=(r,+rp) modn
=[(a mod n) + (b mod n)] mod n

The remaining properties are as easily proved.

APPENDIX B

PROJECTS FOR TEACHING NETWORK SECURITY

B.1
B.2
B.3
B4
B.5
B.6
B.7

Research Projects

Hacking Project
Programming Projects
Laboratory Exercises
Practical Security Assessments
Writing Assignments

Reading/Report Assignments

403

404 APPENDIX B / PROJECTS FOR TEACHING NETWORK SECURITY

Analysis and observation, theory and experience must never disdain or exclude each other; on the
contrary, they support each other.

—On War, Carl Von Clausewitz

Many instructors believe that research or implementation projects are crucial to
the clear understanding of network security. Without projects, it may be difficult for
students to grasp some of the basic concepts and interactions among components.
Projects reinforce the concepts introduced in the book, give the student a greater
appreciation of how a cryptographic algorithm or protocol works, and can motivate
students and give them confidence that they are capable of not only understanding
but implementing the details of a security capability.

In this text, I have tried to present the concepts of network security as clear-
ly as possible and have provided numerous homework problems to reinforce
those concepts. However, many instructors will wish to supplement this material
with projects. This appendix provides some guidance in that regard and describes
support material available in the Instructor’s Resource Center (IRC) for this
book, accessible to instructors from Prentice Hall. The support material covers
seven types of projects:

Research projects

Hacking project
Programming projects
Laboratory exercises
Practical security assessments
Writing assignments
Reading/report assignments

B.1 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could involve
a literature search as well as an Internet search of vendor products, research lab
activities, and standardization efforts. Projects could be assigned to teams or, for
smaller projects, to individuals. In any case, it is best to require some sort of project
proposal early in the term, giving the instructor time to evaluate the proposal for
appropriate topic and appropriate level of effort. Student handouts for research
projects should include

AR i A

¢ A format for the proposal

e A format for the final report

e A schedule with intermediate and final deadlines
e A list of possible project topics

The students can select one of the topics listed in the instructor’s manual or
devise their own comparable project. The IRC includes a suggested format for the
proposal and final report as well as a list of fifteen possible research topics.

B.3 / PROGRAMMING PROJECTS 405

B.2 HACKING PROJECT

The aim of this project is to hack into a corporation’s network through a series of
steps. The Corporation is named Extreme In Security Corporation. As the name
indicates, the corporation has some security holes in it, and a clever hacker is able to
access critical information by hacking into its network. The IRC includes what is
needed to set up the Web site. The student’s goal is to capture the secret information
about the price on the quote the corporation is placing next week to obtain a
contract for a governmental project.

The student should start at the Web site and find his or her way into the network.

At each step, if the student succeeds, there are indications as to how to proceed on to
the next step as well as the grade until that point.

1.

The project can be attempted in three ways:

Without seeking any sort of help.

. Using some provided hints.

Using exact directions.
The IRC includes the files needed for this project:

Web Security project.

Web Hacking exercises (XSS and Script-attacks) covering client-side and server-
side vulnerability exploitations, respectively.

Documentation for installation and use for the above.

A PowerPoint file describing Web hacking. This file is crucial to understanding
how to use the exercises since it clearly explains the operation using screen
shots.

This project was designed and implemented by Professor Sreekanth Malladi

of Dakota State University.

B.3 PROGRAMMING PROJECTS

The programming project is a useful pedagogical tool. There are several attractive
features of stand-alone programming projects that are not part of an existing security
facility.

1.

2.

The instructor can choose from a wide variety of cryptography and network
security concepts to assign projects.

The projects can be programmed by the students on any available computer
and in any appropriate language; they are platform and language independent.
The instructor need not download, install, and configure any particular infra-
structure for stand-alone projects.

There is also flexibility in the size of projects. Larger projects give students more

a sense of achievement, but students with less ability or fewer organizational skills can
be left behind. Larger projects usually elicit more overall effort from the best students.
Smaller projects can have a higher concepts-to-code ratio, and because more of them
can be assigned, the opportunity exists to address a variety of different areas.

406 APPENDIX B / PROJECTS FOR TEACHING NETWORK SECURITY

Again, as with research projects, the students should first submit a proposal.
The student handout should include the same elements listed in Section A.1. The
IRC includes a set of twelve possible programming projects.

The following individuals have supplied the research and programming projects
suggested in the instructor’s manual: Henning Schulzrinne of Columbia University;
Cetin Kaya Koc of Oregon State University; and David M. Balenson of Trusted Infor-
mation Systems and George Washington University.

B.4 LABORATORY EXERCISES

Professor Sanjay Rao and Ruben Torres of Purdue University have prepared a set of
laboratory exercises that are part of the IRC. These are implementation projects
designed to be programmed on Linux but could be adapted for any Unix environment.
These laboratory exercises provide realistic experience in implementing security func-
tions and applications.

B.5 PRACTICAL SECURITY ASSESSMENTS

Examining the current infrastructure and practices of an existing organization is one
of the best ways of developing skills in assessing its security posture. The IRC
contains a list of such activities. Students, working either individually or in small
groups, select a suitable small-to-medium-sized organization. They then interview
some key personnel in that organization in order to conduct a suitable selection of
security risk assessment and review tasks as it relates to the organization’s IT infra-
structure and practices. As a result, they can then recommend suitable changes, which
can improve the organization’s IT security. These activities help students develop an
appreciation of current security practices and the skills needed to review these and
recommend changes.

Lawrie Brown of the Australian Defence Force Academy developed these
projects.

B.6 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process
in a technical discipline such as cryptography and network security. Adherents of
the Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu/)
report substantial benefits of writing assignments in facilitating learning.
Writing assignments lead to more detailed and complete thinking about a particu-
lar topic. In addition, writing assignments help to overcome the tendency of stu-
dents to pursue a subject with a minimum of personal engagement—just learning
facts and problem-solving techniques without obtaining a deep understanding of
the subject matter.

The IRC contains a number of suggested writing assignments, organized by
chapter. Instructors may ultimately find that this is an important part of their
approach to teaching the material. I would greatly appreciate any feedback on this
area and any suggestions for additional writing assignments.

B.7 / READING/REPORT ASSIGNMENTS 407

B.7 READING/REPORT ASSIGNMENTS

Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers, one or two per chapter, to be assigned.
The IRC provides a PDF copy of each of the papers. The IRC also includes a sug-
gested assignment wording.

Index

A
Access, 16,21
control, 16
threats, 22
Access control, 15
defined, 16
Access point (AP), IEEE 802.11, 180, 182
Active attacks, security, 11-14
Add Round Key, AES, 40
AES, see Advanced Encryption Standard (AES)
Alert codes, TLS, 158-159
Algorithms, 28, 34-41, 83-90, 211-214,
249-251,283
cryptographic, 211-214,249-251
ESP, 283
S/MIME, 249-251
WTLS, 211214
Advanced Encryption Standard (AES), 34,38-41
Add Round Key, 40
algorithm, 38-41
Data Encryption (DEA), 35
Data Encryption Standard (DES), 34-38
decryption, defined, 29
Diffie-Hellman key exchange, 85-89
Digital Signature (DSA), 89
elliptic curve cryptography (ECC), 89-90
encryption, 28
mix columns, 40
public-key cryptography, 83-90
RSA public-key encryption, 83-85
shift rows, 40
state array, 38
structure, 39
subkey generation, 34
substitution bytes, 40
symmetric block encryption, 34-41
triple Data Encryption Standard (3DES),
36-38
Anti-replay service, ESP, 284
Architecture, 9
open systems interconnection (OSI), 9
Attacks, 10-14, 32-33,90-91, 114. See also
Security attacks; Threats; Cryptanalysis
active, 12
chosen plaintext, 31
ciphertext only, 30-31
denial-of-service (DoS), 16

408

known plaintext, 30-31

man-in-the-middle, 88-89

messages, types of for, 31

passive, 10-11

password, 112

security, 10-14

Authentication, 14-15, 63-98, 99-140, 154-156,

187,190-192,213-214,226-228,235-236,292,
297-298. See also Message authentication;
Message authentication codes (MAC)

applications, 97-138

client/server exchange, 113

data origin, 15, 18

dialogues, 100-106, 112-114

forwarding, 111

IEEE 802.11i phase, 185, 188-190

IKE key determination, 295-296

Internet Protocol (IP),290

interrealm, 111

Kerberos, 99-114

key exchange client and server,
SSL, 152-154

message, 61-96,233-234

peer entity, 15

pretty good privacy (PGP),224-227,
233-234

public-key infrastructure (PKI), 124-126

recommended reading and Web sites,
132-133

server (AS), 101

service exchange, 112-113

timestamp, 233-234

WTLS, 211-212

X.509 service, 116-124

Authority key identifier, 123

B
Base-64 (radix-64) transfer encoding, 247
Basic service set (BSS), IEEE 802.11, 179-180
Block ciphers, 30, 34,45, 50-53
cipher block chaining (CBC) mode, 50, 51
cipher feedback (CFB) mode, 52-53
defined, 45
design of, 34
electronic codebook (ECB), 50
modes of operation, 54
plaintext processing, cryptography, 30

C
Canonical form, MIME and S/MIME, 247
Certificates, 114-115, 116-118, 125, 152-154,
159-160, 254-257
certification authority (CA), 114,116,255
enhanced security services, 257
extensions, 118
forward, 120
issuer, 117,118, 123-124
key information, 122
path constraints, 124
period of validity, 117
PKI certification, 126
policy information, 122
policy mappings, 123
public-key, 114-115,116
reverse, 120
revocation list (CRL), 122, 254
revocation of, 121-122
serial number, 117
signature, 118
signature algorithm identifier, 117
S/MIME, 254-257
SSL messages for key exchange, 152-154
subject, 117, 123-124
TLS client types, 159-160
unique identifiers, 118
user, 255
user’s, obtaining, 118-121
VeriSign, 255-257
version, 117
X.507,116-118
Certificates-only message, S/MIME, 254
Certification authority (CA), 114,116, 124-125
key distribution, 114
public-key infrastructure (PKI), 125-126
SET, 244
VeriSign certificates, 163
X.509 certificates, 116
Change Cipher Spec Protocol, 143, 147-148, 154,
207-208
Channels, SSH, 169-170
Cipher block chaining (CBC) mode, 4647
Cipher feedback (CFB) mode, 52-53
Cipher suites, TLS, 159
Ciphertext, 29, 81
Clear signing, SSMIME, 253-254
Client/server authentication exchange, 113
Code, 64-65
message authentication (MAC), 64-65

INDEX 409

Codebook, 50
defined, 50
electronic (ECB), 50
Compression, 227-228
PGP, 227-228
SSL, 145
Computer security, defined, 2
Confidentiality, 15-16,27-60,227-229, 285, 292.
See also Encryption
data, 15,16
Internet Protocol (IP), 283,290
messages, 27-58
pretty good privacy (PGP), 225-227
traffic flow (TFC), 283
Connection, SSL, 143
Connection Protocol, SSH, 163, 168-172
Cookie exchange, 294-295
CRL issuer, PKI, 125
Cross-certification, PKI, 126
Cryptanalysis, 30-32
Cryptography, 32, 81-84, 85-92. See also
Public-key cryptography
algorithms, 83-90
classification of systems, 30
cryptosystems, applications for, 79-82
encryption structure, 79-81
public-key, 79-82, 83-90
requirements for, 82
Cryptographic computations, 154-155, 160

D
Data, 15, 16-17
confidentiality, 15, 16
integrity, 16-17
origin authentication, 18
Data Encryption Standard (DES), 34-38
algorithm (DES), description of, 35
strength of, 35-36
triple (3DES), 36-38
Decryption algorithm, 29, 81
Denial-of-service (DoS) attack, 16
defined, 11
DES, see Data Encryption Standard (DES)
Diffie-Hellman key exchange, 85-89, 151, 155
anonymous, 151
algorithm, 86-88
ephemeral, 151
fixed, 151
introduction to, 85-86
man-in-the-middle attack, 88-89

410 INDEX

Diffie-Hellman key exchange (Continued)
protocols, 88
SSL Handshake Protocol, 151, 155
Digital Signature Algorithm (DSA), 89
Digital Signature Standard (DSS), 89
Digital signatures, 90
Discovery phase, IEEE 802.11i, 185-188
Distribution system (DS), IEEE 802.11, 180-182
DomainKeys Identified Mail (DKIM), 257-264
e-mail threats, 259-261
functional flow, 261-264
Internet mail architecture, 258-259
DoS, see Denial-of-service (DoS) attack
Double encryption, 111

E
ECC, see Elliptic curve cryptography (ECC)
Electronic codebook (ECB), 50
Electronic data interchange (EDI), 123
Electronic mail security, 221-268
DomainKeys Identified Mail (DKIM), 257264
pretty good privacy (PGP), 222-241
radix-64 conversion, 266-268
Secure/Multipurpose Internet Mail Extension
(S'MIME), 222, 241-257
Elliptic curve cryptography (ECC), 89-90
Encapsulating security payload (ESP),281-288
algorithms, 283
anti-replay service, 284
format, 282-283
padding, 283
transport mode, 285-287
tunnel mode, 285-288
Encryption, 27-60, 64-65, 81-83, 85-87, 92-94,
113, 114. See also Block ciphers; Public-key
cryptography; Stream ciphers
Advanced Encryption Standard (AES), 34,
38-41
algorithms, 28, 34—41, 50, 80, 83-90
block ciphers, 30, 45, 50-53
ciphertext, 81
cryptanalysis, 30-32
cryptography, 30
Data Encryption Standard (DES), 34-38
decryption algorithms, 81
digital signatures, 90
double, 111
end-to-end, 98
Feistel cipher structure, 32-34
introduction to, 28
key distribution, 98-99

key distribution, 114-116
message authentication and, 62-66
National Institute of Standards and
Technology (NIST), 34
plaintext, 28, 30-31, 80
propagating cipher block chaining
(PCBC), 112
public-key, 79-81, 90-92
RC4 algorithm, 45-49, 50
recommended reading and Web sites, 55
RSA algorithm, 83-85
stream cipher, 30, 45-48, 52
symmetric, 28-34
symmetric block algorithms, 34-41
system dependence, 111
triple Data Encryption Standard (3DES),
36-38
End entity, PKI, 124
End-to-end encryption, 98,214-217
EnvelopedData, S'MIME, 252-253
ESP, see Encapsulated Security Payload (ESP)
Exchanges, 114-115, 117. See also Key exchange
authentication service, 111-112
client/server authentication, 113
Kerberos, 112-113,114
ticket-granting service, 113
Extended service set (ESS), IEEE 802.11, 180
External Functionality Interface (EFI), WAP, 201

F
Feistel cipher structure, 32-34
Fortezza key exchange, 151-153, 159
Forward certificate, 120
Fragmentation, SSL, 145

G
Group master key (PMK), IEEE 802.11i,
192-193

H
Handshake Protocol, 143, 149-154,209-211
Hash functions, 65-66, 67-73
HMAC, 73-76
one-way, 65-66
requirements, 66—67
secure, 67-73
Secure Hash Algorithm (SHA), 70
SHA-1 secure functions, 70-73
simple, 68-70
strong collision resistance, 67
weak collision resistance, 67

HMAC, 73-76
algorithm, 74-76
design objectives, 74

Host keys, SSH, 163

HTTPS, 140, 160-162

I
IEEE 802.11 LAN, 177-182
association-related services, 182
message distribution, 181-182
network components, 179-180
protocol architecture, 178-179
IEEE 802.11i LAN, 183-197
authentication phase, 185, 188-190
characteristics of, 183
connection termination, 186
discovery phase, 185-188
key management phase, 186, 188-192
phases of operation, 184-186
protected data transfer phase, 186,194-195
pseudorandom function (PRF), 195-197
Robust Security Network (RSN), 183-184
services, 183-184
Independent basic service set (IBSS), IEEE
802.11, 180
Information, 2, 20
access threats, 20
security, 2
Initialization, 125
PKI, 126
International Telecommunication
Union (ITU), 8
Internet Architecture Board (IAB),270-271
Internet Engineering Task Force (IETF), 21
standards from, 21
Internet key exchange (IKE), 292-300
cookies, 294-295
header and payload formats, 297-300
IKEvS5 message exchange, 296-297
key determination protocol, 293-300
Internet Protocol (IP), 113, 143-144,271-305.
See also Internet Protocol security (IPSec)
authentication plus confidentiality, 290
combining security associations (SA), 288-292
cryptographic suites, 301-302
dependence, 111
encapsulating security payload (ESP),
281-288
Internet key exchange (IKE), 292-300
security (IPsec),270-276
security association database (SAD),276-278

INDEX 411

security policy database (SPD), 276,278-279
traffic processing, 279-281
Internet Protocol security (IPsec),270-279
documents, 273-274
packets, 279-281
policy, 276-279
routing, 273
transport mode, 274-276
tunnel mode, 274-276
Internet security, 221-304
defined, 2
electronic mail, 221-304
Internet protocol (IP), 142,269-303
Transport Layer Security (TLS), 140, 142
transport-level, 139-174
Internet Security Association and Key
Management Protocol (ISAKMP), 293
Internet standards, 21
Internet Architecture Board (IAB), 21
Internet Engineering Task Force (IETF), 21
RFCs, 21
Interrealm authentication, 111
IP, see Internet Protocol (IP)
ISAKMP, see Internet Security and Key
management Protocol (ISAKMP)
ITU-T Recommendation X.800, see X.800
standard recommendations

K

Kerberos, 99-114
authentication dialogues, 100-108,112-114
authentication forwarding, 111
authentication server (AS), 100
authentication service exchange, 112-113
client/server authentication exchange, 113
differences between versions 4 and 5, 110-111
double encryption, 111
encryption system dependence, 111
environmental shortcomings, 111
Internet protocol dependence, 111
interrealm authentication, 111
introduction to, 99-100
message byte ordering, 111
nonce, 112
options, 112
password attacks, 112
principal, 108
propagating cipher block chaining (PCBC)

encryption, 112

realms, 108-112, 113
session keys, 112

412 INDEX

Kerberos (Continued)
technical deficiencies of, 110-111
ticket-granting server (TGS), 102-103
ticket-granting service exchange, 113
ticket lifetime, 111
times, 112
version 4,100-110
version 5,110-114
Key distribution, 100-111, 116-118, 188,
192-196, 232-243. See also Exchanges;
Private keys; Public keys
center (KDC), 99
certificate authority (CA), 114
hierarchy, 191
IEEE 802.11i management phase, 186,
190-194
key identifiers, 230-233
key rings, 233-236
permanent key, 99
pretty good privacy (PGP),230-241
private key, 233-234
public key, 234-241
public-key certificates, 114-115
public-key distribution of secret keys, 115
session key, 99, 230-233
wireless network security, 190-194
Keyed hash function, see Message
authentication codes (MAC)
Key exchange, 85-89, 151-154, 165-166,
212-213,292-300
certificate messages for, 152—-154
client authentication and, 153-154
Diffie-Hellman, 85-89, 151,212-213
Fortezza, 151-153
Internet (IKE) key determination protocol,
293-300
Internet, 292-300
protocols, 88
RSA, 151,212-213
server authentication and, 152-153
SSH Transport Layer Protocol, 165-166
SSL Handshake Protocol, 151-154
WTLS, 212-213
Key generation, 167,213-214, 230
PGP, 230
SSH, 167
WTLS, 213-214
Key identifiers (key ID), PGP, 230-233
Key management, see Key distribution
Key pair recovery, PKI, 126
Key pair update, PKI, 126

Key rings, PGP, 233-236
Key schedule algorithm, DES, 94
Keystream, defined, 45

L
Link encryption, 98
Logical link control (LLC) layer, IEEE 800, 179

M
MAC protocol data unit (MPDU), IEEE 800,
178-179, 181, 187-188, 189-190
MAC service data unit (MSDU), IEEE 800,
178-179, 181
Man-in-the-middle attack, 88-89
Master key, 213-214
Master secret creation, 155,160
Master session key (MSK), IEEE 802.111, 190
Masquerade, 11-12
Media access control (MAC) layer, IEEE 800,
178-179
Message authentication, 61-96
approaches to, 62-66
code (MAC), 64-65
digital signatures, 90
encryption, and, 62-66
hash functions, 65-66, 67-73
introduction to, 62
key distribution, 114-146
one-way hash functions, 65-66
public-key cryptography, 79-82, 83-90
recommended reading and Web sites, 90-91
secure hash functions, 67-73
Message authentication code (MAC), 64-65, 156
SSL, 145-147
technique, 64-65
TLS, 156
Messages, 10, 11, 13-14,27-60, 63-98, 113,
169-170, 232-238, 253-256,298-299. See
also Encryption; Public-key cryptography
attacks on, types of, 31
authentication, 61-96
byte ordering, 111
confidentiality of, 27-58
IKEV5 exchange, 296-297
key rings for, 230-236
modification of, 13-14
pretty good privacy (PGP), 230-236
release of contents, 10, 11
Secure/Multipurpose Internet Mail Extension
(S'MIME), 251-254
SSH exchange, 167-168

MIME, see Multipurpose Internet Mail
Extensions (MIME)
Mix columns, AES, 40
Model for network security, 19-21
Modification of messages, 11, 13
Multipurpose Internet Mail Extensions
(MIME), 242247
canonical form, 247
content types, 244-246
transfer encodings, 246247

N
National Institute of Standards and Technology
(NIST), 34,89
Network security, 1-25,97-98,97-138, 139-174,
175-220
applications, 97
authentication, 97-138
computer security, 2
defined, 2
HTTPS, 140, 160-162
information security, 2
International Telecommunication Union
(ITU),8
Internet and Web resources, 23-25
Internet Engineering Task Force (IETF), 21
internet security, 2
Internet standards, 21
introduction to, 1-25
ITU-T Recommendation X.798, 8,14, 16-17
mechanisms, 9, 17-18
model for, 19-22
open systems interconnection (OSI)
architecture, 8-9
outline for study of, 21-22
recommended reading, 22
Secure Socket Layer (SSL), 140, 142-145
Secure Shell (SSH), 140, 162-172
services, 9, 13-16
threats, 19,99-100
transport-level, 139-174
trends in, 7-8
USENET newsgroups, 24
violations of, 3
wireless, 175-220
X.800 standard recommendations, 9, 14, 16-17
Nonce, 112,295
Kerberos, 112
Nonrepudiation, 14, 16
Nonsecret encryption, see Public-key

cryptography

INDEX 413

0]
Oakley Key Determination Protocol, 293
One-way function, 65-66

authentication, 65-66

hash functions, 65-66

X.507,121-122
Open systems interconnection (OST), 8-19
Options, Kerberos, 111

P
Packet exchange, SSH, 163-165
Packets, IPsec, 279-281
Padding, 160, 283
Pairwise master key (PMK), IEEE 802.11i,
191-192
Pairwise transient key (PTK), IEEE 802.11i,
192-193
Passive attacks, security, 9-11
Password attacks, Kerberos, 111
Peer entity authentication, 15
Permanent key, defined, 99
PGP, see Pretty Good Privacy (PGP)
Physical layer, IEEE 800, 178
PKI, see Public-key infrastructure (PKI)
Plaintext, 28, 30-31, 80
chosen, attack, 31
defined, 28
known, attack, 30-31
processing, cryptography, 30
public-key encryption, 79
Port forwarding, SSH, 170-172
Pre-shared key (PSK), IEEE 802.11i, 190
Pretty good privacy (PGP), 222-241
authentication, 224-227
compression, 227-228
confidentiality, 225-227
e-mail compatibility, 228-229
key identifiers, 230-233
key rings, 233-236
notation for, 223-224
private key, 233-234
public-key, 234-241
session key, 230-233
trust, fields for, 237-241
Private keys, 81-82,123,233-234
pretty good privacy (PGP),233-234
public-key cryptography and, 81-82
ring, 233-234
usage, X.509 authentication service, 123
Propagating cipher block chaining (PCBC)
encryption, 112

414 1INDEX

Protected data transfer phase, IEEE 802.11i,
194-195
Protocol, 90, 128. See also Internet
Protocol (IP)
Diffie-Hellman, 88
key exchange, 88
PKIX management, 126
Pseudorandom function (PRF), 157-158,
195-197,213
IEEE 802.11i, 195-197
TLS, 157-158
WTLS, 213
Public-key cryptography, 79-82, 83-90
algorithms, 83-90
applications for, 81-82
ciphertext, 81
cryptography, 79-82, 83-90
decryption algorithm, 81
Diffie-Hellman key exchange, 85-89
Digital Signature Standard (DSS), 89
elliptic curve (ECC), 89-90
encryption algorithm, 80
encryption structure, 79-81
plaintext, 80
private keys, 80, 81
public keys, 80, 81
requirements for, 82
RSA public-key encryption, 83-85
secret keys, 80, 81,92
Public-key encryption, 79-81, 90-92
algorithm, 80
certificates, 91-92
digital signatures, 90
key management, 90-92
secret keys, distribution of, 92
structure, 79-81
Public-key infrastructure (PKI), 124-126
certification authority (CA), 124-125
CRL issuer, 124
end entity, 124
key pairs, 126
PKIX management functions, 125-126
PKIX management protocols, 126
PKIX model, 124-126
registration authority (RA), 124
repository, 124
Public keys, 81-82,90-92, 116, 123-124,
234-241
authority key identifier, 123
certificates, 114-115, 116, 123-124
cryptography, 80, 81

defined, 81

distribution, 114-116

management, 236-241

pretty good privacy (PGP), 234-241

revoking, 241

ring, 233-236

secret keys, distribution of using, 116

subject key identifier, 123

trust, PGP fields, 237-241

usage, X.509 authentication service, 123

X.509 authentication service information,
123-124

Q

Quoted-printable transfer encoding, 247

R
Radix-64 conversion, 266-268
RC4 algorithm, 45-49, 50
generation, 49
initialization of S, 48-49
logic, 50
strength of, 49
Realm, 108-112
concept of, 108
Kerberos version 4, 108-112
Kerberos version 5,112
Record Protocol, 143, 145-147,206-207
Registration, PKI, 125
Registration authority (RA), PKI, 125
Release of message contents, 9, 10
Replay, 12
Replay attacks, 284
Repository, PKI, 125

Request for Comment (RFC) standards, 9, 242,

259-260
RFC 5322, SIMIME, 242
RFC 6484, e-mail threats, 259-260
security recommendations, 8
Reverse certificate, 120
Revocation, 121-122,126
certificates, X.509 authentication service,
121-122
request, PKI, 126
RFC, see Request for Comment (RFC)
standards

Rivest-Shamir-Adleman (RSA) algorithm, 151,

155,212-213
key exchange, 151, 155,212-213
SSL Handshake Protocol, 151, 155
WTLS, 212-213

Round, 32, 34, 40-41
Add Round Key, 40
AES encryption, 40-41
function, Feistel cipher, 31, 33
Routing, IPsec, 273
RSA, 83-85
public-key encryption, 83-85
RSA algorithm, see Rivest-Shamir-Adleman
(RSA) algorithm

S
Secret keys, 28, 80, 81, 115
encryption using, 28, 81
key management, 115
public-key cryptography, 80, 81, 115
public-key distribution of, 115
Secure Hash Algorithm (SHA), 70
Secure hash functions, see Hash functions
Secure/Multipurpose Internet Mail Extension
(S'MIME), 222, 241-257
certificate processing, 255-257
clear signing, 253-254
cryptographic algorithms, 249-251
functionality, 247-2451
messages, 251-254
Multipurpose Internet Mail Extensions
(MIME), 242247
Secure Shell (SSH), 140, 162-172
channels, 169-170
Connection Protocol, 163, 168-172
host keys, 163
key exchange and generation, 165-167
message exchange, 167-168
packet exchange, 163-165
port forwarding, 170-172
Transport Layer Protocol, 162-167
User Authentication Protocol, 163, 167-168
Secure Socket Layer (SSL), 140, 142-145
Alert Protocol, 143, 148-149
architecture, 143-144
Change Cipher Spec Protocol, 143,
147-148,154
cryptographic computations, 154-155
Handshake Protocol, 143, 149-154
Hypertext Transfer Protocol (HTTP), 143
master secret, 155
message authentication code (MAC), 145-147
Record Protocol, 143, 145-147
session, 143-144
Security association (SA), IP,276-278, 288-292
Security association database (SAD), 276-278

INDEX 415

Security attacks, 9-13
active, 11-13
defined, 9
denial of service, 11
masquerade, 11-12
modification of messages, 11, 13
passive, 9-11
release of message contents, 9-10
replay, 12
traffic analysis, 10-11
Security mechanisms, 9, 16-18
services and, relationship of, 18
X.800 recommendations, 17
Security policy database (SPD), 276, 278-279
Security services, 9, 13-16
access control, 15
authentication, 14-16
availability, 16
data confidentiality, 15
data integrity, 14, 16-17
defined, 9, 13
nonrepudiation, 16
Sequence number, 114
Kerberos, 113
Service request, SSH, 167
Service threats, defined, 20
Session keys, 99, 112,230-233
defined, 99
Kerberos, 112
Session, SSL, 143-144
Shift rows, AES, 40
SignedData, S/MIME, 253
S/MIME, see Secure/Multipurpose Internet Mail
Extension (S/MIME)
SSH, see Secure Shell (SSH)
SSL, see Secure Socket Layer (SSL)
State array, AES, 38
Stream ciphers, 30, 4548, 52
defined, 45
design considerations, 46
keystream, 45
plaintext processing, cryptography, 30
RC4 algorithm, 45-48, 52
structure of, 45-48
Subject field, 304
Subkey, Kerberos, 113
Substitution bytes, AES, 40
Symmetric encryption, 28-34
block cipher, design of, 33-34
block size, 33
ciphertext, 29

416 1INDEX

Symmetric encryption (Continued)
computationally secure, 31
cryptanalysis, 30-32
cryptography, 30
decryption algorithm, 29
encryption algorithm, 28
Feistel cipher structure, 32-34
key size, 33
plaintext, 28, 30-31
principles of, 28-34
requirements of, 29
round function, 32, 33
rounds, number of, 33
secret key, 29
subkey generation algorithm, 34

T
Threats, 10-14, 21, 101-102, 261-263. See also
Attacks

active attacks, 11-13

denial-of-service (DoS) attack, 16

disclosure, 14

masquerade, 11-12

modification of information, 13

network security, 21, 99-100

passive attack, 9-11

release of contents, 10

replay, 11

service, 20

traffic analysis, 9-11
Ticket-granting server (TGS), 102-103
Ticket-granting service exchange, 113
Ticket lifetime, 111
Times, Kerberos, 113
Timestamp authentication, 231, 233-234
TLS, see Transport Layer Security (TLS)
Traffic analysis, 10-11
Traffic flow confidentiality (TFC), 283
Traffic processing, IP, 279-281
Transport Layer Protocol, SSH, 162-167
Transport Layer Security (TLS), 140, 142, 156-160

alert codes, 158-159

certificate types (client), 159-60

cipher suites, 159

cryptographic computations, 160

message authentication code (MAC), 156

padding, 160

pseudorandom function (PRF), 156-158
Transport-level security, 139174

HTTPS, 140, 160-162

Secure Shell (SSH), 140, 162-172

Secure Socket Layer (SSL), 140, 142-155
Transport Layer Security (TLS), 140, 142,
156-160
Web considerations, 140-142
Transport mode, 1P, 274-276, 285-288
Triple Data Encryption Standard (3DES), 36-37
Trust, PGP fields, 237-241
Tunnel, SSH, 169-170
Tunnel mode, IP,274-276,285-288

U

USENET newsgroups, 24

User Authentication Protocol, SSH, 163,
167-168

V
VeriSign certificates, SSMIME, 255-257
Version number, TLS, 156

w
WAP, see Wireless Application Protocol (WAP)
Web security, 141-144, 162-163. See also
Internet security
Web sites, 24-25, 55,90-191, 133
authentication applications, network
security, 133
message authentication, 90-91
network security, 23-24, 133
symmetric encryption, 56
Wi-Fi Protected Access (WPA), 176-177, 183
Wireless application environment (WAE), WAP,
201-202
Wireless Application Protocol (WAP), 176,
197-204,214-217
architecture, 200-201
end-to-end security, 214-217
programming model, 198
protocol, 197-204, 202-204
security discovery and services, 201
wireless application environment (WAE),
201-202
wireless markup language (WML), 198-200
wireless session protocol (WSP), 203
wireless transaction protocol (WTP),203-204
Wireless Ethernet Compatibility Alliance
(WECA), 177
Wireless markup language (WML), WAP,
198-200
Wireless network security, 175-220
IEEE 802.11 LAN, 177-82
IEEE 802.11i LAN, 183-97

Robust Security Network (RSN), 183-184
Wi-Fi Protected Access (WPA),
176-177,183
Wired Equivalent Privacy (WEP), 183
Wireless Application Protocol (WAP), 176,
197-204,214-217
Wireless Transport Layer Security (WTLS),
176,204-214
Wireless session protocol (WSP), WAP, 203
Wireless transaction protocol (WTP), WAP,
203-204
Wireless Transport Layer Security (WTLS), 176,
204-214
Alert Protocol, 208-209
authentication, 211-212
Change Cipher Spec Protocol, 207-208
cryptographic algorithms, 211-214
Handshake Protocol, 209-211
key exchange, 212-213
master key generation, 213-214
protocol architecture, 206-211

INDEX 417

pseudorandom function (PRF), 213
Record Protocol, 206-207
sessions and connections, 205-206

X
X.509 certificate, 116-124
certificate revocation list (CRL), 122
certificates, 117-119
certification authority (CA), 116
forward certificate, 120
introduction to, 116
issuer attributes, 123-124
key information, 122-123
path constraints, 124
policy information, 122
reverse certificate, 120
revocation of certificates, 121-122
subject attributes, 122-123
user’s certificate, obtaining, 118-119
version 3,122-124
X.800 standard recommendations, 8, 14, 16-17

	Cover
	Network Security Essentials: Applications and Standards (Fourth edition)
	Copyright
	Contents
	Preface
	About the Author
	Chapter 1 - Introduction
	1.1 Computer Security Concepts�������������������������������������
	1.2 The OSI Security Architecture��
	1.3 Security Attacks���������������������������
	1.4 Security Services����������������������������
	1.5 Security Mechanisms������������������������������
	1.6 A Model for Network Security���������������������������������������
	1.7 Standards��������������������
	1.8 Outline of This Book�������������������������������
	1.9 Recommended Reading������������������������������
	1.10 Internet and Web Resources��������������������������������������
	1.11 Key Terms, Review Questions, and Problems���

	PART ONE - CRYPTOGRAPHY
	Chapter 2 - Symmetric Encryption and Message Confidentiality
	2.1 Symmetric Encryption Principles��
	2.2 Symmetric Block Encryption Algorithms��
	2.3 Random and Pseudorandom Numbers��
	2.4 Stream Ciphers and RC4���������������������������������
	2.5 Cipher Block Modes of Operation��
	2.6 Recommended Reading and Web Sites��
	2.7 Key Terms, Review Questions, and Problems��

	Chapter 3 - Public-Key Cryptography and Message Authentication
	3.1 Approaches to Message Authentication���
	3.2 Secure Hash Functions��������������������������������
	3.3 Message Authentication Codes���������������������������������������
	3.4 Public-Key Cryptography Principles���
	3.5 Public-Key Cryptography Algorithms���
	3.6 Digital Signatures�����������������������������
	3.7 Recommended Reading and Web Sites��
	3.8 Key Terms, Review Questions, and Problems��

	PART TWO - NETWORK SECURITY APPLICATIONS
	Chapter 4 - Key Distribution and User Authentication
	4.1 Symmetric Key Distribution Using Symmetric Encryption��
	4.2 Kerberos�������������������
	4.3 Key Distribution Using Asymmetric Encryption���
	4.4 X.509 Certificates�����������������������������
	4.5 Public-Key Infrastructure������������������������������������
	4.6 Federated Identity Management��
	4.7 Recommended Reading and Web Sites��
	4.8 Key Terms, Review Questions, and Problems��

	Chapter 5 - Transport-Level Security
	5.1 Web Security Considerations��������������������������������������
	5.2 Secure Socket Layer and Transport Layer Security���
	5.3 Transport Layer Security�����������������������������������
	5.4 HTTPS����������������
	5.5 Secure Shell (SSH)�����������������������������
	5.6 Recommended Reading and Web Sites��
	5.7 Key Terms, Review Questions, and Problems��

	Chapter 6 - Wireless Network Security
	6.1 IEEE 802.11 Wireless LAN Overview��
	6.2 IEEE 802.11i Wireless LAN Security���
	6.3 Wireless Application Protocol Overview���
	6.4 Wireless Transport Layer Security��
	6.5 WAP End-to-End Security����������������������������������
	6.6 Recommended Reading and Web Sites��
	6.7 Key Terms, Review Questions, and Problems��

	Chapter 7 - Electronic Mail Security
	7.1 Pretty Good Privacy������������������������������
	7.2 S/MIME�����������������
	7.3 DomainKeys Identified Mail�������������������������������������
	7.4 Recommended Reading and Web Sites��
	7.5 Key Terms, Review Questions, and Problems��
	Appendix 7A Radix-64 Conversion��������������������������������������

	Chapter 8 - IP Security
	8.1 IP Security Overview�������������������������������
	8.2 IP Security Policy�����������������������������
	8.3 Encapsulating Security Payload���
	8.4 Combining Security Associations��
	8.5 Internet Key Exchange��������������������������������
	8.6 Cryptographic Suites�������������������������������
	8.7 Recommended Reading and Web Sites��
	8.8 Key Terms, Review Questions, and Problems��

	PART THREE - SYSTEM SECURITY
	Chapter 9 - Intruders
	9.1 Intruders��������������������
	9.2 Intrusion Detection������������������������������
	9.3 Password Management������������������������������
	9.4 Recommended Reading and Web Sites��
	9.5 Key Terms, Review Questions, and Problems��
	Appendix 9A The Base-Rate Fallacy��

	Chapter 10 - Malicious Software
	10.1 Types of Malicious Software���������������������������������������
	10.2 Viruses�������������������
	10.3 Virus Countermeasures���������������������������������
	10.4 Worms�����������������
	10.5 Distributed Denial of Service Attacks���
	10.6 Recommended Reading and Web Sites���
	10.7 Key Terms, Review Questions, and Problems���

	Chapter 11 - Firewalls
	11.1 The Need for Firewalls����������������������������������
	11.2 Firewall Characteristics������������������������������������
	11.3 Types of Firewalls������������������������������
	11.4 Firewall Basing���������������������������
	11.5 Firewall Location and Configurations��
	11.6 Recommended Reading and Web Site��
	11.7 Key Terms, Review Questions, and Problems���

	Appendix A - Some Aspects of Number Theory
	A.1 Prime and Relatively Prime Numbers���
	A.2 Modular Arithmetic�����������������������������

	Appendix B - Projects for Teaching Network Security
	B.1 Research Projects����������������������������
	B.2 Hacking Project��������������������������
	B.3 Programming Projects�������������������������������
	B.4 Laboratory Exercises�������������������������������
	B.5 Practical Security Assessments���
	B.6 Writing Assignments������������������������������
	B.7 Reading/Report Assignments�������������������������������������

	Index������������

